[med-svn] [python-mne] 133/376: cosmit
Yaroslav Halchenko
debian at onerussian.com
Fri Nov 27 17:22:21 UTC 2015
This is an automated email from the git hooks/post-receive script.
yoh pushed a commit to annotated tag v0.1
in repository python-mne.
commit 4b05bd994d90b9fad764d3a6f3acfae6bbf5d39a
Author: Alexandre Gramfort <alexandre.gramfort at inria.fr>
Date: Mon Mar 14 16:05:09 2011 -0400
cosmit
---
mne/epochs.py | 3 +++
mne/stats/cluster_level.py | 9 +++++++--
mne/time_frequency/tfr.py | 10 +++++-----
3 files changed, 15 insertions(+), 7 deletions(-)
diff --git a/mne/epochs.py b/mne/epochs.py
index 3d4bd80..6420f38 100644
--- a/mne/epochs.py
+++ b/mne/epochs.py
@@ -77,6 +77,9 @@ class Epochs(object):
self.baseline = baseline
self.preload = preload
+ if len(picks) == 0:
+ raise ValueError, "Picks cannot be empty."
+
# Handle measurement info
self.info = copy.copy(raw.info)
if picks is not None:
diff --git a/mne/stats/cluster_level.py b/mne/stats/cluster_level.py
index 3a8c19e..fb87998 100644
--- a/mne/stats/cluster_level.py
+++ b/mne/stats/cluster_level.py
@@ -69,16 +69,21 @@ def permutation_cluster_test(X, stat_fun=f_oneway, threshold=1.67,
For a list of 2d-arrays of data, e.g. power values, calculate some
statistics for each timepoint (dim 1) over groups. Do a cluster
- analysis with permutation test for calculating corrected p-values
+ analysis with permutation test for calculating corrected p-values.
+ Randomized data are generated with random partitions of the data.
Parameters
----------
- X: list
+ X : list
List of 2d-arrays containing the data, dim 1: timepoints, dim 2:
elements of groups
stat_fun : callable
function called to calculate statistics, must accept 1d-arrays as
arguments (default: scipy.stats.f_oneway)
+ threshold : float
+ The threshold for the statistic.
+ n_permutations : int
+ The number of permutations to compute.
tail : -1 or 0 or 1 (default = 0)
If tail is 1, the statistic is thresholded above threshold.
If tail is -1, the statistic is thresholded below threshold.
diff --git a/mne/time_frequency/tfr.py b/mne/time_frequency/tfr.py
index 5b933e3..7f2593b 100644
--- a/mne/time_frequency/tfr.py
+++ b/mne/time_frequency/tfr.py
@@ -216,7 +216,7 @@ def single_trial_power(epochs, Fs, frequencies, use_fft=True, n_cycles=7):
return power
-def induced_power(data, Fs, frequencies, use_fft=True, n_cycles=7,
+def induced_power(epochs, Fs, frequencies, use_fft=True, n_cycles=7,
n_jobs=1):
"""Compute time induced power and inter-trial phase-locking factor
@@ -224,7 +224,7 @@ def induced_power(data, Fs, frequencies, use_fft=True, n_cycles=7,
Parameters
----------
- data : array
+ epochs : array
3D array of shape [n_epochs, n_channels, n_times]
Fs : float
@@ -253,7 +253,7 @@ def induced_power(data, Fs, frequencies, use_fft=True, n_cycles=7,
Phase locking factor in [0, 1] (Channels x Frequencies x Timepoints)
"""
n_frequencies = len(frequencies)
- n_epochs, n_channels, n_times = data.shape
+ n_epochs, n_channels, n_times = epochs.shape
# Precompute wavelets for given frequency range to save time
Ws = morlet(Fs, frequencies, n_cycles=n_cycles)
@@ -269,14 +269,14 @@ def induced_power(data, Fs, frequencies, use_fft=True, n_cycles=7,
plf = np.empty((n_channels, n_frequencies, n_times), dtype=np.complex)
for c in range(n_channels):
- X = np.squeeze(data[:,c,:])
+ X = np.squeeze(epochs[:,c,:])
psd[c], plf[c] = _time_frequency(X, Ws, use_fft)
else:
from joblib import Parallel, delayed
psd_plf = Parallel(n_jobs=n_jobs)(
delayed(_time_frequency)(
- np.squeeze(data[:,c,:]), Ws, use_fft)
+ np.squeeze(epochs[:,c,:]), Ws, use_fft)
for c in range(n_channels))
psd = np.zeros((n_channels, n_frequencies, n_times))
--
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-med/python-mne.git
More information about the debian-med-commit
mailing list