[Blends-commit] [Git][debian-astro-team/debian-astro][master] Add jplephem to python3; cleanup python3 task

Ole Streicher (@olebole) gitlab at salsa.debian.org
Fri Aug 19 08:27:12 BST 2022



Ole Streicher pushed to branch master at Debian Astro Team / debian-astro


Commits:
1856025a by Ole Streicher at 2022-08-19T09:27:04+02:00
Add jplephem to python3; cleanup python3 task

- - - - -


1 changed file:

- tasks/python3


Changes:

=====================================
tasks/python3
=====================================
@@ -25,13 +25,10 @@ Recommends: python3-aplpy, python3-astroml, python3-astroplan,
  python3-astroscrappy, python3-einsteinpy, python3-galpy, python3-gammapy,
  python3-ginga, python3-glue, python3-gwcs, python3-hips,
  python3-imexam, python3-poliastro, python3-pydl, python3-regions,
- python3-spectral-cube, python3-synphot
+ python3-spectral-cube, python3-synphot, python3-astroalign,
+ python3-sncosmo
 Why: Astropy affiliated packages
 
-Recommends: python3-astroalign
-Why: Astropy affiliated package
-WNPP: 978432
-
 Recommends: python3-pyspeckit
 Why: Astropy affiliated package
 WNPP: 881699
@@ -46,28 +43,6 @@ Pkg-Description: Toolkit for fitting and manipulating spectroscopic data
  applications, e.g.  gaussian and voigt profile fitting,
  baseline/continuum fitting, and equivalent width measurements.
 
-Recommends: python3-sncosmo
-Why: Astropy affiliated package
-WNPP: 757096
-Pkg-Description: Python 3 library for high-level supervova cosmology analysis
- SNCosmo is a Python library for high-level supernova cosmology analysis. It
- aims to make such analysis both as flexible and clear as possible. It is
- built on NumPy, SciPy and AstroPy. Package Features:
- .
-  * SN models: Synthesize supernova spectra and photometry from SN models.
-  * Fitting and sampling: Functions for fitting and sampling SN model
-    parameters given photometric light curve data.
-  * Dust laws: Fast implementations of several commonly used extinction laws;
-    can be used to construct SN models that include dust.
-  * I/O: Convenience functions for reading and writing peculiar data formats
-    used in other packages and getting dust values from SFD (1998) maps.
-  * Built-in supernova models such as SALT2, MLCS2k2, Hsiao, Nugent, PSNID,
-    SNANA and Whalen models, as well as a variety of built-in bandpasses and
-    magnitude systems.
-  * Extensible: New models, bandpasses, and magnitude systems can be defined,
-    using an object-oriented interface.
-Homepage: https://sncosmo.github.io/
-
 Recommends: python3-drizzle
 
 Recommends: python3-asdf
@@ -112,11 +87,6 @@ Pkg-Description: Modeling and fitting in Python 3
 Homepage: http://cxc.cfa.harvard.edu/sherpa/
 
 Recommends: python3-extinction
-WNPP: 850195
-Homepage: https://github.com/kbarbary/extinction
-Pkg-Description:  Fast interstellar dust extinction laws
- Extinction provides a library with Cython-optimised implementations of
- empirical dust extinction laws found in the astronomical literature.
 
 Recommends: python3-mvpa2
 Why: ASCL Id 1703.009
@@ -150,6 +120,9 @@ Pkg-Description: Elegant astronomy for Python
  Astronomical Almanac to within 0.0005 arcseconds (which equals half a
  “mas” or milliarcsecond).
 
+Recommends: python3-jplephem
+WNPP: 1017350
+
 Recommends: python3-pytorch
 WNPP: 853923
 Homepage: https://pytorch.org
@@ -176,11 +149,6 @@ Pkg-Description: interactive visualization for web browsers
 Recommends: python3-pynpoint
 
 Recommends: python3-orbit-predictor
-WNPP: 927013
-Homepage: https://github.com/satellogic/orbit-predictor/
-Pkg-Description: Python library to propagate orbits of Earth-orbiting
- Orbit Predictor is a Python library to propagate orbits of Earth-orbiting
- objects (satellites, ISS, Santa Claus, etc) using TLE (Two-Line Elements set)
 
 Recommends: python3-heliopy
 WNPP: 928699
@@ -199,9 +167,6 @@ Homepage: http://www.astroml.org/gatspy/
 Pkg-Description: General tools for Astronomical Time Series in Python
 
 Recommends: python3-sep
-WNPP: 941158
-Homepage: https://github.com/kbarbary/sep
-Pkg-Description: Python library for source extraction and photometry
 
 Recommends: python3-theano, python3-keras
 Why: Machine learning packages used in astronomy



View it on GitLab: https://salsa.debian.org/debian-astro-team/debian-astro/-/commit/1856025abb3b5e911a50b83c49ca071805b5c0ae

-- 
View it on GitLab: https://salsa.debian.org/debian-astro-team/debian-astro/-/commit/1856025abb3b5e911a50b83c49ca071805b5c0ae
You're receiving this email because of your account on salsa.debian.org.


-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://alioth-lists.debian.net/pipermail/blends-commit/attachments/20220819/691d3ee6/attachment-0001.htm>


More information about the Blends-commit mailing list