[med-svn] [r-cran-tidyr] 01/06: New upstream version 0.7.2

Andreas Tille tille at debian.org
Tue Dec 12 22:39:57 UTC 2017


This is an automated email from the git hooks/post-receive script.

tille pushed a commit to branch master
in repository r-cran-tidyr.

commit 286b771a46aef63b276397d51b0ef81267309d60
Author: Andreas Tille <tille at debian.org>
Date:   Tue Dec 12 23:26:39 2017 +0100

    New upstream version 0.7.2
---
 DESCRIPTION                       |   6 +-
 MD5                               |  18 +-
 NEWS.md                           |   8 +-
 R/gather.R                        |   4 +-
 R/nest.R                          |   4 +-
 R/spread.R                        |   4 +-
 inst/doc/tidy-data.html           | 573 +++++++++++++++++++-------------------
 src/melt.cpp                      |  29 +-
 tests/testthat/test-gather.R      |   1 -
 tests/testthat/test-underscored.R |  24 +-
 10 files changed, 359 insertions(+), 312 deletions(-)

diff --git a/DESCRIPTION b/DESCRIPTION
index ab6cffe..9e0a04f 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,6 +1,6 @@
 Package: tidyr
 Title: Easily Tidy Data with 'spread()' and 'gather()' Functions
-Version: 0.7.1
+Version: 0.7.2
 Authors at R: c(
     person("Hadley", "Wickham", , "hadley at rstudio.com", c("aut", "cre")),
     person("Lionel", "Henry", , "lionel at rstudio.com", "aut"),
@@ -21,10 +21,10 @@ VignetteBuilder: knitr
 LinkingTo: Rcpp
 RoxygenNote: 6.0.1
 NeedsCompilation: yes
-Packaged: 2017-08-24 14:15:41 UTC; lionel
+Packaged: 2017-10-16 13:20:18 UTC; hadley
 Author: Hadley Wickham [aut, cre],
   Lionel Henry [aut],
   RStudio [cph]
 Maintainer: Hadley Wickham <hadley at rstudio.com>
 Repository: CRAN
-Date/Publication: 2017-09-01 15:15:47 UTC
+Date/Publication: 2017-10-16 23:09:23 UTC
diff --git a/MD5 b/MD5
index 4e03373..4546363 100644
--- a/MD5
+++ b/MD5
@@ -1,7 +1,7 @@
-cde6f0d6d9862ea9c02d7a8f74c2a4ef *DESCRIPTION
+e4929bd95996152f944a8a4f1916d161 *DESCRIPTION
 1734bf7b2a958fa874a85d6417f4a0e0 *LICENSE
 3c2147163007eb93226799a3c1b504cb *NAMESPACE
-7207da2c9eccf02933f1c2943bc529c1 *NEWS.md
+3dd392bbc97f36aa21e53df835aa21f6 *NEWS.md
 d5af2bc872fd256dd82f2607ea2aff67 *R/RcppExports.R
 79ea586e36b0123e161a26e98bd99b64 *R/compat-lazyeval.R
 61e0ad373cfce05de2c489ef9b60ae19 *R/complete.R
@@ -10,14 +10,14 @@ e772ef2ee60ba55dc6e3b13630c67597 *R/data.R
 879a422a977f98b329cd4fcd27fcdb60 *R/expand.R
 6f091ae6e4aeefc42913a0cfe9a8fa55 *R/extract.R
 a703420c10f3bc22ac51104adb5c6b97 *R/fill.R
-0cfc2fcac7717cd157a19c433daad751 *R/gather.R
+d0e02ae557774152a660d250b3248317 *R/gather.R
 1782474ccca6bd3a688775757d31175b *R/id.R
-0c515b16500dad45447331dd855be8f1 *R/nest.R
+216515455a16b9cd26ce9bf72605d96b *R/nest.R
 5763e52a7b14ad4c4ca09a6bd8d9437e *R/replace_na.R
 7c4594c6c21d88cbb1a5540ccc2d58b0 *R/separate-rows.R
 3fe96a5046df1ca5a1ca1e23eedd2a4e *R/separate.R
 d6746fae28232c2c13cb5cb61da547e8 *R/seq.R
-e03af1810aa7ec04c02bd3e2bfb846a9 *R/spread.R
+47f83e666e17604c61163194dc1d744d *R/spread.R
 f6f27545149d75e3e0b18aefc7f0bcca *R/tidyr.R
 48603c047f87f084d9d780232b4e941e *R/unite.R
 0c47542be37eef2d0a7dc359bb5d8cc5 *R/unnest.R
@@ -41,7 +41,7 @@ f3284df0b78edfb5a2c9f5e44cd3bc65 *demo/dadmom.R
 4c61156afe9636ec80849e49fa98a0a3 *demo/so-9684671.R
 c4383a3f9fca197d86b0ae4a22abc79a *inst/doc/tidy-data.R
 296da1cc768b3709970402d615c512b2 *inst/doc/tidy-data.Rmd
-6d6aaeefef2147b8af25fa9604f74aba *inst/doc/tidy-data.html
+4c1701cdf9da02d9b4732e487026c5a0 *inst/doc/tidy-data.html
 89e7aa3629e3af61431582cb0b9882d1 *man/complete.Rd
 6a1ba38c59e9935977006c90db7f47c8 *man/deprecated-se.Rd
 6971dd7d01266c075b63eea069d09f1f *man/drop_na.Rd
@@ -66,7 +66,7 @@ c8ba478dc1fb90bc2c84ea2e3871bb66 *man/unnest.Rd
 098fdd0edc34de56a2da62f5dd22373a *man/who.Rd
 aa56ef8384b525ea2846f3cdb59b92e5 *src/RcppExports.cpp
 81db5dd38227b4cab4713128f04f46c1 *src/fill.cpp
-e9fa31140b3e8191fc77a1c114d2ad5a *src/melt.cpp
+f511f296525c27047f66e2d642306cff *src/melt.cpp
 32534931093398158fef10463826e304 *src/simplifyPieces.cpp
 14fd04cc33329083bbe4c25bdd2f0531 *tests/testthat.R
 0596c84dbd8e83646f1ee3e2a798d4f2 *tests/testthat/test-complete.R
@@ -75,13 +75,13 @@ e9fa31140b3e8191fc77a1c114d2ad5a *src/melt.cpp
 3d4f4ce4fa98d50fade3a2352bb63c33 *tests/testthat/test-extract.R
 52bdaf7932812e1bf7b5b34ae12fc7aa *tests/testthat/test-fill.R
 b0a7fb6ecf9db133274a91a5e329d6f1 *tests/testthat/test-full_seq.R
-f1a2c9fe2acd33a44e7ce1522f2125a9 *tests/testthat/test-gather.R
+744c9d07a61c87bf3e5e99d45177e5a4 *tests/testthat/test-gather.R
 f3eab4757a75d067572f56a8cd2fa4df *tests/testthat/test-id.R
 27c5bb9b05002b9ed64efffcc076c788 *tests/testthat/test-nest.R
 93135c802368f5391e817cd05add0c1f *tests/testthat/test-replace_na.R
 0c42de930422f560478c509972ace9e9 *tests/testthat/test-separate.R
 a91b5b14318349c8490fb4c719b1d8cf *tests/testthat/test-spread.R
-733a68e17806af6e775a72ac31a7947c *tests/testthat/test-underscored.R
+8d632517c77d3d672483aedd1aa3cb8d *tests/testthat/test-underscored.R
 e5481a1d49d145db4c477d47bf6b3392 *tests/testthat/test-unite.R
 70aa1570a7b1907fb1b33c0c7a25bb84 *tests/testthat/test-unnest.R
 54858865b5d09e66c0541c370836818a *vignettes/billboard.csv
diff --git a/NEWS.md b/NEWS.md
index 64e31a1..71857b6 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,3 +1,10 @@
+# tidyr 0.7.2
+
+* The SE variants `gather_()`, `spread_()` and `nest_()` now
+  treat non-syntactic names in the same way as pre tidy eval versions
+  of tidyr (#361).
+  
+* Fix tidyr bug revealed by R-devel.
 
 # tidyr 0.7.1
 
@@ -18,7 +25,6 @@ writing functions and refer to contextual objects, it is still a good
 idea to avoid data expressions by following the advice of the 0.7.0
 release notes.
 
-
 # tidyr 0.7.0
 
 This release includes important changes to tidyr internals. Tidyr now
diff --git a/R/gather.R b/R/gather.R
index eac643f..d9d769c 100644
--- a/R/gather.R
+++ b/R/gather.R
@@ -216,8 +216,8 @@ gather_ <- function(data, key_col, value_col, gather_cols, na.rm = FALSE,
 gather_.data.frame <- function(data, key_col, value_col, gather_cols,
                                na.rm = FALSE, convert = FALSE,
                                factor_key = FALSE) {
-  key_col <- compat_lazy(key_col, caller_env())
-  value_col <- compat_lazy(value_col, caller_env())
+  key_col <- sym(key_col)
+  value_col <- sym(value_col)
   gather_cols <- syms(gather_cols)
 
   gather(data,
diff --git a/R/nest.R b/R/nest.R
index 2335a5d..7d894c0 100644
--- a/R/nest.R
+++ b/R/nest.R
@@ -81,7 +81,7 @@ nest_ <- function(data, key_col, nest_cols = character()) {
 }
 #' @export
 nest_.data.frame <- function(data, key_col, nest_cols = character()) {
-  key_col <- compat_lazy(key_col, caller_env())
-  nest_cols <- compat_lazy_dots(nest_cols, caller_env())
+  key_col <- sym(key_col)
+  nest_cols <- syms(nest_cols)
   nest(data, .key = !! key_col, !!! nest_cols)
 }
diff --git a/R/spread.R b/R/spread.R
index d129d90..e0939ff 100644
--- a/R/spread.R
+++ b/R/spread.R
@@ -173,8 +173,8 @@ spread_ <- function(data, key_col, value_col, fill = NA, convert = FALSE,
 #' @export
 spread_.data.frame <- function(data, key_col, value_col, fill = NA,
                                convert = FALSE, drop = TRUE, sep = NULL) {
-  key_col <- compat_lazy(key_col, caller_env())
-  value_col <- compat_lazy(value_col, caller_env())
+  key_col <- sym(key_col)
+  value_col <- sym(value_col)
 
   spread(data,
     key = !! key_col,
diff --git a/inst/doc/tidy-data.html b/inst/doc/tidy-data.html
index 3b1a75a..5ca537e 100644
--- a/inst/doc/tidy-data.html
+++ b/inst/doc/tidy-data.html
@@ -18,28 +18,46 @@
 
 <style type="text/css">code{white-space: pre;}</style>
 <style type="text/css">
+div.sourceCode { overflow-x: auto; }
 table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
   margin: 0; padding: 0; vertical-align: baseline; border: none; }
 table.sourceCode { width: 100%; line-height: 100%; }
 td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
 td.sourceCode { padding-left: 5px; }
-code > span.kw { color: #007020; font-weight: bold; }
-code > span.dt { color: #902000; }
-code > span.dv { color: #40a070; }
-code > span.bn { color: #40a070; }
-code > span.fl { color: #40a070; }
-code > span.ch { color: #4070a0; }
-code > span.st { color: #4070a0; }
-code > span.co { color: #60a0b0; font-style: italic; }
-code > span.ot { color: #007020; }
-code > span.al { color: #ff0000; font-weight: bold; }
-code > span.fu { color: #06287e; }
-code > span.er { color: #ff0000; font-weight: bold; }
+code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
+code > span.dt { color: #902000; } /* DataType */
+code > span.dv { color: #40a070; } /* DecVal */
+code > span.bn { color: #40a070; } /* BaseN */
+code > span.fl { color: #40a070; } /* Float */
+code > span.ch { color: #4070a0; } /* Char */
+code > span.st { color: #4070a0; } /* String */
+code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
+code > span.ot { color: #007020; } /* Other */
+code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
+code > span.fu { color: #06287e; } /* Function */
+code > span.er { color: #ff0000; font-weight: bold; } /* Error */
+code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
+code > span.cn { color: #880000; } /* Constant */
+code > span.sc { color: #4070a0; } /* SpecialChar */
+code > span.vs { color: #4070a0; } /* VerbatimString */
+code > span.ss { color: #bb6688; } /* SpecialString */
+code > span.im { } /* Import */
+code > span.va { color: #19177c; } /* Variable */
+code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
+code > span.op { color: #666666; } /* Operator */
+code > span.bu { } /* BuiltIn */
+code > span.ex { } /* Extension */
+code > span.pp { color: #bc7a00; } /* Preprocessor */
+code > span.at { color: #7d9029; } /* Attribute */
+code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
+code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
+code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
+code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
 </style>
 
 
 
-<link href="data:text/css,body%20%7B%0A%20%20background%2Dcolor%3A%20%23fff%3B%0A%20%20margin%3A%201em%20auto%3B%0A%20%20max%2Dwidth%3A%20700px%3B%0A%20%20overflow%3A%20visible%3B%0A%20%20padding%2Dleft%3A%202em%3B%0A%20%20padding%2Dright%3A%202em%3B%0A%20%20font%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0A%20%20font%2Dsize%3A%2014px%3B%0A%20%20line%2Dheight%3A%201%2E35%3B%0A%7D%0A%0A%23header%20%7B%0A%20%20text%2Dalign%3A% [...]
+<link href="data:text/css;charset=utf-8,body%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Amargin%3A%201em%20auto%3B%0Amax%2Dwidth%3A%20700px%3B%0Aoverflow%3A%20visible%3B%0Apadding%2Dleft%3A%202em%3B%0Apadding%2Dright%3A%202em%3B%0Afont%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Afont%2Dsize%3A%2014px%3B%0Aline%2Dheight%3A%201%2E35%3B%0A%7D%0A%23header%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0A%23TOC%20%7B%0Aclear%3A%20bot [...]
 
 </head>
 
@@ -67,28 +85,29 @@ code > span.er { color: #ff0000; font-weight: bold; }
 <div id="data-structure" class="section level2">
 <h2>Data structure</h2>
 <p>Most statistical datasets are data frames made up of <strong>rows</strong> and <strong>columns</strong>. The columns are almost always labeled and the rows are sometimes labeled. The following code provides some data about an imaginary experiment in a format commonly seen in the wild. The table has two columns and three rows, and both rows and columns are labeled.</p>
-<pre class="sourceCode r"><code class="sourceCode r">preg <-<span class="st"> </span><span class="kw">read.csv</span>(<span class="st">"preg.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">preg <-<span class="st"> </span><span class="kw">read.csv</span>(<span class="st">"preg.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>)
 preg
 <span class="co">#>           name treatmenta treatmentb</span>
 <span class="co">#> 1   John Smith         NA         18</span>
 <span class="co">#> 2     Jane Doe          4          1</span>
-<span class="co">#> 3 Mary Johnson          6          7</span></code></pre>
+<span class="co">#> 3 Mary Johnson          6          7</span></code></pre></div>
 <p>There are many ways to structure the same underlying data. The following table shows the same data as above, but the rows and columns have been transposed.</p>
-<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">read.csv</span>(<span class="st">"preg2.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">read.csv</span>(<span class="st">"preg2.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>)
 <span class="co">#>   treatment John.Smith Jane.Doe Mary.Johnson</span>
 <span class="co">#> 1         a         NA        4            6</span>
-<span class="co">#> 2         b         18        1            7</span></code></pre>
+<span class="co">#> 2         b         18        1            7</span></code></pre></div>
 <p>The data is the same, but the layout is different. Our vocabulary of rows and columns is simply not rich enough to describe why the two tables represent the same data. In addition to appearance, we need a way to describe the underlying semantics, or meaning, of the values displayed in the table.</p>
 </div>
 <div id="data-semantics" class="section level2">
 <h2>Data semantics</h2>
 <p>A dataset is a collection of <strong>values</strong>, usually either numbers (if quantitative) or strings (if qualitative). Values are organised in two ways. Every value belongs to a <strong>variable</strong> and an <strong>observation</strong>. A variable contains all values that measure the same underlying attribute (like height, temperature, duration) across units. An observation contains all values measured on the same unit (like a person, or a day, or a race) across attributes.</p>
 <p>A tidy version of the pregnancy data looks like this: (you’ll learn how the functions work a little later)</p>
-<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(tidyr)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(tidyr)
 <span class="kw">library</span>(dplyr)
-preg2 <-<span class="st"> </span>preg %>%<span class="st"> </span>
-<span class="st">  </span><span class="kw">gather</span>(treatment, n, treatmenta:treatmentb) %>%
-<span class="st">  </span><span class="kw">mutate</span>(<span class="dt">treatment =</span> <span class="kw">gsub</span>(<span class="st">"treatment"</span>, <span class="st">""</span>, treatment)) %>%
+<span class="co">#> Warning: package 'dplyr' was built under R version 3.4.2</span>
+preg2 <-<span class="st"> </span>preg <span class="op">%>%</span><span class="st"> </span>
+<span class="st">  </span><span class="kw">gather</span>(treatment, n, treatmenta<span class="op">:</span>treatmentb) <span class="op">%>%</span>
+<span class="st">  </span><span class="kw">mutate</span>(<span class="dt">treatment =</span> <span class="kw">gsub</span>(<span class="st">"treatment"</span>, <span class="st">""</span>, treatment)) <span class="op">%>%</span>
 <span class="st">  </span><span class="kw">arrange</span>(name, treatment)
 preg2
 <span class="co">#>           name treatment  n</span>
@@ -97,7 +116,7 @@ preg2
 <span class="co">#> 3   John Smith         a NA</span>
 <span class="co">#> 4   John Smith         b 18</span>
 <span class="co">#> 5 Mary Johnson         a  6</span>
-<span class="co">#> 6 Mary Johnson         b  7</span></code></pre>
+<span class="co">#> 6 Mary Johnson         b  7</span></code></pre></div>
 <p>This makes the values, variables and observations more clear. The dataset contains 18 values representing three variables and six observations. The variables are:</p>
 <ol style="list-style-type: decimal">
 <li><p><code>name</code>, with three possible values (John, Mary, and Jane).</p></li>
@@ -137,288 +156,284 @@ preg2
 <h2>Column headers are values, not variable names</h2>
 <p>A common type of messy dataset is tabular data designed for presentation, where variables form both the rows and columns, and column headers are values, not variable names. While I would call this arrangement messy, in some cases it can be extremely useful. It provides efficient storage for completely crossed designs, and it can lead to extremely efficient computation if desired operations can be expressed as matrix operations.</p>
 <p>The following code shows a subset of a typical dataset of this form. This dataset explores the relationship between income and religion in the US. It comes from a report<a href="#fn1" class="footnoteRef" id="fnref1"><sup>1</sup></a> produced by the Pew Research Center, an American think-tank that collects data on attitudes to topics ranging from religion to the internet, and produces many reports that contain datasets in this format.</p>
-<pre class="sourceCode r"><code class="sourceCode r">pew <-<span class="st"> </span><span class="kw">tbl_df</span>(<span class="kw">read.csv</span>(<span class="st">"pew.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>, <span class="dt">check.names =</span> <span class="ot">FALSE</span>))
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">pew <-<span class="st"> </span><span class="kw">tbl_df</span>(<span class="kw">read.csv</span>(<span class="st">"pew.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>, <span class="dt">check.names =</span> <span class="ot">FALSE</span>))
 pew
 <span class="co">#> # A tibble: 18 x 11</span>
-<span class="co">#>                   religion `<$10k` `$10-20k` `$20-30k` `$30-40k` `$40-50k`</span>
-<span class="co">#>                      <chr>   <int>     <int>     <int>     <int>     <int></span>
-<span class="co">#>  1                Agnostic      27        34        60        81        76</span>
-<span class="co">#>  2                 Atheist      12        27        37        52        35</span>
-<span class="co">#>  3                Buddhist      27        21        30        34        33</span>
-<span class="co">#>  4                Catholic     418       617       732       670       638</span>
-<span class="co">#>  5      Don’t know/refused      15        14        15        11        10</span>
-<span class="co">#>  6        Evangelical Prot     575       869      1064       982       881</span>
-<span class="co">#>  7                   Hindu       1         9         7         9        11</span>
-<span class="co">#>  8 Historically Black Prot     228       244       236       238       197</span>
-<span class="co">#>  9       Jehovah's Witness      20        27        24        24        21</span>
-<span class="co">#> 10                  Jewish      19        19        25        25        30</span>
-<span class="co">#> # ... with 8 more rows, and 5 more variables: `$50-75k` <int>,</span>
-<span class="co">#> #   `$75-100k` <int>, `$100-150k` <int>, `>150k` <int>, `Don't</span>
-<span class="co">#> #   know/refused` <int></span></code></pre>
+<span class="co">#>    religi… `<$10… `$10-… `$20-… `$30… `$40… `$50… `$75… `$10… `>15… `Don'…</span>
+<span class="co">#>    <chr>    <int>  <int>  <int> <int> <int> <int> <int> <int> <int>  <int></span>
+<span class="co">#>  1 Agnost…     27     34     60    81    76   137   122   109    84     96</span>
+<span class="co">#>  2 Atheist     12     27     37    52    35    70    73    59    74     76</span>
+<span class="co">#>  3 Buddhi…     27     21     30    34    33    58    62    39    53     54</span>
+<span class="co">#>  4 Cathol…    418    617    732   670   638  1116   949   792   633   1489</span>
+<span class="co">#>  5 Don’t …     15     14     15    11    10    35    21    17    18    116</span>
+<span class="co">#>  6 Evange…    575    869   1064   982   881  1486   949   723   414   1529</span>
+<span class="co">#>  7 Hindu        1      9      7     9    11    34    47    48    54     37</span>
+<span class="co">#>  8 Histor…    228    244    236   238   197   223   131    81    78    339</span>
+<span class="co">#>  9 Jehova…     20     27     24    24    21    30    15    11     6     37</span>
+<span class="co">#> 10 Jewish      19     19     25    25    30    95    69    87   151    162</span>
+<span class="co">#> # ... with 8 more rows</span></code></pre></div>
 <p>This dataset has three variables, <code>religion</code>, <code>income</code> and <code>frequency</code>. To tidy it, we need to <strong>gather</strong> the non-variable columns into a two-column key-value pair. This action is often described as making a wide dataset long (or tall), but I’ll avoid those terms because they’re imprecise.</p>
 <p>When gathering variables, we need to provide the name of the new key-value columns to create. The first argument, is the name of the key column, which is the name of the variable defined by the values of the column headings. In this case, it’s <code>income</code>. The second argument is the name of the value column, <code>frequency</code>. The third argument defines the columns to gather, here, every column except religion.</p>
-<pre class="sourceCode r"><code class="sourceCode r">pew %>%
-<span class="st">  </span><span class="kw">gather</span>(income, frequency, -religion)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">pew <span class="op">%>%</span>
+<span class="st">  </span><span class="kw">gather</span>(income, frequency, <span class="op">-</span>religion)
 <span class="co">#> # A tibble: 180 x 3</span>
-<span class="co">#>                   religion income frequency</span>
-<span class="co">#>                      <chr>  <chr>     <int></span>
-<span class="co">#>  1                Agnostic  <$10k        27</span>
-<span class="co">#>  2                 Atheist  <$10k        12</span>
-<span class="co">#>  3                Buddhist  <$10k        27</span>
-<span class="co">#>  4                Catholic  <$10k       418</span>
-<span class="co">#>  5      Don’t know/refused  <$10k        15</span>
-<span class="co">#>  6        Evangelical Prot  <$10k       575</span>
-<span class="co">#>  7                   Hindu  <$10k         1</span>
-<span class="co">#>  8 Historically Black Prot  <$10k       228</span>
-<span class="co">#>  9       Jehovah's Witness  <$10k        20</span>
-<span class="co">#> 10                  Jewish  <$10k        19</span>
-<span class="co">#> # ... with 170 more rows</span></code></pre>
+<span class="co">#>    religion                income frequency</span>
+<span class="co">#>    <chr>                   <chr>      <int></span>
+<span class="co">#>  1 Agnostic                <$10k         27</span>
+<span class="co">#>  2 Atheist                 <$10k         12</span>
+<span class="co">#>  3 Buddhist                <$10k         27</span>
+<span class="co">#>  4 Catholic                <$10k        418</span>
+<span class="co">#>  5 Don’t know/refused      <$10k         15</span>
+<span class="co">#>  6 Evangelical Prot        <$10k        575</span>
+<span class="co">#>  7 Hindu                   <$10k          1</span>
+<span class="co">#>  8 Historically Black Prot <$10k        228</span>
+<span class="co">#>  9 Jehovah's Witness       <$10k         20</span>
+<span class="co">#> 10 Jewish                  <$10k         19</span>
+<span class="co">#> # ... with 170 more rows</span></code></pre></div>
 <p>This form is tidy because each column represents a variable and each row represents an observation, in this case a demographic unit corresponding to a combination of <code>religion</code> and <code>income</code>.</p>
 <p>This format is also used to record regularly spaced observations over time. For example, the Billboard dataset shown below records the date a song first entered the billboard top 100. It has variables for <code>artist</code>, <code>track</code>, <code>date.entered</code>, <code>rank</code> and <code>week</code>. The rank in each week after it enters the top 100 is recorded in 75 columns, <code>wk1</code> to <code>wk75</code>. This form of storage is not tidy, but it is useful for data [...]
-<pre class="sourceCode r"><code class="sourceCode r">billboard <-<span class="st"> </span><span class="kw">tbl_df</span>(<span class="kw">read.csv</span>(<span class="st">"billboard.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>))
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">billboard <-<span class="st"> </span><span class="kw">tbl_df</span>(<span class="kw">read.csv</span>(<span class="st">"billboard.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>))
 billboard
 <span class="co">#> # A tibble: 317 x 81</span>
-<span class="co">#>     year         artist                   track  time date.entered   wk1</span>
-<span class="co">#>    <int>          <chr>                   <chr> <chr>        <chr> <int></span>
-<span class="co">#>  1  2000          2 Pac Baby Don't Cry (Keep...  4:22   2000-02-26    87</span>
-<span class="co">#>  2  2000        2Ge+her The Hardest Part Of ...  3:15   2000-09-02    91</span>
-<span class="co">#>  3  2000   3 Doors Down              Kryptonite  3:53   2000-04-08    81</span>
-<span class="co">#>  4  2000   3 Doors Down                   Loser  4:24   2000-10-21    76</span>
-<span class="co">#>  5  2000       504 Boyz           Wobble Wobble  3:35   2000-04-15    57</span>
-<span class="co">#>  6  2000           98^0 Give Me Just One Nig...  3:24   2000-08-19    51</span>
-<span class="co">#>  7  2000        A*Teens           Dancing Queen  3:44   2000-07-08    97</span>
-<span class="co">#>  8  2000        Aaliyah           I Don't Wanna  4:15   2000-01-29    84</span>
-<span class="co">#>  9  2000        Aaliyah               Try Again  4:03   2000-03-18    59</span>
-<span class="co">#> 10  2000 Adams, Yolanda           Open My Heart  5:30   2000-08-26    76</span>
-<span class="co">#> # ... with 307 more rows, and 75 more variables: wk2 <int>, wk3 <int>,</span>
-<span class="co">#> #   wk4 <int>, wk5 <int>, wk6 <int>, wk7 <int>, wk8 <int>, wk9 <int>,</span>
-<span class="co">#> #   wk10 <int>, wk11 <int>, wk12 <int>, wk13 <int>, wk14 <int>,</span>
-<span class="co">#> #   wk15 <int>, wk16 <int>, wk17 <int>, wk18 <int>, wk19 <int>,</span>
-<span class="co">#> #   wk20 <int>, wk21 <int>, wk22 <int>, wk23 <int>, wk24 <int>,</span>
-<span class="co">#> #   wk25 <int>, wk26 <int>, wk27 <int>, wk28 <int>, wk29 <int>,</span>
-<span class="co">#> #   wk30 <int>, wk31 <int>, wk32 <int>, wk33 <int>, wk34 <int>,</span>
-<span class="co">#> #   wk35 <int>, wk36 <int>, wk37 <int>, wk38 <int>, wk39 <int>,</span>
-<span class="co">#> #   wk40 <int>, wk41 <int>, wk42 <int>, wk43 <int>, wk44 <int>,</span>
-<span class="co">#> #   wk45 <int>, wk46 <int>, wk47 <int>, wk48 <int>, wk49 <int>,</span>
-<span class="co">#> #   wk50 <int>, wk51 <int>, wk52 <int>, wk53 <int>, wk54 <int>,</span>
-<span class="co">#> #   wk55 <int>, wk56 <int>, wk57 <int>, wk58 <int>, wk59 <int>,</span>
-<span class="co">#> #   wk60 <int>, wk61 <int>, wk62 <int>, wk63 <int>, wk64 <int>,</span>
-<span class="co">#> #   wk65 <int>, wk66 <lgl>, wk67 <lgl>, wk68 <lgl>, wk69 <lgl>,</span>
-<span class="co">#> #   wk70 <lgl>, wk71 <lgl>, wk72 <lgl>, wk73 <lgl>, wk74 <lgl>,</span>
-<span class="co">#> #   wk75 <lgl>, wk76 <lgl></span></code></pre>
+<span class="co">#>     year arti… track time  date…   wk1   wk2   wk3   wk4   wk5   wk6   wk7</span>
+<span class="co">#>    <int> <chr> <chr> <chr> <chr> <int> <int> <int> <int> <int> <int> <int></span>
+<span class="co">#>  1  2000 2 Pac Baby… 4:22  2000…    87    82    72    77    87    94    99</span>
+<span class="co">#>  2  2000 2Ge+… The … 3:15  2000…    91    87    92    NA    NA    NA    NA</span>
+<span class="co">#>  3  2000 3 Do… Kryp… 3:53  2000…    81    70    68    67    66    57    54</span>
+<span class="co">#>  4  2000 3 Do… Loser 4:24  2000…    76    76    72    69    67    65    55</span>
+<span class="co">#>  5  2000 504 … Wobb… 3:35  2000…    57    34    25    17    17    31    36</span>
+<span class="co">#>  6  2000 98^0  Give… 3:24  2000…    51    39    34    26    26    19     2</span>
+<span class="co">#>  7  2000 A*Te… Danc… 3:44  2000…    97    97    96    95   100    NA    NA</span>
+<span class="co">#>  8  2000 Aali… I Do… 4:15  2000…    84    62    51    41    38    35    35</span>
+<span class="co">#>  9  2000 Aali… Try … 4:03  2000…    59    53    38    28    21    18    16</span>
+<span class="co">#> 10  2000 Adam… Open… 5:30  2000…    76    76    74    69    68    67    61</span>
+<span class="co">#> # ... with 307 more rows, and 69 more variables: wk8 <int>, wk9 <int>,</span>
+<span class="co">#> #   wk10 <int>, wk11 <int>, wk12 <int>, wk13 <int>, wk14 <int>, wk15</span>
+<span class="co">#> #   <int>, wk16 <int>, wk17 <int>, wk18 <int>, wk19 <int>, wk20 <int>,</span>
+<span class="co">#> #   wk21 <int>, wk22 <int>, wk23 <int>, wk24 <int>, wk25 <int>, wk26</span>
+<span class="co">#> #   <int>, wk27 <int>, wk28 <int>, wk29 <int>, wk30 <int>, wk31 <int>,</span>
+<span class="co">#> #   wk32 <int>, wk33 <int>, wk34 <int>, wk35 <int>, wk36 <int>, wk37</span>
+<span class="co">#> #   <int>, wk38 <int>, wk39 <int>, wk40 <int>, wk41 <int>, wk42 <int>,</span>
+<span class="co">#> #   wk43 <int>, wk44 <int>, wk45 <int>, wk46 <int>, wk47 <int>, wk48</span>
+<span class="co">#> #   <int>, wk49 <int>, wk50 <int>, wk51 <int>, wk52 <int>, wk53 <int>,</span>
+<span class="co">#> #   wk54 <int>, wk55 <int>, wk56 <int>, wk57 <int>, wk58 <int>, wk59</span>
+<span class="co">#> #   <int>, wk60 <int>, wk61 <int>, wk62 <int>, wk63 <int>, wk64 <int>,</span>
+<span class="co">#> #   wk65 <int>, wk66 <lgl>, wk67 <lgl>, wk68 <lgl>, wk69 <lgl>, wk70</span>
+<span class="co">#> #   <lgl>, wk71 <lgl>, wk72 <lgl>, wk73 <lgl>, wk74 <lgl>, wk75 <lgl>,</span>
+<span class="co">#> #   wk76 <lgl></span></code></pre></div>
 <p>To tidy this dataset, we first gather together all the <code>wk</code> columns. The column names give the <code>week</code> and the values are the <code>rank</code>s:</p>
-<pre class="sourceCode r"><code class="sourceCode r">billboard2 <-<span class="st"> </span>billboard %>%<span class="st"> </span>
-<span class="st">  </span><span class="kw">gather</span>(week, rank, wk1:wk76, <span class="dt">na.rm =</span> <span class="ot">TRUE</span>)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">billboard2 <-<span class="st"> </span>billboard <span class="op">%>%</span><span class="st"> </span>
+<span class="st">  </span><span class="kw">gather</span>(week, rank, wk1<span class="op">:</span>wk76, <span class="dt">na.rm =</span> <span class="ot">TRUE</span>)
 billboard2
 <span class="co">#> # A tibble: 5,307 x 7</span>
-<span class="co">#>     year         artist                   track  time date.entered  week</span>
-<span class="co">#>  * <int>          <chr>                   <chr> <chr>        <chr> <chr></span>
-<span class="co">#>  1  2000          2 Pac Baby Don't Cry (Keep...  4:22   2000-02-26   wk1</span>
-<span class="co">#>  2  2000        2Ge+her The Hardest Part Of ...  3:15   2000-09-02   wk1</span>
-<span class="co">#>  3  2000   3 Doors Down              Kryptonite  3:53   2000-04-08   wk1</span>
-<span class="co">#>  4  2000   3 Doors Down                   Loser  4:24   2000-10-21   wk1</span>
-<span class="co">#>  5  2000       504 Boyz           Wobble Wobble  3:35   2000-04-15   wk1</span>
-<span class="co">#>  6  2000           98^0 Give Me Just One Nig...  3:24   2000-08-19   wk1</span>
-<span class="co">#>  7  2000        A*Teens           Dancing Queen  3:44   2000-07-08   wk1</span>
-<span class="co">#>  8  2000        Aaliyah           I Don't Wanna  4:15   2000-01-29   wk1</span>
-<span class="co">#>  9  2000        Aaliyah               Try Again  4:03   2000-03-18   wk1</span>
-<span class="co">#> 10  2000 Adams, Yolanda           Open My Heart  5:30   2000-08-26   wk1</span>
-<span class="co">#> # ... with 5,297 more rows, and 1 more variables: rank <int></span></code></pre>
+<span class="co">#>     year artist         track                   time  date.en… week   rank</span>
+<span class="co">#>  * <int> <chr>          <chr>                   <chr> <chr>    <chr> <int></span>
+<span class="co">#>  1  2000 2 Pac          Baby Don't Cry (Keep... 4:22  2000-02… wk1      87</span>
+<span class="co">#>  2  2000 2Ge+her        The Hardest Part Of ... 3:15  2000-09… wk1      91</span>
+<span class="co">#>  3  2000 3 Doors Down   Kryptonite              3:53  2000-04… wk1      81</span>
+<span class="co">#>  4  2000 3 Doors Down   Loser                   4:24  2000-10… wk1      76</span>
+<span class="co">#>  5  2000 504 Boyz       Wobble Wobble           3:35  2000-04… wk1      57</span>
+<span class="co">#>  6  2000 98^0           Give Me Just One Nig... 3:24  2000-08… wk1      51</span>
+<span class="co">#>  7  2000 A*Teens        Dancing Queen           3:44  2000-07… wk1      97</span>
+<span class="co">#>  8  2000 Aaliyah        I Don't Wanna           4:15  2000-01… wk1      84</span>
+<span class="co">#>  9  2000 Aaliyah        Try Again               4:03  2000-03… wk1      59</span>
+<span class="co">#> 10  2000 Adams, Yolanda Open My Heart           5:30  2000-08… wk1      76</span>
+<span class="co">#> # ... with 5,297 more rows</span></code></pre></div>
 <p>Here we use <code>na.rm</code> to drop any missing values from the gather columns. In this data, missing values represent weeks that the song wasn’t in the charts, so can be safely dropped.</p>
 <p>In this case it’s also nice to do a little cleaning, converting the week variable to a number, and figuring out the date corresponding to each week on the charts:</p>
-<pre class="sourceCode r"><code class="sourceCode r">billboard3 <-<span class="st"> </span>billboard2 %>%
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">billboard3 <-<span class="st"> </span>billboard2 <span class="op">%>%</span>
 <span class="st">  </span><span class="kw">mutate</span>(
     <span class="dt">week =</span> <span class="kw">extract_numeric</span>(week),
-    <span class="dt">date =</span> <span class="kw">as.Date</span>(date.entered) +<span class="st"> </span><span class="dv">7</span> *<span class="st"> </span>(week -<span class="st"> </span><span class="dv">1</span>)) %>%
-<span class="st">  </span><span class="kw">select</span>(-date.entered)
+    <span class="dt">date =</span> <span class="kw">as.Date</span>(date.entered) <span class="op">+</span><span class="st"> </span><span class="dv">7</span> <span class="op">*</span><span class="st"> </span>(week <span class="op">-</span><span class="st"> </span><span class="dv">1</span>)) <span class="op">%>%</span>
+<span class="st">  </span><span class="kw">select</span>(<span class="op">-</span>date.entered)
 <span class="co">#> extract_numeric() is deprecated: please use readr::parse_number() instead</span>
 billboard3
 <span class="co">#> # A tibble: 5,307 x 7</span>
-<span class="co">#>     year         artist                   track  time  week  rank</span>
-<span class="co">#>    <int>          <chr>                   <chr> <chr> <dbl> <int></span>
-<span class="co">#>  1  2000          2 Pac Baby Don't Cry (Keep...  4:22     1    87</span>
-<span class="co">#>  2  2000        2Ge+her The Hardest Part Of ...  3:15     1    91</span>
-<span class="co">#>  3  2000   3 Doors Down              Kryptonite  3:53     1    81</span>
-<span class="co">#>  4  2000   3 Doors Down                   Loser  4:24     1    76</span>
-<span class="co">#>  5  2000       504 Boyz           Wobble Wobble  3:35     1    57</span>
-<span class="co">#>  6  2000           98^0 Give Me Just One Nig...  3:24     1    51</span>
-<span class="co">#>  7  2000        A*Teens           Dancing Queen  3:44     1    97</span>
-<span class="co">#>  8  2000        Aaliyah           I Don't Wanna  4:15     1    84</span>
-<span class="co">#>  9  2000        Aaliyah               Try Again  4:03     1    59</span>
-<span class="co">#> 10  2000 Adams, Yolanda           Open My Heart  5:30     1    76</span>
-<span class="co">#> # ... with 5,297 more rows, and 1 more variables: date <date></span></code></pre>
+<span class="co">#>     year artist         track                 time   week  rank date      </span>
+<span class="co">#>    <int> <chr>          <chr>                 <chr> <dbl> <int> <date>    </span>
+<span class="co">#>  1  2000 2 Pac          Baby Don't Cry (Keep… 4:22   1.00    87 2000-02-26</span>
+<span class="co">#>  2  2000 2Ge+her        The Hardest Part Of … 3:15   1.00    91 2000-09-02</span>
+<span class="co">#>  3  2000 3 Doors Down   Kryptonite            3:53   1.00    81 2000-04-08</span>
+<span class="co">#>  4  2000 3 Doors Down   Loser                 4:24   1.00    76 2000-10-21</span>
+<span class="co">#>  5  2000 504 Boyz       Wobble Wobble         3:35   1.00    57 2000-04-15</span>
+<span class="co">#>  6  2000 98^0           Give Me Just One Nig… 3:24   1.00    51 2000-08-19</span>
+<span class="co">#>  7  2000 A*Teens        Dancing Queen         3:44   1.00    97 2000-07-08</span>
+<span class="co">#>  8  2000 Aaliyah        I Don't Wanna         4:15   1.00    84 2000-01-29</span>
+<span class="co">#>  9  2000 Aaliyah        Try Again             4:03   1.00    59 2000-03-18</span>
+<span class="co">#> 10  2000 Adams, Yolanda Open My Heart         5:30   1.00    76 2000-08-26</span>
+<span class="co">#> # ... with 5,297 more rows</span></code></pre></div>
 <p>Finally, it’s always a good idea to sort the data. We could do it by artist, track and week:</p>
-<pre class="sourceCode r"><code class="sourceCode r">billboard3 %>%<span class="st"> </span><span class="kw">arrange</span>(artist, track, week)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">billboard3 <span class="op">%>%</span><span class="st"> </span><span class="kw">arrange</span>(artist, track, week)
 <span class="co">#> # A tibble: 5,307 x 7</span>
-<span class="co">#>     year  artist                   track  time  week  rank       date</span>
-<span class="co">#>    <int>   <chr>                   <chr> <chr> <dbl> <int>     <date></span>
-<span class="co">#>  1  2000   2 Pac Baby Don't Cry (Keep...  4:22     1    87 2000-02-26</span>
-<span class="co">#>  2  2000   2 Pac Baby Don't Cry (Keep...  4:22     2    82 2000-03-04</span>
-<span class="co">#>  3  2000   2 Pac Baby Don't Cry (Keep...  4:22     3    72 2000-03-11</span>
-<span class="co">#>  4  2000   2 Pac Baby Don't Cry (Keep...  4:22     4    77 2000-03-18</span>
-<span class="co">#>  5  2000   2 Pac Baby Don't Cry (Keep...  4:22     5    87 2000-03-25</span>
-<span class="co">#>  6  2000   2 Pac Baby Don't Cry (Keep...  4:22     6    94 2000-04-01</span>
-<span class="co">#>  7  2000   2 Pac Baby Don't Cry (Keep...  4:22     7    99 2000-04-08</span>
-<span class="co">#>  8  2000 2Ge+her The Hardest Part Of ...  3:15     1    91 2000-09-02</span>
-<span class="co">#>  9  2000 2Ge+her The Hardest Part Of ...  3:15     2    87 2000-09-09</span>
-<span class="co">#> 10  2000 2Ge+her The Hardest Part Of ...  3:15     3    92 2000-09-16</span>
-<span class="co">#> # ... with 5,297 more rows</span></code></pre>
+<span class="co">#>     year artist  track                   time   week  rank date      </span>
+<span class="co">#>    <int> <chr>   <chr>                   <chr> <dbl> <int> <date>    </span>
+<span class="co">#>  1  2000 2 Pac   Baby Don't Cry (Keep... 4:22   1.00    87 2000-02-26</span>
+<span class="co">#>  2  2000 2 Pac   Baby Don't Cry (Keep... 4:22   2.00    82 2000-03-04</span>
+<span class="co">#>  3  2000 2 Pac   Baby Don't Cry (Keep... 4:22   3.00    72 2000-03-11</span>
+<span class="co">#>  4  2000 2 Pac   Baby Don't Cry (Keep... 4:22   4.00    77 2000-03-18</span>
+<span class="co">#>  5  2000 2 Pac   Baby Don't Cry (Keep... 4:22   5.00    87 2000-03-25</span>
+<span class="co">#>  6  2000 2 Pac   Baby Don't Cry (Keep... 4:22   6.00    94 2000-04-01</span>
+<span class="co">#>  7  2000 2 Pac   Baby Don't Cry (Keep... 4:22   7.00    99 2000-04-08</span>
+<span class="co">#>  8  2000 2Ge+her The Hardest Part Of ... 3:15   1.00    91 2000-09-02</span>
+<span class="co">#>  9  2000 2Ge+her The Hardest Part Of ... 3:15   2.00    87 2000-09-09</span>
+<span class="co">#> 10  2000 2Ge+her The Hardest Part Of ... 3:15   3.00    92 2000-09-16</span>
+<span class="co">#> # ... with 5,297 more rows</span></code></pre></div>
 <p>Or by date and rank:</p>
-<pre class="sourceCode r"><code class="sourceCode r">billboard3 %>%<span class="st"> </span><span class="kw">arrange</span>(date, rank)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">billboard3 <span class="op">%>%</span><span class="st"> </span><span class="kw">arrange</span>(date, rank)
 <span class="co">#> # A tibble: 5,307 x 7</span>
-<span class="co">#>     year   artist  track  time  week  rank       date</span>
-<span class="co">#>    <int>    <chr>  <chr> <chr> <dbl> <int>     <date></span>
-<span class="co">#>  1  2000 Lonestar Amazed  4:25     1    81 1999-06-05</span>
-<span class="co">#>  2  2000 Lonestar Amazed  4:25     2    54 1999-06-12</span>
-<span class="co">#>  3  2000 Lonestar Amazed  4:25     3    44 1999-06-19</span>
-<span class="co">#>  4  2000 Lonestar Amazed  4:25     4    39 1999-06-26</span>
-<span class="co">#>  5  2000 Lonestar Amazed  4:25     5    38 1999-07-03</span>
-<span class="co">#>  6  2000 Lonestar Amazed  4:25     6    33 1999-07-10</span>
-<span class="co">#>  7  2000 Lonestar Amazed  4:25     7    29 1999-07-17</span>
-<span class="co">#>  8  2000    Amber Sexual  4:38     1    99 1999-07-17</span>
-<span class="co">#>  9  2000 Lonestar Amazed  4:25     8    29 1999-07-24</span>
-<span class="co">#> 10  2000    Amber Sexual  4:38     2    99 1999-07-24</span>
-<span class="co">#> # ... with 5,297 more rows</span></code></pre>
+<span class="co">#>     year artist   track  time   week  rank date      </span>
+<span class="co">#>    <int> <chr>    <chr>  <chr> <dbl> <int> <date>    </span>
+<span class="co">#>  1  2000 Lonestar Amazed 4:25   1.00    81 1999-06-05</span>
+<span class="co">#>  2  2000 Lonestar Amazed 4:25   2.00    54 1999-06-12</span>
+<span class="co">#>  3  2000 Lonestar Amazed 4:25   3.00    44 1999-06-19</span>
+<span class="co">#>  4  2000 Lonestar Amazed 4:25   4.00    39 1999-06-26</span>
+<span class="co">#>  5  2000 Lonestar Amazed 4:25   5.00    38 1999-07-03</span>
+<span class="co">#>  6  2000 Lonestar Amazed 4:25   6.00    33 1999-07-10</span>
+<span class="co">#>  7  2000 Lonestar Amazed 4:25   7.00    29 1999-07-17</span>
+<span class="co">#>  8  2000 Amber    Sexual 4:38   1.00    99 1999-07-17</span>
+<span class="co">#>  9  2000 Lonestar Amazed 4:25   8.00    29 1999-07-24</span>
+<span class="co">#> 10  2000 Amber    Sexual 4:38   2.00    99 1999-07-24</span>
+<span class="co">#> # ... with 5,297 more rows</span></code></pre></div>
 </div>
 <div id="multiple-variables-stored-in-one-column" class="section level2">
 <h2>Multiple variables stored in one column</h2>
 <p>After gathering columns, the key column is sometimes a combination of multiple underlying variable names. This happens in the <code>tb</code> (tuberculosis) dataset, shown below. This dataset comes from the World Health Organisation, and records the counts of confirmed tuberculosis cases by <code>country</code>, <code>year</code>, and demographic group. The demographic groups are broken down by <code>sex</code> (m, f) and <code>age</code> (0-14, 15-25, 25-34, 35-44, 45-54, 55-64, unkn [...]
-<pre class="sourceCode r"><code class="sourceCode r">tb <-<span class="st"> </span><span class="kw">tbl_df</span>(<span class="kw">read.csv</span>(<span class="st">"tb.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>))
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tb <-<span class="st"> </span><span class="kw">tbl_df</span>(<span class="kw">read.csv</span>(<span class="st">"tb.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>))
 tb
 <span class="co">#> # A tibble: 5,769 x 22</span>
-<span class="co">#>     iso2  year   m04  m514  m014 m1524 m2534 m3544 m4554 m5564   m65    mu</span>
+<span class="co">#>    iso2   year   m04  m514  m014 m1524 m2534 m3544 m4554 m5564   m65    mu</span>
 <span class="co">#>    <chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int></span>
-<span class="co">#>  1    AD  1989    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#>  2    AD  1990    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#>  3    AD  1991    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#>  4    AD  1992    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#>  5    AD  1993    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#>  6    AD  1994    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#>  7    AD  1996    NA    NA     0     0     0     4     1     0     0    NA</span>
-<span class="co">#>  8    AD  1997    NA    NA     0     0     1     2     2     1     6    NA</span>
-<span class="co">#>  9    AD  1998    NA    NA     0     0     0     1     0     0     0    NA</span>
-<span class="co">#> 10    AD  1999    NA    NA     0     0     0     1     1     0     0    NA</span>
+<span class="co">#>  1 AD     1989    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
+<span class="co">#>  2 AD     1990    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
+<span class="co">#>  3 AD     1991    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
+<span class="co">#>  4 AD     1992    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
+<span class="co">#>  5 AD     1993    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
+<span class="co">#>  6 AD     1994    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA</span>
+<span class="co">#>  7 AD     1996    NA    NA     0     0     0     4     1     0     0    NA</span>
+<span class="co">#>  8 AD     1997    NA    NA     0     0     1     2     2     1     6    NA</span>
+<span class="co">#>  9 AD     1998    NA    NA     0     0     0     1     0     0     0    NA</span>
+<span class="co">#> 10 AD     1999    NA    NA     0     0     0     1     1     0     0    NA</span>
 <span class="co">#> # ... with 5,759 more rows, and 10 more variables: f04 <int>, f514 <int>,</span>
-<span class="co">#> #   f014 <int>, f1524 <int>, f2534 <int>, f3544 <int>, f4554 <int>,</span>
-<span class="co">#> #   f5564 <int>, f65 <int>, fu <int></span></code></pre>
+<span class="co">#> #   f014 <int>, f1524 <int>, f2534 <int>, f3544 <int>, f4554 <int>, f5564</span>
+<span class="co">#> #   <int>, f65 <int>, fu <int></span></code></pre></div>
 <p>First we gather up the non-variable columns:</p>
-<pre class="sourceCode r"><code class="sourceCode r">tb2 <-<span class="st"> </span>tb %>%<span class="st"> </span>
-<span class="st">  </span><span class="kw">gather</span>(demo, n, -iso2, -year, <span class="dt">na.rm =</span> <span class="ot">TRUE</span>)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tb2 <-<span class="st"> </span>tb <span class="op">%>%</span><span class="st"> </span>
+<span class="st">  </span><span class="kw">gather</span>(demo, n, <span class="op">-</span>iso2, <span class="op">-</span>year, <span class="dt">na.rm =</span> <span class="ot">TRUE</span>)
 tb2
 <span class="co">#> # A tibble: 35,750 x 4</span>
-<span class="co">#>     iso2  year  demo     n</span>
+<span class="co">#>    iso2   year demo      n</span>
 <span class="co">#>  * <chr> <int> <chr> <int></span>
-<span class="co">#>  1    AD  2005   m04     0</span>
-<span class="co">#>  2    AD  2006   m04     0</span>
-<span class="co">#>  3    AD  2008   m04     0</span>
-<span class="co">#>  4    AE  2006   m04     0</span>
-<span class="co">#>  5    AE  2007   m04     0</span>
-<span class="co">#>  6    AE  2008   m04     0</span>
-<span class="co">#>  7    AG  2007   m04     0</span>
-<span class="co">#>  8    AL  2005   m04     0</span>
-<span class="co">#>  9    AL  2006   m04     1</span>
-<span class="co">#> 10    AL  2007   m04     0</span>
-<span class="co">#> # ... with 35,740 more rows</span></code></pre>
+<span class="co">#>  1 AD     2005 m04       0</span>
+<span class="co">#>  2 AD     2006 m04       0</span>
+<span class="co">#>  3 AD     2008 m04       0</span>
+<span class="co">#>  4 AE     2006 m04       0</span>
+<span class="co">#>  5 AE     2007 m04       0</span>
+<span class="co">#>  6 AE     2008 m04       0</span>
+<span class="co">#>  7 AG     2007 m04       0</span>
+<span class="co">#>  8 AL     2005 m04       0</span>
+<span class="co">#>  9 AL     2006 m04       1</span>
+<span class="co">#> 10 AL     2007 m04       0</span>
+<span class="co">#> # ... with 35,740 more rows</span></code></pre></div>
 <p>Column headers in this format are often separated by a non-alphanumeric character (e.g. <code>.</code>, <code>-</code>, <code>_</code>, <code>:</code>), or have a fixed width format, like in this dataset. <code>separate()</code> makes it easy to split a compound variables into individual variables. You can either pass it a regular expression to split on (the default is to split on non-alphanumeric columns), or a vector of character positions. In this case we want to split after the fi [...]
-<pre class="sourceCode r"><code class="sourceCode r">tb3 <-<span class="st"> </span>tb2 %>%<span class="st"> </span>
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tb3 <-<span class="st"> </span>tb2 <span class="op">%>%</span><span class="st"> </span>
 <span class="st">  </span><span class="kw">separate</span>(demo, <span class="kw">c</span>(<span class="st">"sex"</span>, <span class="st">"age"</span>), <span class="dv">1</span>)
 tb3
 <span class="co">#> # A tibble: 35,750 x 5</span>
-<span class="co">#>     iso2  year   sex   age     n</span>
+<span class="co">#>    iso2   year sex   age       n</span>
 <span class="co">#>  * <chr> <int> <chr> <chr> <int></span>
-<span class="co">#>  1    AD  2005     m    04     0</span>
-<span class="co">#>  2    AD  2006     m    04     0</span>
-<span class="co">#>  3    AD  2008     m    04     0</span>
-<span class="co">#>  4    AE  2006     m    04     0</span>
-<span class="co">#>  5    AE  2007     m    04     0</span>
-<span class="co">#>  6    AE  2008     m    04     0</span>
-<span class="co">#>  7    AG  2007     m    04     0</span>
-<span class="co">#>  8    AL  2005     m    04     0</span>
-<span class="co">#>  9    AL  2006     m    04     1</span>
-<span class="co">#> 10    AL  2007     m    04     0</span>
-<span class="co">#> # ... with 35,740 more rows</span></code></pre>
+<span class="co">#>  1 AD     2005 m     04        0</span>
+<span class="co">#>  2 AD     2006 m     04        0</span>
+<span class="co">#>  3 AD     2008 m     04        0</span>
+<span class="co">#>  4 AE     2006 m     04        0</span>
+<span class="co">#>  5 AE     2007 m     04        0</span>
+<span class="co">#>  6 AE     2008 m     04        0</span>
+<span class="co">#>  7 AG     2007 m     04        0</span>
+<span class="co">#>  8 AL     2005 m     04        0</span>
+<span class="co">#>  9 AL     2006 m     04        1</span>
+<span class="co">#> 10 AL     2007 m     04        0</span>
+<span class="co">#> # ... with 35,740 more rows</span></code></pre></div>
 <p>Storing the values in this form resolves a problem in the original data. We want to compare rates, not counts, which means we need to know the population. In the original format, there is no easy way to add a population variable. It has to be stored in a separate table, which makes it hard to correctly match populations to counts. In tidy form, adding variables for population and rate is easy because they’re just additional columns.</p>
 </div>
 <div id="variables-are-stored-in-both-rows-and-columns" class="section level2">
 <h2>Variables are stored in both rows and columns</h2>
 <p>The most complicated form of messy data occurs when variables are stored in both rows and columns. The code below loads daily weather data from the Global Historical Climatology Network for one weather station (MX17004) in Mexico for five months in 2010.</p>
-<pre class="sourceCode r"><code class="sourceCode r">weather <-<span class="st"> </span><span class="kw">tbl_df</span>(<span class="kw">read.csv</span>(<span class="st">"weather.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>))
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">weather <-<span class="st"> </span><span class="kw">tbl_df</span>(<span class="kw">read.csv</span>(<span class="st">"weather.csv"</span>, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>))
 weather
 <span class="co">#> # A tibble: 22 x 35</span>
-<span class="co">#>         id  year month element    d1    d2    d3    d4    d5    d6    d7</span>
-<span class="co">#>      <chr> <int> <int>   <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl></span>
-<span class="co">#>  1 MX17004  2010     1    tmax    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#>  2 MX17004  2010     1    tmin    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#>  3 MX17004  2010     2    tmax    NA  27.3  24.1    NA    NA    NA    NA</span>
-<span class="co">#>  4 MX17004  2010     2    tmin    NA  14.4  14.4    NA    NA    NA    NA</span>
-<span class="co">#>  5 MX17004  2010     3    tmax    NA    NA    NA    NA  32.1    NA    NA</span>
-<span class="co">#>  6 MX17004  2010     3    tmin    NA    NA    NA    NA  14.2    NA    NA</span>
-<span class="co">#>  7 MX17004  2010     4    tmax    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#>  8 MX17004  2010     4    tmin    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#>  9 MX17004  2010     5    tmax    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#> 10 MX17004  2010     5    tmin    NA    NA    NA    NA    NA    NA    NA</span>
-<span class="co">#> # ... with 12 more rows, and 24 more variables: d8 <dbl>, d9 <lgl>,</span>
-<span class="co">#> #   d10 <dbl>, d11 <dbl>, d12 <lgl>, d13 <dbl>, d14 <dbl>, d15 <dbl>,</span>
-<span class="co">#> #   d16 <dbl>, d17 <dbl>, d18 <lgl>, d19 <lgl>, d20 <lgl>, d21 <lgl>,</span>
-<span class="co">#> #   d22 <lgl>, d23 <dbl>, d24 <lgl>, d25 <dbl>, d26 <dbl>, d27 <dbl>,</span>
-<span class="co">#> #   d28 <dbl>, d29 <dbl>, d30 <dbl>, d31 <dbl></span></code></pre>
+<span class="co">#>    id     year month elem…    d1    d2    d3    d4    d5    d6    d7    d8</span>
+<span class="co">#>    <chr> <int> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl></span>
+<span class="co">#>  1 MX17…  2010     1 tmax     NA  NA    NA      NA  NA      NA    NA    NA</span>
+<span class="co">#>  2 MX17…  2010     1 tmin     NA  NA    NA      NA  NA      NA    NA    NA</span>
+<span class="co">#>  3 MX17…  2010     2 tmax     NA  27.3  24.1    NA  NA      NA    NA    NA</span>
+<span class="co">#>  4 MX17…  2010     2 tmin     NA  14.4  14.4    NA  NA      NA    NA    NA</span>
+<span class="co">#>  5 MX17…  2010     3 tmax     NA  NA    NA      NA  32.1    NA    NA    NA</span>
+<span class="co">#>  6 MX17…  2010     3 tmin     NA  NA    NA      NA  14.2    NA    NA    NA</span>
+<span class="co">#>  7 MX17…  2010     4 tmax     NA  NA    NA      NA  NA      NA    NA    NA</span>
+<span class="co">#>  8 MX17…  2010     4 tmin     NA  NA    NA      NA  NA      NA    NA    NA</span>
+<span class="co">#>  9 MX17…  2010     5 tmax     NA  NA    NA      NA  NA      NA    NA    NA</span>
+<span class="co">#> 10 MX17…  2010     5 tmin     NA  NA    NA      NA  NA      NA    NA    NA</span>
+<span class="co">#> # ... with 12 more rows, and 23 more variables: d9 <lgl>, d10 <dbl>, d11</span>
+<span class="co">#> #   <dbl>, d12 <lgl>, d13 <dbl>, d14 <dbl>, d15 <dbl>, d16 <dbl>, d17</span>
+<span class="co">#> #   <dbl>, d18 <lgl>, d19 <lgl>, d20 <lgl>, d21 <lgl>, d22 <lgl>, d23</span>
+<span class="co">#> #   <dbl>, d24 <lgl>, d25 <dbl>, d26 <dbl>, d27 <dbl>, d28 <dbl>, d29</span>
+<span class="co">#> #   <dbl>, d30 <dbl>, d31 <dbl></span></code></pre></div>
 <p>It has variables in individual columns (<code>id</code>, <code>year</code>, <code>month</code>), spread across columns (<code>day</code>, d1-d31) and across rows (<code>tmin</code>, <code>tmax</code>) (minimum and maximum temperature). Months with fewer than 31 days have structural missing values for the last day(s) of the month.</p>
 <p>To tidy this dataset we first gather the day columns:</p>
-<pre class="sourceCode r"><code class="sourceCode r">weather2 <-<span class="st"> </span>weather %>%
-<span class="st">  </span><span class="kw">gather</span>(day, value, d1:d31, <span class="dt">na.rm =</span> <span class="ot">TRUE</span>)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">weather2 <-<span class="st"> </span>weather <span class="op">%>%</span>
+<span class="st">  </span><span class="kw">gather</span>(day, value, d1<span class="op">:</span>d31, <span class="dt">na.rm =</span> <span class="ot">TRUE</span>)
 weather2
 <span class="co">#> # A tibble: 66 x 6</span>
-<span class="co">#>         id  year month element   day value</span>
-<span class="co">#>  *   <chr> <int> <int>   <chr> <chr> <dbl></span>
-<span class="co">#>  1 MX17004  2010    12    tmax    d1  29.9</span>
-<span class="co">#>  2 MX17004  2010    12    tmin    d1  13.8</span>
-<span class="co">#>  3 MX17004  2010     2    tmax    d2  27.3</span>
-<span class="co">#>  4 MX17004  2010     2    tmin    d2  14.4</span>
-<span class="co">#>  5 MX17004  2010    11    tmax    d2  31.3</span>
-<span class="co">#>  6 MX17004  2010    11    tmin    d2  16.3</span>
-<span class="co">#>  7 MX17004  2010     2    tmax    d3  24.1</span>
-<span class="co">#>  8 MX17004  2010     2    tmin    d3  14.4</span>
-<span class="co">#>  9 MX17004  2010     7    tmax    d3  28.6</span>
-<span class="co">#> 10 MX17004  2010     7    tmin    d3  17.5</span>
-<span class="co">#> # ... with 56 more rows</span></code></pre>
+<span class="co">#>    id       year month element day   value</span>
+<span class="co">#>  * <chr>   <int> <int> <chr>   <chr> <dbl></span>
+<span class="co">#>  1 MX17004  2010    12 tmax    d1     29.9</span>
+<span class="co">#>  2 MX17004  2010    12 tmin    d1     13.8</span>
+<span class="co">#>  3 MX17004  2010     2 tmax    d2     27.3</span>
+<span class="co">#>  4 MX17004  2010     2 tmin    d2     14.4</span>
+<span class="co">#>  5 MX17004  2010    11 tmax    d2     31.3</span>
+<span class="co">#>  6 MX17004  2010    11 tmin    d2     16.3</span>
+<span class="co">#>  7 MX17004  2010     2 tmax    d3     24.1</span>
+<span class="co">#>  8 MX17004  2010     2 tmin    d3     14.4</span>
+<span class="co">#>  9 MX17004  2010     7 tmax    d3     28.6</span>
+<span class="co">#> 10 MX17004  2010     7 tmin    d3     17.5</span>
+<span class="co">#> # ... with 56 more rows</span></code></pre></div>
 <p>For presentation, I’ve dropped the missing values, making them implicit rather than explicit. This is ok because we know how many days are in each month and can easily reconstruct the explicit missing values.</p>
 <p>We’ll also do a little cleaning:</p>
-<pre class="sourceCode r"><code class="sourceCode r">weather3 <-<span class="st"> </span>weather2 %>%<span class="st"> </span>
-<span class="st">  </span><span class="kw">mutate</span>(<span class="dt">day =</span> <span class="kw">extract_numeric</span>(day)) %>%
-<span class="st">  </span><span class="kw">select</span>(id, year, month, day, element, value) %>%
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">weather3 <-<span class="st"> </span>weather2 <span class="op">%>%</span><span class="st"> </span>
+<span class="st">  </span><span class="kw">mutate</span>(<span class="dt">day =</span> <span class="kw">extract_numeric</span>(day)) <span class="op">%>%</span>
+<span class="st">  </span><span class="kw">select</span>(id, year, month, day, element, value) <span class="op">%>%</span>
 <span class="st">  </span><span class="kw">arrange</span>(id, year, month, day)
 <span class="co">#> extract_numeric() is deprecated: please use readr::parse_number() instead</span>
 weather3
 <span class="co">#> # A tibble: 66 x 6</span>
-<span class="co">#>         id  year month   day element value</span>
-<span class="co">#>      <chr> <int> <int> <dbl>   <chr> <dbl></span>
-<span class="co">#>  1 MX17004  2010     1    30    tmax  27.8</span>
-<span class="co">#>  2 MX17004  2010     1    30    tmin  14.5</span>
-<span class="co">#>  3 MX17004  2010     2     2    tmax  27.3</span>
-<span class="co">#>  4 MX17004  2010     2     2    tmin  14.4</span>
-<span class="co">#>  5 MX17004  2010     2     3    tmax  24.1</span>
-<span class="co">#>  6 MX17004  2010     2     3    tmin  14.4</span>
-<span class="co">#>  7 MX17004  2010     2    11    tmax  29.7</span>
-<span class="co">#>  8 MX17004  2010     2    11    tmin  13.4</span>
-<span class="co">#>  9 MX17004  2010     2    23    tmax  29.9</span>
-<span class="co">#> 10 MX17004  2010     2    23    tmin  10.7</span>
-<span class="co">#> # ... with 56 more rows</span></code></pre>
+<span class="co">#>    id       year month   day element value</span>
+<span class="co">#>    <chr>   <int> <int> <dbl> <chr>   <dbl></span>
+<span class="co">#>  1 MX17004  2010     1 30.0  tmax     27.8</span>
+<span class="co">#>  2 MX17004  2010     1 30.0  tmin     14.5</span>
+<span class="co">#>  3 MX17004  2010     2  2.00 tmax     27.3</span>
+<span class="co">#>  4 MX17004  2010     2  2.00 tmin     14.4</span>
+<span class="co">#>  5 MX17004  2010     2  3.00 tmax     24.1</span>
+<span class="co">#>  6 MX17004  2010     2  3.00 tmin     14.4</span>
+<span class="co">#>  7 MX17004  2010     2 11.0  tmax     29.7</span>
+<span class="co">#>  8 MX17004  2010     2 11.0  tmin     13.4</span>
+<span class="co">#>  9 MX17004  2010     2 23.0  tmax     29.9</span>
+<span class="co">#> 10 MX17004  2010     2 23.0  tmin     10.7</span>
+<span class="co">#> # ... with 56 more rows</span></code></pre></div>
 <p>This dataset is mostly tidy, but the <code>element</code> column is not a variable; it stores the names of variables. (Not shown in this example are the other meteorological variables <code>prcp</code> (precipitation) and <code>snow</code> (snowfall)). Fixing this requires the spread operation. This performs the inverse of gathering by spreading the <code>element</code> and <code>value</code> columns back out into the columns:</p>
-<pre class="sourceCode r"><code class="sourceCode r">weather3 %>%<span class="st"> </span><span class="kw">spread</span>(element, value)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">weather3 <span class="op">%>%</span><span class="st"> </span><span class="kw">spread</span>(element, value)
 <span class="co">#> # A tibble: 33 x 6</span>
-<span class="co">#>         id  year month   day  tmax  tmin</span>
-<span class="co">#>  *   <chr> <int> <int> <dbl> <dbl> <dbl></span>
-<span class="co">#>  1 MX17004  2010     1    30  27.8  14.5</span>
-<span class="co">#>  2 MX17004  2010     2     2  27.3  14.4</span>
-<span class="co">#>  3 MX17004  2010     2     3  24.1  14.4</span>
-<span class="co">#>  4 MX17004  2010     2    11  29.7  13.4</span>
-<span class="co">#>  5 MX17004  2010     2    23  29.9  10.7</span>
-<span class="co">#>  6 MX17004  2010     3     5  32.1  14.2</span>
-<span class="co">#>  7 MX17004  2010     3    10  34.5  16.8</span>
-<span class="co">#>  8 MX17004  2010     3    16  31.1  17.6</span>
-<span class="co">#>  9 MX17004  2010     4    27  36.3  16.7</span>
-<span class="co">#> 10 MX17004  2010     5    27  33.2  18.2</span>
-<span class="co">#> # ... with 23 more rows</span></code></pre>
+<span class="co">#>    id       year month   day  tmax  tmin</span>
+<span class="co">#>  * <chr>   <int> <int> <dbl> <dbl> <dbl></span>
+<span class="co">#>  1 MX17004  2010     1 30.0   27.8  14.5</span>
+<span class="co">#>  2 MX17004  2010     2  2.00  27.3  14.4</span>
+<span class="co">#>  3 MX17004  2010     2  3.00  24.1  14.4</span>
+<span class="co">#>  4 MX17004  2010     2 11.0   29.7  13.4</span>
+<span class="co">#>  5 MX17004  2010     2 23.0   29.9  10.7</span>
+<span class="co">#>  6 MX17004  2010     3  5.00  32.1  14.2</span>
+<span class="co">#>  7 MX17004  2010     3 10.0   34.5  16.8</span>
+<span class="co">#>  8 MX17004  2010     3 16.0   31.1  17.6</span>
+<span class="co">#>  9 MX17004  2010     4 27.0   36.3  16.7</span>
+<span class="co">#> 10 MX17004  2010     5 27.0   33.2  18.2</span>
+<span class="co">#> # ... with 23 more rows</span></code></pre></div>
 <p>This form is tidy: there’s one variable in each column, and each row represents one day.</p>
 </div>
 <div id="multiple-types" class="section level2">
@@ -426,45 +441,45 @@ weather3
 <p>Datasets often involve values collected at multiple levels, on different types of observational units. During tidying, each type of observational unit should be stored in its own table. This is closely related to the idea of database normalisation, where each fact is expressed in only one place. It’s important because otherwise inconsistencies can arise.</p>
 <p>The billboard dataset actually contains observations on two types of observational units: the song and its rank in each week. This manifests itself through the duplication of facts about the song: <code>artist</code>, <code>year</code> and <code>time</code> are repeated many times.</p>
 <p>This dataset needs to be broken down into two pieces: a song dataset which stores <code>artist</code>, <code>song name</code> and <code>time</code>, and a ranking dataset which gives the <code>rank</code> of the <code>song</code> in each <code>week</code>. We first extract a <code>song</code> dataset:</p>
-<pre class="sourceCode r"><code class="sourceCode r">song <-<span class="st"> </span>billboard3 %>%<span class="st"> </span>
-<span class="st">  </span><span class="kw">select</span>(artist, track, year, time) %>%
-<span class="st">  </span><span class="kw">unique</span>() %>%
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">song <-<span class="st"> </span>billboard3 <span class="op">%>%</span><span class="st"> </span>
+<span class="st">  </span><span class="kw">select</span>(artist, track, year, time) <span class="op">%>%</span>
+<span class="st">  </span><span class="kw">unique</span>() <span class="op">%>%</span>
 <span class="st">  </span><span class="kw">mutate</span>(<span class="dt">song_id =</span> <span class="kw">row_number</span>())
 song
 <span class="co">#> # A tibble: 317 x 5</span>
-<span class="co">#>            artist                   track  year  time song_id</span>
-<span class="co">#>             <chr>                   <chr> <int> <chr>   <int></span>
-<span class="co">#>  1          2 Pac Baby Don't Cry (Keep...  2000  4:22       1</span>
-<span class="co">#>  2        2Ge+her The Hardest Part Of ...  2000  3:15       2</span>
-<span class="co">#>  3   3 Doors Down              Kryptonite  2000  3:53       3</span>
-<span class="co">#>  4   3 Doors Down                   Loser  2000  4:24       4</span>
-<span class="co">#>  5       504 Boyz           Wobble Wobble  2000  3:35       5</span>
-<span class="co">#>  6           98^0 Give Me Just One Nig...  2000  3:24       6</span>
-<span class="co">#>  7        A*Teens           Dancing Queen  2000  3:44       7</span>
-<span class="co">#>  8        Aaliyah           I Don't Wanna  2000  4:15       8</span>
-<span class="co">#>  9        Aaliyah               Try Again  2000  4:03       9</span>
-<span class="co">#> 10 Adams, Yolanda           Open My Heart  2000  5:30      10</span>
-<span class="co">#> # ... with 307 more rows</span></code></pre>
+<span class="co">#>    artist         track                    year time  song_id</span>
+<span class="co">#>    <chr>          <chr>                   <int> <chr>   <int></span>
+<span class="co">#>  1 2 Pac          Baby Don't Cry (Keep...  2000 4:22        1</span>
+<span class="co">#>  2 2Ge+her        The Hardest Part Of ...  2000 3:15        2</span>
+<span class="co">#>  3 3 Doors Down   Kryptonite               2000 3:53        3</span>
+<span class="co">#>  4 3 Doors Down   Loser                    2000 4:24        4</span>
+<span class="co">#>  5 504 Boyz       Wobble Wobble            2000 3:35        5</span>
+<span class="co">#>  6 98^0           Give Me Just One Nig...  2000 3:24        6</span>
+<span class="co">#>  7 A*Teens        Dancing Queen            2000 3:44        7</span>
+<span class="co">#>  8 Aaliyah        I Don't Wanna            2000 4:15        8</span>
+<span class="co">#>  9 Aaliyah        Try Again                2000 4:03        9</span>
+<span class="co">#> 10 Adams, Yolanda Open My Heart            2000 5:30       10</span>
+<span class="co">#> # ... with 307 more rows</span></code></pre></div>
 <p>Then use that to make a <code>rank</code> dataset by replacing repeated song facts with a pointer to song details (a unique song id):</p>
-<pre class="sourceCode r"><code class="sourceCode r">rank <-<span class="st"> </span>billboard3 %>%
-<span class="st">  </span><span class="kw">left_join</span>(song, <span class="kw">c</span>(<span class="st">"artist"</span>, <span class="st">"track"</span>, <span class="st">"year"</span>, <span class="st">"time"</span>)) %>%
-<span class="st">  </span><span class="kw">select</span>(song_id, date, week, rank) %>%
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">rank <-<span class="st"> </span>billboard3 <span class="op">%>%</span>
+<span class="st">  </span><span class="kw">left_join</span>(song, <span class="kw">c</span>(<span class="st">"artist"</span>, <span class="st">"track"</span>, <span class="st">"year"</span>, <span class="st">"time"</span>)) <span class="op">%>%</span>
+<span class="st">  </span><span class="kw">select</span>(song_id, date, week, rank) <span class="op">%>%</span>
 <span class="st">  </span><span class="kw">arrange</span>(song_id, date)
 rank
 <span class="co">#> # A tibble: 5,307 x 4</span>
-<span class="co">#>    song_id       date  week  rank</span>
-<span class="co">#>      <int>     <date> <dbl> <int></span>
-<span class="co">#>  1       1 2000-02-26     1    87</span>
-<span class="co">#>  2       1 2000-03-04     2    82</span>
-<span class="co">#>  3       1 2000-03-11     3    72</span>
-<span class="co">#>  4       1 2000-03-18     4    77</span>
-<span class="co">#>  5       1 2000-03-25     5    87</span>
-<span class="co">#>  6       1 2000-04-01     6    94</span>
-<span class="co">#>  7       1 2000-04-08     7    99</span>
-<span class="co">#>  8       2 2000-09-02     1    91</span>
-<span class="co">#>  9       2 2000-09-09     2    87</span>
-<span class="co">#> 10       2 2000-09-16     3    92</span>
-<span class="co">#> # ... with 5,297 more rows</span></code></pre>
+<span class="co">#>    song_id date        week  rank</span>
+<span class="co">#>      <int> <date>     <dbl> <int></span>
+<span class="co">#>  1       1 2000-02-26  1.00    87</span>
+<span class="co">#>  2       1 2000-03-04  2.00    82</span>
+<span class="co">#>  3       1 2000-03-11  3.00    72</span>
+<span class="co">#>  4       1 2000-03-18  4.00    77</span>
+<span class="co">#>  5       1 2000-03-25  5.00    87</span>
+<span class="co">#>  6       1 2000-04-01  6.00    94</span>
+<span class="co">#>  7       1 2000-04-08  7.00    99</span>
+<span class="co">#>  8       2 2000-09-02  1.00    91</span>
+<span class="co">#>  9       2 2000-09-09  2.00    87</span>
+<span class="co">#> 10       2 2000-09-16  3.00    92</span>
+<span class="co">#> # ... with 5,297 more rows</span></code></pre></div>
 <p>You could also imagine a <code>week</code> dataset which would record background information about the week, maybe the total number of songs sold or similar “demographic” information.</p>
 <p>Normalisation is useful for tidying and eliminating inconsistencies. However, there are few data analysis tools that work directly with relational data, so analysis usually also requires denormalisation or the merging the datasets back into one table.</p>
 </div>
@@ -477,10 +492,10 @@ rank
 <li><p>Combine all tables into a single table.</p></li>
 </ol>
 <p>Plyr makes this straightforward in R. The following code generates a vector of file names in a directory (<code>data/</code>) which match a regular expression (ends in <code>.csv</code>). Next we name each element of the vector with the name of the file. We do this because will preserve the names in the following step, ensuring that each row in the final data frame is labeled with its source. Finally, <code>ldply()</code> loops over each path, reading in the csv file and combining the [...]
-<pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(plyr)
+<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(plyr)
 paths <-<span class="st"> </span><span class="kw">dir</span>(<span class="st">"data"</span>, <span class="dt">pattern =</span> <span class="st">"</span><span class="ch">\\</span><span class="st">.csv$"</span>, <span class="dt">full.names =</span> <span class="ot">TRUE</span>)
 <span class="kw">names</span>(paths) <-<span class="st"> </span><span class="kw">basename</span>(paths)
-<span class="kw">ldply</span>(paths, read.csv, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>)</code></pre>
+<span class="kw">ldply</span>(paths, read.csv, <span class="dt">stringsAsFactors =</span> <span class="ot">FALSE</span>)</code></pre></div>
 <p>Once you have a single table, you can perform additional tidying as needed. An example of this type of cleaning can be found at <a href="https://github.com/hadley/data-baby-names" class="uri">https://github.com/hadley/data-baby-names</a> which takes 129 yearly baby name tables provided by the US Social Security Administration and combines them into a single file.</p>
 <p>A more complicated situation occurs when the dataset structure changes over time. For example, the datasets may contain different variables, the same variables with different names, different file formats, or different conventions for missing values. This may require you to tidy each file to individually (or, if you’re lucky, in small groups) and then combine them once tidied. An example of this type of tidying is illustrated in <a href="https://github.com/hadley/data-fuel-economy" cl [...]
 </div>
diff --git a/src/melt.cpp b/src/melt.cpp
index d1d1616..3cce1e8 100644
--- a/src/melt.cpp
+++ b/src/melt.cpp
@@ -33,6 +33,15 @@ SEXP rep_(SEXP x, int n, std::string var_name) {
     case REALSXP:
       DO_REP(REALSXP, double, REAL);
       break;
+    case LGLSXP:
+      DO_REP(LGLSXP, int, LOGICAL);
+      break;
+    case CPLXSXP:
+      DO_REP(CPLXSXP, Rcomplex, COMPLEX);
+      break;
+    case RAWSXP:
+      DO_REP(RAWSXP, Rbyte, RAW);
+      break;
     case STRSXP: {
       int counter = 0;
       for (int i = 0; i < n; ++i) {
@@ -43,18 +52,16 @@ SEXP rep_(SEXP x, int n, std::string var_name) {
       }
       break;
     }
-    case LGLSXP:
-      DO_REP(LGLSXP, int, LOGICAL);
-      break;
-    case CPLXSXP:
-      DO_REP(CPLXSXP, Rcomplex, COMPLEX);
-      break;
-    case RAWSXP:
-      DO_REP(RAWSXP, Rbyte, RAW);
-      break;
-    case VECSXP:
-      DO_REP(VECSXP, SEXP, STRING_PTR);
+    case VECSXP: {
+      int counter = 0;
+      for (int i = 0; i < n; ++i) {
+        for (int j = 0; j < xn; ++j) {
+          SET_VECTOR_ELT(output, counter, VECTOR_ELT(x, j));
+          ++counter;
+        }
+      }
       break;
+    }
     default: {
       stop("Unhandled RTYPE in '%s'", var_name);
       return R_NilValue;
diff --git a/tests/testthat/test-gather.R b/tests/testthat/test-gather.R
index 238ec8c..ed1b82a 100644
--- a/tests/testthat/test-gather.R
+++ b/tests/testthat/test-gather.R
@@ -122,7 +122,6 @@ test_that("gather preserves OBJECT bit on e.g. POSIXct", {
 test_that("can handle list-columns", {
   df <- tibble(x = 1:2, y = list("a", TRUE))
   out <- gather(df, k, v, -y)
-
   expect_identical(out$y, df$y)
 })
 
diff --git a/tests/testthat/test-underscored.R b/tests/testthat/test-underscored.R
index b29729e..69cd129 100644
--- a/tests/testthat/test-underscored.R
+++ b/tests/testthat/test-underscored.R
@@ -66,6 +66,10 @@ test_that("gather_() works with non-syntactic names", {
     gather(df, key, val, `non-syntactic`),
     gather_(df, "key", "val", "non-syntactic")
   )
+  expect_identical(
+    gather(df, `key space`, `val space`, `non-syntactic`),
+    gather_(df, "key space", "val space", "non-syntactic")
+  )
 })
 
 test_that("nest_()", {
@@ -73,6 +77,14 @@ test_that("nest_()", {
   expect_identical(nest_(df, "y", "y"), nest(df, y, .key = y))
 })
 
+test_that("nest_() works with non-syntactic names", {
+  df <- tibble(`x` = c(1, 1, 1), `non-syntactic` = 1:3)
+  expect_identical(
+    nest_(df, "non-syntactic", "non-syntactic"),
+    nest(df, `non-syntactic`, .key = `non-syntactic`)
+  )
+})
+
 test_that("separate_()", {
   df <- tibble(x = c(NA, "a b"))
   out <- separate_(df, "x", c("x", "y"))
@@ -94,11 +106,19 @@ test_that("separate_rows() works with non-syntactic names", {
 test_that("spread_()", {
   df1 <- data.frame(x = c("a", "b"), y = 1:2)
   df2 <- data.frame(x = c("b", "a"), y = 2:1)
-  one <- spread_(df1, "x", ~y)
-  two <- spread_(df2, "x", ~y) %>% select(a, b) %>% arrange(a, b)
+  one <- spread_(df1, "x", "y")
+  two <- spread_(df2, "x", "y") %>% select(a, b) %>% arrange(a, b)
   expect_identical(one, two)
 })
 
+test_that("spread_() works with non-syntactic names", {
+  df <- tibble(`non-syntactic` = c("a", "b"), `non syntactic` = 1:2)
+  expect_identical(
+    spread(df, `non-syntactic`, `non syntactic`),
+    spread_(df, "non-syntactic", "non syntactic")
+  )
+})
+
 test_that("unite_()", {
   df <- tibble(x = "a", y = "b")
   out <- unite_(df, "z", c("x", "y"))

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/debian-med/r-cran-tidyr.git



More information about the debian-med-commit mailing list