[med-svn] [python-mne] 116/376: create separate module for time freq analysis
Yaroslav Halchenko
debian at onerussian.com
Fri Nov 27 17:22:18 UTC 2015
This is an automated email from the git hooks/post-receive script.
yoh pushed a commit to annotated tag v0.1
in repository python-mne.
commit d281c2b1cfb8caf948fa60b751121c78b6060113
Author: Alexandre Gramfort <alexandre.gramfort at inria.fr>
Date: Mon Mar 7 11:50:27 2011 -0500
create separate module for time freq analysis
---
examples/time_frequency/plot_time_frequency.py | 4 ++--
mne/__init__.py | 1 -
mne/time_frequency/__init__.py | 5 +++++
mne/{ => time_frequency}/tests/test_tfr.py | 14 +++++++-------
mne/{ => time_frequency}/tfr.py | 4 ++--
5 files changed, 16 insertions(+), 12 deletions(-)
diff --git a/examples/time_frequency/plot_time_frequency.py b/examples/time_frequency/plot_time_frequency.py
index 6675318..f7cea4a 100644
--- a/examples/time_frequency/plot_time_frequency.py
+++ b/examples/time_frequency/plot_time_frequency.py
@@ -18,7 +18,7 @@ import numpy as np
import mne
from mne import fiff
-from mne import time_frequency
+from mne.time_frequency import induced_power
from mne.datasets import sample
###############################################################################
@@ -52,7 +52,7 @@ evoked *= 1e13 # change unit to fT / cm
frequencies = np.arange(7, 30, 3) # define frequencies of interest
Fs = raw['info']['sfreq'] # sampling in Hz
-power, phase_lock = time_frequency(data, Fs=Fs, frequencies=frequencies,
+power, phase_lock = induced_power(data, Fs=Fs, frequencies=frequencies,
n_cycles=2, n_jobs=1, use_fft=False)
###############################################################################
diff --git a/mne/__init__.py b/mne/__init__.py
index 64e7010..5b0ed2d 100644
--- a/mne/__init__.py
+++ b/mne/__init__.py
@@ -7,6 +7,5 @@ from .stc import read_stc, write_stc
from .bem_surfaces import read_bem_surfaces
from .inverse import read_inverse_operator, compute_inverse
from .epochs import Epochs
-from .tfr import time_frequency
from .label import label_time_courses, read_label
import fiff
diff --git a/mne/time_frequency/__init__.py b/mne/time_frequency/__init__.py
new file mode 100644
index 0000000..b2674f5
--- /dev/null
+++ b/mne/time_frequency/__init__.py
@@ -0,0 +1,5 @@
+"""Time frequency analysis tools
+"""
+
+from .tfr import induced_power, single_trial_power
+
diff --git a/mne/tests/test_tfr.py b/mne/time_frequency/tests/test_tfr.py
similarity index 78%
rename from mne/tests/test_tfr.py
rename to mne/time_frequency/tests/test_tfr.py
index d9ca5e4..e701117 100644
--- a/mne/tests/test_tfr.py
+++ b/mne/time_frequency/tests/test_tfr.py
@@ -3,12 +3,12 @@ import os.path as op
import mne
from mne import fiff
-from mne import time_frequency
-from mne.tfr import cwt_morlet
+from mne.time_frequency import induced_power
+from mne.time_frequency.tfr import cwt_morlet
-raw_fname = op.join(op.dirname(__file__), '..', 'fiff', 'tests', 'data',
+raw_fname = op.join(op.dirname(__file__), '..', '..', 'fiff', 'tests', 'data',
'test_raw.fif')
-event_fname = op.join(op.dirname(__file__), '..', 'fiff', 'tests', 'data',
+event_fname = op.join(op.dirname(__file__), '..', '..', 'fiff', 'tests', 'data',
'test-eve.fif')
def test_time_frequency():
@@ -31,14 +31,14 @@ def test_time_frequency():
stim=False, include=include, exclude=exclude)
picks = picks[:2]
- epochs = mne.read_epochs(raw, events, event_id,
+ epochs = mne.Epochs(raw, events, event_id,
tmin, tmax, picks=picks, baseline=(None, 0))
data = epochs.get_data()
times = epochs.times
frequencies = np.arange(6, 20, 5) # define frequencies of interest
Fs = raw['info']['sfreq'] # sampling in Hz
- power, phase_lock = time_frequency(data, Fs=Fs, frequencies=frequencies,
+ power, phase_lock = induced_power(data, Fs=Fs, frequencies=frequencies,
n_cycles=2, use_fft=True)
assert power.shape == (len(picks), len(frequencies), len(times))
@@ -46,7 +46,7 @@ def test_time_frequency():
assert np.sum(phase_lock >= 1) == 0
assert np.sum(phase_lock <= 0) == 0
- power, phase_lock = time_frequency(data, Fs=Fs, frequencies=frequencies,
+ power, phase_lock = induced_power(data, Fs=Fs, frequencies=frequencies,
n_cycles=2, use_fft=False)
assert power.shape == (len(picks), len(frequencies), len(times))
diff --git a/mne/tfr.py b/mne/time_frequency/tfr.py
similarity index 98%
rename from mne/tfr.py
rename to mne/time_frequency/tfr.py
index 986f45b..3847eae 100644
--- a/mne/tfr.py
+++ b/mne/time_frequency/tfr.py
@@ -162,7 +162,7 @@ def cwt_morlet(X, Fs, freqs, use_fft=True, n_cycles=7.0):
else:
coefs = _cwt_convolve(X, Ws, mode)
- tfrs = np.empty((n_signals, n_frequencies, n_times))
+ tfrs = np.empty((n_signals, n_frequencies, n_times), dtype=np.complex)
for k, tfr in enumerate(coefs):
tfrs[k] = tfr
@@ -213,7 +213,7 @@ def single_trial_power(epochs, Fs, frequencies, use_fft=True, n_cycles=7):
return power
-def time_frequency(data, Fs, frequencies, use_fft=True, n_cycles=25,
+def induced_power(data, Fs, frequencies, use_fft=True, n_cycles=25,
n_jobs=1):
"""Compute time induced power and inter-trial phase-locking factor
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-med/python-mne.git
More information about the debian-med-commit
mailing list