[med-svn] [python-typing] 01/03: Imported Upstream version 3.5.0.1

Michael Crusoe misterc-guest at moszumanska.debian.org
Mon Mar 7 17:32:48 UTC 2016


This is an automated email from the git hooks/post-receive script.

misterc-guest pushed a commit to branch master
in repository python-typing.

commit d33953309396edaf801b48a739d3c417ac4cdda5
Author: Michael R. Crusoe <crusoe at ucdavis.edu>
Date:   Mon Mar 7 08:14:32 2016 -0800

    Imported Upstream version 3.5.0.1
---
 LICENSE                |  254 ++++++++
 PKG-INFO               |   31 +
 README.rst             |  213 +++++++
 python2/test_typing.py | 1030 ++++++++++++++++++++++++++++++
 python2/typing.py      | 1656 ++++++++++++++++++++++++++++++++++++++++++++++++
 setup.py               |   54 ++
 src/test_typing.py     | 1256 ++++++++++++++++++++++++++++++++++++
 src/typing.py          | 1651 +++++++++++++++++++++++++++++++++++++++++++++++
 8 files changed, 6145 insertions(+)

diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000..583f9f6
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,254 @@
+A. HISTORY OF THE SOFTWARE
+==========================
+
+Python was created in the early 1990s by Guido van Rossum at Stichting
+Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands
+as a successor of a language called ABC.  Guido remains Python's
+principal author, although it includes many contributions from others.
+
+In 1995, Guido continued his work on Python at the Corporation for
+National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)
+in Reston, Virginia where he released several versions of the
+software.
+
+In May 2000, Guido and the Python core development team moved to
+BeOpen.com to form the BeOpen PythonLabs team.  In October of the same
+year, the PythonLabs team moved to Digital Creations (now Zope
+Corporation, see http://www.zope.com).  In 2001, the Python Software
+Foundation (PSF, see http://www.python.org/psf/) was formed, a
+non-profit organization created specifically to own Python-related
+Intellectual Property.  Zope Corporation is a sponsoring member of
+the PSF.
+
+All Python releases are Open Source (see http://www.opensource.org for
+the Open Source Definition).  Historically, most, but not all, Python
+releases have also been GPL-compatible; the table below summarizes
+the various releases.
+
+    Release         Derived     Year        Owner       GPL-
+                    from                                compatible? (1)
+
+    0.9.0 thru 1.2              1991-1995   CWI         yes
+    1.3 thru 1.5.2  1.2         1995-1999   CNRI        yes
+    1.6             1.5.2       2000        CNRI        no
+    2.0             1.6         2000        BeOpen.com  no
+    1.6.1           1.6         2001        CNRI        yes (2)
+    2.1             2.0+1.6.1   2001        PSF         no
+    2.0.1           2.0+1.6.1   2001        PSF         yes
+    2.1.1           2.1+2.0.1   2001        PSF         yes
+    2.1.2           2.1.1       2002        PSF         yes
+    2.1.3           2.1.2       2002        PSF         yes
+    2.2 and above   2.1.1       2001-now    PSF         yes
+
+Footnotes:
+
+(1) GPL-compatible doesn't mean that we're distributing Python under
+    the GPL.  All Python licenses, unlike the GPL, let you distribute
+    a modified version without making your changes open source.  The
+    GPL-compatible licenses make it possible to combine Python with
+    other software that is released under the GPL; the others don't.
+
+(2) According to Richard Stallman, 1.6.1 is not GPL-compatible,
+    because its license has a choice of law clause.  According to
+    CNRI, however, Stallman's lawyer has told CNRI's lawyer that 1.6.1
+    is "not incompatible" with the GPL.
+
+Thanks to the many outside volunteers who have worked under Guido's
+direction to make these releases possible.
+
+
+B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON
+===============================================================
+
+PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
+--------------------------------------------
+
+1. This LICENSE AGREEMENT is between the Python Software Foundation
+("PSF"), and the Individual or Organization ("Licensee") accessing and
+otherwise using this software ("Python") in source or binary form and
+its associated documentation.
+
+2. Subject to the terms and conditions of this License Agreement, PSF hereby
+grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
+analyze, test, perform and/or display publicly, prepare derivative works,
+distribute, and otherwise use Python alone or in any derivative version,
+provided, however, that PSF's License Agreement and PSF's notice of copyright,
+i.e., "Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
+2011, 2012, 2013, 2014 Python Software Foundation; All Rights Reserved" are
+retained in Python alone or in any derivative version prepared by Licensee.
+
+3. In the event Licensee prepares a derivative work that is based on
+or incorporates Python or any part thereof, and wants to make
+the derivative work available to others as provided herein, then
+Licensee hereby agrees to include in any such work a brief summary of
+the changes made to Python.
+
+4. PSF is making Python available to Licensee on an "AS IS"
+basis.  PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
+IMPLIED.  BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND
+DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
+FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT
+INFRINGE ANY THIRD PARTY RIGHTS.
+
+5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
+FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
+A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON,
+OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
+
+6. This License Agreement will automatically terminate upon a material
+breach of its terms and conditions.
+
+7. Nothing in this License Agreement shall be deemed to create any
+relationship of agency, partnership, or joint venture between PSF and
+Licensee.  This License Agreement does not grant permission to use PSF
+trademarks or trade name in a trademark sense to endorse or promote
+products or services of Licensee, or any third party.
+
+8. By copying, installing or otherwise using Python, Licensee
+agrees to be bound by the terms and conditions of this License
+Agreement.
+
+
+BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
+-------------------------------------------
+
+BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1
+
+1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an
+office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the
+Individual or Organization ("Licensee") accessing and otherwise using
+this software in source or binary form and its associated
+documentation ("the Software").
+
+2. Subject to the terms and conditions of this BeOpen Python License
+Agreement, BeOpen hereby grants Licensee a non-exclusive,
+royalty-free, world-wide license to reproduce, analyze, test, perform
+and/or display publicly, prepare derivative works, distribute, and
+otherwise use the Software alone or in any derivative version,
+provided, however, that the BeOpen Python License is retained in the
+Software, alone or in any derivative version prepared by Licensee.
+
+3. BeOpen is making the Software available to Licensee on an "AS IS"
+basis.  BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
+IMPLIED.  BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND
+DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
+FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT
+INFRINGE ANY THIRD PARTY RIGHTS.
+
+4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE
+SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
+AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
+DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
+
+5. This License Agreement will automatically terminate upon a material
+breach of its terms and conditions.
+
+6. This License Agreement shall be governed by and interpreted in all
+respects by the law of the State of California, excluding conflict of
+law provisions.  Nothing in this License Agreement shall be deemed to
+create any relationship of agency, partnership, or joint venture
+between BeOpen and Licensee.  This License Agreement does not grant
+permission to use BeOpen trademarks or trade names in a trademark
+sense to endorse or promote products or services of Licensee, or any
+third party.  As an exception, the "BeOpen Python" logos available at
+http://www.pythonlabs.com/logos.html may be used according to the
+permissions granted on that web page.
+
+7. By copying, installing or otherwise using the software, Licensee
+agrees to be bound by the terms and conditions of this License
+Agreement.
+
+
+CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
+---------------------------------------
+
+1. This LICENSE AGREEMENT is between the Corporation for National
+Research Initiatives, having an office at 1895 Preston White Drive,
+Reston, VA 20191 ("CNRI"), and the Individual or Organization
+("Licensee") accessing and otherwise using Python 1.6.1 software in
+source or binary form and its associated documentation.
+
+2. Subject to the terms and conditions of this License Agreement, CNRI
+hereby grants Licensee a nonexclusive, royalty-free, world-wide
+license to reproduce, analyze, test, perform and/or display publicly,
+prepare derivative works, distribute, and otherwise use Python 1.6.1
+alone or in any derivative version, provided, however, that CNRI's
+License Agreement and CNRI's notice of copyright, i.e., "Copyright (c)
+1995-2001 Corporation for National Research Initiatives; All Rights
+Reserved" are retained in Python 1.6.1 alone or in any derivative
+version prepared by Licensee.  Alternately, in lieu of CNRI's License
+Agreement, Licensee may substitute the following text (omitting the
+quotes): "Python 1.6.1 is made available subject to the terms and
+conditions in CNRI's License Agreement.  This Agreement together with
+Python 1.6.1 may be located on the Internet using the following
+unique, persistent identifier (known as a handle): 1895.22/1013.  This
+Agreement may also be obtained from a proxy server on the Internet
+using the following URL: http://hdl.handle.net/1895.22/1013".
+
+3. In the event Licensee prepares a derivative work that is based on
+or incorporates Python 1.6.1 or any part thereof, and wants to make
+the derivative work available to others as provided herein, then
+Licensee hereby agrees to include in any such work a brief summary of
+the changes made to Python 1.6.1.
+
+4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS"
+basis.  CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
+IMPLIED.  BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND
+DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
+FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
+INFRINGE ANY THIRD PARTY RIGHTS.
+
+5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
+1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
+A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1,
+OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
+
+6. This License Agreement will automatically terminate upon a material
+breach of its terms and conditions.
+
+7. This License Agreement shall be governed by the federal
+intellectual property law of the United States, including without
+limitation the federal copyright law, and, to the extent such
+U.S. federal law does not apply, by the law of the Commonwealth of
+Virginia, excluding Virginia's conflict of law provisions.
+Notwithstanding the foregoing, with regard to derivative works based
+on Python 1.6.1 that incorporate non-separable material that was
+previously distributed under the GNU General Public License (GPL), the
+law of the Commonwealth of Virginia shall govern this License
+Agreement only as to issues arising under or with respect to
+Paragraphs 4, 5, and 7 of this License Agreement.  Nothing in this
+License Agreement shall be deemed to create any relationship of
+agency, partnership, or joint venture between CNRI and Licensee.  This
+License Agreement does not grant permission to use CNRI trademarks or
+trade name in a trademark sense to endorse or promote products or
+services of Licensee, or any third party.
+
+8. By clicking on the "ACCEPT" button where indicated, or by copying,
+installing or otherwise using Python 1.6.1, Licensee agrees to be
+bound by the terms and conditions of this License Agreement.
+
+        ACCEPT
+
+
+CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
+--------------------------------------------------
+
+Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam,
+The Netherlands.  All rights reserved.
+
+Permission to use, copy, modify, and distribute this software and its
+documentation for any purpose and without fee is hereby granted,
+provided that the above copyright notice appear in all copies and that
+both that copyright notice and this permission notice appear in
+supporting documentation, and that the name of Stichting Mathematisch
+Centrum or CWI not be used in advertising or publicity pertaining to
+distribution of the software without specific, written prior
+permission.
+
+STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
+THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
+FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE
+FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
+OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
diff --git a/PKG-INFO b/PKG-INFO
new file mode 100644
index 0000000..4fe3d82
--- /dev/null
+++ b/PKG-INFO
@@ -0,0 +1,31 @@
+Metadata-Version: 1.1
+Name: typing
+Version: 3.5.0.1
+Summary: Type Hints for Python
+Home-page: https://docs.python.org/3.5/library/typing.html
+Author: Guido van Rossum, Jukka Lehtosalo, Łukasz Langa
+Author-email: jukka.lehtosalo at iki.fi
+License: PSF
+Description: Typing -- Type Hints for Python
+        
+        This is a backport of the standard library typing module to Python
+        versions older than 3.5.
+        
+        Typing defines a standard notation for Python function and variable
+        type annotations. The notation can be used for documenting code in a
+        concise, standard format, and it has been designed to also be used by
+        static and runtime type checkers, static analyzers, IDEs and other
+        tools.
+        
+Keywords: typing function annotations type hints hinting checking checker typehints typehinting typechecking backport
+Platform: UNKNOWN
+Classifier: Development Status :: 5 - Production/Stable
+Classifier: Environment :: Console
+Classifier: Intended Audience :: Developers
+Classifier: License :: OSI Approved :: Python Software Foundation License
+Classifier: Operating System :: OS Independent
+Classifier: Programming Language :: Python :: 2.7
+Classifier: Programming Language :: Python :: 3.2
+Classifier: Programming Language :: Python :: 3.3
+Classifier: Programming Language :: Python :: 3.4
+Classifier: Topic :: Software Development
diff --git a/README.rst b/README.rst
new file mode 100644
index 0000000..77f1a30
--- /dev/null
+++ b/README.rst
@@ -0,0 +1,213 @@
+===================
+PEP 484: Type Hints
+===================
+
+This GitHub repo is used for drafting PEP 484: Type Hints, slated for
+inclusion in Python 3.5.
+
+Authors
+-------
+
+* Guido van Rossum
+
+* Jukka Lehtosalo
+
+* Łukasz Langa
+
+BDFL-Delegate
+-------------
+
+The BDFL-Delegate is Mark Shannon.  This means he gets to be the final
+reviewer of the PEP and ultimately gets to accept or reject it -- see
+PEP 1 (https://www.python.org/dev/peps/pep-0001/).
+
+Important dates
+---------------
+
+The target dates for inclusion of typing.py in Python 3.5 are derived
+from the Python 3.5 release schedule as documented in PEP 478
+(https://www.python.org/dev/peps/pep-0478/), and subject to change if
+that schedule slips:
+
+* May 24, 2015: Python 3.5.0 beta 1 -- PEP 484 accepted, typing.py
+  feature complete and checked into CPython repo
+
+* August 9, 2015: Python 3.5.0 release candidate 1 -- Last chance for
+  fixes to typing.py barring emergencies:
+
+* September 13, 2015: Python 3.5.0 final release
+
+Important URLs
+--------------
+
+The python.org rendering of the PEP lives at
+https://www.python.org/dev/peps/pep-0484/, but the version in this
+GitHub repo is typically newer -- the python.org version corresponds
+to the most recent draft posted to python-ideas or python-dev.
+
+Two related informational PEPs exist, but are updated by their
+respective authors directly in the Hg peps repo:
+
+* An explanation of the theory behind type hints can be found in
+  https://www.python.org/dev/peps/pep-0483/.
+
+* A literature review is at https://www.python.org/dev/peps/pep-0482/.
+
+The python.org site automatically updates (with a slight delay,
+typically in the order of 5-60 minutes) whenever the Hg peps repo is
+updated.
+
+Workflows
+---------
+
+Here's some documentation on the workflow we're using for the various
+aspects of the PEP.
+
+Workflow for editing PEP 484
+----------------------------
+
+* The PEP 484 draft is edited in the GitHub ambv/typehinting repo.
+
+* The typing.py module and its unittests are edited in the prototyping
+  subdirectory of the same repo.
+
+* Use the GitHub issue tracker for this repo to collect concerns and
+  TO DO items for pep-0484.txt as well as for prototyping/typing.py.
+
+* Accumulate changes in the GitHub repo, closing issues as they are
+  either decided and described in the PEP, or implemented in
+  typing.py, or both, as befits the issue.  (Some issues will be
+  closed as "won't fix" after a decision is reached not to take
+  action.)
+
+* Make frequent small commits with clear descriptions.  Preferably use
+  a separate commit for each functional change, so the edit history is
+  clear, merge conflicts are unlikely, and it's easy to roll back a
+  change when further discussion reverts an earlier tentative decision
+  that was already written up and/or implemented.
+
+* Push to GitHub frequently.
+
+* Pull from GitHub frequently, rebasing conflicts carefully (or
+  merging, if a conflicting change was already pushed).
+
+* At reasonable checkpoints: copy pep-0484.txt to the Hg peps repo on
+  hg.python.org and post that version as the new draft to python-ideas
+  or (in later stages) to python-dev, making sure to update the
+  Post-History header in both repos.  This is typically done by Guido.
+
+Tracker labels
+--------------
+
+* bug: Needs to be fixed in typing.py.
+
+* to do: Editing task for the PEP itself.
+
+* enhancement: Proposed new feature.
+
+* postponed: Idea up for discussion.
+
+* out of scope: Somebody else's problem.
+
+
+Workflow for editing PEP 482 and PEP 483
+----------------------------------------
+
+* These PEPs only have informational status.
+
+* They are updated directly in the Hg peps repo by their authors
+  (Łukasz for PEP 482, Guido for PEP 483).
+
+Workflow for mypy changes
+-------------------------
+
+* Use the GitHub issue tracker for the mypy repo (JukkaL/mypy).  Jukka
+  accepts GitHub Pull Requests at his discretion.
+
+* At Jukka's discretion, he will from time to time copy typing.py and
+  test_typing.py from the typehinting GitHub repo to the mypy repo.
+
+* At Jukka's discretion, he also copies these to the typing repo
+  (JukkaL/typing).
+
+Workflow for CPython changes
+----------------------------
+
+* TBD: Workflow for copying typing.py and test_typing.py into the
+  CPython repo.
+
+Things consciously left out for now
+-----------------------------------
+
+* Multiple dispatch (but ``@overload`` will be allowed in stubs).
+
+* A general implementation of structural typing (but some specific
+  structural types are included, e.g. ``ImplementsAbs``).
+
+* Keyword argument and varargs support in ``Callable``.
+
+* Probably other things.
+
+Changes to MyPy
+---------------
+
+(Omitting things implemented in mypy 0.2; See
+http://mypy-lang.blogspot.com/2015/04/mypy-02-released.html.)
+
+* ``None`` should only be acceptable if an annotation explicitly uses
+  ``Optional[...]`` or if there is an explicit default ``= None``.
+  See https://github.com/JukkaL/mypy/issues/359
+
+* Implement `Tuple[t1, ...]` for variable-length homogeneous tuples.
+  See https://github.com/JukkaL/mypy/issues/184
+
+* Drop ``Undefined``.
+
+* Generalized named constants and constant expressions.
+
+* The full list of mypy issues marked as PEP 484 compatibility issues
+  is here: https://github.com/JukkaL/mypy/labels/pep484
+
+TO DO Lists
+-----------
+
+(Not sure that the TODO lists need to be in here; they don't seem complete.)
+
+PEP 482 TO DO
+-------------
+
+* State of the art: should we list decorator-based approaches
+  (PyContracts?) and docstring-based approaches?  **TODO:** Łukasz to
+  update PEP 482.
+
+PEP 483 TO DO
+-------------
+
+* Explain generics better.
+
+* Drop definition of ``Intersection``?
+
+PEP 484 TO DO
+-------------
+
+* Co/contravariance and type variables.  (See VARIANCE.rst)
+
+* Note that type checkers ought to provide config options to
+  selectively skip specific modules/packages.
+  See https://github.com/ambv/typehinting/issues/53
+
+* Describe how to declare a generic class.
+  See https://github.com/ambv/typehinting/issues/41
+
+* Add a comprehensive list of things we're explicitly punting (see above).
+
+* See also the list of github issues:
+  https://github.com/ambv/typehinting/issues
+
+README.rst TO DO
+----------------
+
+* Drop list of changes to mypy.
+
+* Remove all the TO DO lists, in favor of using the GitHub issue
+  tracker for everything.
diff --git a/python2/test_typing.py b/python2/test_typing.py
new file mode 100644
index 0000000..cd327aa
--- /dev/null
+++ b/python2/test_typing.py
@@ -0,0 +1,1030 @@
+from __future__ import absolute_import, unicode_literals
+import re
+import sys
+from unittest import TestCase, main
+
+from typing import Any
+from typing import TypeVar, AnyStr
+from typing import T, KT, VT  # Not in __all__.
+from typing import Union, Optional
+from typing import Tuple
+from typing import Callable
+from typing import Generic
+from typing import cast
+from typing import NamedTuple
+from typing import IO, TextIO, BinaryIO
+from typing import Pattern, Match
+import typing
+
+
+class Employee(object):
+    pass
+
+
+class Manager(Employee):
+    pass
+
+
+class Founder(Employee):
+    pass
+
+
+class ManagingFounder(Manager, Founder):
+    pass
+
+
+class AnyTests(TestCase):
+
+    def test_any_instance_type_error(self):
+        with self.assertRaises(TypeError):
+            isinstance(42, Any)
+
+    def test_any_subclass(self):
+        self.assertTrue(issubclass(Employee, Any))
+        self.assertTrue(issubclass(int, Any))
+        self.assertTrue(issubclass(type(None), Any))
+        self.assertTrue(issubclass(object, Any))
+
+    def test_others_any(self):
+        self.assertFalse(issubclass(Any, Employee))
+        self.assertFalse(issubclass(Any, int))
+        self.assertFalse(issubclass(Any, type(None)))
+        # However, Any is a subclass of object (this can't be helped).
+        self.assertTrue(issubclass(Any, object))
+
+    def test_repr(self):
+        self.assertEqual(repr(Any), 'typing.Any')
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            issubclass(42, Any)
+        with self.assertRaises(TypeError):
+            Any[int]  # Any is not a generic type.
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError):
+            class A(Any):
+                pass
+
+    def test_cannot_instantiate(self):
+        with self.assertRaises(TypeError):
+            Any()
+
+    def test_cannot_subscript(self):
+        with self.assertRaises(TypeError):
+            Any[int]
+
+    def test_any_is_subclass(self):
+        # Any should be considered a subclass of everything.
+        assert issubclass(Any, Any)
+        assert issubclass(Any, typing.List)
+        assert issubclass(Any, typing.List[int])
+        assert issubclass(Any, typing.List[T])
+        assert issubclass(Any, typing.Mapping)
+        assert issubclass(Any, typing.Mapping[str, int])
+        assert issubclass(Any, typing.Mapping[KT, VT])
+        assert issubclass(Any, Generic)
+        assert issubclass(Any, Generic[T])
+        assert issubclass(Any, Generic[KT, VT])
+        assert issubclass(Any, AnyStr)
+        assert issubclass(Any, Union)
+        assert issubclass(Any, Union[int, str])
+        assert issubclass(Any, typing.Match)
+        assert issubclass(Any, typing.Match[str])
+        # These expressions must simply not fail.
+        typing.Match[Any]
+        typing.Pattern[Any]
+        typing.IO[Any]
+
+
+class TypeVarTests(TestCase):
+
+    def test_basic_plain(self):
+        T = TypeVar('T')
+        # Every class is a subclass of T.
+        assert issubclass(int, T)
+        assert issubclass(str, T)
+        # T equals itself.
+        assert T == T
+        # T is a subclass of itself.
+        assert issubclass(T, T)
+        # T is an instance of TypeVar
+        assert isinstance(T, TypeVar)
+
+    def test_typevar_instance_type_error(self):
+        T = TypeVar('T')
+        with self.assertRaises(TypeError):
+            isinstance(42, T)
+
+    def test_basic_constrained(self):
+        A = TypeVar('A', str, bytes)
+        # Only str and bytes are subclasses of A.
+        assert issubclass(str, A)
+        assert issubclass(bytes, A)
+        assert not issubclass(int, A)
+        # A equals itself.
+        assert A == A
+        # A is a subclass of itself.
+        assert issubclass(A, A)
+
+    def test_constrained_error(self):
+        with self.assertRaises(TypeError):
+            X = TypeVar('X', int)
+
+    def test_union_unique(self):
+        X = TypeVar('X')
+        Y = TypeVar('Y')
+        assert X != Y
+        assert Union[X] == X
+        assert Union[X] != Union[X, Y]
+        assert Union[X, X] == X
+        assert Union[X, int] != Union[X]
+        assert Union[X, int] != Union[int]
+        assert Union[X, int].__union_params__ == (X, int)
+        assert Union[X, int].__union_set_params__ == {X, int}
+
+    def test_union_constrained(self):
+        A = TypeVar('A', str, bytes)
+        assert Union[A, str] != Union[A]
+
+    def test_repr(self):
+        self.assertEqual(repr(T), '~T')
+        self.assertEqual(repr(KT), '~KT')
+        self.assertEqual(repr(VT), '~VT')
+        self.assertEqual(repr(AnyStr), '~AnyStr')
+        T_co = TypeVar('T_co', covariant=True)
+        self.assertEqual(repr(T_co), '+T_co')
+        T_contra = TypeVar('T_contra', contravariant=True)
+        self.assertEqual(repr(T_contra), '-T_contra')
+
+    def test_no_redefinition(self):
+        self.assertNotEqual(TypeVar('T'), TypeVar('T'))
+        self.assertNotEqual(TypeVar('T', int, str), TypeVar('T', int, str))
+
+    def test_subclass_as_unions(self):
+        # None of these are true -- each type var is its own world.
+        self.assertFalse(issubclass(TypeVar('T', int, str),
+                                    TypeVar('T', int, str)))
+        self.assertFalse(issubclass(TypeVar('T', int, float),
+                                    TypeVar('T', int, float, str)))
+        self.assertFalse(issubclass(TypeVar('T', int, str),
+                                    TypeVar('T', str, int)))
+        A = TypeVar('A', int, str)
+        B = TypeVar('B', int, str, float)
+        self.assertFalse(issubclass(A, B))
+        self.assertFalse(issubclass(B, A))
+
+    def test_cannot_subclass_vars(self):
+        with self.assertRaises(TypeError):
+            class V(TypeVar('T')):
+                pass
+
+    def test_cannot_subclass_var_itself(self):
+        with self.assertRaises(TypeError):
+            class V(TypeVar):
+                pass
+
+    def test_cannot_instantiate_vars(self):
+        with self.assertRaises(TypeError):
+            TypeVar('A')()
+
+    def test_bound(self):
+        X = TypeVar('X', bound=Employee)
+        assert issubclass(Employee, X)
+        assert issubclass(Manager, X)
+        assert not issubclass(int, X)
+
+    def test_bound_errors(self):
+        with self.assertRaises(TypeError):
+            TypeVar('X', bound=42)
+        with self.assertRaises(TypeError):
+            TypeVar('X', str, float, bound=Employee)
+
+
+class UnionTests(TestCase):
+
+    def test_basics(self):
+        u = Union[int, float]
+        self.assertNotEqual(u, Union)
+        self.assertTrue(issubclass(int, u))
+        self.assertTrue(issubclass(float, u))
+
+    def test_union_any(self):
+        u = Union[Any]
+        self.assertEqual(u, Any)
+        u = Union[int, Any]
+        self.assertEqual(u, Any)
+        u = Union[Any, int]
+        self.assertEqual(u, Any)
+
+    def test_union_object(self):
+        u = Union[object]
+        self.assertEqual(u, object)
+        u = Union[int, object]
+        self.assertEqual(u, object)
+        u = Union[object, int]
+        self.assertEqual(u, object)
+
+    def test_union_any_object(self):
+        u = Union[object, Any]
+        self.assertEqual(u, Any)
+        u = Union[Any, object]
+        self.assertEqual(u, Any)
+
+    def test_unordered(self):
+        u1 = Union[int, float]
+        u2 = Union[float, int]
+        self.assertEqual(u1, u2)
+
+    def test_subclass(self):
+        u = Union[int, Employee]
+        self.assertTrue(issubclass(Manager, u))
+
+    def test_self_subclass(self):
+        self.assertTrue(issubclass(Union[KT, VT], Union))
+        self.assertFalse(issubclass(Union, Union[KT, VT]))
+
+    def test_multiple_inheritance(self):
+        u = Union[int, Employee]
+        self.assertTrue(issubclass(ManagingFounder, u))
+
+    def test_single_class_disappears(self):
+        t = Union[Employee]
+        self.assertIs(t, Employee)
+
+    def test_base_class_disappears(self):
+        u = Union[Employee, Manager, int]
+        self.assertEqual(u, Union[int, Employee])
+        u = Union[Manager, int, Employee]
+        self.assertEqual(u, Union[int, Employee])
+        u = Union[Employee, Manager]
+        self.assertIs(u, Employee)
+
+    def test_weird_subclasses(self):
+        u = Union[Employee, int, float]
+        v = Union[int, float]
+        self.assertTrue(issubclass(v, u))
+        w = Union[int, Manager]
+        self.assertTrue(issubclass(w, u))
+
+    def test_union_union(self):
+        u = Union[int, float]
+        v = Union[u, Employee]
+        self.assertEqual(v, Union[int, float, Employee])
+
+    def test_repr(self):
+        self.assertEqual(repr(Union), 'typing.Union')
+        u = Union[Employee, int]
+        self.assertEqual(repr(u), 'typing.Union[%s.Employee, int]' % __name__)
+        u = Union[int, Employee]
+        self.assertEqual(repr(u), 'typing.Union[int, %s.Employee]' % __name__)
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError):
+            class C(Union):
+                pass
+        with self.assertRaises(TypeError):
+            class C(Union[int, str]):
+                pass
+
+    def test_cannot_instantiate(self):
+        with self.assertRaises(TypeError):
+            Union()
+        u = Union[int, float]
+        with self.assertRaises(TypeError):
+            u()
+
+    def test_optional(self):
+        o = Optional[int]
+        u = Union[int, None]
+        self.assertEqual(o, u)
+
+    def test_empty(self):
+        with self.assertRaises(TypeError):
+            Union[()]
+
+    def test_issubclass_union(self):
+        assert issubclass(Union[int, str], Union)
+        assert not issubclass(int, Union)
+
+    def test_union_instance_type_error(self):
+        with self.assertRaises(TypeError):
+            isinstance(42, Union[int, str])
+
+    def test_union_str_pattern(self):
+        # Shouldn't crash; see http://bugs.python.org/issue25390
+        A = Union[str, Pattern]
+
+
+class TypeVarUnionTests(TestCase):
+
+    def test_simpler(self):
+        A = TypeVar('A', int, str, float)
+        B = TypeVar('B', int, str)
+        assert issubclass(A, A)
+        assert issubclass(B, B)
+        assert not issubclass(B, A)
+        assert issubclass(A, Union[int, str, float])
+        assert not issubclass(Union[int, str, float], A)
+        assert not issubclass(Union[int, str], B)
+        assert issubclass(B, Union[int, str])
+        assert not issubclass(A, B)
+        assert not issubclass(Union[int, str, float], B)
+        assert not issubclass(A, Union[int, str])
+
+    def test_var_union_subclass(self):
+        self.assertTrue(issubclass(T, Union[int, T]))
+        self.assertTrue(issubclass(KT, Union[KT, VT]))
+
+    def test_var_union(self):
+        TU = TypeVar('TU', Union[int, float], None)
+        assert issubclass(int, TU)
+        assert issubclass(float, TU)
+
+
+class TupleTests(TestCase):
+
+    def test_basics(self):
+        self.assertTrue(issubclass(Tuple[int, str], Tuple))
+        self.assertTrue(issubclass(Tuple[int, str], Tuple[int, str]))
+        self.assertFalse(issubclass(int, Tuple))
+        self.assertFalse(issubclass(Tuple[float, str], Tuple[int, str]))
+        self.assertFalse(issubclass(Tuple[int, str, int], Tuple[int, str]))
+        self.assertFalse(issubclass(Tuple[int, str], Tuple[int, str, int]))
+        self.assertTrue(issubclass(tuple, Tuple))
+        self.assertFalse(issubclass(Tuple, tuple))  # Can't have it both ways.
+
+    def test_tuple_subclass(self):
+        class MyTuple(tuple):
+            pass
+        self.assertTrue(issubclass(MyTuple, Tuple))
+
+    def test_tuple_instance_type_error(self):
+        with self.assertRaises(TypeError):
+            isinstance((0, 0), Tuple[int, int])
+        with self.assertRaises(TypeError):
+            isinstance((0, 0), Tuple)
+
+    def test_tuple_ellipsis_subclass(self):
+
+        class B(object):
+            pass
+
+        class C(B):
+            pass
+
+        assert not issubclass(Tuple[B], Tuple[B, ...])
+        assert issubclass(Tuple[C, ...], Tuple[B, ...])
+        assert not issubclass(Tuple[C, ...], Tuple[B])
+        assert not issubclass(Tuple[C], Tuple[B, ...])
+
+    def test_repr(self):
+        self.assertEqual(repr(Tuple), 'typing.Tuple')
+        self.assertEqual(repr(Tuple[()]), 'typing.Tuple[]')
+        self.assertEqual(repr(Tuple[int, float]), 'typing.Tuple[int, float]')
+        self.assertEqual(repr(Tuple[int, ...]), 'typing.Tuple[int, ...]')
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            issubclass(42, Tuple)
+        with self.assertRaises(TypeError):
+            issubclass(42, Tuple[int])
+
+
+class CallableTests(TestCase):
+
+    def test_self_subclass(self):
+        self.assertTrue(issubclass(Callable[[int], int], Callable))
+        self.assertFalse(issubclass(Callable, Callable[[int], int]))
+        self.assertTrue(issubclass(Callable[[int], int], Callable[[int], int]))
+        self.assertFalse(issubclass(Callable[[Employee], int],
+                                    Callable[[Manager], int]))
+        self.assertFalse(issubclass(Callable[[Manager], int],
+                                    Callable[[Employee], int]))
+        self.assertFalse(issubclass(Callable[[int], Employee],
+                                    Callable[[int], Manager]))
+        self.assertFalse(issubclass(Callable[[int], Manager],
+                                    Callable[[int], Employee]))
+
+    def test_eq_hash(self):
+        self.assertEqual(Callable[[int], int], Callable[[int], int])
+        self.assertEqual(len({Callable[[int], int], Callable[[int], int]}), 1)
+        self.assertNotEqual(Callable[[int], int], Callable[[int], str])
+        self.assertNotEqual(Callable[[int], int], Callable[[str], int])
+        self.assertNotEqual(Callable[[int], int], Callable[[int, int], int])
+        self.assertNotEqual(Callable[[int], int], Callable[[], int])
+        self.assertNotEqual(Callable[[int], int], Callable)
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError):
+
+            class C(Callable):
+                pass
+
+        with self.assertRaises(TypeError):
+
+            class C(Callable[[int], int]):
+                pass
+
+    def test_cannot_instantiate(self):
+        with self.assertRaises(TypeError):
+            Callable()
+        c = Callable[[int], str]
+        with self.assertRaises(TypeError):
+            c()
+
+    def test_callable_instance_works(self):
+        def f():
+            pass
+        assert isinstance(f, Callable)
+        assert not isinstance(None, Callable)
+
+    def test_callable_instance_type_error(self):
+        def f():
+            pass
+        with self.assertRaises(TypeError):
+            assert isinstance(f, Callable[[], None])
+        with self.assertRaises(TypeError):
+            assert isinstance(f, Callable[[], Any])
+        with self.assertRaises(TypeError):
+            assert not isinstance(None, Callable[[], None])
+        with self.assertRaises(TypeError):
+            assert not isinstance(None, Callable[[], Any])
+
+    def test_repr(self):
+        ct0 = Callable[[], bool]
+        self.assertEqual(repr(ct0), 'typing.Callable[[], bool]')
+        ct2 = Callable[[str, float], int]
+        self.assertEqual(repr(ct2), 'typing.Callable[[str, float], int]')
+        ctv = Callable[..., str]
+        self.assertEqual(repr(ctv), 'typing.Callable[..., str]')
+
+
+XK = TypeVar('XK', unicode, bytes)
+XV = TypeVar('XV')
+
+
+class SimpleMapping(Generic[XK, XV]):
+
+    def __getitem__(self, key):
+        pass
+
+    def __setitem__(self, key, value):
+        pass
+
+    def get(self, key, default=None):
+        pass
+
+
+class MySimpleMapping(SimpleMapping):
+
+    def __init__(self):
+        self.store = {}
+
+    def __getitem__(self, key):
+        return self.store[key]
+
+    def __setitem__(self, key, value):
+        self.store[key] = value
+
+    def get(self, key, default=None):
+        try:
+            return self.store[key]
+        except KeyError:
+            return default
+
+
+class ProtocolTests(TestCase):
+
+    def test_supports_int(self):
+        assert issubclass(int, typing.SupportsInt)
+        assert not issubclass(str, typing.SupportsInt)
+
+    def test_supports_float(self):
+        assert issubclass(float, typing.SupportsFloat)
+        assert not issubclass(str, typing.SupportsFloat)
+
+    def test_supports_complex(self):
+
+        # Note: complex itself doesn't have __complex__.
+        class C(object):
+            def __complex__(self):
+                return 0j
+
+        assert issubclass(C, typing.SupportsComplex)
+        assert not issubclass(str, typing.SupportsComplex)
+
+    def test_supports_abs(self):
+        assert issubclass(float, typing.SupportsAbs)
+        assert issubclass(int, typing.SupportsAbs)
+        assert not issubclass(str, typing.SupportsAbs)
+
+    def test_reversible(self):
+        assert issubclass(list, typing.Reversible)
+        assert not issubclass(int, typing.Reversible)
+
+    def test_protocol_instance_type_error(self):
+        with self.assertRaises(TypeError):
+            isinstance([], typing.Reversible)
+
+
+class GenericTests(TestCase):
+
+    def test_basics(self):
+        X = SimpleMapping[unicode, Any]
+        Y = SimpleMapping[XK, unicode]
+        X[unicode, unicode]
+        Y[unicode, unicode]
+        with self.assertRaises(TypeError):
+            X[int, unicode]
+        with self.assertRaises(TypeError):
+            Y[unicode, bytes]
+
+    def test_init(self):
+        T = TypeVar('T')
+        S = TypeVar('S')
+        with self.assertRaises(TypeError):
+            Generic[T, T]
+        with self.assertRaises(TypeError):
+            Generic[T, S, T]
+
+    def test_repr(self):
+        self.assertEqual(repr(SimpleMapping),
+                         __name__ + '.' + 'SimpleMapping[~XK, ~XV]')
+        self.assertEqual(repr(MySimpleMapping),
+                         __name__ + '.' + 'MySimpleMapping[~XK, ~XV]')
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            B = SimpleMapping[XK, Any]
+
+            class C(Generic[B]):
+                pass
+
+    def test_repr_2(self):
+        PY32 = sys.version_info[:2] < (3, 3)
+
+        class C(Generic[T]):
+            pass
+
+        assert C.__module__ == __name__
+        if not PY32:
+            assert C.__qualname__ == 'GenericTests.test_repr_2.<locals>.C'
+        assert repr(C).split('.')[-1] == 'C[~T]'
+        X = C[int]
+        assert X.__module__ == __name__
+        if not PY32:
+            assert X.__qualname__ == 'C'
+        assert repr(X).split('.')[-1] == 'C[int]'
+
+        class Y(C[int]):
+            pass
+
+        assert Y.__module__ == __name__
+        if not PY32:
+            assert Y.__qualname__ == 'GenericTests.test_repr_2.<locals>.Y'
+        assert repr(Y).split('.')[-1] == 'Y[int]'
+
+    def test_eq_1(self):
+        assert Generic == Generic
+        assert Generic[T] == Generic[T]
+        assert Generic[KT] != Generic[VT]
+
+    def test_eq_2(self):
+
+        class A(Generic[T]):
+            pass
+
+        class B(Generic[T]):
+            pass
+
+        assert A == A
+        assert A != B
+        assert A[T] == A[T]
+        assert A[T] != B[T]
+
+    def test_multiple_inheritance(self):
+
+        class A(Generic[T, VT]):
+            pass
+
+        class B(Generic[KT, T]):
+            pass
+
+        class C(A, Generic[KT, VT], B):
+            pass
+
+        assert C.__parameters__ == (T, VT, KT)
+
+    def test_type_erasure(self):
+        T = TypeVar('T')
+
+        class Node(Generic[T]):
+            def __init__(self, label,
+                         left = None,
+                         right = None):
+                self.label = label  # type: T
+                self.left = left  # type: Optional[Node[T]]
+                self.right = right  # type: Optional[Node[T]]
+
+        def foo(x):
+            a = Node(x)
+            b = Node[T](x)
+            c = Node[Any](x)
+            assert type(a) is Node
+            assert type(b) is Node
+            assert type(c) is Node
+
+        foo(42)
+
+
+class VarianceTests(TestCase):
+
+    def test_invariance(self):
+        # Because of invariance, List[subclass of X] is not a subclass
+        # of List[X], and ditto for MutableSequence.
+        assert not issubclass(typing.List[Manager], typing.List[Employee])
+        assert not issubclass(typing.MutableSequence[Manager],
+                              typing.MutableSequence[Employee])
+        # It's still reflexive.
+        assert issubclass(typing.List[Employee], typing.List[Employee])
+        assert issubclass(typing.MutableSequence[Employee],
+                          typing.MutableSequence[Employee])
+
+    def test_covariance_tuple(self):
+        # Check covariace for Tuple (which are really special cases).
+        assert issubclass(Tuple[Manager], Tuple[Employee])
+        assert not issubclass(Tuple[Employee], Tuple[Manager])
+        # And pairwise.
+        assert issubclass(Tuple[Manager, Manager], Tuple[Employee, Employee])
+        assert not issubclass(Tuple[Employee, Employee],
+                              Tuple[Manager, Employee])
+        # And using ellipsis.
+        assert issubclass(Tuple[Manager, ...], Tuple[Employee, ...])
+        assert not issubclass(Tuple[Employee, ...], Tuple[Manager, ...])
+
+    def test_covariance_sequence(self):
+        # Check covariance for Sequence (which is just a generic class
+        # for this purpose, but using a covariant type variable).
+        assert issubclass(typing.Sequence[Manager], typing.Sequence[Employee])
+        assert not issubclass(typing.Sequence[Employee],
+                              typing.Sequence[Manager])
+
+    def test_covariance_mapping(self):
+        # Ditto for Mapping (covariant in the value, invariant in the key).
+        assert issubclass(typing.Mapping[Employee, Manager],
+                          typing.Mapping[Employee, Employee])
+        assert not issubclass(typing.Mapping[Manager, Employee],
+                              typing.Mapping[Employee, Employee])
+        assert not issubclass(typing.Mapping[Employee, Manager],
+                              typing.Mapping[Manager, Manager])
+        assert not issubclass(typing.Mapping[Manager, Employee],
+                              typing.Mapping[Manager, Manager])
+
+
+class CastTests(TestCase):
+
+    def test_basics(self):
+        assert cast(int, 42) == 42
+        assert cast(float, 42) == 42
+        assert type(cast(float, 42)) is int
+        assert cast(Any, 42) == 42
+        assert cast(list, 42) == 42
+        assert cast(Union[str, float], 42) == 42
+        assert cast(AnyStr, 42) == 42
+        assert cast(None, 42) == 42
+
+    def test_errors(self):
+        # Bogus calls are not expected to fail.
+        cast(42, 42)
+        cast('hello', 42)
+
+
+class ForwardRefTests(TestCase):
+
+    def test_forwardref_instance_type_error(self):
+        fr = typing._ForwardRef('int')
+        with self.assertRaises(TypeError):
+            isinstance(42, fr)
+
+    def test_syntax_error(self):
+
+        with self.assertRaises(SyntaxError):
+            Generic['/T']
+
+
+class OverloadTests(TestCase):
+
+    def test_overload_exists(self):
+        from typing import overload
+
+    def test_overload_fails(self):
+        from typing import overload
+
+        with self.assertRaises(RuntimeError):
+            @overload
+            def blah():
+                pass
+
+
+class CollectionsAbcTests(TestCase):
+
+    def test_hashable(self):
+        assert isinstance(42, typing.Hashable)
+        assert not isinstance([], typing.Hashable)
+
+    def test_iterable(self):
+        assert isinstance([], typing.Iterable)
+        # Due to ABC caching, the second time takes a separate code
+        # path and could fail.  So call this a few times.
+        assert isinstance([], typing.Iterable)
+        assert isinstance([], typing.Iterable)
+        assert isinstance([], typing.Iterable[int])
+        assert not isinstance(42, typing.Iterable)
+        # Just in case, also test issubclass() a few times.
+        assert issubclass(list, typing.Iterable)
+        assert issubclass(list, typing.Iterable)
+
+    def test_iterator(self):
+        it = iter([])
+        assert isinstance(it, typing.Iterator)
+        assert isinstance(it, typing.Iterator[int])
+        assert not isinstance(42, typing.Iterator)
+
+    def test_sized(self):
+        assert isinstance([], typing.Sized)
+        assert not isinstance(42, typing.Sized)
+
+    def test_container(self):
+        assert isinstance([], typing.Container)
+        assert not isinstance(42, typing.Container)
+
+    def test_abstractset(self):
+        assert isinstance(set(), typing.AbstractSet)
+        assert not isinstance(42, typing.AbstractSet)
+
+    def test_mutableset(self):
+        assert isinstance(set(), typing.MutableSet)
+        assert not isinstance(frozenset(), typing.MutableSet)
+
+    def test_mapping(self):
+        assert isinstance({}, typing.Mapping)
+        assert not isinstance(42, typing.Mapping)
+
+    def test_mutablemapping(self):
+        assert isinstance({}, typing.MutableMapping)
+        assert not isinstance(42, typing.MutableMapping)
+
+    def test_sequence(self):
+        assert isinstance([], typing.Sequence)
+        assert not isinstance(42, typing.Sequence)
+
+    def test_mutablesequence(self):
+        assert isinstance([], typing.MutableSequence)
+        assert not isinstance((), typing.MutableSequence)
+
+    def test_bytestring(self):
+        assert isinstance(b'', typing.ByteString)
+        assert isinstance(bytearray(b''), typing.ByteString)
+
+    def test_list(self):
+        assert issubclass(list, typing.List)
+
+    def test_set(self):
+        assert issubclass(set, typing.Set)
+        assert not issubclass(frozenset, typing.Set)
+
+    def test_frozenset(self):
+        assert issubclass(frozenset, typing.FrozenSet)
+        assert not issubclass(set, typing.FrozenSet)
+
+    def test_dict(self):
+        assert issubclass(dict, typing.Dict)
+
+    def test_no_list_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.List()
+        with self.assertRaises(TypeError):
+            typing.List[T]()
+        with self.assertRaises(TypeError):
+            typing.List[int]()
+
+    def test_list_subclass_instantiation(self):
+
+        class MyList(typing.List[int]):
+            pass
+
+        a = MyList()
+        assert isinstance(a, MyList)
+
+    def test_no_dict_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.Dict()
+        with self.assertRaises(TypeError):
+            typing.Dict[KT, VT]()
+        with self.assertRaises(TypeError):
+            typing.Dict[str, int]()
+
+    def test_dict_subclass_instantiation(self):
+
+        class MyDict(typing.Dict[str, int]):
+            pass
+
+        d = MyDict()
+        assert isinstance(d, MyDict)
+
+    def test_no_set_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.Set()
+        with self.assertRaises(TypeError):
+            typing.Set[T]()
+        with self.assertRaises(TypeError):
+            typing.Set[int]()
+
+    def test_set_subclass_instantiation(self):
+
+        class MySet(typing.Set[int]):
+            pass
+
+        d = MySet()
+        assert isinstance(d, MySet)
+
+    def test_no_frozenset_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.FrozenSet()
+        with self.assertRaises(TypeError):
+            typing.FrozenSet[T]()
+        with self.assertRaises(TypeError):
+            typing.FrozenSet[int]()
+
+    def test_frozenset_subclass_instantiation(self):
+
+        class MyFrozenSet(typing.FrozenSet[int]):
+            pass
+
+        d = MyFrozenSet()
+        assert isinstance(d, MyFrozenSet)
+
+    def test_no_tuple_instantiation(self):
+        with self.assertRaises(TypeError):
+            Tuple()
+        with self.assertRaises(TypeError):
+            Tuple[T]()
+        with self.assertRaises(TypeError):
+            Tuple[int]()
+
+    def test_generator(self):
+        def foo():
+            yield 42
+        g = foo()
+        assert issubclass(type(g), typing.Generator)
+        assert issubclass(typing.Generator[Manager, Employee, Manager],
+                          typing.Generator[Employee, Manager, Employee])
+        assert not issubclass(typing.Generator[Manager, Manager, Manager],
+                              typing.Generator[Employee, Employee, Employee])
+
+    def test_no_generator_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.Generator()
+        with self.assertRaises(TypeError):
+            typing.Generator[T, T, T]()
+        with self.assertRaises(TypeError):
+            typing.Generator[int, int, int]()
+
+    def test_subclassing(self):
+
+        class MMA(typing.MutableMapping):
+            pass
+
+        with self.assertRaises(TypeError):  # It's abstract
+            MMA()
+
+        class MMC(MMA):
+            def __len__(self):
+                return 0
+
+        assert len(MMC()) == 0
+
+        class MMB(typing.MutableMapping[KT, VT]):
+            def __len__(self):
+                return 0
+
+        assert len(MMB()) == 0
+        assert len(MMB[str, str]()) == 0
+        assert len(MMB[KT, VT]()) == 0
+
+
+class NamedTupleTests(TestCase):
+
+    def test_basics(self):
+        Emp = NamedTuple('Emp', [('name', str), ('id', int)])
+        assert issubclass(Emp, tuple)
+        joe = Emp('Joe', 42)
+        jim = Emp(name='Jim', id=1)
+        assert isinstance(joe, Emp)
+        assert isinstance(joe, tuple)
+        assert joe.name == 'Joe'
+        assert joe.id == 42
+        assert jim.name == 'Jim'
+        assert jim.id == 1
+        assert Emp.__name__ == 'Emp'
+        assert Emp._fields == ('name', 'id')
+        assert Emp._field_types == dict(name=str, id=int)
+
+
+class IOTests(TestCase):
+
+    def test_io_submodule(self):
+        from typing.io import IO, TextIO, BinaryIO, __all__, __name__
+        assert IO is typing.IO
+        assert TextIO is typing.TextIO
+        assert BinaryIO is typing.BinaryIO
+        assert set(__all__) == set(['IO', 'TextIO', 'BinaryIO'])
+        assert __name__ == 'typing.io'
+
+
+class RETests(TestCase):
+    # Much of this is really testing _TypeAlias.
+
+    def test_basics(self):
+        pat = re.compile('[a-z]+', re.I)
+        assert issubclass(pat.__class__, Pattern)
+        assert issubclass(type(pat), Pattern)
+        assert issubclass(type(pat), Pattern[str])
+
+        mat = pat.search('12345abcde.....')
+        assert issubclass(mat.__class__, Match)
+        assert issubclass(mat.__class__, Match[str])
+        assert issubclass(mat.__class__, Match[bytes])  # Sad but true.
+        assert issubclass(type(mat), Match)
+        assert issubclass(type(mat), Match[str])
+
+        p = Pattern[Union[str, bytes]]
+        assert issubclass(Pattern[str], Pattern)
+        assert issubclass(Pattern[str], p)
+
+        m = Match[Union[bytes, str]]
+        assert issubclass(Match[bytes], Match)
+        assert issubclass(Match[bytes], m)
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            # Doesn't fit AnyStr.
+            Pattern[int]
+        with self.assertRaises(TypeError):
+            # Can't change type vars?
+            Match[T]
+        m = Match[Union[str, bytes]]
+        with self.assertRaises(TypeError):
+            # Too complicated?
+            m[str]
+        with self.assertRaises(TypeError):
+            # We don't support isinstance().
+            isinstance(42, Pattern)
+        with self.assertRaises(TypeError):
+            # We don't support isinstance().
+            isinstance(42, Pattern[str])
+
+    def test_repr(self):
+        assert repr(Pattern) == 'Pattern[~AnyStr]'
+        assert repr(Pattern[unicode]) == 'Pattern[unicode]'
+        assert repr(Pattern[str]) == 'Pattern[str]'
+        assert repr(Match) == 'Match[~AnyStr]'
+        assert repr(Match[unicode]) == 'Match[unicode]'
+        assert repr(Match[str]) == 'Match[str]'
+
+    def test_re_submodule(self):
+        from typing.re import Match, Pattern, __all__, __name__
+        assert Match is typing.Match
+        assert Pattern is typing.Pattern
+        assert set(__all__) == set(['Match', 'Pattern'])
+        assert __name__ == 'typing.re'
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError) as ex:
+
+            class A(typing.Match):
+                pass
+
+        assert str(ex.exception) == "A type alias cannot be subclassed"
+
+
+class AllTests(TestCase):
+    """Tests for __all__."""
+
+    def test_all(self):
+        from typing import __all__ as a
+        # Just spot-check the first and last of every category.
+        assert 'AbstractSet' in a
+        assert 'ValuesView' in a
+        assert 'cast' in a
+        assert 'overload' in a
+        assert 'io' in a
+        assert 're' in a
+        # Spot-check that stdlib modules aren't exported.
+        assert 'os' not in a
+        assert 'sys' not in a
+
+
+if __name__ == '__main__':
+    main()
diff --git a/python2/typing.py b/python2/typing.py
new file mode 100644
index 0000000..ea03514
--- /dev/null
+++ b/python2/typing.py
@@ -0,0 +1,1656 @@
+# TODO nits:
+# Get rid of asserts that are the caller's fault.
+# Docstrings (e.g. ABCs).
+
+from __future__ import absolute_import, unicode_literals
+
+import abc
+from abc import abstractmethod, abstractproperty
+import collections
+import functools
+import re as stdlib_re  # Avoid confusion with the re we export.
+import sys
+import types
+try:
+    import collections.abc as collections_abc
+except ImportError:
+    import collections as collections_abc  # Fallback for PY3.2.
+
+
+# Please keep __all__ alphabetized within each category.
+__all__ = [
+    # Super-special typing primitives.
+    'Any',
+    'Callable',
+    'Generic',
+    'Optional',
+    'TypeVar',
+    'Union',
+    'Tuple',
+
+    # ABCs (from collections.abc).
+    'AbstractSet',  # collections.abc.Set.
+    'ByteString',
+    'Container',
+    'Hashable',
+    'ItemsView',
+    'Iterable',
+    'Iterator',
+    'KeysView',
+    'Mapping',
+    'MappingView',
+    'MutableMapping',
+    'MutableSequence',
+    'MutableSet',
+    'Sequence',
+    'Sized',
+    'ValuesView',
+
+    # Structural checks, a.k.a. protocols.
+    'Reversible',
+    'SupportsAbs',
+    'SupportsFloat',
+    'SupportsInt',
+
+    # Concrete collection types.
+    'Dict',
+    'List',
+    'Set',
+    'NamedTuple',  # Not really a type.
+    'Generator',
+
+    # One-off things.
+    'AnyStr',
+    'cast',
+    'get_type_hints',
+    'no_type_check',
+    'no_type_check_decorator',
+    'overload',
+
+    # Submodules.
+    'io',
+    're',
+]
+
+
+def _qualname(x):
+    if sys.version_info[:2] >= (3, 3):
+        return x.__qualname__
+    else:
+        # Fall back to just name.
+        return x.__name__
+
+
+class TypingMeta(type):
+    """Metaclass for every type defined below.
+
+    This also defines a dummy constructor (all the work is done in
+    __new__) and a nicer repr().
+    """
+
+    _is_protocol = False
+
+    def __new__(cls, name, bases, namespace):
+        return super(TypingMeta, cls).__new__(cls, str(name), bases, namespace)
+
+    @classmethod
+    def assert_no_subclassing(cls, bases):
+        for base in bases:
+            if isinstance(base, cls):
+                raise TypeError("Cannot subclass %s" %
+                                (', '.join(map(_type_repr, bases)) or '()'))
+
+    def __init__(self, *args, **kwds):
+        pass
+
+    def _eval_type(self, globalns, localns):
+        """Override this in subclasses to interpret forward references.
+
+        For example, Union['C'] is internally stored as
+        Union[_ForwardRef('C')], which should evaluate to _Union[C],
+        where C is an object found in globalns or localns (searching
+        localns first, of course).
+        """
+        return self
+
+    def _has_type_var(self):
+        return False
+
+    def __repr__(self):
+        return '%s.%s' % (self.__module__, _qualname(self))
+
+
+class Final(object):
+    """Mix-in class to prevent instantiation."""
+
+    __slots__ = ()
+
+    def __new__(self, *args, **kwds):
+        raise TypeError("Cannot instantiate %r" % self.__class__)
+
+
+class _ForwardRef(TypingMeta):
+    """Wrapper to hold a forward reference."""
+
+    def __new__(cls, arg):
+        if not isinstance(arg, basestring):
+            raise TypeError('ForwardRef must be a string -- got %r' % (arg,))
+        try:
+            code = compile(arg, '<string>', 'eval')
+        except SyntaxError:
+            raise SyntaxError('ForwardRef must be an expression -- got %r' %
+                              (arg,))
+        self = super(_ForwardRef, cls).__new__(cls, arg, (), {})
+        self.__forward_arg__ = arg
+        self.__forward_code__ = code
+        self.__forward_evaluated__ = False
+        self.__forward_value__ = None
+        typing_globals = globals()
+        frame = sys._getframe(1)
+        while frame is not None and frame.f_globals is typing_globals:
+            frame = frame.f_back
+        assert frame is not None
+        self.__forward_frame__ = frame
+        return self
+
+    def _eval_type(self, globalns, localns):
+        if not isinstance(localns, dict):
+            raise TypeError('ForwardRef localns must be a dict -- got %r' %
+                            (localns,))
+        if not isinstance(globalns, dict):
+            raise TypeError('ForwardRef globalns must be a dict -- got %r' %
+                            (globalns,))
+        if not self.__forward_evaluated__:
+            if globalns is None and localns is None:
+                globalns = localns = {}
+            elif globalns is None:
+                globalns = localns
+            elif localns is None:
+                localns = globalns
+            self.__forward_value__ = _type_check(
+                eval(self.__forward_code__, globalns, localns),
+                "Forward references must evaluate to types.")
+            self.__forward_evaluated__ = True
+        return self.__forward_value__
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Forward references cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if not self.__forward_evaluated__:
+            globalns = self.__forward_frame__.f_globals
+            localns = self.__forward_frame__.f_locals
+            try:
+                self._eval_type(globalns, localns)
+            except NameError:
+                return False  # Too early.
+        return issubclass(cls, self.__forward_value__)
+
+    def __repr__(self):
+        return '_ForwardRef(%r)' % (self.__forward_arg__,)
+
+
+class _TypeAlias(object):
+    """Internal helper class for defining generic variants of concrete types.
+
+    Note that this is not a type; let's call it a pseudo-type.  It can
+    be used in instance and subclass checks, e.g. isinstance(m, Match)
+    or issubclass(type(m), Match).  However, it cannot be itself the
+    target of an issubclass() call; e.g. issubclass(Match, C) (for
+    some arbitrary class C) raises TypeError rather than returning
+    False.
+    """
+
+    __slots__ = ('name', 'type_var', 'impl_type', 'type_checker')
+
+    def __new__(cls, *args, **kwds):
+        """Constructor.
+
+        This only exists to give a better error message in case
+        someone tries to subclass a type alias (not a good idea).
+        """
+        if (len(args) == 3 and
+            isinstance(args[0], basestring) and
+            isinstance(args[1], tuple)):
+            # Close enough.
+            raise TypeError("A type alias cannot be subclassed")
+        return object.__new__(cls)
+
+    def __init__(self, name, type_var, impl_type, type_checker):
+        """Initializer.
+
+        Args:
+            name: The name, e.g. 'Pattern'.
+            type_var: The type parameter, e.g. AnyStr, or the
+                specific type, e.g. str.
+            impl_type: The implementation type.
+            type_checker: Function that takes an impl_type instance.
+                and returns a value that should be a type_var instance.
+        """
+        assert isinstance(name, basestring), repr(name)
+        assert isinstance(type_var, type), repr(type_var)
+        assert isinstance(impl_type, type), repr(impl_type)
+        assert not isinstance(impl_type, TypingMeta), repr(impl_type)
+        self.name = name
+        self.type_var = type_var
+        self.impl_type = impl_type
+        self.type_checker = type_checker
+
+    def __repr__(self):
+        return "%s[%s]" % (self.name, _type_repr(self.type_var))
+
+    def __getitem__(self, parameter):
+        assert isinstance(parameter, type), repr(parameter)
+        if not isinstance(self.type_var, TypeVar):
+            raise TypeError("%s cannot be further parameterized." % self)
+        if self.type_var.__constraints__:
+            if not issubclass(parameter, Union[self.type_var.__constraints__]):
+                raise TypeError("%s is not a valid substitution for %s." %
+                                (parameter, self.type_var))
+        return self.__class__(self.name, parameter,
+                              self.impl_type, self.type_checker)
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Type aliases cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if isinstance(cls, _TypeAlias):
+            # Covariance.  For now, we compare by name.
+            return (cls.name == self.name and
+                    issubclass(cls.type_var, self.type_var))
+        else:
+            # Note that this is too lenient, because the
+            # implementation type doesn't carry information about
+            # whether it is about bytes or str (for example).
+            return issubclass(cls, self.impl_type)
+
+
+def _has_type_var(t):
+    return t is not None and isinstance(t, TypingMeta) and t._has_type_var()
+
+
+def _eval_type(t, globalns, localns):
+    if isinstance(t, TypingMeta):
+        return t._eval_type(globalns, localns)
+    else:
+        return t
+
+
+def _type_check(arg, msg):
+    """Check that the argument is a type, and return it.
+
+    As a special case, accept None and return type(None) instead.
+    Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.
+
+    The msg argument is a human-readable error message, e.g.
+
+        "Union[arg, ...]: arg should be a type."
+
+    We append the repr() of the actual value (truncated to 100 chars).
+    """
+    if arg is None:
+        return type(None)
+    if isinstance(arg, basestring):
+        arg = _ForwardRef(arg)
+    if not isinstance(arg, (type, _TypeAlias)):
+        raise TypeError(msg + " Got %.100r." % (arg,))
+    return arg
+
+
+def _type_repr(obj):
+    """Return the repr() of an object, special-casing types.
+
+    If obj is a type, we return a shorter version than the default
+    type.__repr__, based on the module and qualified name, which is
+    typically enough to uniquely identify a type.  For everything
+    else, we fall back on repr(obj).
+    """
+    if isinstance(obj, type) and not isinstance(obj, TypingMeta):
+        if obj.__module__ == '__builtin__':
+            return _qualname(obj)
+        else:
+            return '%s.%s' % (obj.__module__, _qualname(obj))
+    else:
+        return repr(obj)
+
+
+class AnyMeta(TypingMeta):
+    """Metaclass for Any."""
+
+    def __new__(cls, name, bases, namespace):
+        cls.assert_no_subclassing(bases)
+        self = super(AnyMeta, cls).__new__(cls, name, bases, namespace)
+        return self
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Any cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if not isinstance(cls, type):
+            return super(AnyMeta, cls).__subclasscheck__(cls)  # To TypeError.
+        return True
+
+
+class Any(Final):
+    """Special type indicating an unconstrained type.
+
+    - Any object is an instance of Any.
+    - Any class is a subclass of Any.
+    - As a special case, Any and object are subclasses of each other.
+    """
+
+    __metaclass__ = AnyMeta
+    __slots__ = ()
+
+
+class TypeVarMeta(TypingMeta):
+    def __new__(cls, name, bases, namespace):
+        cls.assert_no_subclassing(bases)
+        return super(TypeVarMeta, cls).__new__(cls, name, bases, namespace)
+
+
+class TypeVar(TypingMeta):
+    """Type variable.
+
+    Usage::
+
+      T = TypeVar('T')  # Can be anything
+      A = TypeVar('A', str, bytes)  # Must be str or bytes
+
+    Type variables exist primarily for the benefit of static type
+    checkers.  They serve as the parameters for generic types as well
+    as for generic function definitions.  See class Generic for more
+    information on generic types.  Generic functions work as follows:
+
+      def repeat(x: T, n: int) -> Sequence[T]:
+          '''Return a list containing n references to x.'''
+          return [x]*n
+
+      def longest(x: A, y: A) -> A:
+          '''Return the longest of two strings.'''
+          return x if len(x) >= len(y) else y
+
+    The latter example's signature is essentially the overloading
+    of (str, str) -> str and (bytes, bytes) -> bytes.  Also note
+    that if the arguments are instances of some subclass of str,
+    the return type is still plain str.
+
+    At runtime, isinstance(x, T) will raise TypeError.  However,
+    issubclass(C, T) is true for any class C, and issubclass(str, A)
+    and issubclass(bytes, A) are true, and issubclass(int, A) is
+    false.
+
+    Type variables may be marked covariant or contravariant by passing
+    covariant=True or contravariant=True.  See PEP 484 for more
+    details.  By default type variables are invariant.
+
+    Type variables can be introspected. e.g.:
+
+      T.__name__ == 'T'
+      T.__constraints__ == ()
+      T.__covariant__ == False
+      T.__contravariant__ = False
+      A.__constraints__ == (str, bytes)
+    """
+
+    __metaclass__ = TypeVarMeta
+
+    def __new__(cls, name, *constraints, **kwargs):
+        bound = kwargs.get('bound', None)
+        covariant = kwargs.get('covariant', False)
+        contravariant = kwargs.get('contravariant', False)
+        self = super(TypeVar, cls).__new__(cls, name, (Final,), {})
+        if covariant and contravariant:
+            raise ValueError("Bivariant type variables are not supported.")
+        self.__covariant__ = bool(covariant)
+        self.__contravariant__ = bool(contravariant)
+        if constraints and bound is not None:
+            raise TypeError("Constraints cannot be combined with bound=...")
+        if constraints and len(constraints) == 1:
+            raise TypeError("A single constraint is not allowed")
+        msg = "TypeVar(name, constraint, ...): constraints must be types."
+        self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
+        if bound:
+            self.__bound__ = _type_check(bound, "Bound must be a type.")
+        else:
+            self.__bound__ = None
+        return self
+
+    def _has_type_var(self):
+        return True
+
+    def __repr__(self):
+        if self.__covariant__:
+            prefix = '+'
+        elif self.__contravariant__:
+            prefix = '-'
+        else:
+            prefix = '~'
+        return prefix + self.__name__
+
+    def __instancecheck__(self, instance):
+        raise TypeError("Type variables cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        # TODO: Make this raise TypeError too?
+        if cls is self:
+            return True
+        if cls is Any:
+            return True
+        if self.__bound__ is not None:
+            return issubclass(cls, self.__bound__)
+        if self.__constraints__:
+            return any(issubclass(cls, c) for c in self.__constraints__)
+        return True
+
+
+# Some unconstrained type variables.  These are used by the container types.
+T = TypeVar('T')  # Any type.
+KT = TypeVar('KT')  # Key type.
+VT = TypeVar('VT')  # Value type.
+T_co = TypeVar('T_co', covariant=True)  # Any type covariant containers.
+V_co = TypeVar('V_co', covariant=True)  # Any type covariant containers.
+VT_co = TypeVar('VT_co', covariant=True)  # Value type covariant containers.
+T_contra = TypeVar('T_contra', contravariant=True)  # Ditto contravariant.
+
+# A useful type variable with constraints.  This represents string types.
+# TODO: What about bytearray, memoryview?
+AnyStr = TypeVar('AnyStr', bytes, unicode)
+
+
+class UnionMeta(TypingMeta):
+    """Metaclass for Union."""
+
+    def __new__(cls, name, bases, namespace, parameters=None):
+        cls.assert_no_subclassing(bases)
+        if parameters is None:
+            return super(UnionMeta, cls).__new__(cls, name, bases, namespace)
+        if not isinstance(parameters, tuple):
+            raise TypeError("Expected parameters=<tuple>")
+        # Flatten out Union[Union[...], ...] and type-check non-Union args.
+        params = []
+        msg = "Union[arg, ...]: each arg must be a type."
+        for p in parameters:
+            if isinstance(p, UnionMeta):
+                params.extend(p.__union_params__)
+            else:
+                params.append(_type_check(p, msg))
+        # Weed out strict duplicates, preserving the first of each occurrence.
+        all_params = set(params)
+        if len(all_params) < len(params):
+            new_params = []
+            for t in params:
+                if t in all_params:
+                    new_params.append(t)
+                    all_params.remove(t)
+            params = new_params
+            assert not all_params, all_params
+        # Weed out subclasses.
+        # E.g. Union[int, Employee, Manager] == Union[int, Employee].
+        # If Any or object is present it will be the sole survivor.
+        # If both Any and object are present, Any wins.
+        # Never discard type variables, except against Any.
+        # (In particular, Union[str, AnyStr] != AnyStr.)
+        all_params = set(params)
+        for t1 in params:
+            if t1 is Any:
+                return Any
+            if isinstance(t1, TypeVar):
+                continue
+            if isinstance(t1, _TypeAlias):
+                # _TypeAlias is not a real class.
+                continue
+            if any(issubclass(t1, t2)
+                   for t2 in all_params - {t1} if not isinstance(t2, TypeVar)):
+                all_params.remove(t1)
+        # It's not a union if there's only one type left.
+        if len(all_params) == 1:
+            return all_params.pop()
+        # Create a new class with these params.
+        self = super(UnionMeta, cls).__new__(cls, name, bases, {})
+        self.__union_params__ = tuple(t for t in params if t in all_params)
+        self.__union_set_params__ = frozenset(self.__union_params__)
+        return self
+
+    def _eval_type(self, globalns, localns):
+        p = tuple(_eval_type(t, globalns, localns)
+                  for t in self.__union_params__)
+        if p == self.__union_params__:
+            return self
+        else:
+            return self.__class__(self.__name__, self.__bases__, {},
+                                  p)
+
+    def _has_type_var(self):
+        if self.__union_params__:
+            for t in self.__union_params__:
+                if _has_type_var(t):
+                    return True
+        return False
+
+    def __repr__(self):
+        r = super(UnionMeta, self).__repr__()
+        if self.__union_params__:
+            r += '[%s]' % (', '.join(_type_repr(t)
+                                     for t in self.__union_params__))
+        return r
+
+    def __getitem__(self, parameters):
+        if self.__union_params__ is not None:
+            raise TypeError(
+                "Cannot subscript an existing Union. Use Union[u, t] instead.")
+        if parameters == ():
+            raise TypeError("Cannot take a Union of no types.")
+        if not isinstance(parameters, tuple):
+            parameters = (parameters,)
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__), parameters)
+
+    def __eq__(self, other):
+        if not isinstance(other, UnionMeta):
+            return NotImplemented
+        return self.__union_set_params__ == other.__union_set_params__
+
+    def __hash__(self):
+        return hash(self.__union_set_params__)
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Unions cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if self.__union_params__ is None:
+            return isinstance(cls, UnionMeta)
+        elif isinstance(cls, UnionMeta):
+            if cls.__union_params__ is None:
+                return False
+            return all(issubclass(c, self) for c in (cls.__union_params__))
+        elif isinstance(cls, TypeVar):
+            if cls in self.__union_params__:
+                return True
+            if cls.__constraints__:
+                return issubclass(Union[cls.__constraints__], self)
+            return False
+        else:
+            return any(issubclass(cls, t) for t in self.__union_params__)
+
+
+class Union(Final):
+    """Union type; Union[X, Y] means either X or Y.
+
+    To define a union, use e.g. Union[int, str].  Details:
+
+    - The arguments must be types and there must be at least one.
+
+    - None as an argument is a special case and is replaced by
+      type(None).
+
+    - Unions of unions are flattened, e.g.::
+
+        Union[Union[int, str], float] == Union[int, str, float]
+
+    - Unions of a single argument vanish, e.g.::
+
+        Union[int] == int  # The constructor actually returns int
+
+    - Redundant arguments are skipped, e.g.::
+
+        Union[int, str, int] == Union[int, str]
+
+    - When comparing unions, the argument order is ignored, e.g.::
+
+        Union[int, str] == Union[str, int]
+
+    - When two arguments have a subclass relationship, the least
+      derived argument is kept, e.g.::
+
+        class Employee: pass
+        class Manager(Employee): pass
+        Union[int, Employee, Manager] == Union[int, Employee]
+        Union[Manager, int, Employee] == Union[int, Employee]
+        Union[Employee, Manager] == Employee
+
+    - Corollary: if Any is present it is the sole survivor, e.g.::
+
+        Union[int, Any] == Any
+
+    - Similar for object::
+
+        Union[int, object] == object
+
+    - To cut a tie: Union[object, Any] == Union[Any, object] == Any.
+
+    - You cannot subclass or instantiate a union.
+
+    - You cannot write Union[X][Y] (what would it mean?).
+
+    - You can use Optional[X] as a shorthand for Union[X, None].
+    """
+
+    __metaclass__ = UnionMeta
+
+    # Unsubscripted Union type has params set to None.
+    __union_params__ = None
+    __union_set_params__ = None
+
+
+class OptionalMeta(TypingMeta):
+    """Metaclass for Optional."""
+
+    def __new__(cls, name, bases, namespace):
+        cls.assert_no_subclassing(bases)
+        return super(OptionalMeta, cls).__new__(cls, name, bases, namespace)
+
+    def __getitem__(self, arg):
+        arg = _type_check(arg, "Optional[t] requires a single type.")
+        return Union[arg, type(None)]
+
+
+class Optional(Final):
+    """Optional type.
+
+    Optional[X] is equivalent to Union[X, type(None)].
+    """
+
+    __metaclass__ = OptionalMeta
+    __slots__ = ()
+
+
+class TupleMeta(TypingMeta):
+    """Metaclass for Tuple."""
+
+    def __new__(cls, name, bases, namespace, parameters=None,
+                use_ellipsis=False):
+        cls.assert_no_subclassing(bases)
+        self = super(TupleMeta, cls).__new__(cls, name, bases, namespace)
+        self.__tuple_params__ = parameters
+        self.__tuple_use_ellipsis__ = use_ellipsis
+        return self
+
+    def _has_type_var(self):
+        if self.__tuple_params__:
+            for t in self.__tuple_params__:
+                if _has_type_var(t):
+                    return True
+        return False
+
+    def _eval_type(self, globalns, localns):
+        tp = self.__tuple_params__
+        if tp is None:
+            return self
+        p = tuple(_eval_type(t, globalns, localns) for t in tp)
+        if p == self.__tuple_params__:
+            return self
+        else:
+            return self.__class__(self.__name__, self.__bases__, {},
+                                  p)
+
+    def __repr__(self):
+        r = super(TupleMeta, self).__repr__()
+        if self.__tuple_params__ is not None:
+            params = [_type_repr(p) for p in self.__tuple_params__]
+            if self.__tuple_use_ellipsis__:
+                params.append('...')
+            r += '[%s]' % (
+                ', '.join(params))
+        return r
+
+    def __getitem__(self, parameters):
+        if self.__tuple_params__ is not None:
+            raise TypeError("Cannot re-parameterize %r" % (self,))
+        if not isinstance(parameters, tuple):
+            parameters = (parameters,)
+        if len(parameters) == 2 and parameters[1] == Ellipsis:
+            parameters = parameters[:1]
+            use_ellipsis = True
+            msg = "Tuple[t, ...]: t must be a type."
+        else:
+            use_ellipsis = False
+            msg = "Tuple[t0, t1, ...]: each t must be a type."
+        parameters = tuple(_type_check(p, msg) for p in parameters)
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__), parameters,
+                              use_ellipsis=use_ellipsis)
+
+    def __eq__(self, other):
+        if not isinstance(other, TupleMeta):
+            return NotImplemented
+        return self.__tuple_params__ == other.__tuple_params__
+
+    def __hash__(self):
+        return hash(self.__tuple_params__)
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Tuples cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if not isinstance(cls, type):
+            return super(TupleMeta, self).__subclasscheck__(cls)  # To TypeError.
+        if issubclass(cls, tuple):
+            return True  # Special case.
+        if not isinstance(cls, TupleMeta):
+            return super(TupleMeta, self).__subclasscheck__(cls)  # False.
+        if self.__tuple_params__ is None:
+            return True
+        if cls.__tuple_params__ is None:
+            return False  # ???
+        if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__:
+            return False
+        # Covariance.
+        return (len(self.__tuple_params__) == len(cls.__tuple_params__) and
+                all(issubclass(x, p)
+                    for x, p in zip(cls.__tuple_params__,
+                                    self.__tuple_params__)))
+
+
+class Tuple(Final):
+    """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
+
+    Example: Tuple[T1, T2] is a tuple of two elements corresponding
+    to type variables T1 and T2.  Tuple[int, float, str] is a tuple
+    of an int, a float and a string.
+
+    To specify a variable-length tuple of homogeneous type, use Sequence[T].
+    """
+
+    __metaclass__ = TupleMeta
+    __slots__ = ()
+
+
+class CallableMeta(TypingMeta):
+    """Metaclass for Callable."""
+
+    def __new__(cls, name, bases, namespace,
+                args=None, result=None):
+        cls.assert_no_subclassing(bases)
+        if args is None and result is None:
+            pass  # Must be 'class Callable'.
+        else:
+            if args is not Ellipsis:
+                if not isinstance(args, list):
+                    raise TypeError("Callable[args, result]: "
+                                    "args must be a list."
+                                    " Got %.100r." % (args,))
+                msg = "Callable[[arg, ...], result]: each arg must be a type."
+                args = tuple(_type_check(arg, msg) for arg in args)
+            msg = "Callable[args, result]: result must be a type."
+            result = _type_check(result, msg)
+        self = super(CallableMeta, cls).__new__(cls, name, bases, namespace)
+        self.__args__ = args
+        self.__result__ = result
+        return self
+
+    def _has_type_var(self):
+        if self.__args__:
+            for t in self.__args__:
+                if _has_type_var(t):
+                    return True
+        return _has_type_var(self.__result__)
+
+    def _eval_type(self, globalns, localns):
+        if self.__args__ is None and self.__result__ is None:
+            return self
+        if self.__args__ is Ellipsis:
+            args = self.__args__
+        else:
+            args = [_eval_type(t, globalns, localns) for t in self.__args__]
+        result = _eval_type(self.__result__, globalns, localns)
+        if args == self.__args__ and result == self.__result__:
+            return self
+        else:
+            return self.__class__(self.__name__, self.__bases__, {},
+                                  args=args, result=result)
+
+    def __repr__(self):
+        r = super(CallableMeta, self).__repr__()
+        if self.__args__ is not None or self.__result__ is not None:
+            if self.__args__ is Ellipsis:
+                args_r = '...'
+            else:
+                args_r = '[%s]' % ', '.join(_type_repr(t)
+                                            for t in self.__args__)
+            r += '[%s, %s]' % (args_r, _type_repr(self.__result__))
+        return r
+
+    def __getitem__(self, parameters):
+        if self.__args__ is not None or self.__result__ is not None:
+            raise TypeError("This Callable type is already parameterized.")
+        if not isinstance(parameters, tuple) or len(parameters) != 2:
+            raise TypeError(
+                "Callable must be used as Callable[[arg, ...], result].")
+        args, result = parameters
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__),
+                              args=args, result=result)
+
+    def __eq__(self, other):
+        if not isinstance(other, CallableMeta):
+            return NotImplemented
+        return (self.__args__ == other.__args__ and
+                self.__result__ == other.__result__)
+
+    def __hash__(self):
+        return hash(self.__args__) ^ hash(self.__result__)
+
+    def __instancecheck__(self, obj):
+        # For unparametrized Callable we allow this, because
+        # typing.Callable should be equivalent to
+        # collections.abc.Callable.
+        if self.__args__ is None and self.__result__ is None:
+            return isinstance(obj, collections_abc.Callable)
+        else:
+            raise TypeError("Callable[] cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if not isinstance(cls, CallableMeta):
+            return super(CallableMeta, self).__subclasscheck__(cls)
+        if self.__args__ is None and self.__result__ is None:
+            return True
+        # We're not doing covariance or contravariance -- this is *invariance*.
+        return self == cls
+
+
+class Callable(Final):
+    """Callable type; Callable[[int], str] is a function of (int) -> str.
+
+    The subscription syntax must always be used with exactly two
+    values: the argument list and the return type.  The argument list
+    must be a list of types; the return type must be a single type.
+
+    There is no syntax to indicate optional or keyword arguments,
+    such function types are rarely used as callback types.
+    """
+
+    __metaclass__ = CallableMeta
+    __slots__ = ()
+
+
+def _gorg(a):
+    """Return the farthest origin of a generic class."""
+    assert isinstance(a, GenericMeta)
+    while a.__origin__ is not None:
+        a = a.__origin__
+    return a
+
+
+def _geqv(a, b):
+    """Return whether two generic classes are equivalent.
+
+    The intention is to consider generic class X and any of its
+    parameterized forms (X[T], X[int], etc.)  as equivalent.
+
+    However, X is not equivalent to a subclass of X.
+
+    The relation is reflexive, symmetric and transitive.
+    """
+    assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta)
+    # Reduce each to its origin.
+    return _gorg(a) is _gorg(b)
+
+
+class GenericMeta(TypingMeta, abc.ABCMeta):
+    """Metaclass for generic types."""
+
+    # TODO: Constrain more how Generic is used; only a few
+    # standard patterns should be allowed.
+
+    # TODO: Use a more precise rule than matching __name__ to decide
+    # whether two classes are the same.  Also, save the formal
+    # parameters.  (These things are related!  A solution lies in
+    # using origin.)
+
+    __extra__ = None
+
+    def __new__(cls, name, bases, namespace,
+                parameters=None, origin=None, extra=None):
+        if parameters is None:
+            # Extract parameters from direct base classes.  Only
+            # direct bases are considered and only those that are
+            # themselves generic, and parameterized with type
+            # variables.  Don't use bases like Any, Union, Tuple,
+            # Callable or type variables.
+            params = None
+            for base in bases:
+                if isinstance(base, TypingMeta):
+                    if not isinstance(base, GenericMeta):
+                        raise TypeError(
+                            "You cannot inherit from magic class %s" %
+                            repr(base))
+                    if base.__parameters__ is None:
+                        continue  # The base is unparameterized.
+                    for bp in base.__parameters__:
+                        if _has_type_var(bp) and not isinstance(bp, TypeVar):
+                            raise TypeError(
+                                "Cannot inherit from a generic class "
+                                "parameterized with "
+                                "non-type-variable %s" % bp)
+                        if params is None:
+                            params = []
+                        if bp not in params:
+                            params.append(bp)
+            if params is not None:
+                parameters = tuple(params)
+        self = super(GenericMeta, cls).__new__(cls, name, bases, namespace)
+        self.__parameters__ = parameters
+        if extra is not None:
+            self.__extra__ = extra
+        # Else __extra__ is inherited, eventually from the
+        # (meta-)class default above.
+        self.__origin__ = origin
+        return self
+
+    def _has_type_var(self):
+        if self.__parameters__:
+            for t in self.__parameters__:
+                if _has_type_var(t):
+                    return True
+        return False
+
+    def __repr__(self):
+        r = super(GenericMeta, self).__repr__()
+        if self.__parameters__ is not None:
+            r += '[%s]' % (
+                ', '.join(_type_repr(p) for p in self.__parameters__))
+        return r
+
+    def __eq__(self, other):
+        if not isinstance(other, GenericMeta):
+            return NotImplemented
+        return (_geqv(self, other) and
+                self.__parameters__ == other.__parameters__)
+
+    def __hash__(self):
+        return hash((self.__name__, self.__parameters__))
+
+    def __getitem__(self, params):
+        if not isinstance(params, tuple):
+            params = (params,)
+        if not params:
+            raise TypeError("Cannot have empty parameter list")
+        msg = "Parameters to generic types must be types."
+        params = tuple(_type_check(p, msg) for p in params)
+        if self.__parameters__ is None:
+            for p in params:
+                if not isinstance(p, TypeVar):
+                    raise TypeError("Initial parameters must be "
+                                    "type variables; got %s" % p)
+            if len(set(params)) != len(params):
+                raise TypeError(
+                    "All type variables in Generic[...] must be distinct.")
+        else:
+            if len(params) != len(self.__parameters__):
+                raise TypeError("Cannot change parameter count from %d to %d" %
+                                (len(self.__parameters__), len(params)))
+            for new, old in zip(params, self.__parameters__):
+                if isinstance(old, TypeVar):
+                    if not old.__constraints__:
+                        # Substituting for an unconstrained TypeVar is OK.
+                        continue
+                    if issubclass(new, Union[old.__constraints__]):
+                        # Specializing a constrained type variable is OK.
+                        continue
+                if not issubclass(new, old):
+                    raise TypeError(
+                        "Cannot substitute %s for %s in %s" %
+                        (_type_repr(new), _type_repr(old), self))
+
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__),
+                              parameters=params,
+                              origin=self,
+                              extra=self.__extra__)
+
+    def __instancecheck__(self, instance):
+        # Since we extend ABC.__subclasscheck__ and
+        # ABC.__instancecheck__ inlines the cache checking done by the
+        # latter, we must extend __instancecheck__ too. For simplicity
+        # we just skip the cache check -- instance checks for generic
+        # classes are supposed to be rare anyways.
+        return self.__subclasscheck__(instance.__class__)
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if isinstance(cls, GenericMeta):
+            # For a class C(Generic[T]) where T is co-variant,
+            # C[X] is a subclass of C[Y] iff X is a subclass of Y.
+            origin = self.__origin__
+            if origin is not None and origin is cls.__origin__:
+                assert len(self.__parameters__) == len(origin.__parameters__)
+                assert len(cls.__parameters__) == len(origin.__parameters__)
+                for p_self, p_cls, p_origin in zip(self.__parameters__,
+                                                   cls.__parameters__,
+                                                   origin.__parameters__):
+                    if isinstance(p_origin, TypeVar):
+                        if p_origin.__covariant__:
+                            # Covariant -- p_cls must be a subclass of p_self.
+                            if not issubclass(p_cls, p_self):
+                                break
+                        elif p_origin.__contravariant__:
+                            # Contravariant.  I think it's the opposite. :-)
+                            if not issubclass(p_self, p_cls):
+                                break
+                        else:
+                            # Invariant -- p_cls and p_self must equal.
+                            if p_self != p_cls:
+                                break
+                    else:
+                        # If the origin's parameter is not a typevar,
+                        # insist on invariance.
+                        if p_self != p_cls:
+                            break
+                else:
+                    return True
+                # If we break out of the loop, the superclass gets a chance.
+        if super(GenericMeta, self).__subclasscheck__(cls):
+            return True
+        if self.__extra__ is None or isinstance(cls, GenericMeta):
+            return False
+        return issubclass(cls, self.__extra__)
+
+
+class Generic(object):
+    """Abstract base class for generic types.
+
+    A generic type is typically declared by inheriting from an
+    instantiation of this class with one or more type variables.
+    For example, a generic mapping type might be defined as::
+
+      class Mapping(Generic[KT, VT]):
+          def __getitem__(self, key: KT) -> VT:
+              ...
+          # Etc.
+
+    This class can then be used as follows::
+
+      def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT:
+          try:
+              return mapping[key]
+          except KeyError:
+              return default
+
+    For clarity the type variables may be redefined, e.g.::
+
+      X = TypeVar('X')
+      Y = TypeVar('Y')
+      def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
+          # Same body as above.
+    """
+
+    __metaclass__ = GenericMeta
+    __slots__ = ()
+
+    def __new__(cls, *args, **kwds):
+        next_in_mro = object
+        # Look for the last occurrence of Generic or Generic[...].
+        for i, c in enumerate(cls.__mro__[:-1]):
+            if isinstance(c, GenericMeta) and _gorg(c) is Generic:
+                next_in_mro = cls.__mro__[i+1]
+        return next_in_mro.__new__(_gorg(cls))
+
+
+def cast(typ, val):
+    """Cast a value to a type.
+
+    This returns the value unchanged.  To the type checker this
+    signals that the return value has the designated type, but at
+    runtime we intentionally don't check anything (we want this
+    to be as fast as possible).
+    """
+    return val
+
+
+def _get_defaults(func):
+    """Internal helper to extract the default arguments, by name."""
+    code = func.__code__
+    pos_count = code.co_argcount
+    kw_count = code.co_kwonlyargcount
+    arg_names = code.co_varnames
+    kwarg_names = arg_names[pos_count:pos_count + kw_count]
+    arg_names = arg_names[:pos_count]
+    defaults = func.__defaults__ or ()
+    kwdefaults = func.__kwdefaults__
+    res = dict(kwdefaults) if kwdefaults else {}
+    pos_offset = pos_count - len(defaults)
+    for name, value in zip(arg_names[pos_offset:], defaults):
+        assert name not in res
+        res[name] = value
+    return res
+
+
+def get_type_hints(obj, globalns=None, localns=None):
+    """Return type hints for a function or method object.
+
+    This is often the same as obj.__annotations__, but it handles
+    forward references encoded as string literals, and if necessary
+    adds Optional[t] if a default value equal to None is set.
+
+    BEWARE -- the behavior of globalns and localns is counterintuitive
+    (unless you are familiar with how eval() and exec() work).  The
+    search order is locals first, then globals.
+
+    - If no dict arguments are passed, an attempt is made to use the
+      globals from obj, and these are also used as the locals.  If the
+      object does not appear to have globals, an exception is raised.
+
+    - If one dict argument is passed, it is used for both globals and
+      locals.
+
+    - If two dict arguments are passed, they specify globals and
+      locals, respectively.
+    """
+    if getattr(obj, '__no_type_check__', None):
+        return {}
+    if globalns is None:
+        globalns = getattr(obj, '__globals__', {})
+        if localns is None:
+            localns = globalns
+    elif localns is None:
+        localns = globalns
+    defaults = _get_defaults(obj)
+    hints = dict(obj.__annotations__)
+    for name, value in hints.items():
+        if isinstance(value, basestring):
+            value = _ForwardRef(value)
+        value = _eval_type(value, globalns, localns)
+        if name in defaults and defaults[name] is None:
+            value = Optional[value]
+        hints[name] = value
+    return hints
+
+
+# TODO: Also support this as a class decorator.
+def no_type_check(arg):
+    """Decorator to indicate that annotations are not type hints.
+
+    The argument must be a class or function; if it is a class, it
+    applies recursively to all methods defined in that class (but not
+    to methods defined in its superclasses or subclasses).
+
+    This mutates the function(s) in place.
+    """
+    if isinstance(arg, type):
+        for obj in arg.__dict__.values():
+            if isinstance(obj, types.FunctionType):
+                obj.__no_type_check__ = True
+    else:
+        arg.__no_type_check__ = True
+    return arg
+
+
+def no_type_check_decorator(decorator):
+    """Decorator to give another decorator the @no_type_check effect.
+
+    This wraps the decorator with something that wraps the decorated
+    function in @no_type_check.
+    """
+
+    @functools.wraps(decorator)
+    def wrapped_decorator(*args, **kwds):
+        func = decorator(*args, **kwds)
+        func = no_type_check(func)
+        return func
+
+    return wrapped_decorator
+
+
+def overload(func):
+    raise RuntimeError("Overloading is only supported in library stubs")
+
+
+class _ProtocolMeta(GenericMeta):
+    """Internal metaclass for _Protocol.
+
+    This exists so _Protocol classes can be generic without deriving
+    from Generic.
+    """
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Protocols cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if not self._is_protocol:
+            # No structural checks since this isn't a protocol.
+            return NotImplemented
+
+        if self is _Protocol:
+            # Every class is a subclass of the empty protocol.
+            return True
+
+        # Find all attributes defined in the protocol.
+        attrs = self._get_protocol_attrs()
+
+        for attr in attrs:
+            if not any(attr in d.__dict__ for d in cls.__mro__):
+                return False
+        return True
+
+    def _get_protocol_attrs(self):
+        # Get all Protocol base classes.
+        protocol_bases = []
+        for c in self.__mro__:
+            if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
+                protocol_bases.append(c)
+
+        # Get attributes included in protocol.
+        attrs = set()
+        for base in protocol_bases:
+            for attr in base.__dict__.keys():
+                # Include attributes not defined in any non-protocol bases.
+                for c in self.__mro__:
+                    if (c is not base and attr in c.__dict__ and
+                            not getattr(c, '_is_protocol', False)):
+                        break
+                else:
+                    if (not attr.startswith('_abc_') and
+                        attr != '__abstractmethods__' and
+                        attr != '_is_protocol' and
+                        attr != '__dict__' and
+                        attr != '__slots__' and
+                        attr != '_get_protocol_attrs' and
+                        attr != '__parameters__' and
+                        attr != '__origin__' and
+                        attr != '__module__'):
+                        attrs.add(attr)
+
+        return attrs
+
+
+class _Protocol(object):
+    """Internal base class for protocol classes.
+
+    This implements a simple-minded structural isinstance check
+    (similar but more general than the one-offs in collections.abc
+    such as Hashable).
+    """
+
+    __metaclass__ = _ProtocolMeta
+    __slots__ = ()
+
+    _is_protocol = True
+
+
+# Various ABCs mimicking those in collections.abc.
+# A few are simply re-exported for completeness.
+
+Hashable = collections_abc.Hashable  # Not generic.
+
+
+class Iterable(Generic[T_co]):
+    __slots__ = ()
+    __extra__ = collections_abc.Iterable
+
+
+class Iterator(Iterable[T_co]):
+    __slots__ = ()
+    __extra__ = collections_abc.Iterator
+
+
+class SupportsInt(_Protocol):
+    __slots__ = ()
+
+    @abstractmethod
+    def __int__(self):
+        pass
+
+
+class SupportsFloat(_Protocol):
+    __slots__ = ()
+
+    @abstractmethod
+    def __float__(self):
+        pass
+
+
+class SupportsComplex(_Protocol):
+    __slots__ = ()
+
+    @abstractmethod
+    def __complex__(self):
+        pass
+
+
+class SupportsAbs(_Protocol[T_co]):
+    __slots__ = ()
+
+    @abstractmethod
+    def __abs__(self):
+        pass
+
+
+class Reversible(_Protocol[T_co]):
+    __slots__ = ()
+
+    @abstractmethod
+    def __reversed__(self):
+        pass
+
+
+Sized = collections_abc.Sized  # Not generic.
+
+
+class Container(Generic[T_co]):
+    __slots__ = ()
+    __extra__ = collections_abc.Container
+
+
+# Callable was defined earlier.
+
+
+class AbstractSet(Sized, Iterable[T_co], Container[T_co]):
+    __extra__ = collections_abc.Set
+
+
+class MutableSet(AbstractSet[T]):
+    __extra__ = collections_abc.MutableSet
+
+
+# NOTE: Only the value type is covariant.
+class Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co]):
+    __extra__ = collections_abc.Mapping
+
+
+class MutableMapping(Mapping[KT, VT]):
+    __extra__ = collections_abc.MutableMapping
+
+
+class Sequence(Sized, Iterable[T_co], Container[T_co]):
+    __extra__ = collections_abc.Sequence
+
+
+class MutableSequence(Sequence[T]):
+    __extra__ = collections_abc.MutableSequence
+
+
+class ByteString(Sequence[int]):
+    pass
+
+
+ByteString.register(bytearray)
+
+
+class List(list, MutableSequence[T]):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, List):
+            raise TypeError("Type List cannot be instantiated; "
+                            "use list() instead")
+        return list.__new__(cls, *args, **kwds)
+
+
+class Set(set, MutableSet[T]):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, Set):
+            raise TypeError("Type Set cannot be instantiated; "
+                            "use set() instead")
+        return set.__new__(cls, *args, **kwds)
+
+
+class _FrozenSetMeta(GenericMeta):
+    """This metaclass ensures set is not a subclass of FrozenSet.
+
+    Without this metaclass, set would be considered a subclass of
+    FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and
+    set is a subclass of that.
+    """
+
+    def __subclasscheck__(self, cls):
+        if issubclass(cls, Set):
+            return False
+        return super(_FrozenSetMeta, self).__subclasscheck__(cls)
+
+
+class FrozenSet(frozenset, AbstractSet[T_co]):
+    __metaclass__ = _FrozenSetMeta
+    __slots__ = ()
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, FrozenSet):
+            raise TypeError("Type FrozenSet cannot be instantiated; "
+                            "use frozenset() instead")
+        return frozenset.__new__(cls, *args, **kwds)
+
+
+class MappingView(Sized, Iterable[T_co]):
+    __extra__ = collections_abc.MappingView
+
+
+class KeysView(MappingView[KT], AbstractSet[KT]):
+    __extra__ = collections_abc.KeysView
+
+
+# TODO: Enable Set[Tuple[KT, VT_co]] instead of Generic[KT, VT_co].
+class ItemsView(MappingView, Generic[KT, VT_co]):
+    __extra__ = collections_abc.ItemsView
+
+
+class ValuesView(MappingView[VT_co]):
+    __extra__ = collections_abc.ValuesView
+
+
+class Dict(dict, MutableMapping[KT, VT]):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, Dict):
+            raise TypeError("Type Dict cannot be instantiated; "
+                            "use dict() instead")
+        return dict.__new__(cls, *args, **kwds)
+
+
+# Determine what base class to use for Generator.
+if hasattr(collections_abc, 'Generator'):
+    # Sufficiently recent versions of 3.5 have a Generator ABC.
+    _G_base = collections_abc.Generator
+else:
+    # Fall back on the exact type.
+    _G_base = types.GeneratorType
+
+
+class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co]):
+    __slots__ = ()
+    __extra__ = _G_base
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, Generator):
+            raise TypeError("Type Generator cannot be instantiated; "
+                            "create a subclass instead")
+        return super(Generator, cls).__new__(cls, *args, **kwds)
+
+
+def NamedTuple(typename, fields):
+    """Typed version of namedtuple.
+
+    Usage::
+
+        Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)])
+
+    This is equivalent to::
+
+        Employee = collections.namedtuple('Employee', ['name', 'id'])
+
+    The resulting class has one extra attribute: _field_types,
+    giving a dict mapping field names to types.  (The field names
+    are in the _fields attribute, which is part of the namedtuple
+    API.)
+    """
+    fields = [(n, t) for n, t in fields]
+    cls = collections.namedtuple(typename, [n for n, t in fields])
+    cls._field_types = dict(fields)
+    return cls
+
+
+class IO(Generic[AnyStr]):
+    """Generic base class for TextIO and BinaryIO.
+
+    This is an abstract, generic version of the return of open().
+
+    NOTE: This does not distinguish between the different possible
+    classes (text vs. binary, read vs. write vs. read/write,
+    append-only, unbuffered).  The TextIO and BinaryIO subclasses
+    below capture the distinctions between text vs. binary, which is
+    pervasive in the interface; however we currently do not offer a
+    way to track the other distinctions in the type system.
+    """
+
+    __slots__ = ()
+
+    @abstractproperty
+    def mode(self):
+        pass
+
+    @abstractproperty
+    def name(self):
+        pass
+
+    @abstractmethod
+    def close(self):
+        pass
+
+    @abstractmethod
+    def closed(self):
+        pass
+
+    @abstractmethod
+    def fileno(self):
+        pass
+
+    @abstractmethod
+    def flush(self):
+        pass
+
+    @abstractmethod
+    def isatty(self):
+        pass
+
+    @abstractmethod
+    def read(self, n = -1):
+        pass
+
+    @abstractmethod
+    def readable(self):
+        pass
+
+    @abstractmethod
+    def readline(self, limit = -1):
+        pass
+
+    @abstractmethod
+    def readlines(self, hint = -1):
+        pass
+
+    @abstractmethod
+    def seek(self, offset, whence = 0):
+        pass
+
+    @abstractmethod
+    def seekable(self):
+        pass
+
+    @abstractmethod
+    def tell(self):
+        pass
+
+    @abstractmethod
+    def truncate(self, size = None):
+        pass
+
+    @abstractmethod
+    def writable(self):
+        pass
+
+    @abstractmethod
+    def write(self, s):
+        pass
+
+    @abstractmethod
+    def writelines(self, lines):
+        pass
+
+    @abstractmethod
+    def __enter__(self):
+        pass
+
+    @abstractmethod
+    def __exit__(self, type, value, traceback):
+        pass
+
+
+class BinaryIO(IO[bytes]):
+    """Typed version of the return of open() in binary mode."""
+
+    __slots__ = ()
+
+    @abstractmethod
+    def write(self, s):
+        pass
+
+    @abstractmethod
+    def __enter__(self):
+        pass
+
+
+class TextIO(IO[unicode]):
+    """Typed version of the return of open() in text mode."""
+
+    __slots__ = ()
+
+    @abstractproperty
+    def buffer(self):
+        pass
+
+    @abstractproperty
+    def encoding(self):
+        pass
+
+    @abstractproperty
+    def errors(self):
+        pass
+
+    @abstractproperty
+    def line_buffering(self):
+        pass
+
+    @abstractproperty
+    def newlines(self):
+        pass
+
+    @abstractmethod
+    def __enter__(self):
+        pass
+
+
+class io(object):
+    """Wrapper namespace for IO generic classes."""
+
+    __all__ = ['IO', 'TextIO', 'BinaryIO']
+    IO = IO
+    TextIO = TextIO
+    BinaryIO = BinaryIO
+
+io.__name__ = __name__ + b'.io'
+sys.modules[io.__name__] = io
+
+
+Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
+                     lambda p: p.pattern)
+Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
+                   lambda m: m.re.pattern)
+
+
+class re(object):
+    """Wrapper namespace for re type aliases."""
+
+    __all__ = ['Pattern', 'Match']
+    Pattern = Pattern
+    Match = Match
+
+re.__name__ = __name__ + b'.re'
+sys.modules[re.__name__] = re
diff --git a/setup.py b/setup.py
new file mode 100644
index 0000000..5e2adbc
--- /dev/null
+++ b/setup.py
@@ -0,0 +1,54 @@
+#!/usr/bin/env python
+# coding: utf-8
+
+import sys
+from distutils.core import setup
+
+if sys.version_info < (2, 7, 0) or (3, 0, 0) <= sys.version_info < (3, 2, 0):
+    sys.stderr.write('ERROR: You need Python 2.7 or 3.2-3.4 '
+                     'to install the typing package.\n')
+    exit(1)
+
+version = '3.5.0.1'
+description = 'Type Hints for Python'
+long_description = '''\
+Typing -- Type Hints for Python
+
+This is a backport of the standard library typing module to Python
+versions older than 3.5.
+
+Typing defines a standard notation for Python function and variable
+type annotations. The notation can be used for documenting code in a
+concise, standard format, and it has been designed to also be used by
+static and runtime type checkers, static analyzers, IDEs and other
+tools.
+'''
+
+package_dir = {2: 'python2', 3: 'src'}[sys.version_info.major]
+
+classifiers = [
+    'Development Status :: 5 - Production/Stable',
+    'Environment :: Console',
+    'Intended Audience :: Developers',
+    'License :: OSI Approved :: Python Software Foundation License',
+    'Operating System :: OS Independent',
+    'Programming Language :: Python :: 2.7',
+    'Programming Language :: Python :: 3.2',
+    'Programming Language :: Python :: 3.3',
+    'Programming Language :: Python :: 3.4',
+    'Topic :: Software Development',
+]
+
+setup(name='typing',
+      version=version,
+      description=description,
+      long_description=long_description,
+      author='Guido van Rossum, Jukka Lehtosalo, Łukasz Langa',
+      author_email='jukka.lehtosalo at iki.fi',
+      url='https://docs.python.org/3.5/library/typing.html',
+      license='PSF',
+      keywords='typing function annotations type hints hinting checking '
+               'checker typehints typehinting typechecking backport',
+      package_dir={'': package_dir},
+      py_modules=['typing'],
+      classifiers=classifiers)
diff --git a/src/test_typing.py b/src/test_typing.py
new file mode 100644
index 0000000..d9f12a9
--- /dev/null
+++ b/src/test_typing.py
@@ -0,0 +1,1256 @@
+import re
+import sys
+from unittest import TestCase, main
+
+from typing import Any
+from typing import TypeVar, AnyStr
+from typing import T, KT, VT  # Not in __all__.
+from typing import Union, Optional
+from typing import Tuple
+from typing import Callable
+from typing import Generic
+from typing import cast
+from typing import get_type_hints
+from typing import no_type_check, no_type_check_decorator
+from typing import NamedTuple
+from typing import IO, TextIO, BinaryIO
+from typing import Pattern, Match
+import typing
+
+
+class Employee:
+    pass
+
+
+class Manager(Employee):
+    pass
+
+
+class Founder(Employee):
+    pass
+
+
+class ManagingFounder(Manager, Founder):
+    pass
+
+
+class AnyTests(TestCase):
+
+    def test_any_instance_type_error(self):
+        with self.assertRaises(TypeError):
+            isinstance(42, Any)
+
+    def test_any_subclass(self):
+        self.assertTrue(issubclass(Employee, Any))
+        self.assertTrue(issubclass(int, Any))
+        self.assertTrue(issubclass(type(None), Any))
+        self.assertTrue(issubclass(object, Any))
+
+    def test_others_any(self):
+        self.assertFalse(issubclass(Any, Employee))
+        self.assertFalse(issubclass(Any, int))
+        self.assertFalse(issubclass(Any, type(None)))
+        # However, Any is a subclass of object (this can't be helped).
+        self.assertTrue(issubclass(Any, object))
+
+    def test_repr(self):
+        self.assertEqual(repr(Any), 'typing.Any')
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            issubclass(42, Any)
+        with self.assertRaises(TypeError):
+            Any[int]  # Any is not a generic type.
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError):
+            class A(Any):
+                pass
+
+    def test_cannot_instantiate(self):
+        with self.assertRaises(TypeError):
+            Any()
+
+    def test_cannot_subscript(self):
+        with self.assertRaises(TypeError):
+            Any[int]
+
+    def test_any_is_subclass(self):
+        # Any should be considered a subclass of everything.
+        assert issubclass(Any, Any)
+        assert issubclass(Any, typing.List)
+        assert issubclass(Any, typing.List[int])
+        assert issubclass(Any, typing.List[T])
+        assert issubclass(Any, typing.Mapping)
+        assert issubclass(Any, typing.Mapping[str, int])
+        assert issubclass(Any, typing.Mapping[KT, VT])
+        assert issubclass(Any, Generic)
+        assert issubclass(Any, Generic[T])
+        assert issubclass(Any, Generic[KT, VT])
+        assert issubclass(Any, AnyStr)
+        assert issubclass(Any, Union)
+        assert issubclass(Any, Union[int, str])
+        assert issubclass(Any, typing.Match)
+        assert issubclass(Any, typing.Match[str])
+        # These expressions must simply not fail.
+        typing.Match[Any]
+        typing.Pattern[Any]
+        typing.IO[Any]
+
+
+class TypeVarTests(TestCase):
+
+    def test_basic_plain(self):
+        T = TypeVar('T')
+        # Every class is a subclass of T.
+        assert issubclass(int, T)
+        assert issubclass(str, T)
+        # T equals itself.
+        assert T == T
+        # T is a subclass of itself.
+        assert issubclass(T, T)
+        # T is an instance of TypeVar
+        assert isinstance(T, TypeVar)
+
+    def test_typevar_instance_type_error(self):
+        T = TypeVar('T')
+        with self.assertRaises(TypeError):
+            isinstance(42, T)
+
+    def test_basic_constrained(self):
+        A = TypeVar('A', str, bytes)
+        # Only str and bytes are subclasses of A.
+        assert issubclass(str, A)
+        assert issubclass(bytes, A)
+        assert not issubclass(int, A)
+        # A equals itself.
+        assert A == A
+        # A is a subclass of itself.
+        assert issubclass(A, A)
+
+    def test_constrained_error(self):
+        with self.assertRaises(TypeError):
+            X = TypeVar('X', int)
+
+    def test_union_unique(self):
+        X = TypeVar('X')
+        Y = TypeVar('Y')
+        assert X != Y
+        assert Union[X] == X
+        assert Union[X] != Union[X, Y]
+        assert Union[X, X] == X
+        assert Union[X, int] != Union[X]
+        assert Union[X, int] != Union[int]
+        assert Union[X, int].__union_params__ == (X, int)
+        assert Union[X, int].__union_set_params__ == {X, int}
+
+    def test_union_constrained(self):
+        A = TypeVar('A', str, bytes)
+        assert Union[A, str] != Union[A]
+
+    def test_repr(self):
+        self.assertEqual(repr(T), '~T')
+        self.assertEqual(repr(KT), '~KT')
+        self.assertEqual(repr(VT), '~VT')
+        self.assertEqual(repr(AnyStr), '~AnyStr')
+        T_co = TypeVar('T_co', covariant=True)
+        self.assertEqual(repr(T_co), '+T_co')
+        T_contra = TypeVar('T_contra', contravariant=True)
+        self.assertEqual(repr(T_contra), '-T_contra')
+
+    def test_no_redefinition(self):
+        self.assertNotEqual(TypeVar('T'), TypeVar('T'))
+        self.assertNotEqual(TypeVar('T', int, str), TypeVar('T', int, str))
+
+    def test_subclass_as_unions(self):
+        # None of these are true -- each type var is its own world.
+        self.assertFalse(issubclass(TypeVar('T', int, str),
+                                    TypeVar('T', int, str)))
+        self.assertFalse(issubclass(TypeVar('T', int, float),
+                                    TypeVar('T', int, float, str)))
+        self.assertFalse(issubclass(TypeVar('T', int, str),
+                                    TypeVar('T', str, int)))
+        A = TypeVar('A', int, str)
+        B = TypeVar('B', int, str, float)
+        self.assertFalse(issubclass(A, B))
+        self.assertFalse(issubclass(B, A))
+
+    def test_cannot_subclass_vars(self):
+        with self.assertRaises(TypeError):
+            class V(TypeVar('T')):
+                pass
+
+    def test_cannot_subclass_var_itself(self):
+        with self.assertRaises(TypeError):
+            class V(TypeVar):
+                pass
+
+    def test_cannot_instantiate_vars(self):
+        with self.assertRaises(TypeError):
+            TypeVar('A')()
+
+    def test_bound(self):
+        X = TypeVar('X', bound=Employee)
+        assert issubclass(Employee, X)
+        assert issubclass(Manager, X)
+        assert not issubclass(int, X)
+
+    def test_bound_errors(self):
+        with self.assertRaises(TypeError):
+            TypeVar('X', bound=42)
+        with self.assertRaises(TypeError):
+            TypeVar('X', str, float, bound=Employee)
+
+
+class UnionTests(TestCase):
+
+    def test_basics(self):
+        u = Union[int, float]
+        self.assertNotEqual(u, Union)
+        self.assertTrue(issubclass(int, u))
+        self.assertTrue(issubclass(float, u))
+
+    def test_union_any(self):
+        u = Union[Any]
+        self.assertEqual(u, Any)
+        u = Union[int, Any]
+        self.assertEqual(u, Any)
+        u = Union[Any, int]
+        self.assertEqual(u, Any)
+
+    def test_union_object(self):
+        u = Union[object]
+        self.assertEqual(u, object)
+        u = Union[int, object]
+        self.assertEqual(u, object)
+        u = Union[object, int]
+        self.assertEqual(u, object)
+
+    def test_union_any_object(self):
+        u = Union[object, Any]
+        self.assertEqual(u, Any)
+        u = Union[Any, object]
+        self.assertEqual(u, Any)
+
+    def test_unordered(self):
+        u1 = Union[int, float]
+        u2 = Union[float, int]
+        self.assertEqual(u1, u2)
+
+    def test_subclass(self):
+        u = Union[int, Employee]
+        self.assertTrue(issubclass(Manager, u))
+
+    def test_self_subclass(self):
+        self.assertTrue(issubclass(Union[KT, VT], Union))
+        self.assertFalse(issubclass(Union, Union[KT, VT]))
+
+    def test_multiple_inheritance(self):
+        u = Union[int, Employee]
+        self.assertTrue(issubclass(ManagingFounder, u))
+
+    def test_single_class_disappears(self):
+        t = Union[Employee]
+        self.assertIs(t, Employee)
+
+    def test_base_class_disappears(self):
+        u = Union[Employee, Manager, int]
+        self.assertEqual(u, Union[int, Employee])
+        u = Union[Manager, int, Employee]
+        self.assertEqual(u, Union[int, Employee])
+        u = Union[Employee, Manager]
+        self.assertIs(u, Employee)
+
+    def test_weird_subclasses(self):
+        u = Union[Employee, int, float]
+        v = Union[int, float]
+        self.assertTrue(issubclass(v, u))
+        w = Union[int, Manager]
+        self.assertTrue(issubclass(w, u))
+
+    def test_union_union(self):
+        u = Union[int, float]
+        v = Union[u, Employee]
+        self.assertEqual(v, Union[int, float, Employee])
+
+    def test_repr(self):
+        self.assertEqual(repr(Union), 'typing.Union')
+        u = Union[Employee, int]
+        self.assertEqual(repr(u), 'typing.Union[%s.Employee, int]' % __name__)
+        u = Union[int, Employee]
+        self.assertEqual(repr(u), 'typing.Union[int, %s.Employee]' % __name__)
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError):
+            class C(Union):
+                pass
+        with self.assertRaises(TypeError):
+            class C(Union[int, str]):
+                pass
+
+    def test_cannot_instantiate(self):
+        with self.assertRaises(TypeError):
+            Union()
+        u = Union[int, float]
+        with self.assertRaises(TypeError):
+            u()
+
+    def test_optional(self):
+        o = Optional[int]
+        u = Union[int, None]
+        self.assertEqual(o, u)
+
+    def test_empty(self):
+        with self.assertRaises(TypeError):
+            Union[()]
+
+    def test_issubclass_union(self):
+        assert issubclass(Union[int, str], Union)
+        assert not issubclass(int, Union)
+
+    def test_union_instance_type_error(self):
+        with self.assertRaises(TypeError):
+            isinstance(42, Union[int, str])
+
+    def test_union_str_pattern(self):
+        # Shouldn't crash; see http://bugs.python.org/issue25390
+        A = Union[str, Pattern]
+
+
+class TypeVarUnionTests(TestCase):
+
+    def test_simpler(self):
+        A = TypeVar('A', int, str, float)
+        B = TypeVar('B', int, str)
+        assert issubclass(A, A)
+        assert issubclass(B, B)
+        assert not issubclass(B, A)
+        assert issubclass(A, Union[int, str, float])
+        assert not issubclass(Union[int, str, float], A)
+        assert not issubclass(Union[int, str], B)
+        assert issubclass(B, Union[int, str])
+        assert not issubclass(A, B)
+        assert not issubclass(Union[int, str, float], B)
+        assert not issubclass(A, Union[int, str])
+
+    def test_var_union_subclass(self):
+        self.assertTrue(issubclass(T, Union[int, T]))
+        self.assertTrue(issubclass(KT, Union[KT, VT]))
+
+    def test_var_union(self):
+        TU = TypeVar('TU', Union[int, float], None)
+        assert issubclass(int, TU)
+        assert issubclass(float, TU)
+
+
+class TupleTests(TestCase):
+
+    def test_basics(self):
+        self.assertTrue(issubclass(Tuple[int, str], Tuple))
+        self.assertTrue(issubclass(Tuple[int, str], Tuple[int, str]))
+        self.assertFalse(issubclass(int, Tuple))
+        self.assertFalse(issubclass(Tuple[float, str], Tuple[int, str]))
+        self.assertFalse(issubclass(Tuple[int, str, int], Tuple[int, str]))
+        self.assertFalse(issubclass(Tuple[int, str], Tuple[int, str, int]))
+        self.assertTrue(issubclass(tuple, Tuple))
+        self.assertFalse(issubclass(Tuple, tuple))  # Can't have it both ways.
+
+    def test_tuple_subclass(self):
+        class MyTuple(tuple):
+            pass
+        self.assertTrue(issubclass(MyTuple, Tuple))
+
+    def test_tuple_instance_type_error(self):
+        with self.assertRaises(TypeError):
+            isinstance((0, 0), Tuple[int, int])
+        with self.assertRaises(TypeError):
+            isinstance((0, 0), Tuple)
+
+    def test_tuple_ellipsis_subclass(self):
+
+        class B:
+            pass
+
+        class C(B):
+            pass
+
+        assert not issubclass(Tuple[B], Tuple[B, ...])
+        assert issubclass(Tuple[C, ...], Tuple[B, ...])
+        assert not issubclass(Tuple[C, ...], Tuple[B])
+        assert not issubclass(Tuple[C], Tuple[B, ...])
+
+    def test_repr(self):
+        self.assertEqual(repr(Tuple), 'typing.Tuple')
+        self.assertEqual(repr(Tuple[()]), 'typing.Tuple[]')
+        self.assertEqual(repr(Tuple[int, float]), 'typing.Tuple[int, float]')
+        self.assertEqual(repr(Tuple[int, ...]), 'typing.Tuple[int, ...]')
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            issubclass(42, Tuple)
+        with self.assertRaises(TypeError):
+            issubclass(42, Tuple[int])
+
+
+class CallableTests(TestCase):
+
+    def test_self_subclass(self):
+        self.assertTrue(issubclass(Callable[[int], int], Callable))
+        self.assertFalse(issubclass(Callable, Callable[[int], int]))
+        self.assertTrue(issubclass(Callable[[int], int], Callable[[int], int]))
+        self.assertFalse(issubclass(Callable[[Employee], int],
+                                    Callable[[Manager], int]))
+        self.assertFalse(issubclass(Callable[[Manager], int],
+                                    Callable[[Employee], int]))
+        self.assertFalse(issubclass(Callable[[int], Employee],
+                                    Callable[[int], Manager]))
+        self.assertFalse(issubclass(Callable[[int], Manager],
+                                    Callable[[int], Employee]))
+
+    def test_eq_hash(self):
+        self.assertEqual(Callable[[int], int], Callable[[int], int])
+        self.assertEqual(len({Callable[[int], int], Callable[[int], int]}), 1)
+        self.assertNotEqual(Callable[[int], int], Callable[[int], str])
+        self.assertNotEqual(Callable[[int], int], Callable[[str], int])
+        self.assertNotEqual(Callable[[int], int], Callable[[int, int], int])
+        self.assertNotEqual(Callable[[int], int], Callable[[], int])
+        self.assertNotEqual(Callable[[int], int], Callable)
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError):
+
+            class C(Callable):
+                pass
+
+        with self.assertRaises(TypeError):
+
+            class C(Callable[[int], int]):
+                pass
+
+    def test_cannot_instantiate(self):
+        with self.assertRaises(TypeError):
+            Callable()
+        c = Callable[[int], str]
+        with self.assertRaises(TypeError):
+            c()
+
+    def test_callable_instance_works(self):
+        def f():
+            pass
+        assert isinstance(f, Callable)
+        assert not isinstance(None, Callable)
+
+    def test_callable_instance_type_error(self):
+        def f():
+            pass
+        with self.assertRaises(TypeError):
+            assert isinstance(f, Callable[[], None])
+        with self.assertRaises(TypeError):
+            assert isinstance(f, Callable[[], Any])
+        with self.assertRaises(TypeError):
+            assert not isinstance(None, Callable[[], None])
+        with self.assertRaises(TypeError):
+            assert not isinstance(None, Callable[[], Any])
+
+    def test_repr(self):
+        ct0 = Callable[[], bool]
+        self.assertEqual(repr(ct0), 'typing.Callable[[], bool]')
+        ct2 = Callable[[str, float], int]
+        self.assertEqual(repr(ct2), 'typing.Callable[[str, float], int]')
+        ctv = Callable[..., str]
+        self.assertEqual(repr(ctv), 'typing.Callable[..., str]')
+
+    def test_callable_with_ellipsis(self):
+
+        def foo(a: Callable[..., T]):
+            pass
+
+        self.assertEqual(get_type_hints(foo, globals(), locals()),
+                         {'a': Callable[..., T]})
+
+
+XK = TypeVar('XK', str, bytes)
+XV = TypeVar('XV')
+
+
+class SimpleMapping(Generic[XK, XV]):
+
+    def __getitem__(self, key: XK) -> XV:
+        ...
+
+    def __setitem__(self, key: XK, value: XV):
+        ...
+
+    def get(self, key: XK, default: XV = None) -> XV:
+        ...
+
+
+class MySimpleMapping(SimpleMapping):
+
+    def __init__(self):
+        self.store = {}
+
+    def __getitem__(self, key: str):
+        return self.store[key]
+
+    def __setitem__(self, key: str, value):
+        self.store[key] = value
+
+    def get(self, key: str, default=None):
+        try:
+            return self.store[key]
+        except KeyError:
+            return default
+
+
+class ProtocolTests(TestCase):
+
+    def test_supports_int(self):
+        assert issubclass(int, typing.SupportsInt)
+        assert not issubclass(str, typing.SupportsInt)
+
+    def test_supports_float(self):
+        assert issubclass(float, typing.SupportsFloat)
+        assert not issubclass(str, typing.SupportsFloat)
+
+    def test_supports_complex(self):
+
+        # Note: complex itself doesn't have __complex__.
+        class C:
+            def __complex__(self):
+                return 0j
+
+        assert issubclass(C, typing.SupportsComplex)
+        assert not issubclass(str, typing.SupportsComplex)
+
+    def test_supports_bytes(self):
+
+        # Note: bytes itself doesn't have __bytes__.
+        class B:
+            def __bytes__(self):
+                return b''
+
+        assert issubclass(B, typing.SupportsBytes)
+        assert not issubclass(str, typing.SupportsBytes)
+
+    def test_supports_abs(self):
+        assert issubclass(float, typing.SupportsAbs)
+        assert issubclass(int, typing.SupportsAbs)
+        assert not issubclass(str, typing.SupportsAbs)
+
+    def test_supports_round(self):
+        assert issubclass(float, typing.SupportsRound)
+        assert issubclass(int, typing.SupportsRound)
+        assert not issubclass(str, typing.SupportsRound)
+
+    def test_reversible(self):
+        assert issubclass(list, typing.Reversible)
+        assert not issubclass(int, typing.Reversible)
+
+    def test_protocol_instance_type_error(self):
+        with self.assertRaises(TypeError):
+            isinstance([], typing.Reversible)
+
+
+class GenericTests(TestCase):
+
+    def test_basics(self):
+        X = SimpleMapping[str, Any]
+        Y = SimpleMapping[XK, str]
+        X[str, str]
+        Y[str, str]
+        with self.assertRaises(TypeError):
+            X[int, str]
+        with self.assertRaises(TypeError):
+            Y[str, bytes]
+
+    def test_init(self):
+        T = TypeVar('T')
+        S = TypeVar('S')
+        with self.assertRaises(TypeError):
+            Generic[T, T]
+        with self.assertRaises(TypeError):
+            Generic[T, S, T]
+
+    def test_repr(self):
+        self.assertEqual(repr(SimpleMapping),
+                         __name__ + '.' + 'SimpleMapping[~XK, ~XV]')
+        self.assertEqual(repr(MySimpleMapping),
+                         __name__ + '.' + 'MySimpleMapping[~XK, ~XV]')
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            B = SimpleMapping[XK, Any]
+
+            class C(Generic[B]):
+                pass
+
+    def test_repr_2(self):
+        PY32 = sys.version_info[:2] < (3, 3)
+
+        class C(Generic[T]):
+            pass
+
+        assert C.__module__ == __name__
+        if not PY32:
+            assert C.__qualname__ == 'GenericTests.test_repr_2.<locals>.C'
+        assert repr(C).split('.')[-1] == 'C[~T]'
+        X = C[int]
+        assert X.__module__ == __name__
+        if not PY32:
+            assert X.__qualname__ == 'C'
+        assert repr(X).split('.')[-1] == 'C[int]'
+
+        class Y(C[int]):
+            pass
+
+        assert Y.__module__ == __name__
+        if not PY32:
+            assert Y.__qualname__ == 'GenericTests.test_repr_2.<locals>.Y'
+        assert repr(Y).split('.')[-1] == 'Y[int]'
+
+    def test_eq_1(self):
+        assert Generic == Generic
+        assert Generic[T] == Generic[T]
+        assert Generic[KT] != Generic[VT]
+
+    def test_eq_2(self):
+
+        class A(Generic[T]):
+            pass
+
+        class B(Generic[T]):
+            pass
+
+        assert A == A
+        assert A != B
+        assert A[T] == A[T]
+        assert A[T] != B[T]
+
+    def test_multiple_inheritance(self):
+
+        class A(Generic[T, VT]):
+            pass
+
+        class B(Generic[KT, T]):
+            pass
+
+        class C(A, Generic[KT, VT], B):
+            pass
+
+        assert C.__parameters__ == (T, VT, KT)
+
+    def test_nested(self):
+
+        class G(Generic):
+            pass
+
+        class Visitor(G[T]):
+
+            a = None
+
+            def set(self, a: T):
+                self.a = a
+
+            def get(self):
+                return self.a
+
+            def visit(self) -> T:
+                return self.a
+
+        V = Visitor[typing.List[int]]
+
+        class IntListVisitor(V):
+
+            def append(self, x: int):
+                self.a.append(x)
+
+        a = IntListVisitor()
+        a.set([])
+        a.append(1)
+        a.append(42)
+        assert a.get() == [1, 42]
+
+    def test_type_erasure(self):
+        T = TypeVar('T')
+
+        class Node(Generic[T]):
+            def __init__(self, label: T,
+                         left: 'Node[T]' = None,
+                         right: 'Node[T]' = None):
+                self.label = label  # type: T
+                self.left = left  # type: Optional[Node[T]]
+                self.right = right  # type: Optional[Node[T]]
+
+        def foo(x: T):
+            a = Node(x)
+            b = Node[T](x)
+            c = Node[Any](x)
+            assert type(a) is Node
+            assert type(b) is Node
+            assert type(c) is Node
+
+        foo(42)
+
+
+class VarianceTests(TestCase):
+
+    def test_invariance(self):
+        # Because of invariance, List[subclass of X] is not a subclass
+        # of List[X], and ditto for MutableSequence.
+        assert not issubclass(typing.List[Manager], typing.List[Employee])
+        assert not issubclass(typing.MutableSequence[Manager],
+                              typing.MutableSequence[Employee])
+        # It's still reflexive.
+        assert issubclass(typing.List[Employee], typing.List[Employee])
+        assert issubclass(typing.MutableSequence[Employee],
+                          typing.MutableSequence[Employee])
+
+    def test_covariance_tuple(self):
+        # Check covariace for Tuple (which are really special cases).
+        assert issubclass(Tuple[Manager], Tuple[Employee])
+        assert not issubclass(Tuple[Employee], Tuple[Manager])
+        # And pairwise.
+        assert issubclass(Tuple[Manager, Manager], Tuple[Employee, Employee])
+        assert not issubclass(Tuple[Employee, Employee],
+                              Tuple[Manager, Employee])
+        # And using ellipsis.
+        assert issubclass(Tuple[Manager, ...], Tuple[Employee, ...])
+        assert not issubclass(Tuple[Employee, ...], Tuple[Manager, ...])
+
+    def test_covariance_sequence(self):
+        # Check covariance for Sequence (which is just a generic class
+        # for this purpose, but using a covariant type variable).
+        assert issubclass(typing.Sequence[Manager], typing.Sequence[Employee])
+        assert not issubclass(typing.Sequence[Employee],
+                              typing.Sequence[Manager])
+
+    def test_covariance_mapping(self):
+        # Ditto for Mapping (covariant in the value, invariant in the key).
+        assert issubclass(typing.Mapping[Employee, Manager],
+                          typing.Mapping[Employee, Employee])
+        assert not issubclass(typing.Mapping[Manager, Employee],
+                              typing.Mapping[Employee, Employee])
+        assert not issubclass(typing.Mapping[Employee, Manager],
+                              typing.Mapping[Manager, Manager])
+        assert not issubclass(typing.Mapping[Manager, Employee],
+                              typing.Mapping[Manager, Manager])
+
+
+class CastTests(TestCase):
+
+    def test_basics(self):
+        assert cast(int, 42) == 42
+        assert cast(float, 42) == 42
+        assert type(cast(float, 42)) is int
+        assert cast(Any, 42) == 42
+        assert cast(list, 42) == 42
+        assert cast(Union[str, float], 42) == 42
+        assert cast(AnyStr, 42) == 42
+        assert cast(None, 42) == 42
+
+    def test_errors(self):
+        # Bogus calls are not expected to fail.
+        cast(42, 42)
+        cast('hello', 42)
+
+
+class ForwardRefTests(TestCase):
+
+    def test_basics(self):
+
+        class Node(Generic[T]):
+
+            def __init__(self, label: T):
+                self.label = label
+                self.left = self.right = None
+
+            def add_both(self,
+                         left: 'Optional[Node[T]]',
+                         right: 'Node[T]' = None,
+                         stuff: int = None,
+                         blah=None):
+                self.left = left
+                self.right = right
+
+            def add_left(self, node: Optional['Node[T]']):
+                self.add_both(node, None)
+
+            def add_right(self, node: 'Node[T]' = None):
+                self.add_both(None, node)
+
+        t = Node[int]
+        both_hints = get_type_hints(t.add_both, globals(), locals())
+        assert both_hints['left'] == both_hints['right'] == Optional[Node[T]]
+        assert both_hints['stuff'] == Optional[int]
+        assert 'blah' not in both_hints
+
+        left_hints = get_type_hints(t.add_left, globals(), locals())
+        assert left_hints['node'] == Optional[Node[T]]
+
+        right_hints = get_type_hints(t.add_right, globals(), locals())
+        assert right_hints['node'] == Optional[Node[T]]
+
+    def test_forwardref_instance_type_error(self):
+        fr = typing._ForwardRef('int')
+        with self.assertRaises(TypeError):
+            isinstance(42, fr)
+
+    def test_union_forward(self):
+
+        def foo(a: Union['T']):
+            pass
+
+        self.assertEqual(get_type_hints(foo, globals(), locals()),
+                         {'a': Union[T]})
+
+    def test_tuple_forward(self):
+
+        def foo(a: Tuple['T']):
+            pass
+
+        self.assertEqual(get_type_hints(foo, globals(), locals()),
+                         {'a': Tuple[T]})
+
+    def test_callable_forward(self):
+
+        def foo(a: Callable[['T'], 'T']):
+            pass
+
+        self.assertEqual(get_type_hints(foo, globals(), locals()),
+                         {'a': Callable[[T], T]})
+
+    def test_callable_with_ellipsis_forward(self):
+
+        def foo(a: 'Callable[..., T]'):
+            pass
+
+        self.assertEqual(get_type_hints(foo, globals(), locals()),
+                         {'a': Callable[..., T]})
+
+    def test_syntax_error(self):
+
+        with self.assertRaises(SyntaxError):
+            Generic['/T']
+
+    def test_delayed_syntax_error(self):
+
+        def foo(a: 'Node[T'):
+            pass
+
+        with self.assertRaises(SyntaxError):
+            get_type_hints(foo)
+
+    def test_type_error(self):
+
+        def foo(a: Tuple['42']):
+            pass
+
+        with self.assertRaises(TypeError):
+            get_type_hints(foo)
+
+    def test_name_error(self):
+
+        def foo(a: 'Noode[T]'):
+            pass
+
+        with self.assertRaises(NameError):
+            get_type_hints(foo, locals())
+
+    def test_no_type_check(self):
+
+        @no_type_check
+        def foo(a: 'whatevers') -> {}:
+            pass
+
+        th = get_type_hints(foo)
+        self.assertEqual(th, {})
+
+    def test_no_type_check_class(self):
+
+        @no_type_check
+        class C:
+            def foo(a: 'whatevers') -> {}:
+                pass
+
+        cth = get_type_hints(C.foo)
+        self.assertEqual(cth, {})
+        ith = get_type_hints(C().foo)
+        self.assertEqual(ith, {})
+
+    def test_meta_no_type_check(self):
+
+        @no_type_check_decorator
+        def magic_decorator(deco):
+            return deco
+
+        self.assertEqual(magic_decorator.__name__, 'magic_decorator')
+
+        @magic_decorator
+        def foo(a: 'whatevers') -> {}:
+            pass
+
+        @magic_decorator
+        class C:
+            def foo(a: 'whatevers') -> {}:
+                pass
+
+        self.assertEqual(foo.__name__, 'foo')
+        th = get_type_hints(foo)
+        self.assertEqual(th, {})
+        cth = get_type_hints(C.foo)
+        self.assertEqual(cth, {})
+        ith = get_type_hints(C().foo)
+        self.assertEqual(ith, {})
+
+    def test_default_globals(self):
+        code = ("class C:\n"
+                "    def foo(self, a: 'C') -> 'D': pass\n"
+                "class D:\n"
+                "    def bar(self, b: 'D') -> C: pass\n"
+                )
+        ns = {}
+        exec(code, ns)
+        hints = get_type_hints(ns['C'].foo)
+        assert hints == {'a': ns['C'], 'return': ns['D']}
+
+
+class OverloadTests(TestCase):
+
+    def test_overload_exists(self):
+        from typing import overload
+
+    def test_overload_fails(self):
+        from typing import overload
+
+        with self.assertRaises(RuntimeError):
+            @overload
+            def blah():
+                pass
+
+
+class CollectionsAbcTests(TestCase):
+
+    def test_hashable(self):
+        assert isinstance(42, typing.Hashable)
+        assert not isinstance([], typing.Hashable)
+
+    def test_iterable(self):
+        assert isinstance([], typing.Iterable)
+        # Due to ABC caching, the second time takes a separate code
+        # path and could fail.  So call this a few times.
+        assert isinstance([], typing.Iterable)
+        assert isinstance([], typing.Iterable)
+        assert isinstance([], typing.Iterable[int])
+        assert not isinstance(42, typing.Iterable)
+        # Just in case, also test issubclass() a few times.
+        assert issubclass(list, typing.Iterable)
+        assert issubclass(list, typing.Iterable)
+
+    def test_iterator(self):
+        it = iter([])
+        assert isinstance(it, typing.Iterator)
+        assert isinstance(it, typing.Iterator[int])
+        assert not isinstance(42, typing.Iterator)
+
+    def test_sized(self):
+        assert isinstance([], typing.Sized)
+        assert not isinstance(42, typing.Sized)
+
+    def test_container(self):
+        assert isinstance([], typing.Container)
+        assert not isinstance(42, typing.Container)
+
+    def test_abstractset(self):
+        assert isinstance(set(), typing.AbstractSet)
+        assert not isinstance(42, typing.AbstractSet)
+
+    def test_mutableset(self):
+        assert isinstance(set(), typing.MutableSet)
+        assert not isinstance(frozenset(), typing.MutableSet)
+
+    def test_mapping(self):
+        assert isinstance({}, typing.Mapping)
+        assert not isinstance(42, typing.Mapping)
+
+    def test_mutablemapping(self):
+        assert isinstance({}, typing.MutableMapping)
+        assert not isinstance(42, typing.MutableMapping)
+
+    def test_sequence(self):
+        assert isinstance([], typing.Sequence)
+        assert not isinstance(42, typing.Sequence)
+
+    def test_mutablesequence(self):
+        assert isinstance([], typing.MutableSequence)
+        assert not isinstance((), typing.MutableSequence)
+
+    def test_bytestring(self):
+        assert isinstance(b'', typing.ByteString)
+        assert isinstance(bytearray(b''), typing.ByteString)
+
+    def test_list(self):
+        assert issubclass(list, typing.List)
+
+    def test_set(self):
+        assert issubclass(set, typing.Set)
+        assert not issubclass(frozenset, typing.Set)
+
+    def test_frozenset(self):
+        assert issubclass(frozenset, typing.FrozenSet)
+        assert not issubclass(set, typing.FrozenSet)
+
+    def test_dict(self):
+        assert issubclass(dict, typing.Dict)
+
+    def test_no_list_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.List()
+        with self.assertRaises(TypeError):
+            typing.List[T]()
+        with self.assertRaises(TypeError):
+            typing.List[int]()
+
+    def test_list_subclass_instantiation(self):
+
+        class MyList(typing.List[int]):
+            pass
+
+        a = MyList()
+        assert isinstance(a, MyList)
+
+    def test_no_dict_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.Dict()
+        with self.assertRaises(TypeError):
+            typing.Dict[KT, VT]()
+        with self.assertRaises(TypeError):
+            typing.Dict[str, int]()
+
+    def test_dict_subclass_instantiation(self):
+
+        class MyDict(typing.Dict[str, int]):
+            pass
+
+        d = MyDict()
+        assert isinstance(d, MyDict)
+
+    def test_no_set_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.Set()
+        with self.assertRaises(TypeError):
+            typing.Set[T]()
+        with self.assertRaises(TypeError):
+            typing.Set[int]()
+
+    def test_set_subclass_instantiation(self):
+
+        class MySet(typing.Set[int]):
+            pass
+
+        d = MySet()
+        assert isinstance(d, MySet)
+
+    def test_no_frozenset_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.FrozenSet()
+        with self.assertRaises(TypeError):
+            typing.FrozenSet[T]()
+        with self.assertRaises(TypeError):
+            typing.FrozenSet[int]()
+
+    def test_frozenset_subclass_instantiation(self):
+
+        class MyFrozenSet(typing.FrozenSet[int]):
+            pass
+
+        d = MyFrozenSet()
+        assert isinstance(d, MyFrozenSet)
+
+    def test_no_tuple_instantiation(self):
+        with self.assertRaises(TypeError):
+            Tuple()
+        with self.assertRaises(TypeError):
+            Tuple[T]()
+        with self.assertRaises(TypeError):
+            Tuple[int]()
+
+    def test_generator(self):
+        def foo():
+            yield 42
+        g = foo()
+        assert issubclass(type(g), typing.Generator)
+        assert issubclass(typing.Generator[Manager, Employee, Manager],
+                          typing.Generator[Employee, Manager, Employee])
+        assert not issubclass(typing.Generator[Manager, Manager, Manager],
+                              typing.Generator[Employee, Employee, Employee])
+
+    def test_no_generator_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.Generator()
+        with self.assertRaises(TypeError):
+            typing.Generator[T, T, T]()
+        with self.assertRaises(TypeError):
+            typing.Generator[int, int, int]()
+
+    def test_subclassing(self):
+
+        class MMA(typing.MutableMapping):
+            pass
+
+        with self.assertRaises(TypeError):  # It's abstract
+            MMA()
+
+        class MMC(MMA):
+            def __len__(self):
+                return 0
+
+        assert len(MMC()) == 0
+
+        class MMB(typing.MutableMapping[KT, VT]):
+            def __len__(self):
+                return 0
+
+        assert len(MMB()) == 0
+        assert len(MMB[str, str]()) == 0
+        assert len(MMB[KT, VT]()) == 0
+
+
+class NamedTupleTests(TestCase):
+
+    def test_basics(self):
+        Emp = NamedTuple('Emp', [('name', str), ('id', int)])
+        assert issubclass(Emp, tuple)
+        joe = Emp('Joe', 42)
+        jim = Emp(name='Jim', id=1)
+        assert isinstance(joe, Emp)
+        assert isinstance(joe, tuple)
+        assert joe.name == 'Joe'
+        assert joe.id == 42
+        assert jim.name == 'Jim'
+        assert jim.id == 1
+        assert Emp.__name__ == 'Emp'
+        assert Emp._fields == ('name', 'id')
+        assert Emp._field_types == dict(name=str, id=int)
+
+
+class IOTests(TestCase):
+
+    def test_io(self):
+
+        def stuff(a: IO) -> AnyStr:
+            return a.readline()
+
+        a = stuff.__annotations__['a']
+        assert a.__parameters__ == (AnyStr,)
+
+    def test_textio(self):
+
+        def stuff(a: TextIO) -> str:
+            return a.readline()
+
+        a = stuff.__annotations__['a']
+        assert a.__parameters__ == (str,)
+
+    def test_binaryio(self):
+
+        def stuff(a: BinaryIO) -> bytes:
+            return a.readline()
+
+        a = stuff.__annotations__['a']
+        assert a.__parameters__ == (bytes,)
+
+    def test_io_submodule(self):
+        from typing.io import IO, TextIO, BinaryIO, __all__, __name__
+        assert IO is typing.IO
+        assert TextIO is typing.TextIO
+        assert BinaryIO is typing.BinaryIO
+        assert set(__all__) == set(['IO', 'TextIO', 'BinaryIO'])
+        assert __name__ == 'typing.io'
+
+
+class RETests(TestCase):
+    # Much of this is really testing _TypeAlias.
+
+    def test_basics(self):
+        pat = re.compile('[a-z]+', re.I)
+        assert issubclass(pat.__class__, Pattern)
+        assert issubclass(type(pat), Pattern)
+        assert issubclass(type(pat), Pattern[str])
+
+        mat = pat.search('12345abcde.....')
+        assert issubclass(mat.__class__, Match)
+        assert issubclass(mat.__class__, Match[str])
+        assert issubclass(mat.__class__, Match[bytes])  # Sad but true.
+        assert issubclass(type(mat), Match)
+        assert issubclass(type(mat), Match[str])
+
+        p = Pattern[Union[str, bytes]]
+        assert issubclass(Pattern[str], Pattern)
+        assert issubclass(Pattern[str], p)
+
+        m = Match[Union[bytes, str]]
+        assert issubclass(Match[bytes], Match)
+        assert issubclass(Match[bytes], m)
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            # Doesn't fit AnyStr.
+            Pattern[int]
+        with self.assertRaises(TypeError):
+            # Can't change type vars?
+            Match[T]
+        m = Match[Union[str, bytes]]
+        with self.assertRaises(TypeError):
+            # Too complicated?
+            m[str]
+        with self.assertRaises(TypeError):
+            # We don't support isinstance().
+            isinstance(42, Pattern)
+        with self.assertRaises(TypeError):
+            # We don't support isinstance().
+            isinstance(42, Pattern[str])
+
+    def test_repr(self):
+        assert repr(Pattern) == 'Pattern[~AnyStr]'
+        assert repr(Pattern[str]) == 'Pattern[str]'
+        assert repr(Pattern[bytes]) == 'Pattern[bytes]'
+        assert repr(Match) == 'Match[~AnyStr]'
+        assert repr(Match[str]) == 'Match[str]'
+        assert repr(Match[bytes]) == 'Match[bytes]'
+
+    def test_re_submodule(self):
+        from typing.re import Match, Pattern, __all__, __name__
+        assert Match is typing.Match
+        assert Pattern is typing.Pattern
+        assert set(__all__) == set(['Match', 'Pattern'])
+        assert __name__ == 'typing.re'
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError) as ex:
+
+            class A(typing.Match):
+                pass
+
+        assert str(ex.exception) == "A type alias cannot be subclassed"
+
+
+class AllTests(TestCase):
+    """Tests for __all__."""
+
+    def test_all(self):
+        from typing import __all__ as a
+        # Just spot-check the first and last of every category.
+        assert 'AbstractSet' in a
+        assert 'ValuesView' in a
+        assert 'cast' in a
+        assert 'overload' in a
+        assert 'io' in a
+        assert 're' in a
+        # Spot-check that stdlib modules aren't exported.
+        assert 'os' not in a
+        assert 'sys' not in a
+
+
+if __name__ == '__main__':
+    main()
diff --git a/src/typing.py b/src/typing.py
new file mode 100644
index 0000000..d900036
--- /dev/null
+++ b/src/typing.py
@@ -0,0 +1,1651 @@
+# TODO nits:
+# Get rid of asserts that are the caller's fault.
+# Docstrings (e.g. ABCs).
+
+import abc
+from abc import abstractmethod, abstractproperty
+import collections
+import functools
+import re as stdlib_re  # Avoid confusion with the re we export.
+import sys
+import types
+try:
+    import collections.abc as collections_abc
+except ImportError:
+    import collections as collections_abc  # Fallback for PY3.2.
+
+
+# Please keep __all__ alphabetized within each category.
+__all__ = [
+    # Super-special typing primitives.
+    'Any',
+    'Callable',
+    'Generic',
+    'Optional',
+    'TypeVar',
+    'Union',
+    'Tuple',
+
+    # ABCs (from collections.abc).
+    'AbstractSet',  # collections.abc.Set.
+    'ByteString',
+    'Container',
+    'Hashable',
+    'ItemsView',
+    'Iterable',
+    'Iterator',
+    'KeysView',
+    'Mapping',
+    'MappingView',
+    'MutableMapping',
+    'MutableSequence',
+    'MutableSet',
+    'Sequence',
+    'Sized',
+    'ValuesView',
+
+    # Structural checks, a.k.a. protocols.
+    'Reversible',
+    'SupportsAbs',
+    'SupportsFloat',
+    'SupportsInt',
+    'SupportsRound',
+
+    # Concrete collection types.
+    'Dict',
+    'List',
+    'Set',
+    'NamedTuple',  # Not really a type.
+    'Generator',
+
+    # One-off things.
+    'AnyStr',
+    'cast',
+    'get_type_hints',
+    'no_type_check',
+    'no_type_check_decorator',
+    'overload',
+
+    # Submodules.
+    'io',
+    're',
+]
+
+
+def _qualname(x):
+    if sys.version_info[:2] >= (3, 3):
+        return x.__qualname__
+    else:
+        # Fall back to just name.
+        return x.__name__
+
+
+class TypingMeta(type):
+    """Metaclass for every type defined below.
+
+    This overrides __new__() to require an extra keyword parameter
+    '_root', which serves as a guard against naive subclassing of the
+    typing classes.  Any legitimate class defined using a metaclass
+    derived from TypingMeta (including internal subclasses created by
+    e.g.  Union[X, Y]) must pass _root=True.
+
+    This also defines a dummy constructor (all the work is done in
+    __new__) and a nicer repr().
+    """
+
+    _is_protocol = False
+
+    def __new__(cls, name, bases, namespace, *, _root=False):
+        if not _root:
+            raise TypeError("Cannot subclass %s" %
+                            (', '.join(map(_type_repr, bases)) or '()'))
+        return super().__new__(cls, name, bases, namespace)
+
+    def __init__(self, *args, **kwds):
+        pass
+
+    def _eval_type(self, globalns, localns):
+        """Override this in subclasses to interpret forward references.
+
+        For example, Union['C'] is internally stored as
+        Union[_ForwardRef('C')], which should evaluate to _Union[C],
+        where C is an object found in globalns or localns (searching
+        localns first, of course).
+        """
+        return self
+
+    def _has_type_var(self):
+        return False
+
+    def __repr__(self):
+        return '%s.%s' % (self.__module__, _qualname(self))
+
+
+class Final:
+    """Mix-in class to prevent instantiation."""
+
+    __slots__ = ()
+
+    def __new__(self, *args, **kwds):
+        raise TypeError("Cannot instantiate %r" % self.__class__)
+
+
+class _ForwardRef(TypingMeta):
+    """Wrapper to hold a forward reference."""
+
+    def __new__(cls, arg):
+        if not isinstance(arg, str):
+            raise TypeError('ForwardRef must be a string -- got %r' % (arg,))
+        try:
+            code = compile(arg, '<string>', 'eval')
+        except SyntaxError:
+            raise SyntaxError('ForwardRef must be an expression -- got %r' %
+                              (arg,))
+        self = super().__new__(cls, arg, (), {}, _root=True)
+        self.__forward_arg__ = arg
+        self.__forward_code__ = code
+        self.__forward_evaluated__ = False
+        self.__forward_value__ = None
+        typing_globals = globals()
+        frame = sys._getframe(1)
+        while frame is not None and frame.f_globals is typing_globals:
+            frame = frame.f_back
+        assert frame is not None
+        self.__forward_frame__ = frame
+        return self
+
+    def _eval_type(self, globalns, localns):
+        if not isinstance(localns, dict):
+            raise TypeError('ForwardRef localns must be a dict -- got %r' %
+                            (localns,))
+        if not isinstance(globalns, dict):
+            raise TypeError('ForwardRef globalns must be a dict -- got %r' %
+                            (globalns,))
+        if not self.__forward_evaluated__:
+            if globalns is None and localns is None:
+                globalns = localns = {}
+            elif globalns is None:
+                globalns = localns
+            elif localns is None:
+                localns = globalns
+            self.__forward_value__ = _type_check(
+                eval(self.__forward_code__, globalns, localns),
+                "Forward references must evaluate to types.")
+            self.__forward_evaluated__ = True
+        return self.__forward_value__
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Forward references cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if not self.__forward_evaluated__:
+            globalns = self.__forward_frame__.f_globals
+            localns = self.__forward_frame__.f_locals
+            try:
+                self._eval_type(globalns, localns)
+            except NameError:
+                return False  # Too early.
+        return issubclass(cls, self.__forward_value__)
+
+    def __repr__(self):
+        return '_ForwardRef(%r)' % (self.__forward_arg__,)
+
+
+class _TypeAlias:
+    """Internal helper class for defining generic variants of concrete types.
+
+    Note that this is not a type; let's call it a pseudo-type.  It can
+    be used in instance and subclass checks, e.g. isinstance(m, Match)
+    or issubclass(type(m), Match).  However, it cannot be itself the
+    target of an issubclass() call; e.g. issubclass(Match, C) (for
+    some arbitrary class C) raises TypeError rather than returning
+    False.
+    """
+
+    __slots__ = ('name', 'type_var', 'impl_type', 'type_checker')
+
+    def __new__(cls, *args, **kwds):
+        """Constructor.
+
+        This only exists to give a better error message in case
+        someone tries to subclass a type alias (not a good idea).
+        """
+        if (len(args) == 3 and
+            isinstance(args[0], str) and
+            isinstance(args[1], tuple)):
+            # Close enough.
+            raise TypeError("A type alias cannot be subclassed")
+        return object.__new__(cls)
+
+    def __init__(self, name, type_var, impl_type, type_checker):
+        """Initializer.
+
+        Args:
+            name: The name, e.g. 'Pattern'.
+            type_var: The type parameter, e.g. AnyStr, or the
+                specific type, e.g. str.
+            impl_type: The implementation type.
+            type_checker: Function that takes an impl_type instance.
+                and returns a value that should be a type_var instance.
+        """
+        assert isinstance(name, str), repr(name)
+        assert isinstance(type_var, type), repr(type_var)
+        assert isinstance(impl_type, type), repr(impl_type)
+        assert not isinstance(impl_type, TypingMeta), repr(impl_type)
+        self.name = name
+        self.type_var = type_var
+        self.impl_type = impl_type
+        self.type_checker = type_checker
+
+    def __repr__(self):
+        return "%s[%s]" % (self.name, _type_repr(self.type_var))
+
+    def __getitem__(self, parameter):
+        assert isinstance(parameter, type), repr(parameter)
+        if not isinstance(self.type_var, TypeVar):
+            raise TypeError("%s cannot be further parameterized." % self)
+        if self.type_var.__constraints__:
+            if not issubclass(parameter, Union[self.type_var.__constraints__]):
+                raise TypeError("%s is not a valid substitution for %s." %
+                                (parameter, self.type_var))
+        return self.__class__(self.name, parameter,
+                              self.impl_type, self.type_checker)
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Type aliases cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if isinstance(cls, _TypeAlias):
+            # Covariance.  For now, we compare by name.
+            return (cls.name == self.name and
+                    issubclass(cls.type_var, self.type_var))
+        else:
+            # Note that this is too lenient, because the
+            # implementation type doesn't carry information about
+            # whether it is about bytes or str (for example).
+            return issubclass(cls, self.impl_type)
+
+
+def _has_type_var(t):
+    return t is not None and isinstance(t, TypingMeta) and t._has_type_var()
+
+
+def _eval_type(t, globalns, localns):
+    if isinstance(t, TypingMeta):
+        return t._eval_type(globalns, localns)
+    else:
+        return t
+
+
+def _type_check(arg, msg):
+    """Check that the argument is a type, and return it.
+
+    As a special case, accept None and return type(None) instead.
+    Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.
+
+    The msg argument is a human-readable error message, e.g.
+
+        "Union[arg, ...]: arg should be a type."
+
+    We append the repr() of the actual value (truncated to 100 chars).
+    """
+    if arg is None:
+        return type(None)
+    if isinstance(arg, str):
+        arg = _ForwardRef(arg)
+    if not isinstance(arg, (type, _TypeAlias)):
+        raise TypeError(msg + " Got %.100r." % (arg,))
+    return arg
+
+
+def _type_repr(obj):
+    """Return the repr() of an object, special-casing types.
+
+    If obj is a type, we return a shorter version than the default
+    type.__repr__, based on the module and qualified name, which is
+    typically enough to uniquely identify a type.  For everything
+    else, we fall back on repr(obj).
+    """
+    if isinstance(obj, type) and not isinstance(obj, TypingMeta):
+        if obj.__module__ == 'builtins':
+            return _qualname(obj)
+        else:
+            return '%s.%s' % (obj.__module__, _qualname(obj))
+    else:
+        return repr(obj)
+
+
+class AnyMeta(TypingMeta):
+    """Metaclass for Any."""
+
+    def __new__(cls, name, bases, namespace, _root=False):
+        self = super().__new__(cls, name, bases, namespace, _root=_root)
+        return self
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Any cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if not isinstance(cls, type):
+            return super().__subclasscheck__(cls)  # To TypeError.
+        return True
+
+
+class Any(Final, metaclass=AnyMeta, _root=True):
+    """Special type indicating an unconstrained type.
+
+    - Any object is an instance of Any.
+    - Any class is a subclass of Any.
+    - As a special case, Any and object are subclasses of each other.
+    """
+
+    __slots__ = ()
+
+
+class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True):
+    """Type variable.
+
+    Usage::
+
+      T = TypeVar('T')  # Can be anything
+      A = TypeVar('A', str, bytes)  # Must be str or bytes
+
+    Type variables exist primarily for the benefit of static type
+    checkers.  They serve as the parameters for generic types as well
+    as for generic function definitions.  See class Generic for more
+    information on generic types.  Generic functions work as follows:
+
+      def repeat(x: T, n: int) -> Sequence[T]:
+          '''Return a list containing n references to x.'''
+          return [x]*n
+
+      def longest(x: A, y: A) -> A:
+          '''Return the longest of two strings.'''
+          return x if len(x) >= len(y) else y
+
+    The latter example's signature is essentially the overloading
+    of (str, str) -> str and (bytes, bytes) -> bytes.  Also note
+    that if the arguments are instances of some subclass of str,
+    the return type is still plain str.
+
+    At runtime, isinstance(x, T) will raise TypeError.  However,
+    issubclass(C, T) is true for any class C, and issubclass(str, A)
+    and issubclass(bytes, A) are true, and issubclass(int, A) is
+    false.
+
+    Type variables may be marked covariant or contravariant by passing
+    covariant=True or contravariant=True.  See PEP 484 for more
+    details.  By default type variables are invariant.
+
+    Type variables can be introspected. e.g.:
+
+      T.__name__ == 'T'
+      T.__constraints__ == ()
+      T.__covariant__ == False
+      T.__contravariant__ = False
+      A.__constraints__ == (str, bytes)
+    """
+
+    def __new__(cls, name, *constraints, bound=None,
+                covariant=False, contravariant=False):
+        self = super().__new__(cls, name, (Final,), {}, _root=True)
+        if covariant and contravariant:
+            raise ValueError("Bivariant type variables are not supported.")
+        self.__covariant__ = bool(covariant)
+        self.__contravariant__ = bool(contravariant)
+        if constraints and bound is not None:
+            raise TypeError("Constraints cannot be combined with bound=...")
+        if constraints and len(constraints) == 1:
+            raise TypeError("A single constraint is not allowed")
+        msg = "TypeVar(name, constraint, ...): constraints must be types."
+        self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
+        if bound:
+            self.__bound__ = _type_check(bound, "Bound must be a type.")
+        else:
+            self.__bound__ = None
+        return self
+
+    def _has_type_var(self):
+        return True
+
+    def __repr__(self):
+        if self.__covariant__:
+            prefix = '+'
+        elif self.__contravariant__:
+            prefix = '-'
+        else:
+            prefix = '~'
+        return prefix + self.__name__
+
+    def __instancecheck__(self, instance):
+        raise TypeError("Type variables cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        # TODO: Make this raise TypeError too?
+        if cls is self:
+            return True
+        if cls is Any:
+            return True
+        if self.__bound__ is not None:
+            return issubclass(cls, self.__bound__)
+        if self.__constraints__:
+            return any(issubclass(cls, c) for c in self.__constraints__)
+        return True
+
+
+# Some unconstrained type variables.  These are used by the container types.
+T = TypeVar('T')  # Any type.
+KT = TypeVar('KT')  # Key type.
+VT = TypeVar('VT')  # Value type.
+T_co = TypeVar('T_co', covariant=True)  # Any type covariant containers.
+V_co = TypeVar('V_co', covariant=True)  # Any type covariant containers.
+VT_co = TypeVar('VT_co', covariant=True)  # Value type covariant containers.
+T_contra = TypeVar('T_contra', contravariant=True)  # Ditto contravariant.
+
+# A useful type variable with constraints.  This represents string types.
+# TODO: What about bytearray, memoryview?
+AnyStr = TypeVar('AnyStr', bytes, str)
+
+
+class UnionMeta(TypingMeta):
+    """Metaclass for Union."""
+
+    def __new__(cls, name, bases, namespace, parameters=None, _root=False):
+        if parameters is None:
+            return super().__new__(cls, name, bases, namespace, _root=_root)
+        if not isinstance(parameters, tuple):
+            raise TypeError("Expected parameters=<tuple>")
+        # Flatten out Union[Union[...], ...] and type-check non-Union args.
+        params = []
+        msg = "Union[arg, ...]: each arg must be a type."
+        for p in parameters:
+            if isinstance(p, UnionMeta):
+                params.extend(p.__union_params__)
+            else:
+                params.append(_type_check(p, msg))
+        # Weed out strict duplicates, preserving the first of each occurrence.
+        all_params = set(params)
+        if len(all_params) < len(params):
+            new_params = []
+            for t in params:
+                if t in all_params:
+                    new_params.append(t)
+                    all_params.remove(t)
+            params = new_params
+            assert not all_params, all_params
+        # Weed out subclasses.
+        # E.g. Union[int, Employee, Manager] == Union[int, Employee].
+        # If Any or object is present it will be the sole survivor.
+        # If both Any and object are present, Any wins.
+        # Never discard type variables, except against Any.
+        # (In particular, Union[str, AnyStr] != AnyStr.)
+        all_params = set(params)
+        for t1 in params:
+            if t1 is Any:
+                return Any
+            if isinstance(t1, TypeVar):
+                continue
+            if isinstance(t1, _TypeAlias):
+                # _TypeAlias is not a real class.
+                continue
+            if any(issubclass(t1, t2)
+                   for t2 in all_params - {t1} if not isinstance(t2, TypeVar)):
+                all_params.remove(t1)
+        # It's not a union if there's only one type left.
+        if len(all_params) == 1:
+            return all_params.pop()
+        # Create a new class with these params.
+        self = super().__new__(cls, name, bases, {}, _root=True)
+        self.__union_params__ = tuple(t for t in params if t in all_params)
+        self.__union_set_params__ = frozenset(self.__union_params__)
+        return self
+
+    def _eval_type(self, globalns, localns):
+        p = tuple(_eval_type(t, globalns, localns)
+                  for t in self.__union_params__)
+        if p == self.__union_params__:
+            return self
+        else:
+            return self.__class__(self.__name__, self.__bases__, {},
+                                  p, _root=True)
+
+    def _has_type_var(self):
+        if self.__union_params__:
+            for t in self.__union_params__:
+                if _has_type_var(t):
+                    return True
+        return False
+
+    def __repr__(self):
+        r = super().__repr__()
+        if self.__union_params__:
+            r += '[%s]' % (', '.join(_type_repr(t)
+                                     for t in self.__union_params__))
+        return r
+
+    def __getitem__(self, parameters):
+        if self.__union_params__ is not None:
+            raise TypeError(
+                "Cannot subscript an existing Union. Use Union[u, t] instead.")
+        if parameters == ():
+            raise TypeError("Cannot take a Union of no types.")
+        if not isinstance(parameters, tuple):
+            parameters = (parameters,)
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__), parameters, _root=True)
+
+    def __eq__(self, other):
+        if not isinstance(other, UnionMeta):
+            return NotImplemented
+        return self.__union_set_params__ == other.__union_set_params__
+
+    def __hash__(self):
+        return hash(self.__union_set_params__)
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Unions cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if self.__union_params__ is None:
+            return isinstance(cls, UnionMeta)
+        elif isinstance(cls, UnionMeta):
+            if cls.__union_params__ is None:
+                return False
+            return all(issubclass(c, self) for c in (cls.__union_params__))
+        elif isinstance(cls, TypeVar):
+            if cls in self.__union_params__:
+                return True
+            if cls.__constraints__:
+                return issubclass(Union[cls.__constraints__], self)
+            return False
+        else:
+            return any(issubclass(cls, t) for t in self.__union_params__)
+
+
+class Union(Final, metaclass=UnionMeta, _root=True):
+    """Union type; Union[X, Y] means either X or Y.
+
+    To define a union, use e.g. Union[int, str].  Details:
+
+    - The arguments must be types and there must be at least one.
+
+    - None as an argument is a special case and is replaced by
+      type(None).
+
+    - Unions of unions are flattened, e.g.::
+
+        Union[Union[int, str], float] == Union[int, str, float]
+
+    - Unions of a single argument vanish, e.g.::
+
+        Union[int] == int  # The constructor actually returns int
+
+    - Redundant arguments are skipped, e.g.::
+
+        Union[int, str, int] == Union[int, str]
+
+    - When comparing unions, the argument order is ignored, e.g.::
+
+        Union[int, str] == Union[str, int]
+
+    - When two arguments have a subclass relationship, the least
+      derived argument is kept, e.g.::
+
+        class Employee: pass
+        class Manager(Employee): pass
+        Union[int, Employee, Manager] == Union[int, Employee]
+        Union[Manager, int, Employee] == Union[int, Employee]
+        Union[Employee, Manager] == Employee
+
+    - Corollary: if Any is present it is the sole survivor, e.g.::
+
+        Union[int, Any] == Any
+
+    - Similar for object::
+
+        Union[int, object] == object
+
+    - To cut a tie: Union[object, Any] == Union[Any, object] == Any.
+
+    - You cannot subclass or instantiate a union.
+
+    - You cannot write Union[X][Y] (what would it mean?).
+
+    - You can use Optional[X] as a shorthand for Union[X, None].
+    """
+
+    # Unsubscripted Union type has params set to None.
+    __union_params__ = None
+    __union_set_params__ = None
+
+
+class OptionalMeta(TypingMeta):
+    """Metaclass for Optional."""
+
+    def __new__(cls, name, bases, namespace, _root=False):
+        return super().__new__(cls, name, bases, namespace, _root=_root)
+
+    def __getitem__(self, arg):
+        arg = _type_check(arg, "Optional[t] requires a single type.")
+        return Union[arg, type(None)]
+
+
+class Optional(Final, metaclass=OptionalMeta, _root=True):
+    """Optional type.
+
+    Optional[X] is equivalent to Union[X, type(None)].
+    """
+
+    __slots__ = ()
+
+
+class TupleMeta(TypingMeta):
+    """Metaclass for Tuple."""
+
+    def __new__(cls, name, bases, namespace, parameters=None,
+                use_ellipsis=False, _root=False):
+        self = super().__new__(cls, name, bases, namespace, _root=_root)
+        self.__tuple_params__ = parameters
+        self.__tuple_use_ellipsis__ = use_ellipsis
+        return self
+
+    def _has_type_var(self):
+        if self.__tuple_params__:
+            for t in self.__tuple_params__:
+                if _has_type_var(t):
+                    return True
+        return False
+
+    def _eval_type(self, globalns, localns):
+        tp = self.__tuple_params__
+        if tp is None:
+            return self
+        p = tuple(_eval_type(t, globalns, localns) for t in tp)
+        if p == self.__tuple_params__:
+            return self
+        else:
+            return self.__class__(self.__name__, self.__bases__, {},
+                                  p, _root=True)
+
+    def __repr__(self):
+        r = super().__repr__()
+        if self.__tuple_params__ is not None:
+            params = [_type_repr(p) for p in self.__tuple_params__]
+            if self.__tuple_use_ellipsis__:
+                params.append('...')
+            r += '[%s]' % (
+                ', '.join(params))
+        return r
+
+    def __getitem__(self, parameters):
+        if self.__tuple_params__ is not None:
+            raise TypeError("Cannot re-parameterize %r" % (self,))
+        if not isinstance(parameters, tuple):
+            parameters = (parameters,)
+        if len(parameters) == 2 and parameters[1] == Ellipsis:
+            parameters = parameters[:1]
+            use_ellipsis = True
+            msg = "Tuple[t, ...]: t must be a type."
+        else:
+            use_ellipsis = False
+            msg = "Tuple[t0, t1, ...]: each t must be a type."
+        parameters = tuple(_type_check(p, msg) for p in parameters)
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__), parameters,
+                              use_ellipsis=use_ellipsis, _root=True)
+
+    def __eq__(self, other):
+        if not isinstance(other, TupleMeta):
+            return NotImplemented
+        return self.__tuple_params__ == other.__tuple_params__
+
+    def __hash__(self):
+        return hash(self.__tuple_params__)
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Tuples cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if not isinstance(cls, type):
+            return super().__subclasscheck__(cls)  # To TypeError.
+        if issubclass(cls, tuple):
+            return True  # Special case.
+        if not isinstance(cls, TupleMeta):
+            return super().__subclasscheck__(cls)  # False.
+        if self.__tuple_params__ is None:
+            return True
+        if cls.__tuple_params__ is None:
+            return False  # ???
+        if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__:
+            return False
+        # Covariance.
+        return (len(self.__tuple_params__) == len(cls.__tuple_params__) and
+                all(issubclass(x, p)
+                    for x, p in zip(cls.__tuple_params__,
+                                    self.__tuple_params__)))
+
+
+class Tuple(Final, metaclass=TupleMeta, _root=True):
+    """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
+
+    Example: Tuple[T1, T2] is a tuple of two elements corresponding
+    to type variables T1 and T2.  Tuple[int, float, str] is a tuple
+    of an int, a float and a string.
+
+    To specify a variable-length tuple of homogeneous type, use Sequence[T].
+    """
+
+    __slots__ = ()
+
+
+class CallableMeta(TypingMeta):
+    """Metaclass for Callable."""
+
+    def __new__(cls, name, bases, namespace, _root=False,
+                args=None, result=None):
+        if args is None and result is None:
+            pass  # Must be 'class Callable'.
+        else:
+            if args is not Ellipsis:
+                if not isinstance(args, list):
+                    raise TypeError("Callable[args, result]: "
+                                    "args must be a list."
+                                    " Got %.100r." % (args,))
+                msg = "Callable[[arg, ...], result]: each arg must be a type."
+                args = tuple(_type_check(arg, msg) for arg in args)
+            msg = "Callable[args, result]: result must be a type."
+            result = _type_check(result, msg)
+        self = super().__new__(cls, name, bases, namespace, _root=_root)
+        self.__args__ = args
+        self.__result__ = result
+        return self
+
+    def _has_type_var(self):
+        if self.__args__:
+            for t in self.__args__:
+                if _has_type_var(t):
+                    return True
+        return _has_type_var(self.__result__)
+
+    def _eval_type(self, globalns, localns):
+        if self.__args__ is None and self.__result__ is None:
+            return self
+        if self.__args__ is Ellipsis:
+            args = self.__args__
+        else:
+            args = [_eval_type(t, globalns, localns) for t in self.__args__]
+        result = _eval_type(self.__result__, globalns, localns)
+        if args == self.__args__ and result == self.__result__:
+            return self
+        else:
+            return self.__class__(self.__name__, self.__bases__, {},
+                                  args=args, result=result, _root=True)
+
+    def __repr__(self):
+        r = super().__repr__()
+        if self.__args__ is not None or self.__result__ is not None:
+            if self.__args__ is Ellipsis:
+                args_r = '...'
+            else:
+                args_r = '[%s]' % ', '.join(_type_repr(t)
+                                            for t in self.__args__)
+            r += '[%s, %s]' % (args_r, _type_repr(self.__result__))
+        return r
+
+    def __getitem__(self, parameters):
+        if self.__args__ is not None or self.__result__ is not None:
+            raise TypeError("This Callable type is already parameterized.")
+        if not isinstance(parameters, tuple) or len(parameters) != 2:
+            raise TypeError(
+                "Callable must be used as Callable[[arg, ...], result].")
+        args, result = parameters
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__), _root=True,
+                              args=args, result=result)
+
+    def __eq__(self, other):
+        if not isinstance(other, CallableMeta):
+            return NotImplemented
+        return (self.__args__ == other.__args__ and
+                self.__result__ == other.__result__)
+
+    def __hash__(self):
+        return hash(self.__args__) ^ hash(self.__result__)
+
+    def __instancecheck__(self, obj):
+        # For unparametrized Callable we allow this, because
+        # typing.Callable should be equivalent to
+        # collections.abc.Callable.
+        if self.__args__ is None and self.__result__ is None:
+            return isinstance(obj, collections_abc.Callable)
+        else:
+            raise TypeError("Callable[] cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if not isinstance(cls, CallableMeta):
+            return super().__subclasscheck__(cls)
+        if self.__args__ is None and self.__result__ is None:
+            return True
+        # We're not doing covariance or contravariance -- this is *invariance*.
+        return self == cls
+
+
+class Callable(Final, metaclass=CallableMeta, _root=True):
+    """Callable type; Callable[[int], str] is a function of (int) -> str.
+
+    The subscription syntax must always be used with exactly two
+    values: the argument list and the return type.  The argument list
+    must be a list of types; the return type must be a single type.
+
+    There is no syntax to indicate optional or keyword arguments,
+    such function types are rarely used as callback types.
+    """
+
+    __slots__ = ()
+
+
+def _gorg(a):
+    """Return the farthest origin of a generic class."""
+    assert isinstance(a, GenericMeta)
+    while a.__origin__ is not None:
+        a = a.__origin__
+    return a
+
+
+def _geqv(a, b):
+    """Return whether two generic classes are equivalent.
+
+    The intention is to consider generic class X and any of its
+    parameterized forms (X[T], X[int], etc.)  as equivalent.
+
+    However, X is not equivalent to a subclass of X.
+
+    The relation is reflexive, symmetric and transitive.
+    """
+    assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta)
+    # Reduce each to its origin.
+    return _gorg(a) is _gorg(b)
+
+
+class GenericMeta(TypingMeta, abc.ABCMeta):
+    """Metaclass for generic types."""
+
+    # TODO: Constrain more how Generic is used; only a few
+    # standard patterns should be allowed.
+
+    # TODO: Use a more precise rule than matching __name__ to decide
+    # whether two classes are the same.  Also, save the formal
+    # parameters.  (These things are related!  A solution lies in
+    # using origin.)
+
+    __extra__ = None
+
+    def __new__(cls, name, bases, namespace,
+                parameters=None, origin=None, extra=None):
+        if parameters is None:
+            # Extract parameters from direct base classes.  Only
+            # direct bases are considered and only those that are
+            # themselves generic, and parameterized with type
+            # variables.  Don't use bases like Any, Union, Tuple,
+            # Callable or type variables.
+            params = None
+            for base in bases:
+                if isinstance(base, TypingMeta):
+                    if not isinstance(base, GenericMeta):
+                        raise TypeError(
+                            "You cannot inherit from magic class %s" %
+                            repr(base))
+                    if base.__parameters__ is None:
+                        continue  # The base is unparameterized.
+                    for bp in base.__parameters__:
+                        if _has_type_var(bp) and not isinstance(bp, TypeVar):
+                            raise TypeError(
+                                "Cannot inherit from a generic class "
+                                "parameterized with "
+                                "non-type-variable %s" % bp)
+                        if params is None:
+                            params = []
+                        if bp not in params:
+                            params.append(bp)
+            if params is not None:
+                parameters = tuple(params)
+        self = super().__new__(cls, name, bases, namespace, _root=True)
+        self.__parameters__ = parameters
+        if extra is not None:
+            self.__extra__ = extra
+        # Else __extra__ is inherited, eventually from the
+        # (meta-)class default above.
+        self.__origin__ = origin
+        return self
+
+    def _has_type_var(self):
+        if self.__parameters__:
+            for t in self.__parameters__:
+                if _has_type_var(t):
+                    return True
+        return False
+
+    def __repr__(self):
+        r = super().__repr__()
+        if self.__parameters__ is not None:
+            r += '[%s]' % (
+                ', '.join(_type_repr(p) for p in self.__parameters__))
+        return r
+
+    def __eq__(self, other):
+        if not isinstance(other, GenericMeta):
+            return NotImplemented
+        return (_geqv(self, other) and
+                self.__parameters__ == other.__parameters__)
+
+    def __hash__(self):
+        return hash((self.__name__, self.__parameters__))
+
+    def __getitem__(self, params):
+        if not isinstance(params, tuple):
+            params = (params,)
+        if not params:
+            raise TypeError("Cannot have empty parameter list")
+        msg = "Parameters to generic types must be types."
+        params = tuple(_type_check(p, msg) for p in params)
+        if self.__parameters__ is None:
+            for p in params:
+                if not isinstance(p, TypeVar):
+                    raise TypeError("Initial parameters must be "
+                                    "type variables; got %s" % p)
+            if len(set(params)) != len(params):
+                raise TypeError(
+                    "All type variables in Generic[...] must be distinct.")
+        else:
+            if len(params) != len(self.__parameters__):
+                raise TypeError("Cannot change parameter count from %d to %d" %
+                                (len(self.__parameters__), len(params)))
+            for new, old in zip(params, self.__parameters__):
+                if isinstance(old, TypeVar):
+                    if not old.__constraints__:
+                        # Substituting for an unconstrained TypeVar is OK.
+                        continue
+                    if issubclass(new, Union[old.__constraints__]):
+                        # Specializing a constrained type variable is OK.
+                        continue
+                if not issubclass(new, old):
+                    raise TypeError(
+                        "Cannot substitute %s for %s in %s" %
+                        (_type_repr(new), _type_repr(old), self))
+
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__),
+                              parameters=params,
+                              origin=self,
+                              extra=self.__extra__)
+
+    def __instancecheck__(self, instance):
+        # Since we extend ABC.__subclasscheck__ and
+        # ABC.__instancecheck__ inlines the cache checking done by the
+        # latter, we must extend __instancecheck__ too. For simplicity
+        # we just skip the cache check -- instance checks for generic
+        # classes are supposed to be rare anyways.
+        return self.__subclasscheck__(instance.__class__)
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if isinstance(cls, GenericMeta):
+            # For a class C(Generic[T]) where T is co-variant,
+            # C[X] is a subclass of C[Y] iff X is a subclass of Y.
+            origin = self.__origin__
+            if origin is not None and origin is cls.__origin__:
+                assert len(self.__parameters__) == len(origin.__parameters__)
+                assert len(cls.__parameters__) == len(origin.__parameters__)
+                for p_self, p_cls, p_origin in zip(self.__parameters__,
+                                                   cls.__parameters__,
+                                                   origin.__parameters__):
+                    if isinstance(p_origin, TypeVar):
+                        if p_origin.__covariant__:
+                            # Covariant -- p_cls must be a subclass of p_self.
+                            if not issubclass(p_cls, p_self):
+                                break
+                        elif p_origin.__contravariant__:
+                            # Contravariant.  I think it's the opposite. :-)
+                            if not issubclass(p_self, p_cls):
+                                break
+                        else:
+                            # Invariant -- p_cls and p_self must equal.
+                            if p_self != p_cls:
+                                break
+                    else:
+                        # If the origin's parameter is not a typevar,
+                        # insist on invariance.
+                        if p_self != p_cls:
+                            break
+                else:
+                    return True
+                # If we break out of the loop, the superclass gets a chance.
+        if super().__subclasscheck__(cls):
+            return True
+        if self.__extra__ is None or isinstance(cls, GenericMeta):
+            return False
+        return issubclass(cls, self.__extra__)
+
+
+class Generic(metaclass=GenericMeta):
+    """Abstract base class for generic types.
+
+    A generic type is typically declared by inheriting from an
+    instantiation of this class with one or more type variables.
+    For example, a generic mapping type might be defined as::
+
+      class Mapping(Generic[KT, VT]):
+          def __getitem__(self, key: KT) -> VT:
+              ...
+          # Etc.
+
+    This class can then be used as follows::
+
+      def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT:
+          try:
+              return mapping[key]
+          except KeyError:
+              return default
+
+    For clarity the type variables may be redefined, e.g.::
+
+      X = TypeVar('X')
+      Y = TypeVar('Y')
+      def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
+          # Same body as above.
+    """
+
+    __slots__ = ()
+
+    def __new__(cls, *args, **kwds):
+        next_in_mro = object
+        # Look for the last occurrence of Generic or Generic[...].
+        for i, c in enumerate(cls.__mro__[:-1]):
+            if isinstance(c, GenericMeta) and _gorg(c) is Generic:
+                next_in_mro = cls.__mro__[i+1]
+        return next_in_mro.__new__(_gorg(cls))
+
+
+def cast(typ, val):
+    """Cast a value to a type.
+
+    This returns the value unchanged.  To the type checker this
+    signals that the return value has the designated type, but at
+    runtime we intentionally don't check anything (we want this
+    to be as fast as possible).
+    """
+    return val
+
+
+def _get_defaults(func):
+    """Internal helper to extract the default arguments, by name."""
+    code = func.__code__
+    pos_count = code.co_argcount
+    kw_count = code.co_kwonlyargcount
+    arg_names = code.co_varnames
+    kwarg_names = arg_names[pos_count:pos_count + kw_count]
+    arg_names = arg_names[:pos_count]
+    defaults = func.__defaults__ or ()
+    kwdefaults = func.__kwdefaults__
+    res = dict(kwdefaults) if kwdefaults else {}
+    pos_offset = pos_count - len(defaults)
+    for name, value in zip(arg_names[pos_offset:], defaults):
+        assert name not in res
+        res[name] = value
+    return res
+
+
+def get_type_hints(obj, globalns=None, localns=None):
+    """Return type hints for a function or method object.
+
+    This is often the same as obj.__annotations__, but it handles
+    forward references encoded as string literals, and if necessary
+    adds Optional[t] if a default value equal to None is set.
+
+    BEWARE -- the behavior of globalns and localns is counterintuitive
+    (unless you are familiar with how eval() and exec() work).  The
+    search order is locals first, then globals.
+
+    - If no dict arguments are passed, an attempt is made to use the
+      globals from obj, and these are also used as the locals.  If the
+      object does not appear to have globals, an exception is raised.
+
+    - If one dict argument is passed, it is used for both globals and
+      locals.
+
+    - If two dict arguments are passed, they specify globals and
+      locals, respectively.
+    """
+    if getattr(obj, '__no_type_check__', None):
+        return {}
+    if globalns is None:
+        globalns = getattr(obj, '__globals__', {})
+        if localns is None:
+            localns = globalns
+    elif localns is None:
+        localns = globalns
+    defaults = _get_defaults(obj)
+    hints = dict(obj.__annotations__)
+    for name, value in hints.items():
+        if isinstance(value, str):
+            value = _ForwardRef(value)
+        value = _eval_type(value, globalns, localns)
+        if name in defaults and defaults[name] is None:
+            value = Optional[value]
+        hints[name] = value
+    return hints
+
+
+# TODO: Also support this as a class decorator.
+def no_type_check(arg):
+    """Decorator to indicate that annotations are not type hints.
+
+    The argument must be a class or function; if it is a class, it
+    applies recursively to all methods defined in that class (but not
+    to methods defined in its superclasses or subclasses).
+
+    This mutates the function(s) in place.
+    """
+    if isinstance(arg, type):
+        for obj in arg.__dict__.values():
+            if isinstance(obj, types.FunctionType):
+                obj.__no_type_check__ = True
+    else:
+        arg.__no_type_check__ = True
+    return arg
+
+
+def no_type_check_decorator(decorator):
+    """Decorator to give another decorator the @no_type_check effect.
+
+    This wraps the decorator with something that wraps the decorated
+    function in @no_type_check.
+    """
+
+    @functools.wraps(decorator)
+    def wrapped_decorator(*args, **kwds):
+        func = decorator(*args, **kwds)
+        func = no_type_check(func)
+        return func
+
+    return wrapped_decorator
+
+
+def overload(func):
+    raise RuntimeError("Overloading is only supported in library stubs")
+
+
+class _ProtocolMeta(GenericMeta):
+    """Internal metaclass for _Protocol.
+
+    This exists so _Protocol classes can be generic without deriving
+    from Generic.
+    """
+
+    def __instancecheck__(self, obj):
+        raise TypeError("Protocols cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        if not self._is_protocol:
+            # No structural checks since this isn't a protocol.
+            return NotImplemented
+
+        if self is _Protocol:
+            # Every class is a subclass of the empty protocol.
+            return True
+
+        # Find all attributes defined in the protocol.
+        attrs = self._get_protocol_attrs()
+
+        for attr in attrs:
+            if not any(attr in d.__dict__ for d in cls.__mro__):
+                return False
+        return True
+
+    def _get_protocol_attrs(self):
+        # Get all Protocol base classes.
+        protocol_bases = []
+        for c in self.__mro__:
+            if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
+                protocol_bases.append(c)
+
+        # Get attributes included in protocol.
+        attrs = set()
+        for base in protocol_bases:
+            for attr in base.__dict__.keys():
+                # Include attributes not defined in any non-protocol bases.
+                for c in self.__mro__:
+                    if (c is not base and attr in c.__dict__ and
+                            not getattr(c, '_is_protocol', False)):
+                        break
+                else:
+                    if (not attr.startswith('_abc_') and
+                        attr != '__abstractmethods__' and
+                        attr != '_is_protocol' and
+                        attr != '__dict__' and
+                        attr != '__slots__' and
+                        attr != '_get_protocol_attrs' and
+                        attr != '__parameters__' and
+                        attr != '__origin__' and
+                        attr != '__module__'):
+                        attrs.add(attr)
+
+        return attrs
+
+
+class _Protocol(metaclass=_ProtocolMeta):
+    """Internal base class for protocol classes.
+
+    This implements a simple-minded structural isinstance check
+    (similar but more general than the one-offs in collections.abc
+    such as Hashable).
+    """
+
+    __slots__ = ()
+
+    _is_protocol = True
+
+
+# Various ABCs mimicking those in collections.abc.
+# A few are simply re-exported for completeness.
+
+Hashable = collections_abc.Hashable  # Not generic.
+
+
+class Iterable(Generic[T_co], extra=collections_abc.Iterable):
+    __slots__ = ()
+
+
+class Iterator(Iterable[T_co], extra=collections_abc.Iterator):
+    __slots__ = ()
+
+
+class SupportsInt(_Protocol):
+    __slots__ = ()
+
+    @abstractmethod
+    def __int__(self) -> int:
+        pass
+
+
+class SupportsFloat(_Protocol):
+    __slots__ = ()
+
+    @abstractmethod
+    def __float__(self) -> float:
+        pass
+
+
+class SupportsComplex(_Protocol):
+    __slots__ = ()
+
+    @abstractmethod
+    def __complex__(self) -> complex:
+        pass
+
+
+class SupportsBytes(_Protocol):
+    __slots__ = ()
+
+    @abstractmethod
+    def __bytes__(self) -> bytes:
+        pass
+
+
+class SupportsAbs(_Protocol[T_co]):
+    __slots__ = ()
+
+    @abstractmethod
+    def __abs__(self) -> T_co:
+        pass
+
+
+class SupportsRound(_Protocol[T_co]):
+    __slots__ = ()
+
+    @abstractmethod
+    def __round__(self, ndigits: int = 0) -> T_co:
+        pass
+
+
+class Reversible(_Protocol[T_co]):
+    __slots__ = ()
+
+    @abstractmethod
+    def __reversed__(self) -> 'Iterator[T_co]':
+        pass
+
+
+Sized = collections_abc.Sized  # Not generic.
+
+
+class Container(Generic[T_co], extra=collections_abc.Container):
+    __slots__ = ()
+
+
+# Callable was defined earlier.
+
+
+class AbstractSet(Sized, Iterable[T_co], Container[T_co],
+                  extra=collections_abc.Set):
+    pass
+
+
+class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet):
+    pass
+
+
+# NOTE: Only the value type is covariant.
+class Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co],
+              extra=collections_abc.Mapping):
+    pass
+
+
+class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping):
+    pass
+
+
+class Sequence(Sized, Iterable[T_co], Container[T_co],
+               extra=collections_abc.Sequence):
+    pass
+
+
+class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence):
+    pass
+
+
+class ByteString(Sequence[int], extra=collections_abc.ByteString):
+    pass
+
+
+ByteString.register(type(memoryview(b'')))
+
+
+class List(list, MutableSequence[T]):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, List):
+            raise TypeError("Type List cannot be instantiated; "
+                            "use list() instead")
+        return list.__new__(cls, *args, **kwds)
+
+
+class Set(set, MutableSet[T]):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, Set):
+            raise TypeError("Type Set cannot be instantiated; "
+                            "use set() instead")
+        return set.__new__(cls, *args, **kwds)
+
+
+class _FrozenSetMeta(GenericMeta):
+    """This metaclass ensures set is not a subclass of FrozenSet.
+
+    Without this metaclass, set would be considered a subclass of
+    FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and
+    set is a subclass of that.
+    """
+
+    def __subclasscheck__(self, cls):
+        if issubclass(cls, Set):
+            return False
+        return super().__subclasscheck__(cls)
+
+
+class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta):
+    __slots__ = ()
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, FrozenSet):
+            raise TypeError("Type FrozenSet cannot be instantiated; "
+                            "use frozenset() instead")
+        return frozenset.__new__(cls, *args, **kwds)
+
+
+class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView):
+    pass
+
+
+class KeysView(MappingView[KT], AbstractSet[KT],
+               extra=collections_abc.KeysView):
+    pass
+
+
+# TODO: Enable Set[Tuple[KT, VT_co]] instead of Generic[KT, VT_co].
+class ItemsView(MappingView, Generic[KT, VT_co],
+                extra=collections_abc.ItemsView):
+    pass
+
+
+class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView):
+    pass
+
+
+class Dict(dict, MutableMapping[KT, VT]):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, Dict):
+            raise TypeError("Type Dict cannot be instantiated; "
+                            "use dict() instead")
+        return dict.__new__(cls, *args, **kwds)
+
+
+# Determine what base class to use for Generator.
+if hasattr(collections_abc, 'Generator'):
+    # Sufficiently recent versions of 3.5 have a Generator ABC.
+    _G_base = collections_abc.Generator
+else:
+    # Fall back on the exact type.
+    _G_base = types.GeneratorType
+
+
+class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co],
+                extra=_G_base):
+    __slots__ = ()
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, Generator):
+            raise TypeError("Type Generator cannot be instantiated; "
+                            "create a subclass instead")
+        return super().__new__(cls, *args, **kwds)
+
+
+def NamedTuple(typename, fields):
+    """Typed version of namedtuple.
+
+    Usage::
+
+        Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)])
+
+    This is equivalent to::
+
+        Employee = collections.namedtuple('Employee', ['name', 'id'])
+
+    The resulting class has one extra attribute: _field_types,
+    giving a dict mapping field names to types.  (The field names
+    are in the _fields attribute, which is part of the namedtuple
+    API.)
+    """
+    fields = [(n, t) for n, t in fields]
+    cls = collections.namedtuple(typename, [n for n, t in fields])
+    cls._field_types = dict(fields)
+    return cls
+
+
+class IO(Generic[AnyStr]):
+    """Generic base class for TextIO and BinaryIO.
+
+    This is an abstract, generic version of the return of open().
+
+    NOTE: This does not distinguish between the different possible
+    classes (text vs. binary, read vs. write vs. read/write,
+    append-only, unbuffered).  The TextIO and BinaryIO subclasses
+    below capture the distinctions between text vs. binary, which is
+    pervasive in the interface; however we currently do not offer a
+    way to track the other distinctions in the type system.
+    """
+
+    __slots__ = ()
+
+    @abstractproperty
+    def mode(self) -> str:
+        pass
+
+    @abstractproperty
+    def name(self) -> str:
+        pass
+
+    @abstractmethod
+    def close(self) -> None:
+        pass
+
+    @abstractmethod
+    def closed(self) -> bool:
+        pass
+
+    @abstractmethod
+    def fileno(self) -> int:
+        pass
+
+    @abstractmethod
+    def flush(self) -> None:
+        pass
+
+    @abstractmethod
+    def isatty(self) -> bool:
+        pass
+
+    @abstractmethod
+    def read(self, n: int = -1) -> AnyStr:
+        pass
+
+    @abstractmethod
+    def readable(self) -> bool:
+        pass
+
+    @abstractmethod
+    def readline(self, limit: int = -1) -> AnyStr:
+        pass
+
+    @abstractmethod
+    def readlines(self, hint: int = -1) -> List[AnyStr]:
+        pass
+
+    @abstractmethod
+    def seek(self, offset: int, whence: int = 0) -> int:
+        pass
+
+    @abstractmethod
+    def seekable(self) -> bool:
+        pass
+
+    @abstractmethod
+    def tell(self) -> int:
+        pass
+
+    @abstractmethod
+    def truncate(self, size: int = None) -> int:
+        pass
+
+    @abstractmethod
+    def writable(self) -> bool:
+        pass
+
+    @abstractmethod
+    def write(self, s: AnyStr) -> int:
+        pass
+
+    @abstractmethod
+    def writelines(self, lines: List[AnyStr]) -> None:
+        pass
+
+    @abstractmethod
+    def __enter__(self) -> 'IO[AnyStr]':
+        pass
+
+    @abstractmethod
+    def __exit__(self, type, value, traceback) -> None:
+        pass
+
+
+class BinaryIO(IO[bytes]):
+    """Typed version of the return of open() in binary mode."""
+
+    __slots__ = ()
+
+    @abstractmethod
+    def write(self, s: Union[bytes, bytearray]) -> int:
+        pass
+
+    @abstractmethod
+    def __enter__(self) -> 'BinaryIO':
+        pass
+
+
+class TextIO(IO[str]):
+    """Typed version of the return of open() in text mode."""
+
+    __slots__ = ()
+
+    @abstractproperty
+    def buffer(self) -> BinaryIO:
+        pass
+
+    @abstractproperty
+    def encoding(self) -> str:
+        pass
+
+    @abstractproperty
+    def errors(self) -> str:
+        pass
+
+    @abstractproperty
+    def line_buffering(self) -> bool:
+        pass
+
+    @abstractproperty
+    def newlines(self) -> Any:
+        pass
+
+    @abstractmethod
+    def __enter__(self) -> 'TextIO':
+        pass
+
+
+class io:
+    """Wrapper namespace for IO generic classes."""
+
+    __all__ = ['IO', 'TextIO', 'BinaryIO']
+    IO = IO
+    TextIO = TextIO
+    BinaryIO = BinaryIO
+
+io.__name__ = __name__ + '.io'
+sys.modules[io.__name__] = io
+
+
+Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
+                     lambda p: p.pattern)
+Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
+                   lambda m: m.re.pattern)
+
+
+class re:
+    """Wrapper namespace for re type aliases."""
+
+    __all__ = ['Pattern', 'Match']
+    Pattern = Pattern
+    Match = Match
+
+re.__name__ = __name__ + '.re'
+sys.modules[re.__name__] = re

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-med/python-typing.git



More information about the debian-med-commit mailing list