[med-svn] [Git][med-team/nanopolish][upstream] New upstream version 0.13.3

Nilesh Patra gitlab at salsa.debian.org
Thu Apr 22 20:22:17 BST 2021



Nilesh Patra pushed to branch upstream at Debian Med / nanopolish


Commits:
55b8e2b0 by Nilesh Patra at 2021-04-23T00:38:34+05:30
New upstream version 0.13.3
- - - - -


16 changed files:

- .travis.yml
- Makefile
- src/alignment/nanopolish_eventalign.cpp
- src/common/nanopolish_common.h
- src/common/nanopolish_variant.h
- src/hmm/nanopolish_profile_hmm.cpp
- src/io/nanopolish_fast5_io.cpp
- src/io/nanopolish_fast5_io.h
- src/main/nanopolish.cpp
- src/nanopolish_call_variants.cpp
- + src/nanopolish_detect_polyi.cpp
- + src/nanopolish_detect_polyi.h
- + src/nanopolish_fast5_check.cpp
- + src/nanopolish_fast5_check.h
- src/nanopolish_squiggle_read.cpp
- src/nanopolish_squiggle_read.h


Changes:

=====================================
.travis.yml
=====================================
@@ -57,14 +57,6 @@ matrix:
         - cd scripts && python3 -m pip install -r requirements.txt && cd ..
         - make && make test
 
-    - name: CPython 3.5.9 on Ubuntu 16.04 (Xenial Xerus)
-      language: python
-      os: linux
-      dist: xenial
-      python: 3.5.9
-      script:
-        - cd scripts && python3 -m pip install -r requirements.txt && cd ..
-        - make && make test
 
 
 before_script:


=====================================
Makefile
=====================================
@@ -46,9 +46,11 @@ endif
 # Default to automatically installing EIGEN
 ifeq ($(EIGEN), install)
     EIGEN_CHECK = eigen/INSTALL
+    EIGEN_INCLUDE = -I./eigen/
 else
     # Use system-wide eigen
     EIGEN_CHECK =
+    EIGEN_INCLUDE ?=
 endif
 
 # Default to build and link the libhts submodule
@@ -58,7 +60,7 @@ ifeq ($(HTS), install)
 else
     # Use system-wide htslib
     HTS_LIB =
-    HTS_INCLUDE =
+    HTS_INCLUDE ?=
     LIBS += -lhts
 endif
 
@@ -82,9 +84,6 @@ endif
 # Include the header-only fast5 library
 FAST5_INCLUDE = -I./fast5/include
 
-# Include the header-only eigen library
-EIGEN_INCLUDE = -I./eigen/
-
 # Include the src subdirectories
 NP_INCLUDE = $(addprefix -I./, $(SUBDIRS))
 
@@ -124,10 +123,10 @@ lib/libhdf5.a:
 # Download and install eigen if not already downloaded
 eigen/INSTALL:
 	if [ ! -e $(EIGEN_VERSION).tar.bz2 ]; then \
-		wget http://bitbucket.org/eigen/eigen/get/$(EIGEN_VERSION).tar.bz2; \
+		wget https://gitlab.com/libeigen/eigen/-/archive/$(EIGEN_VERSION)/eigen-$(EIGEN_VERSION).tar.bz2; \
 	fi
-	tar -xjf $(EIGEN_VERSION).tar.bz2 || exit 255
-	mv eigen-eigen-* eigen || exit 255
+	tar -xjf eigen-$(EIGEN_VERSION).tar.bz2 || exit 255
+	mv eigen-$(EIGEN_VERSION) eigen || exit 255
 
 #
 # Source files


=====================================
src/alignment/nanopolish_eventalign.cpp
=====================================
@@ -59,7 +59,7 @@ static const char *EVENTALIGN_USAGE_MESSAGE =
 "      --help                           display this help and exit\n"
 "      --sam                            write output in SAM format\n"
 "  -w, --window=STR                     compute the consensus for window STR (format: ctg:start_id-end_id)\n"
-"  -r, --reads=FILE                     the 2D ONT reads are in fasta FILE\n"
+"  -r, --reads=FILE                     the ONT reads are in fasta FILE\n"
 "  -b, --bam=FILE                       the reads aligned to the genome assembly are in bam FILE\n"
 "  -g, --genome=FILE                    the genome we are computing a consensus for is in FILE\n"
 "  -t, --threads=NUM                    use NUM threads (default: 1)\n"


=====================================
src/common/nanopolish_common.h
=====================================
@@ -18,7 +18,7 @@
 #include "logsum.h"
 
 #define PACKAGE_NAME "nanopolish"
-#define PACKAGE_VERSION "0.13.2"
+#define PACKAGE_VERSION "0.13.3"
 #define PACKAGE_BUGREPORT "https://github.com/jts/nanopolish/issues"
 
 //


=====================================
src/common/nanopolish_variant.h
=====================================
@@ -113,7 +113,7 @@ inline bool sortByPosition(const Variant& a, const Variant& b)
 class VariantKeyComp
 {
     public: 
-        inline bool operator()(const Variant& a, const Variant& b)
+        inline bool operator()(const Variant& a, const Variant& b) const
         {
             return a.key() < b.key();
         }
@@ -122,7 +122,7 @@ class VariantKeyComp
 class VariantKeyEqualityComp
 {
     public: 
-        inline bool operator()(const Variant& a, const Variant& b)
+        inline bool operator()(const Variant& a, const Variant& b) const
         {
             return a.key() == b.key();
         }


=====================================
src/hmm/nanopolish_profile_hmm.cpp
=====================================
@@ -22,7 +22,7 @@ float profile_hmm_score(const HMMInputSequence& sequence, const std::vector<HMMI
 
 float profile_hmm_score(const HMMInputSequence& sequence, const HMMInputData& data, const uint32_t flags)
 {
-    if(data.read->pore_type == PT_R9) {
+    if(data.read->pore_type == PORETYPE_R9) {
         return profile_hmm_score_r9(sequence, data, flags);
     } else {
         return profile_hmm_score_r7(sequence, data, flags);
@@ -57,7 +57,7 @@ float profile_hmm_score_set(const std::vector<HMMInputSequence>& sequences, cons
 
 std::vector<HMMAlignmentState> profile_hmm_align(const HMMInputSequence& sequence, const HMMInputData& data, const uint32_t flags)
 {
-    if(data.read->pore_type == PT_R9) {
+    if(data.read->pore_type == PORETYPE_R9) {
         return profile_hmm_align_r9(sequence, data, flags);
     } else {
         return profile_hmm_align_r7(sequence, data, flags);


=====================================
src/io/nanopolish_fast5_io.cpp
=====================================
@@ -16,6 +16,8 @@
 
 #define LEGACY_FAST5_RAW_ROOT "/Raw/Reads/"
 
+#define H5Z_FILTER_VBZ 32020 //We need to find out what the numerical value for this is
+
 int verbose = 0;
 
 //
@@ -145,6 +147,10 @@ raw_table fast5_get_raw_samples(fast5_file& fh, const std::string& read_id, fast
     status = H5Dread(dset, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rawptr);
 
     if (status < 0) {
+	if(fast5_is_vbz_compressed(fh, read_id) == 1) {
+	    fprintf(stderr, "The fast5 file is compressed with VBZ but the required plugin is not loaded. Please read the instructions here: https://github.com/nanoporetech/vbz_compression/issues/5\n");
+	    exit(EXIT_FAILURE);
+	}
         free(rawptr);
 #ifdef DEBUG_FAST5_IO
         fprintf(stderr, "Failed to read raw data from dataset %s.\n", signal_path.c_str());
@@ -431,3 +437,33 @@ close_group:
 
     return out;
 }
+
+uint8_t fast5_is_vbz_compressed(fast5_file& fh, const std::string& read_id) {
+
+    hid_t dset, dcpl; 
+    H5Z_filter_t filter_id = 0;
+    char filter_name[80];
+    size_t nelmts = 1; /* number of elements in cd_values */
+    unsigned int values_out[1] = {99}; 
+    unsigned int flags;
+
+    // mostly from scrappie
+    std::string raw_read_group = fast5_get_raw_read_group(fh, read_id);
+
+    // Create data set name
+    std::string signal_path = raw_read_group + "/Signal";
+
+    dset = H5Dopen (fh.hdf5_file, signal_path.c_str(), H5P_DEFAULT);
+
+    dcpl = H5Dget_create_plist (dset);
+
+    filter_id = H5Pget_filter2 (dcpl, (unsigned) 0, &flags, &nelmts, values_out, sizeof(filter_name) - 1, filter_name, NULL);
+
+    H5Pclose (dcpl);
+    H5Dclose (dset);
+
+    if(filter_id == H5Z_FILTER_VBZ)
+        return 1;
+    else 
+        return 0;
+}


=====================================
src/io/nanopolish_fast5_io.h
=====================================
@@ -96,4 +96,6 @@ std::string fast5_get_raw_read_group(fast5_file& fh, const std::string& read_id)
 //
 std::string fast5_get_string_attribute(fast5_file& fh, const std::string& group_name, const std::string& attribute_name);
 
+uint8_t fast5_is_vbz_compressed(fast5_file& fh, const std::string& read_id);
+
 #endif


=====================================
src/main/nanopolish.cpp
=====================================
@@ -20,6 +20,8 @@
 #include "nanopolish_phase_reads.h"
 #include "nanopolish_vcf2fasta.h"
 #include "nanopolish_polya_estimator.h"
+#include "nanopolish_fast5_check.h"
+#include "nanopolish_detect_polyi.h"
 #include "nanopolish_train_poremodel_from_basecalls.h"
 
 int print_usage(int argc, char **argv);
@@ -35,10 +37,12 @@ static std::map< std::string, std::function<int(int, char**)> > programs = {
     {"getmodel",    getmodel_main},
     {"variants",    call_variants_main},
     {"methyltrain", methyltrain_main},
-    {"scorereads",  scorereads_main} ,
-    {"phase-reads", phase_reads_main} ,
-    {"vcf2fasta",   vcf2fasta_main} ,
-    {"polya",  polya_main} ,
+    {"scorereads",  scorereads_main},
+    {"phase-reads", phase_reads_main},
+    {"vcf2fasta",   vcf2fasta_main},
+    {"polya",  polya_main},
+    {"detect-polyi", detect_polyi_main} ,
+    {"fast5-check",  fast5_check_main},
     {"call-methylation",  call_methylation_main}
 };
 


=====================================
src/nanopolish_call_variants.cpp
=====================================
@@ -673,7 +673,7 @@ Haplotype fix_homopolymers(const Haplotype& input_haplotype,
 
                 double num_kmers = variant_offset_end - variant_offset_start;
                 double log_gamma = sum_duration > MIN_DURATION ?  DurationModel::log_gamma_sum(sum_duration, params, num_kmers) : 0.0f;
-                if(read->pore_type == PT_R9) {
+                if(read->pore_type == PORETYPE_R9) {
                     duration_likelihoods[var_sequence_length] += log_gamma;
                 }
                 if(opt::verbose > 3) {


=====================================
src/nanopolish_detect_polyi.cpp
=====================================
@@ -0,0 +1,1172 @@
+//---------------------------------------------------------
+// Copyright 2017 Ontario Institute for Cancer Research
+// Written by Jared Simpson (jared.simpson at oicr.on.ca)
+//---------------------------------------------------------
+//
+// nanopolish_detect_polyi.cpp -- detect the presence of a
+// poly(I) tail as in the nano-COP protocol.
+//
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <string>
+#include <vector>
+#include <inttypes.h>
+#include <assert.h>
+#include <math.h>
+#include <sys/time.h>
+#include <algorithm>
+#include <sstream>
+#include <set>
+#include <omp.h>
+#include <getopt.h>
+#include <iterator>
+#include <limits> // for -INFTY
+#include "htslib/faidx.h"
+#include "nanopolish_eventalign.h"
+#include "nanopolish_iupac.h"
+#include "nanopolish_poremodel.h"
+#include "nanopolish_transition_parameters.h"
+#include "nanopolish_matrix.h"
+#include "nanopolish_profile_hmm.h"
+#include "nanopolish_anchor.h"
+#include "nanopolish_read_db.h"
+#include "nanopolish_hmm_input_sequence.h"
+#include "nanopolish_pore_model_set.h"
+#include "nanopolish_bam_processor.h"
+#include "nanopolish_detect_polyi.h"
+#include "nanopolish_raw_loader.h"
+#include "nanopolish_emissions.h"
+#include "H5pubconf.h"
+#include "profiler.h"
+#include "progress.h"
+
+
+using namespace std::placeholders;
+
+//
+// Getopt
+//
+#define SUBPROGRAM "detect-polyi"
+
+static const char *DETECT_POLYI_VERSION_MESSAGE =
+SUBPROGRAM " Version " PACKAGE_VERSION "\n"
+"Written by Jared Simpson.\n"
+"\n"
+"Copyright 2017 Ontario Institute for Cancer Research\n";
+
+static const char *DETECT_POLYI_USAGE_MESSAGE =
+"Usage: " PACKAGE_NAME " " SUBPROGRAM " [OPTIONS] --reads reads.fa --bam alignments.bam --genome genome.fa\n"
+"Detect presence of poly(I) tails and estimate length of tails in direct RNA reads\n"
+"\n"
+"  -v, --verbose                        display verbose output\n"
+"      --version                        display version\n"
+"      --help                           display this help and exit\n"
+"  -w, --window=STR                     only compute the poly-A lengths for reads in window STR (format: ctg:start_id-end_id)\n"
+"  -r, --reads=FILE                     the 1D ONT direct RNA reads are in fasta FILE\n"
+"  -b, --bam=FILE                       the reads aligned to the genome assembly are in bam FILE\n"
+"  -g, --genome=FILE                    the reference genome assembly for the reads is in FILE\n"
+"  -t, --threads=NUM                    use NUM threads (default: 1)\n"
+"\nReport bugs to " PACKAGE_BUGREPORT "\n\n";
+
+namespace opt
+{
+    static unsigned int verbose;
+    static std::string reads_file;
+    static std::string bam_file;
+    static std::string genome_file;
+    static std::string region;
+    static int progress = 0;
+    static int num_threads = 1;
+    static int batch_size = 128;
+}
+
+static const char* shortopts = "r:b:g:t:w:v";
+
+enum { OPT_HELP = 1, OPT_VERSION };
+
+static const struct option longopts[] = {
+    { "verbose",          no_argument,       NULL, 'v' },
+    { "reads",            required_argument, NULL, 'r' },
+    { "bam",              required_argument, NULL, 'b' },
+    { "genome",           required_argument, NULL, 'g' },
+    { "window",           required_argument, NULL, 'w' },
+    { "threads",          required_argument, NULL, 't' },
+    { "help",             no_argument,       NULL, OPT_HELP },
+    { "version",          no_argument,       NULL, OPT_VERSION },
+    { NULL, 0, NULL, 0 }
+};
+
+void parse_detect_polyi_options(int argc, char** argv)
+{
+    bool die = false;
+    for (char c; (c = getopt_long(argc, argv, shortopts, longopts, NULL)) != -1;) {
+        std::istringstream arg(optarg != NULL ? optarg : "");
+        switch (c) {
+            case 'r': arg >> opt::reads_file; break;
+            case 'g': arg >> opt::genome_file; break;
+            case 'b': arg >> opt::bam_file; break;
+            case '?': die = true; break;
+            case 't': arg >> opt::num_threads; break;
+            case 'v': opt::verbose++; break;
+            case 'w': arg >> opt::region; break;
+            case OPT_HELP:
+                std::cout << DETECT_POLYI_USAGE_MESSAGE;
+                exit(EXIT_SUCCESS);
+            case OPT_VERSION:
+                std::cout << DETECT_POLYI_VERSION_MESSAGE;
+                exit(EXIT_SUCCESS);
+        }
+    }
+
+    if(argc - optind > 0) {
+        opt::region = argv[optind++];
+    }
+
+    if (argc - optind > 0) {
+        std::cerr << SUBPROGRAM ": too many arguments\n";
+        die = true;
+    }
+
+    if(opt::num_threads <= 0) {
+        std::cerr << SUBPROGRAM ": invalid number of threads: " << opt::num_threads << "\n";
+        die = true;
+    }
+
+    if(opt::reads_file.empty()) {
+        std::cerr << SUBPROGRAM ": a --reads file must be provided\n";
+        die = true;
+    }
+
+    if(opt::genome_file.empty()) {
+        std::cerr << SUBPROGRAM ": a --genome file must be provided\n";
+        die = true;
+    }
+
+    if(opt::bam_file.empty()) {
+        std::cerr << SUBPROGRAM ": a --bam file must be provided\n";
+        die = true;
+    }
+
+    if (die)
+    {
+        std::cout << "\n" << DETECT_POLYI_USAGE_MESSAGE;
+        exit(EXIT_FAILURE);
+    }
+}
+
+// ================================================================================
+// Segmentation Hidden Markov Model
+//   Define an HMM class `SegmentationHMM` with all relevant functions necessary for
+//   segmentation of a squiggle into a series of regions.
+// * struct ViterbiOutputs: contains log-prob scores and inferred state sequence
+//   from a run of the viterbi algorithm.
+// * struct Segmentation: contains ending sample indices for each region of a
+//   squiggle's segmentation.
+// * SegmentationHMM: class defining a hidden markov model for segmentation of
+//   a squiggle. Contains the following members:
+//   - state_transitions
+//   - start_probs
+//   - gaussian parameters defining emission distributions
+//   - log-probabilities
+//   + viterbi
+//   + segment_squiggle
+//   + log_probas
+// ================================================================================
+// Segmentation struct holds endpoints of distinct regions from a segmented squiggle:
+struct DPISegmentation {
+    size_t start;   // final index of S; might not exist if skipped over
+    size_t leader;  // final index of L, as indicated by 3'->5' viterbi
+    size_t adapter; // final index of A, as indicated by 3'->5' viterbi
+    size_t polya;   // final index of P/C, as indicated by 3'->5' viterbi
+    size_t cliffs;  // number of observed 'CLIFF' samples
+};
+
+// Basic HMM struct with fixed parameters and viterbi/segmentation methods.
+// (N.B.: all of the below is relative to a **scaled & shifted** set of events.)
+enum DPIHMMState
+{
+    DPI_HMM_START = 0,
+    DPI_HMM_LEADER = 1,
+    DPI_HMM_ADAPTER = 2,
+    DPI_HMM_POLYA = 3,
+    DPI_HMM_CLIFF = 4,
+    DPI_HMM_TRANSCRIPT = 5,
+    DPI_HMM_NUM_STATES = 6 // number of non-NULL states in HMM
+};
+
+// struct ViterbiOutputs composed of viterbi probs
+// and a vector of integers from {0,1,2,3,4,5} == {S,L,A,P,C,T}.
+struct DPIViterbiOutputs {
+    std::vector<float> scores;
+    std::vector<DPIHMMState> labels;
+};
+
+class DPISegmentationHMM {
+private:
+    // ----- state space parameters:
+    // N.B.: `state transitions` is used to compute log probabilities, as viterbi decoding is done in log-space.
+    // state transition probabilities (S->L->A->[P<->C]->T):
+    float state_transitions[DPI_HMM_NUM_STATES][DPI_HMM_NUM_STATES] = {
+        // S -> S (10%), S -> L (90%)
+        {0.10f, 0.90f, 0.00f, 0.00f, 0.00f, 0.00f},
+        // L -> A (10%), L -> L (90%)
+        {0.00f, 0.90f, 0.10f, 0.00f, 0.00f, 0.00f},
+        // A -> P (05%), A -> A (95%)
+        {0.00f, 0.00f, 0.95f, 0.05f, 0.00f, 0.00f},
+        // P -> P (89%), P -> C (01%), P -> T (10%)
+        {0.00f, 0.00f, 0.00f, 0.89f, 0.01f, 0.10f},
+        // C -> P (99%), C -> C (01%)
+        {0.00f, 0.00f, 0.00f, 0.99f, 0.01f, 0.00f},
+        // T -> T (100%)
+        {0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 1.00f}
+    };
+    // All state sequences must start on S:
+    float start_probs[DPI_HMM_NUM_STATES] = { 1.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f };
+
+    // ----- emission parameters:
+    // emission parameters, from empirical MLE on manually-flagged reads:
+    // START has a mixture of Gaussian and Uniform emissions;
+    // LEADER has a Gaussian emission;
+    // ADAPTER, POLYA, TRANSCRIPT have Gaussian mixture emissions;
+    // CLIFF has Uniform emissions.
+    GaussianParameters s_emission = {70.2737f, 3.7743f};
+    float s_begin = 40.0f;
+    float s_end = 250.0f;
+    float s_prob = 0.00476f; // == {1. / (250.0f - 40.0f)}
+    float s_norm_coeff = 0.50f;
+    float s_unif_coeff = 0.50f;
+    GaussianParameters l_emission = {110.973f, 5.237f};
+    GaussianParameters a0_emission = {79.347f, 8.3702f};
+    GaussianParameters a1_emission = {63.3126f, 2.7464f};
+    float a0_coeff = 0.874f;
+    float a1_coeff = 0.126f;
+    GaussianParameters p0_emission = {108.883f, 3.257f};
+    GaussianParameters p1_emission = {108.498f, 5.257f};
+    float p0_coeff = 0.500f;
+    float p1_coeff = 0.500f;
+    float c_begin = 70.0f;
+    float c_end = 140.0f;
+    float c_log_prob = -4.2485f; // natural log of [1/(140-70)]
+    GaussianParameters t0_emission = {79.679f, 6.966f};
+    GaussianParameters t1_emission = {105.784f, 16.022f};
+    float t0_coeff = 0.346f;
+    float t1_coeff = 0.654f;
+
+    // log-probabilities are computed in the constructor:
+    float log_state_transitions[DPI_HMM_NUM_STATES][DPI_HMM_NUM_STATES];
+    float log_start_probs[DPI_HMM_NUM_STATES];
+
+    // ----- inlined computation of emission log-probabilities:
+    // Get the log-probability of seeing `x` given we're in state `state` of the HMM
+    // N.B.: we scale the emission parameters (events are **not** scaled).
+    inline float emit_log_proba(const float x, const DPIHMMState state) const
+    {
+        // sometimes samples can exceed reasonable bounds due to mechanical issues;
+        // in that case, we should clamp it to 100:
+        float xx;
+        if (x > 200.0f || x < 40.0f) {
+            xx = 100.0f;
+        } else {
+            xx = x;
+        }
+
+        // compute on a case-by-case basis to handle heterogeneous probability distributions
+        float log_probs;
+        if (state == DPI_HMM_START) {
+            // START state:
+            float norm_term = s_norm_coeff * normal_pdf(xx, this->s_emission);
+            log_probs = std::log(norm_term + s_unif_coeff * s_prob);
+        }
+        if (state == DPI_HMM_LEADER) {
+            // LEADER state:
+            log_probs = log_normal_pdf(xx, this->l_emission);
+        }
+        if (state == DPI_HMM_ADAPTER) {
+            // ADAPTER state: compute log of gaussian mixture probability
+            float mixture_proba = (this->a0_coeff*normal_pdf(xx,this->a0_emission)) + \
+                (this->a1_coeff*normal_pdf(xx, this->a1_emission));
+            log_probs = std::log(mixture_proba);
+        }
+        if (state == DPI_HMM_POLYA) {
+            // POLYA state:
+	    float mixture_proba = (this->p0_coeff*normal_pdf(xx, this->p0_emission)) + \
+		(this->p1_coeff*normal_pdf(xx, this->p1_emission));
+            log_probs = std::log(mixture_proba);
+        }
+        if (state == DPI_HMM_CLIFF) {
+            // CLIFF state: middle-out uniform distribution
+            if ((xx > this->c_begin) && (xx <  this->c_end)) {
+                log_probs = this->c_log_prob;
+            } else {
+                log_probs = -INFINITY;
+            }
+        }
+        if (state == DPI_HMM_TRANSCRIPT) {
+            // TRANSCRIPT state: compute log of gaussian mixture probability
+            float mixture_proba = (this->t0_coeff*normal_pdf(xx, this->t0_emission)) + \
+                (this->t1_coeff*normal_pdf(xx, this->t1_emission));
+            log_probs = std::log(mixture_proba);
+        }
+        return log_probs;
+    }
+
+public:
+    // ----- constructor: compute logs of params & scale/shift
+    DPISegmentationHMM(float scale, float shift, float var)
+    {
+        // - - - initialize log-probabilities:
+        for (int i = 0; i < DPI_HMM_NUM_STATES; ++i) {
+            for (int j = 0; j < DPI_HMM_NUM_STATES; ++j) {
+                if (this->state_transitions[i][j] > 0.00f) {
+                    this->log_state_transitions[i][j] = std::log(this->state_transitions[i][j]);
+                } else {
+                    this->log_state_transitions[i][j] = -INFINITY;
+                }
+            }
+            if (this->start_probs[i] > 0.00f) {
+                this->log_start_probs[i] = std::log(this->start_probs[i]);
+            } else {
+                this->log_start_probs[i] = -INFINITY;
+            }
+        }
+        // - - - update all gaussian parameters by scaling/shifting:
+        // START emissions:
+        this->s_emission.mean = shift + scale*(this->s_emission.mean);
+        this->s_emission.stdv = var * this->s_emission.stdv;
+        this->s_emission.log_stdv = std::log(this->s_emission.stdv);
+        // LEADER emissions:
+        this->l_emission.mean = shift + scale*(this->l_emission.mean);
+        this->l_emission.stdv = var * this->l_emission.stdv;
+        this->l_emission.log_stdv = std::log(this->l_emission.stdv);
+        // ADAPTER emissions:
+        this->a0_emission.mean = shift + scale*(this->a0_emission.mean);
+        this->a0_emission.stdv = var * this->a0_emission.stdv;
+        this->a0_emission.log_stdv = std::log(this->a0_emission.stdv);
+        this->a1_emission.mean = shift + scale*(this->a1_emission.mean);
+        this->a1_emission.stdv = var * this->a1_emission.stdv;
+        this->a1_emission.log_stdv = std::log(this->a1_emission.stdv);
+        // POLYA emissions:
+        this->p0_emission.mean = shift + scale*(this->p0_emission.mean);
+        this->p0_emission.stdv = var * this->p0_emission.stdv;
+        this->p0_emission.log_stdv = std::log(this->p0_emission.stdv);
+        this->p1_emission.mean = shift + scale*(this->p1_emission.mean);
+        this->p1_emission.stdv = var * this->p1_emission.stdv;
+        this->p1_emission.log_stdv = std::log(this->p1_emission.stdv);
+        // TRANSCRIPT emissions:
+        this->t0_emission.mean = shift + scale*(this->t0_emission.mean);
+        this->t0_emission.stdv = var * this->t0_emission.stdv;
+        this->t0_emission.log_stdv = std::log(this->t0_emission.stdv);
+        this->t1_emission.mean = shift + scale*(this->t1_emission.mean);
+        this->t1_emission.stdv = var * this->t1_emission.stdv;
+        this->t1_emission.log_stdv = std::log(this->t1_emission.stdv);
+    }
+    // ----- destructor: nothing to clean up
+    ~DPISegmentationHMM() { }
+
+    // ----- for a given sample value and shift/scale parameters, return log-probs for each state:
+    std::vector<float> log_probas(const float x) const
+    {
+        std::vector<float> log_proba(DPI_HMM_NUM_STATES);
+        for (uint8_t k = 0; k < DPI_HMM_NUM_STATES; ++k) {
+            log_proba[k] = this->emit_log_proba(x, static_cast<DPIHMMState>(k));
+        }
+        return log_proba;
+    }
+
+    // ----- viterbi-decoding of a squiggle into region labels:
+    // N.B.1: viterbi decoding happens in the 3'->5' direction.
+    // N.B.2: this algorithm takes place in log-space for numerical stability;
+    // the `scores` variable refers to log-prob scores.
+    DPIViterbiOutputs viterbi(const SquiggleRead& sr) const
+    {
+        // count of raw samples:
+        size_t num_samples = sr.samples.size();
+
+        // create/initialize viterbi scores and backpointers:
+        std::vector<float> init_scores(DPI_HMM_NUM_STATES, -std::numeric_limits<float>::infinity()); // log(0.0) == -INFTY
+        std::vector<DPIHMMState> init_bptrs(DPI_HMM_NUM_STATES, DPI_HMM_NUM_STATES); // HMM_NUM_STATES used as a dummy value here
+        std::vector< std::vector<float> > viterbi_scores(num_samples, init_scores);
+        std::vector< std::vector<DPIHMMState> > viterbi_bptrs(num_samples, init_bptrs);
+
+        // forward viterbi pass; fill up backpointers:
+        // weight initially distributed between START and LEADER:
+        viterbi_scores[0][DPI_HMM_START] = this->log_start_probs[DPI_HMM_START] + this->emit_log_proba(sr.samples[num_samples-1], DPI_HMM_START);
+        viterbi_scores[0][DPI_HMM_LEADER] = this->log_start_probs[DPI_HMM_LEADER] + this->emit_log_proba(sr.samples[num_samples-1], DPI_HMM_LEADER);
+        for (size_t i = 1; i < num_samples; ++i) {
+            // get individual incoming state scores:
+            float s_to_s = viterbi_scores.at(i-1)[DPI_HMM_START] + this->log_state_transitions[DPI_HMM_START][DPI_HMM_START];
+            float s_to_l = viterbi_scores.at(i-1)[DPI_HMM_START] + this->log_state_transitions[DPI_HMM_START][DPI_HMM_LEADER];
+            float l_to_l = viterbi_scores.at(i-1)[DPI_HMM_LEADER] + this->log_state_transitions[DPI_HMM_LEADER][DPI_HMM_LEADER];
+            float l_to_a = viterbi_scores.at(i-1)[DPI_HMM_LEADER] + this->log_state_transitions[DPI_HMM_LEADER][DPI_HMM_ADAPTER];
+            float a_to_a = viterbi_scores.at(i-1)[DPI_HMM_ADAPTER] + this->log_state_transitions[DPI_HMM_ADAPTER][DPI_HMM_ADAPTER];
+            float a_to_p = viterbi_scores.at(i-1)[DPI_HMM_ADAPTER] + this->log_state_transitions[DPI_HMM_ADAPTER][DPI_HMM_POLYA];
+            float p_to_p = viterbi_scores.at(i-1)[DPI_HMM_POLYA] + this->log_state_transitions[DPI_HMM_POLYA][DPI_HMM_POLYA];
+            float p_to_c = viterbi_scores.at(i-1)[DPI_HMM_POLYA] + this->log_state_transitions[DPI_HMM_POLYA][DPI_HMM_CLIFF];
+            float p_to_t = viterbi_scores.at(i-1)[DPI_HMM_POLYA] + this->log_state_transitions[DPI_HMM_POLYA][DPI_HMM_TRANSCRIPT];
+            float c_to_c = viterbi_scores.at(i-1)[DPI_HMM_CLIFF] + this->log_state_transitions[DPI_HMM_CLIFF][DPI_HMM_CLIFF];
+            float c_to_p = viterbi_scores.at(i-1)[DPI_HMM_CLIFF] + this->log_state_transitions[DPI_HMM_CLIFF][DPI_HMM_POLYA];
+            float t_to_t = viterbi_scores.at(i-1)[DPI_HMM_TRANSCRIPT] + this->log_state_transitions[DPI_HMM_TRANSCRIPT][DPI_HMM_TRANSCRIPT];
+
+            // update the viterbi scores for each state at this timestep:
+            viterbi_scores.at(i)[DPI_HMM_START] = s_to_s + this->emit_log_proba(sr.samples[i], DPI_HMM_START);
+            viterbi_scores.at(i)[DPI_HMM_LEADER] = std::max(l_to_l, s_to_l) + this->emit_log_proba(sr.samples[i], DPI_HMM_LEADER);
+            viterbi_scores.at(i)[DPI_HMM_ADAPTER] = std::max(a_to_a, l_to_a) + this->emit_log_proba(sr.samples[i], DPI_HMM_ADAPTER);
+            viterbi_scores.at(i)[DPI_HMM_POLYA] = std::max(p_to_p, std::max(a_to_p, c_to_p)) + this->emit_log_proba(sr.samples[i], DPI_HMM_POLYA);
+            viterbi_scores.at(i)[DPI_HMM_CLIFF] = std::max(c_to_c, p_to_c) + this->emit_log_proba(sr.samples[i], DPI_HMM_CLIFF);
+            viterbi_scores.at(i)[DPI_HMM_TRANSCRIPT] = std::max(p_to_t, t_to_t) + this->emit_log_proba(sr.samples[i], DPI_HMM_TRANSCRIPT);
+
+            // backpointers:
+            // START: S can only come from S
+            viterbi_bptrs.at(i)[DPI_HMM_START] = DPI_HMM_START;
+            // LEADER: L->L or S->L
+            if (s_to_l < l_to_l) {
+                viterbi_bptrs.at(i)[DPI_HMM_LEADER] = DPI_HMM_LEADER;
+            } else {
+                viterbi_bptrs.at(i)[DPI_HMM_LEADER] = DPI_HMM_START;
+            }
+            // ADAPTER:
+            if (l_to_a < a_to_a) {
+                viterbi_bptrs.at(i)[DPI_HMM_ADAPTER] = DPI_HMM_ADAPTER;
+            } else {
+                viterbi_bptrs.at(i)[DPI_HMM_ADAPTER] = DPI_HMM_LEADER;
+            }
+            // POLYA:
+            if ((a_to_p < p_to_p) && (c_to_p < p_to_p)) {
+                viterbi_bptrs.at(i)[DPI_HMM_POLYA] = DPI_HMM_POLYA;
+            } else if ((p_to_p < a_to_p) && (c_to_p < a_to_p)) {
+                viterbi_bptrs.at(i)[DPI_HMM_POLYA] = DPI_HMM_ADAPTER;
+            } else {
+                viterbi_bptrs.at(i)[DPI_HMM_POLYA] = DPI_HMM_CLIFF;
+            }
+            // CLIFF:
+            if (p_to_c < c_to_c) {
+                viterbi_bptrs.at(i)[DPI_HMM_CLIFF] = DPI_HMM_CLIFF;
+            } else {
+                viterbi_bptrs.at(i)[DPI_HMM_CLIFF] = DPI_HMM_POLYA;
+            }
+            // TRANSCRIPT:
+            if (p_to_t < t_to_t) {
+                viterbi_bptrs.at(i)[DPI_HMM_TRANSCRIPT] = DPI_HMM_TRANSCRIPT;
+            } else {
+                viterbi_bptrs.at(i)[DPI_HMM_TRANSCRIPT] = DPI_HMM_POLYA;
+            }
+        }
+
+        // backwards viterbi pass:
+        // allocate `regions` vector of same dimensions as sample sequence;
+        // clamp final state to 'T' ~ transcript:
+        std::vector<DPIHMMState> regions(num_samples, DPI_HMM_START);
+        std::vector<float> scores(num_samples, 0);
+        regions[num_samples-1] = DPI_HMM_TRANSCRIPT;
+        scores[num_samples-1] = viterbi_scores.at(num_samples-1)[DPI_HMM_TRANSCRIPT];
+        // loop backwards and keep appending best states:
+        for (size_t j=(num_samples-2); j > 0; --j) {
+            regions[j] = viterbi_bptrs.at(j)[regions.at(j+1)];
+            scores[j] = viterbi_scores.at(j)[regions.at(j+1)];
+        }
+
+        // format as DPIViterbiOutputs struct and return:
+        DPIViterbiOutputs output_vectors = { scores, regions };
+        return output_vectors;
+    }
+
+    // ----- parse a squiggle's viterbi labels into a regional segmentation:
+    DPISegmentation segment_squiggle(const SquiggleRead& sr) const
+    {
+        DPIViterbiOutputs viterbi_outs = this->viterbi(sr);
+
+        // compute final sample indices of each region:
+        std::vector<DPIHMMState>& region_labels = viterbi_outs.labels;
+
+        // initial values for indices should preserve expected order:
+        DPISegmentation ixs = { 0, 1, 2, 3, 0 };
+
+        // loop through sequence and collect values:
+        for (std::vector<uint8_t>::size_type i = 0; i < region_labels.size(); ++i) {
+            // call end of START:
+            if (region_labels[i] == DPI_HMM_START && region_labels[i+1] == DPI_HMM_LEADER) {
+                ixs.start = static_cast<size_t>(i);
+            }
+            // call end of leader:
+            if (region_labels[i] == DPI_HMM_LEADER && region_labels[i+1] == DPI_HMM_ADAPTER) {
+                ixs.leader = static_cast<size_t>(i);
+            }
+            // call end of adapter:
+            if (region_labels[i] == DPI_HMM_ADAPTER && region_labels[i+1] == DPI_HMM_POLYA) {
+                ixs.adapter = static_cast<size_t>(i);
+            }
+            // call end of polya:
+            if (region_labels[i] == DPI_HMM_POLYA && region_labels[i+1] == DPI_HMM_TRANSCRIPT) {
+                ixs.polya = static_cast<size_t>(i);
+            }
+            // increment cliff counter:
+            if (region_labels[i] == DPI_HMM_CLIFF) {
+                ixs.cliffs++;
+            }
+        }
+
+        // set sensible (easy to QC-filter) default values if not all four detected;
+        // S-end is always detected (min value == 0)
+        if (ixs.leader == 1 || ixs.adapter == 2 || ixs.polya == 3) {
+            ixs.leader = region_labels.size() - 3;
+            ixs.adapter = region_labels.size() - 2;
+            ixs.polya = region_labels.size() - 1;
+        }
+        return ixs;
+    }
+};
+
+// ================================================================================
+// Bernoulli Hidden Markov Model
+//   The `BernoulliHMM` class is a two-state hidden markov model designed to find
+//   a (potentially nonexistent) switchpoint in a region with two very similar
+//   Gaussian emissions by discretizing the log-likelihood ratio.
+// * struct BernoulliOutputs: contains log-prob scores and inferred state sequence
+//   from a run of the viterbi algorithm on the bernoulli-distributed sequence.
+// * struct BernoulliSegmentation: contains ending sample indices for each region
+//   of a squiggle's segmentation.
+// * BernoulliHMM: class defining a hidden markov model for segmentation of
+//   a squiggle.
+// ================================================================================
+// Contains the (possibly nonexistent) locations of the switchpoints.
+struct BernoulliSegmentation {
+    int polyi;    // **LAST** index of p(I) region (or -1 if not found).
+    int polya;    // **FIRST** index of p(A) region (or -1 if not found).
+};
+
+// Descriptive shorthands for the states of the bernoulli HMM.
+enum BernoulliState {
+    BERN_POLYI = 0,
+    BERN_POLYA = 1,
+    BERN_NUM_STATES = 2
+};
+
+// Container struct for the output sequences of the viterbi algorithm on the model.
+struct BernoulliOutputs {
+    std::vector<float> scores;
+    std::vector<BernoulliState> labels;
+};
+
+class BernoulliHMM {
+private:
+    float state_transitions[BERN_NUM_STATES][BERN_NUM_STATES] = {
+        {0.90f, 0.10f},
+        {0.00f, 1.00f}
+    };
+    // initial state probabilities:
+    float start_probs[BERN_NUM_STATES] = { 1.00f, 0.00f };
+
+
+    // Normal distributions for poly(I) and poly(A) states:
+    // (N.B.: these should *not* be scaled by the SquiggleRead's linear parameters.)
+    GaussianParameters pI_gaussian = {108.498f, 5.257f};
+    GaussianParameters pA_gaussian = {108.883f, 3.257f};
+
+    // Global mean sample value for recentering:
+    float global_mean = 108.000f;
+
+    // Bernoulli parameters for poly(I) and poly(A) binary log-likelihood ratios:
+    // (These represent the probability of observing a 1 in a {0,1}-supported bernoulli)
+    float pI_bernoulli = 0.72304f;
+    float pA_bernoulli = 0.92154f;
+
+    // log-probabilities are computed in the constructor:
+    float log_state_transitions[BERN_NUM_STATES][BERN_NUM_STATES];
+    float log_start_probs[BERN_NUM_STATES];
+
+    // ----- inlined computation of emission log-probabilities:
+    // Get the log-probability of seeing `x` given we're in state `state` of the HMM
+    // N.B.: we scale the emission parameters (events are **not** scaled).
+    inline float emit_log_proba_gaussian(const float x, const BernoulliState state) const
+    {
+        // sometimes samples can exceed reasonable bounds due to mechanical issues;
+        // in that case, we should clamp it to 100:
+        float xx;
+        if (x > 200.0f || x < 40.0f) {
+            xx = 100.0f;
+        } else {
+            xx = x;
+        }
+
+        // compute on a case-by-case basis to handle heterogeneous probability distributions
+        float log_probs;
+        if (state == BERN_POLYI) {
+            // POLY(I) state:
+            log_probs = std::log(normal_pdf(xx, this->pI_gaussian));
+        }
+        if (state == BERN_POLYA) {
+            // POLY(A) state:
+            log_probs = std::log(normal_pdf(xx, this->pA_gaussian));
+        }
+        return log_probs;
+    }
+
+    // ----- inlined computation of emission log-probabilities, for bernoulli distributions:
+    inline float emit_log_proba_bernoulli(const int n, const BernoulliState state) const
+    {
+        float log_probs;
+        if (state == BERN_POLYI) {
+            if (n == 1) {
+                log_probs = std::log(this->pI_bernoulli);
+            } else {
+                log_probs = std::log(1.0f - this->pI_bernoulli);
+            }
+        }
+        if (state == BERN_POLYA) {
+            if (n == 1) {
+                log_probs = std::log(this->pA_bernoulli);
+            } else {
+                log_probs = std::log(1.0f - this->pA_bernoulli);
+            }
+        }
+        return log_probs;
+    }
+
+public:
+    // Constructor method for BernoulliHMM
+    BernoulliHMM(float scale, float shift, float var)
+    {
+        // initialize log probabilities:
+        for (int i = 0; i < BERN_NUM_STATES; ++i) {
+            for (int j = 0; j < BERN_NUM_STATES; ++j) {
+                if (this->state_transitions[i][j] > 0.00f) {
+                    this->log_state_transitions[i][j] = std::log(this->state_transitions[i][j]);
+                } else {
+                    this->log_state_transitions[i][j] = -INFINITY;
+                }
+            }
+            if (this->start_probs[i] > 0.00f) {
+                this->log_start_probs[i] = std::log(this->start_probs[i]);
+            } else {
+                this->log_start_probs[i] = -INFINITY;
+            }
+        }
+    }
+
+    // Destructor method: nothing to do
+    ~BernoulliHMM() { }
+
+    // Take a vector of floats and return a vector of {0,1}-valued ints
+    // by computing log-likelihood ratios { llkd(polyI) / llkd(polyA) } for each float.
+    std::vector<int> log_lkhd_ratio_sequence(const std::vector<float>& signal) const
+    {
+        // --- compute mean pico-ampere value for this particular sequence:
+        float instance_mean = 0.00f;
+        for (size_t i = 0; i < signal.size(); ++i) {
+            instance_mean = instance_mean + signal.at(i);
+        }
+        instance_mean = instance_mean / static_cast<float>(signal.size());
+
+        // re-center this sequence to the global mean picoamp value and then binarize the log-likelihood ratio values:
+        std::vector<int> bernoullis(signal.size());
+        for (size_t i = 0; i < signal.size(); ++i) {
+            float s = signal.at(i) - instance_mean + this->global_mean;
+            float loglkhd_pI = this->emit_log_proba_gaussian(s, BERN_POLYI);
+            float loglkhd_pA = this->emit_log_proba_gaussian(s, BERN_POLYA);
+            if ((loglkhd_pI / loglkhd_pA) > 1.0f) {
+                bernoullis.at(i) = 1;
+            } else {
+                bernoullis.at(i) = 0;
+            }
+        }
+
+        return bernoullis;
+    }
+
+    // Viterbi implementation for BernoulliHMM with a 0-1 signal as input.
+    BernoulliOutputs viterbi(const std::vector<int>& bernoullis) const {
+        // --- Initialize viterbi score and backpointer vectors:
+        std::vector<float> _init_scores(BERN_NUM_STATES, -std::numeric_limits<float>::infinity());
+        std::vector<BernoulliState> _init_bptrs(BERN_NUM_STATES, BERN_NUM_STATES);
+        std::vector< std::vector<float> > viterbi_scores(bernoullis.size(), _init_scores);
+        std::vector< std::vector<BernoulliState> > viterbi_bptrs(bernoullis.size(), _init_bptrs);
+
+        // --- forward viterbi pass: compute viterbi scores & backpointers.
+        viterbi_scores[0][BERN_POLYI] = this->log_start_probs[BERN_POLYI] + this->emit_log_proba_bernoulli(bernoullis[0], BERN_POLYI);
+        viterbi_scores[0][BERN_POLYA] = this->log_start_probs[BERN_POLYA] + this->emit_log_proba_bernoulli(bernoullis[0], BERN_POLYA);
+        for (size_t i = 1; i < bernoullis.size(); ++i) {
+            // compute transition probabilities:
+            float i2i = viterbi_scores.at(i-1)[BERN_POLYI] + this->log_state_transitions[BERN_POLYI][BERN_POLYI];
+            float i2a = viterbi_scores.at(i-1)[BERN_POLYI] + this->log_state_transitions[BERN_POLYI][BERN_POLYA];
+            float a2a = viterbi_scores.at(i-1)[BERN_POLYA] + this->log_state_transitions[BERN_POLYA][BERN_POLYA];
+
+            // update viterbi scores:
+            viterbi_scores.at(i)[BERN_POLYI] = i2i + this->emit_log_proba_bernoulli(bernoullis[i], BERN_POLYI);
+            viterbi_scores.at(i)[BERN_POLYA] = std::max(i2a, a2a) + this->emit_log_proba_bernoulli(bernoullis[i], BERN_POLYA);
+
+            // update backpointers:
+            viterbi_bptrs.at(i)[BERN_POLYI] = BERN_POLYI;
+            if (a2a < i2a) {
+                viterbi_bptrs.at(i)[BERN_POLYA] = BERN_POLYI;
+            } else {
+                viterbi_bptrs.at(i)[BERN_POLYA] = BERN_POLYA;
+            }
+        }
+
+        // --- backwards viterbi pass:
+        std::vector<BernoulliState> regions(bernoullis.size(), BERN_POLYI);
+        std::vector<float> scores(bernoullis.size(), 0.0f);
+        if (viterbi_scores.at(bernoullis.size()-1)[BERN_POLYI] < viterbi_scores.at(bernoullis.size()-1)[BERN_POLYA]) {
+            regions[bernoullis.size()-1] = BERN_POLYA;
+            scores[bernoullis.size()-1] = viterbi_scores.at(bernoullis.size()-1)[BERN_POLYA];
+        } else {
+            regions[bernoullis.size()-1] = BERN_POLYI;
+            scores[bernoullis.size()-1] = viterbi_scores.at(bernoullis.size()-1)[BERN_POLYI];
+        }
+        for (size_t j=(bernoullis.size()-2); j > 0; --j) {
+            regions[j] = viterbi_bptrs.at(j)[regions.at(j+1)];
+            scores[j] = viterbi_scores.at(j)[regions.at(j+1)];
+        }
+
+        // --- format BernoulliOutputs structure and return:
+        BernoulliOutputs output_vectors = { scores, regions };
+        return output_vectors;
+    }
+
+    // Compute the Bernoulli HMM segmentation; this is the final public interface that gets called.
+    BernoulliSegmentation segmentation(const SquiggleRead& sr, int start, int stop) const {
+        // --- initialize BernoulliSegmentation (indices of -1 mean that the respective regions were not found):
+        BernoulliSegmentation segmentation = { -1, -1 };
+        // --- guard: if fewer than 100 samples in the region, return 'not found':
+        if (stop - start < 100) {
+            return segmentation;
+        }
+
+        // --- subset the squiggleread sequence, perform linear adjustment, and binarize via log-likelihood test:
+        std::vector<float> squiggle(&sr.samples[start], &sr.samples[stop]);
+        for (size_t i = 0; i < squiggle.size(); ++i) {
+            squiggle.at(i) = (squiggle.at(i) - sr.scalings[0].shift) / sr.scalings[0].scale;
+        }
+        std::vector<int> bernoullis = this->log_lkhd_ratio_sequence(squiggle);
+
+        // --- run viterbi algorithm:
+        BernoulliOutputs viterbi_results = this->viterbi(bernoullis);
+
+        // --- parse viterbi labels to find segmentation (keep indices at -1 if no region found):
+        for (size_t i = 0; i < viterbi_results.labels.size(); ++i) {
+            if (viterbi_results.labels.at(i) == BERN_POLYI) {
+                segmentation.polyi = i;
+            }
+            if ((viterbi_results.labels.at(i) == BERN_POLYA) && (segmentation.polya < 0)) {
+                segmentation.polya = i;
+            }
+        }
+        return segmentation;
+    }
+};
+
+// ================================================================================
+// Estimate the duration profile for a single read.
+//   Estimate the underlying read rate.
+// * dpi_estimate_eventalign_duration_profile : compute median read rate via collapsed-
+//     duration event-alignment.
+// * dpi_estimate_unaligned_duration_profile : compute median read rate via collapsed-
+//     durations, without event-alignment.
+// ================================================================================
+// Compute a read-rate based on event-alignment, collapsed by consecutive 5mer identity
+// (N.B.: deprecated; using non-eventaligned durations seems to work just as well
+// while being faster to run.)
+double dpi_estimate_eventalign_duration_profile(SquiggleRead& sr,
+                                                const faidx_t* fai,
+                                                const bam_hdr_t* hdr,
+                                                const bam1_t* record,
+                                                const size_t read_idx)
+{
+    EventAlignmentParameters params;
+    params.sr = &sr;
+    params.fai = fai;
+    params.hdr = hdr;
+    params.record = record;
+    params.strand_idx = 0;
+    params.read_idx = read_idx;
+
+    std::vector<EventAlignment> alignment_output = align_read_to_ref(params);
+
+    // collect durations, collapsing by k-mer
+    std::vector<double> durations_per_kmer;
+
+    size_t prev_ref_position = -1;
+    for(const auto& ea : alignment_output) {
+        float event_duration = sr.get_duration(ea.event_idx, ea.strand_idx);
+        size_t ref_position = ea.ref_position;
+        if(ref_position == prev_ref_position) {
+            assert(!durations_per_kmer.empty());
+            durations_per_kmer.back() += event_duration;
+        } else {
+            durations_per_kmer.push_back(event_duration);
+            prev_ref_position = ref_position;
+        }
+    }
+    std::sort(durations_per_kmer.begin(), durations_per_kmer.end());
+    double median_duration = durations_per_kmer[durations_per_kmer.size() / 2];
+
+    // this is our estimator of read rate, currently we use the median duration
+    // per k-mer as its more robust to outliers caused by stalls
+    double read_rate = 1.0 / median_duration;
+
+    return read_rate;
+}
+
+// compute a read-rate based on kmer-to-event mapping, collapsed by consecutive 5mer identity:
+double dpi_estimate_unaligned_duration_profile(const SquiggleRead& sr,
+                                               const faidx_t* fai,
+                                               const bam_hdr_t* hdr,
+                                               const bam1_t* record,
+                                               const size_t read_idx,
+                                               const size_t strand_idx)
+{
+    // get kmer stats:
+    size_t basecalled_k = sr.get_base_model(strand_idx)->k;
+    size_t num_kmers = sr.read_sequence.length() - basecalled_k + 1;
+
+    // collect durations, collapsing by k-mer:
+    std::vector<double> durations_per_kmer(num_kmers);
+    for (size_t i = 0; i < sr.base_to_event_map.size(); ++i) {
+        size_t start_idx = sr.base_to_event_map[i].indices[strand_idx].start;
+        size_t end_idx = sr.base_to_event_map[i].indices[strand_idx].stop;
+        // no events for this k-mer
+        if (start_idx == -1) {
+            continue;
+        }
+        assert(start_idx <= end_idx);
+        for (size_t j = start_idx; j <= end_idx; ++j) {
+            durations_per_kmer[i] += sr.get_duration(j, strand_idx);
+        }
+    }
+
+    std::sort(durations_per_kmer.begin(), durations_per_kmer.end());
+    assert(durations_per_kmer.size() > 0);
+    double median_duration = durations_per_kmer[durations_per_kmer.size() / 2];
+
+    // this is our estimator of read rate, currently we use the median duration
+    // per k-mer as its more robust to outliers caused by stalls
+    double read_rate = 1.0 / median_duration;
+
+    return read_rate;
+}
+
+// fetch the raw event durations for a given read:
+std::vector<double> dpi_fetch_event_durations(const SquiggleRead& sr,
+                                              const faidx_t* fai,
+                                              const bam_hdr_t* hdr,
+                                              const bam1_t* record,
+                                              const size_t read_idx,
+                                              const size_t strand_idx)
+{
+    // get kmer stats:
+    size_t basecalled_k = sr.get_base_model(strand_idx)->k;
+    size_t num_kmers = sr.read_sequence.length() - basecalled_k + 1;
+
+    // collect durations, collapsing by k-mer:
+    std::vector<double> durations_per_kmer(num_kmers);
+    for (size_t i = 0; i < sr.base_to_event_map.size(); ++i) {
+        size_t start_idx = sr.base_to_event_map[i].indices[strand_idx].start;
+        size_t end_idx = sr.base_to_event_map[i].indices[strand_idx].stop;
+        // no events for this k-mer
+        if (start_idx == -1) {
+            continue;
+        }
+        assert(start_idx <= end_idx);
+        for (size_t j = start_idx; j <= end_idx; ++j) {
+            durations_per_kmer[i] += sr.get_duration(j, strand_idx);
+        }
+    }
+    assert(durations_per_kmer.size() > 0);
+
+    return durations_per_kmer;
+}
+
+// ================================================================================
+// Poly-A Tail Length Estimation
+//   Estimate the number of nucleotides in the poly-A region.
+// * dpi_estimate_polya_length : return an estimate of the read rate for this read.
+// ================================================================================
+// Compute an estimate of the number of nucleotides in the poly-A tail
+double dpi_estimate_polya_length(const SquiggleRead& sr, const DPISegmentation& region_indices, const double read_rate)
+{
+    // start and end times (sample indices) of the poly(A) tail, in original 3'->5' time-direction:
+    // (n.b.: everything in 5'->3' order due to inversion in SquiggleRead constructor, but our
+    // `region_indices` struct has everything in 3'->5' order)
+    double num_samples = sr.samples.size();
+    double polya_sample_start = region_indices.adapter + 1;
+    double polya_sample_end = region_indices.polya;
+    double adapter_sample_start = region_indices.leader;
+    double leader_sample_start = region_indices.start;
+
+    // calculate duration of poly(A) region (in seconds)
+    double polya_duration = (region_indices.polya - (region_indices.adapter + 1)) / sr.sample_rate;
+
+    // Empirically determined offset to handle modal bias of the estimator:
+    double estimation_error_offset = -5;
+
+    // length of the poly(A) tail, in nucleotides:
+    double polya_length = polya_duration * read_rate + estimation_error_offset;
+
+    // ensure estimated length is non-negative:
+    polya_length = std::max(0.0, polya_length);
+
+    return polya_length;
+}
+
+// ================================================================================
+// QC Functions: pre-segmentation, post-segmentation, post-estimation
+//
+// * dpi_pre_segmentation_qc: return a bool (true ~> FAIL) performing basic pre-seg QC.
+// * dpi_post_segmentation_qc: check the segmentation results for failures.
+// * dpi_post_estimation_qc: sanity check for estimates.
+// ================================================================================
+// QC before segmentation; check if event-alignment passes.
+std::string dpi_pre_segmentation_qc(uint32_t suffix_clip, uint32_t prefix_clip, double transcript_length, const SquiggleRead& sr)
+{
+    std::string qc_tag;
+    if (suffix_clip > 200) {
+        // fail if this read has a long skip at end:
+        qc_tag = "SUFFCLIP";
+    } else {
+        // pass if none of the above fail:
+        qc_tag = "PASS";
+    }
+    return qc_tag;
+}
+
+// QC pass after constructing a segmentation; returns a QC flag represented as a string,
+// either "PASS" or "NOREGION".
+// These tests indicate that something went wrong in the segmentation algorithm.
+std::string dpi_post_segmentation_qc(const DPISegmentation& region_indices, const SquiggleRead& sr)
+{
+    // fetch sizes of ADAPTER and POLYA regions:
+    double num_adapter_samples = (region_indices.adapter+1) - region_indices.leader;
+    double num_polya_samples = region_indices.polya - (region_indices.adapter+1);
+
+    // check for NOREGION:
+    std::string qc_tag;
+    if (num_adapter_samples < 200.0 || num_polya_samples < 200.0) {
+        qc_tag = "NOREGION";
+    } else {
+        qc_tag = "PASS";
+    }
+    return qc_tag;
+}
+
+// QC pass after performing estimation; returns a QC flag represented as a string.
+// Currently returns either "PASS" or "ADAPTER".
+// These tests indicate that something went wrong in the estimation algorithm.
+std::string dpi_post_estimation_qc(const DPISegmentation& region_indices, const SquiggleRead& sr, double read_rate, double polya_length)
+{
+    // `adapter_qc_tol` is the (empirically-discovered) upper-tolerance for number of estimated adapter nucleotides:
+    double adapter_qc_tol = 300.0f;
+    // estimated adapter length, in nucleotides:
+    double adapter_duration = (region_indices.adapter - (region_indices.leader - 1)) / sr.sample_rate;
+    double adapter_length = adapter_duration * read_rate;
+
+    std::string qc_tag;
+    if (adapter_length > adapter_qc_tol) {
+        qc_tag = "ADAPTER";
+    } else {
+        qc_tag = "PASS";
+    }
+    return qc_tag;
+}
+
+// QC pass to remove erroneous POLY{A,I} detection calls.
+std::string post_boolhmm_detetection_qc(const BernoulliSegmentation& segmentation, int region_length) {
+    // empirically-discovered threshold for number of samples needed for POLYA or POLYI region to be detected:
+    double cutoff = 200;
+    // detect regions:
+    bool polyi_found = false;
+    if (segmentation.polyi > cutoff) {
+        polyi_found = true;
+    }
+    bool polya_found = false;
+    if ((segmentation.polya > 0) && (region_length - segmentation.polya > cutoff)) {
+        polya_found = true;
+    }
+    // compute output tag:
+    std::string qc_tag;
+    if (polyi_found && polya_found) {
+        qc_tag = "A+I";
+    } else if (!polyi_found && polya_found) {
+        qc_tag = "POLYA-ONLY";
+    } else if (polyi_found && !polya_found) {
+        qc_tag = "POLYI-ONLY";
+    } else {
+        qc_tag = "NONE";
+    }
+    return qc_tag;
+}
+
+// ================================================================================
+// Main Poly-A Code
+//   Expose main functionality of this module via public-facing function.
+// * dpi_estimate_polya_for_single_read : performs all data-fetching and joins all
+//     of the above functions; writes results to file in TSV format
+// * detect_polyi_main : wrap `dpi_estimate_polya_for_single_read` with OpenMP directives
+//     for easy multi-threading across reads
+// ================================================================================
+// Write Poly(A) region segmentation and tail length estimation data to TSV
+void dpi_estimate_polya_for_single_read(const ReadDB& read_db,
+                                        const faidx_t* fai,
+                                        FILE* out_fp,
+                                        const bam_hdr_t* hdr,
+                                        const bam1_t* record,
+                                        size_t read_idx,
+                                        int region_start,
+                                        int region_end)
+{
+    //----- check if primary or secondary alignment by inspecting FLAG; skip read if secondary:
+    if (record->core.flag & BAM_FSECONDARY) {
+        return;
+    }
+
+    //----- load a squiggle read:
+    std::string read_name = bam_get_qname(record);
+    std::string ref_name(hdr->target_name[record->core.tid]);
+    size_t strand_idx = 0;
+
+    //----- get length of suffix of the read that was softclipped:
+    size_t n_cigar = record->core.n_cigar;
+    uint32_t prefix_cigar = bam_get_cigar(record)[0];
+    uint32_t suffix_cigar = bam_get_cigar(record)[n_cigar - 1];
+
+    uint32_t prefix_clip = bam_cigar_oplen(prefix_cigar);
+    uint32_t suffix_clip = bam_cigar_oplen(suffix_cigar);
+
+    //----- construct SquiggleRead; if there are load issues, print -1's and skip compute:
+    SquiggleRead sr(read_name, read_db, SRF_LOAD_RAW_SAMPLES);
+    if (sr.fast5_path == "" || sr.events[0].empty()) {
+        #pragma omp critical
+        {
+            fprintf(out_fp, "%s\t%s\t%zu\t-1.0\t-1.0\t-1.0\t-1.0\t-1.00\t-1.00\tREAD_FAILED_LOAD\n",
+                read_name.c_str(), ref_name.c_str(), record->core.pos);
+            if (opt::verbose == 1) {
+                fprintf(out_fp,
+                    "polya-samples\t%s\t%s\t-1\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\t-1.0\tREAD_FAILED_LOAD\n",
+                    read_name.substr(0,6).c_str(), ref_name.c_str());
+            }
+            if (opt::verbose == 2) {
+                fprintf(out_fp, "polya-durations\t%s\t-1\t-1.0\tREAD_FAILED_LOAD\n", read_name.substr(0,6).c_str());
+            }
+        }
+        return;
+    }
+
+    //----- print clipping data if `verbose > 2` set:
+    if (opt::verbose > 2) {
+        fprintf(stderr, "[polya] read: %s length: %zu prefix clip: %zu suffix clip %zu\n",
+                read_name.c_str(), sr.read_sequence.length(), prefix_clip, suffix_clip);
+    }
+    std::string sequenced_transcript = sr.read_sequence;
+
+    //----- Perform pre-segmentation QC:
+    std::string pre_segmentation_qc_flag = dpi_pre_segmentation_qc(suffix_clip, prefix_clip, sequenced_transcript.length(), sr);
+
+    //----- perform HMM-based regional segmentation & post-segmentation QC:
+    DPISegmentationHMM hmm(static_cast<float>(sr.scalings[0].scale),
+                           static_cast<float>(sr.scalings[0].shift),
+                           static_cast<float>(sr.scalings[0].var));
+    DPISegmentation region_indices = hmm.segment_squiggle(sr);
+    std::string post_segmentation_qc_flag = dpi_post_segmentation_qc(region_indices, sr);
+
+    //----- compute duration profile for the read:
+    double read_rate = dpi_estimate_unaligned_duration_profile(sr, fai, hdr, record, read_idx, strand_idx);
+
+    //----- estimate number of nucleotides in poly-A tail & post-estimation QC:
+    double polya_length = dpi_estimate_polya_length(sr, region_indices, read_rate);
+    std::string post_estimation_qc_flag = dpi_post_estimation_qc(region_indices, sr, read_rate, polya_length);
+
+    //----- Resolve QC flag based on priority:
+    std::string qc_tag;
+    if (post_segmentation_qc_flag.compare("PASS") != 0) {
+        qc_tag = post_segmentation_qc_flag;
+    } else if (post_estimation_qc_flag.compare("PASS") != 0) {
+        qc_tag = post_estimation_qc_flag;
+    } else if (pre_segmentation_qc_flag.compare("PASS") != 0) {
+        qc_tag = pre_segmentation_qc_flag;
+    } else {
+        qc_tag = "PASS";
+    }
+
+    //----- Detect POLY{A,I} region with BernoulliHMM:
+    BernoulliHMM boolhmm(static_cast<float>(sr.scalings[0].scale),
+                         static_cast<float>(sr.scalings[0].shift),
+                         static_cast<float>(sr.scalings[0].var));
+    BernoulliSegmentation poly_segmentation = boolhmm.segmentation(sr, region_indices.adapter+1, region_indices.polya);
+    std::string poly_detect_tag = post_boolhmm_detetection_qc(poly_segmentation, (region_indices.polya-(region_indices.adapter+1)));
+
+    //----- print annotations to TSV:
+    double leader_sample_start = region_indices.start+1;
+    double adapter_sample_start = region_indices.leader+1;
+    double polya_sample_start = region_indices.adapter+1;
+    double polya_sample_end = region_indices.polya;
+    double transcr_sample_start = region_indices.polya+1;
+    #pragma omp critical
+    {
+        fprintf(out_fp, "%s\t%s\t%zu\t%.1lf\t%.1lf\t%.1lf\t%.1lf\t%.2lf\t%.2lf\t%s\t%s\n",
+                read_name.c_str(), ref_name.c_str(), record->core.pos,
+                leader_sample_start, adapter_sample_start, polya_sample_start, transcr_sample_start,
+                read_rate, polya_length, poly_detect_tag.c_str(), qc_tag.c_str());
+        // if `verbose == 1`, print the samples (picoAmps) of the read,
+        // up to the first 1000 samples of transcript region:
+        if (opt::verbose == 1) {
+            for (size_t i = 0; i < std::min(static_cast<size_t>(polya_sample_end)+1000, sr.samples.size()); ++i) {
+                std::string tag;
+                if (i < leader_sample_start) {
+                    tag = "START";
+                } else if (i < adapter_sample_start) {
+                    tag = "LEADER";
+                } else if (i < polya_sample_start) {
+                    tag =  "ADAPTER";
+                } else if (i < polya_sample_end) {
+                    tag = "POLYA";
+                } else {
+                    tag = "TRANSCRIPT";
+                }
+                float s = sr.samples[i];
+                float scaled_s = (s - sr.scalings[0].shift) / sr.scalings[0].scale;
+                std::vector<float> s_probas = hmm.log_probas(s);
+                fprintf(out_fp, "polya-samples\t%s\t%s\t%zu\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%s\n",
+                        read_name.substr(0,6).c_str(), ref_name.c_str(), i, s, scaled_s,
+                        s_probas.at(0), s_probas.at(1), s_probas.at(2), s_probas.at(3), s_probas.at(4), s_probas.at(5),
+                        tag.c_str());
+            }
+        }
+        // if `verbose == 2`, print the raw event durations of the read:
+        if (opt::verbose == 2) {
+            std::vector<double> raw_durations = dpi_fetch_event_durations(sr, fai, hdr, record, read_idx, strand_idx);
+            for (size_t i = 0; i < raw_durations.size(); ++i) {
+                double dura = raw_durations[i];
+                fprintf(out_fp, "polya-durations\t%s\t%zu\t%f\t%s\n",
+                    read_name.substr(0,6).c_str(), i, dura, qc_tag.c_str());
+            }
+        }
+    }
+}
+
+// Wrap poly-A estimation code for parallelism
+int detect_polyi_main(int argc, char** argv)
+{
+    parse_detect_polyi_options(argc, argv);
+    omp_set_num_threads(opt::num_threads);
+
+    ReadDB read_db;
+    read_db.load(opt::reads_file);
+
+    // load reference fai file
+    faidx_t *fai = fai_load(opt::genome_file.c_str());
+
+    // print header line:
+    fprintf(stdout, "readname\tcontig\tposition\tleader_start\tadapter_start\tpolya_start\ttranscript_start\tread_rate\tpolya_length\tdetected\tqc_tag\n");
+
+    // the BamProcessor framework calls the input function with the
+    // bam record, read index, etc passed as parameters
+    // bind the other parameters the worker function needs here
+    auto f = std::bind(dpi_estimate_polya_for_single_read, std::ref(read_db), std::ref(fai), stdout, _1, _2, _3, _4, _5);
+    BamProcessor processor(opt::bam_file, opt::region, opt::num_threads);
+    processor.parallel_run(f);
+
+    // free allocated values:
+    fai_destroy(fai);
+
+    return EXIT_SUCCESS;
+}


=====================================
src/nanopolish_detect_polyi.h
=====================================
@@ -0,0 +1,14 @@
+//---------------------------------------------------------
+// Copyright 2017 Ontario Institute for Cancer Research
+// Written by Jared Simpson (jared.simpson at oicr.on.ca)
+//---------------------------------------------------------
+//
+// nanopolish_detect_polyi.h -- detect the presence of a
+// poly(I) tail as in the nano-COP protocol.
+//
+#ifndef NANOPOLISH_DETECT_POLYI_H
+#define NANOPOLISH_DETECT_POLYI_H
+
+int detect_polyi_main(int argc, char** argv);
+
+#endif


=====================================
src/nanopolish_fast5_check.cpp
=====================================
@@ -0,0 +1,150 @@
+//---------------------------------------------------------
+// Copyright 2020 Ontario Institute for Cancer Research
+// Written by Jared Simpson (jared.simpson at oicr.on.ca)
+//
+// nanopolish fast5-check - check fast5 files for common
+// I/O problems
+//
+//---------------------------------------------------------
+//
+
+//
+// Getopt
+//
+#define SUBPROGRAM "fast5-check"
+
+#include <iostream>
+#include <fstream>
+#include <sstream>
+#include <getopt.h>
+
+#include <fast5.hpp>
+#include "nanopolish_fast5_check.h"
+#include "nanopolish_common.h"
+#include "nanopolish_read_db.h"
+#include "fs_support.hpp"
+#include "nanopolish_fast5_io.h"
+
+static const char *FAST5_CHECK_VERSION_MESSAGE =
+SUBPROGRAM " Version " PACKAGE_VERSION "\n"
+"Written by Jared Simpson.\n"
+"\n"
+"Copyright 2020 Ontario Institute for Cancer Research\n";
+
+static const char *FAST5_CHECK_USAGE_MESSAGE =
+"Usage: " PACKAGE_NAME " " SUBPROGRAM " [OPTIONS] -r reads.fastq\n"
+"Check whether the fast5 files are indexed correctly and readable by nanopolish\n"
+"\n"
+"      --help                           display this help and exit\n"
+"      --version                        display version\n"
+"  -r, --reads                          file containing the basecalled reads\n"
+"\nReport bugs to " PACKAGE_BUGREPORT "\n\n";
+
+namespace opt
+{
+    static unsigned int verbose = 0;
+    static std::string reads_file;
+}
+
+static const char* shortopts = "vr:";
+
+enum {
+    OPT_HELP = 1,
+    OPT_VERSION,
+    OPT_LOG_LEVEL,
+};
+
+static const struct option longopts[] = {
+    { "help",                      no_argument,       NULL, OPT_HELP },
+    { "version",                   no_argument,       NULL, OPT_VERSION },
+    { "log-level",                 required_argument, NULL, OPT_LOG_LEVEL },
+    { "verbose",                   no_argument,       NULL, 'v' },
+    { "reads",                     required_argument, NULL, 'r' },
+    { NULL, 0, NULL, 0 }
+};
+
+void parse_fast5_check_options(int argc, char** argv)
+{
+    bool die = false;
+    std::vector< std::string> log_level;
+    for (char c; (c = getopt_long(argc, argv, shortopts, longopts, NULL)) != -1;) {
+        std::istringstream arg(optarg != NULL ? optarg : "");
+        switch (c) {
+            case OPT_HELP:
+                std::cout << FAST5_CHECK_USAGE_MESSAGE;
+                exit(EXIT_SUCCESS);
+            case OPT_VERSION:
+                std::cout << FAST5_CHECK_VERSION_MESSAGE;
+                exit(EXIT_SUCCESS);
+            case OPT_LOG_LEVEL:
+                log_level.push_back(arg.str());
+                break;
+            case 'v': opt::verbose++; break;
+            case 'r': arg >> opt::reads_file; break;
+        }
+    }
+
+    if (argc - optind < 0) {
+        std::cerr << SUBPROGRAM ": not enough arguments\n";
+        die = true;
+    }
+
+    if (argc - optind > 0) {
+        std::cerr << SUBPROGRAM ": too many arguments\n";
+        die = true;
+    }
+
+    if (die)
+    {
+        std::cout << "\n" << FAST5_CHECK_USAGE_MESSAGE;
+        exit(EXIT_FAILURE);
+    }
+}
+
+void check_read(fast5_file& f5_fh, const std::string& read_name)
+{
+    fast5_raw_scaling scaling = fast5_get_channel_params(f5_fh, read_name);
+    if(scaling.digitisation != scaling.digitisation) {
+        fprintf(stdout, "\t[read] ERROR: could not read scaling for %s\n", read_name.c_str());
+    }
+    raw_table rt = fast5_get_raw_samples(f5_fh, read_name, scaling);
+    if(rt.n <= 0) {
+        fprintf(stdout, "\t[read] ERROR: could not read raw samples for %s\n", read_name.c_str());
+    } else {
+        fprintf(stdout, "\t[read] OK: found %zu raw samples for %s\n", rt.n, read_name.c_str());
+    }
+    free(rt.raw);
+    rt.raw = NULL;
+}
+
+int fast5_check_main(int argc, char** argv)
+{
+    parse_fast5_check_options(argc, argv);
+
+    // Attempt to load the read_db
+    ReadDB read_db;
+    read_db.load(opt::reads_file);
+
+    std::vector<std::string> fast5_files = read_db.get_unique_fast5s();
+    fprintf(stdout, "The readdb file contains %zu fast5 files\n", fast5_files.size());
+
+    for(size_t i = 0; i < fast5_files.size(); ++i) {
+
+        fast5_file f5_fh = fast5_open(fast5_files[i]);
+        if(fast5_is_open(f5_fh)) {
+            fprintf(stdout, "[fast5] OK: opened %s\n", fast5_files[i].c_str());
+
+            // check the individual reads in the file
+            std::vector<std::string> reads = fast5_get_multi_read_groups(f5_fh);
+            for(size_t j = 0; j < reads.size(); ++j) {
+                std::string read_name = reads[j].substr(5);
+                check_read(f5_fh, read_name);
+            }
+        } else {
+            fprintf(stdout, "[fast5] ERROR: failed to open %s\n", fast5_files[i].c_str());
+        }
+
+        fast5_close(f5_fh);
+    }
+    return 0;
+}


=====================================
src/nanopolish_fast5_check.h
=====================================
@@ -0,0 +1,14 @@
+//---------------------------------------------------------
+// Copyright 2020 Ontario Institute for Cancer Research
+// Written by Jared Simpson (jared.simpson at oicr.on.ca)
+//---------------------------------------------------------
+//
+#ifndef NANOPOLISH_FAST5_CHECK_H
+#define NANOPOLISH_FAST5_CHECK_H
+
+#include <string>
+#include <vector>
+
+int fast5_check_main(int argc, char** argv);
+
+#endif


=====================================
src/nanopolish_squiggle_read.cpp
=====================================
@@ -70,7 +70,6 @@ void SquiggleScalings::set6(double _shift,
 SquiggleRead::SquiggleRead(const std::string& name, const ReadDB& read_db, const uint32_t flags)
 {
     this->fast5_path = read_db.get_signal_path(name);
-    g_total_reads += 1;
     if(this->fast5_path == "") {
         g_bad_fast5_file += 1;
         return;
@@ -106,7 +105,7 @@ SquiggleRead::SquiggleRead(const std::string& sequence, const Fast5Data& data, c
 void SquiggleRead::init(const std::string& read_sequence, const Fast5Data& data, const uint32_t flags)
 {
     this->nucleotide_type = SRNT_DNA;
-    this->pore_type = PT_UNKNOWN;
+    this->pore_type = PORETYPE_UNKNOWN;
     this->f_p = nullptr;
 
     this->events_per_base[0] = events_per_base[1] = 0.0f;
@@ -219,7 +218,7 @@ void SquiggleRead::load_from_events(const uint32_t flags)
         // in this case, we have to set this strand to be invalid
         if(!event_maps_1d[si].empty()) {
             // run version-specific load
-            if(pore_type == PT_R7) {
+            if(pore_type == PORETYPE_R7) {
                 _load_R7(si);
             } else {
                 _load_R9(si, read_sequences_1d[si], event_maps_1d[si], p_model_states, flags);
@@ -231,10 +230,10 @@ void SquiggleRead::load_from_events(const uint32_t flags)
 
     // Build the map from k-mers of the read sequence to events
     if(read_type == SRT_2D) {
-        if(pore_type == PT_R9) {
+        if(pore_type == PORETYPE_R9) {
             build_event_map_2d_r9();
         } else {
-            assert(pore_type == PT_R7);
+            assert(pore_type == PORETYPE_R7);
             build_event_map_2d_r7();
         }
     } else {
@@ -298,7 +297,7 @@ void SquiggleRead::load_from_raw(const Fast5Data& fast5_data, const uint32_t fla
     }
 
     this->read_type = SRT_TEMPLATE;
-    this->pore_type = PT_R9;
+    this->pore_type = PORETYPE_R9;
 
     // Set the base model for this read to either the nucleotide or U->T RNA model
     this->base_model[strand_idx] = PoreModelSet::get_model(kit, alphabet, strand_str, k);
@@ -1122,11 +1121,11 @@ void SquiggleRead::detect_pore_type()
     assert(f_p and f_p->is_open());
     if (f_p->have_basecall_model(0))
     {
-        pore_type = PT_R7;
+        pore_type = PORETYPE_R7;
     }
     else
     {
-        pore_type = PT_R9;
+        pore_type = PORETYPE_R9;
     }
 }
 


=====================================
src/nanopolish_squiggle_read.h
=====================================
@@ -21,9 +21,9 @@
 
 enum PoreType
 {
-    PT_UNKNOWN = 0,
-    PT_R7,
-    PT_R9,
+    PORETYPE_UNKNOWN = 0,
+    PORETYPE_R7,
+    PORETYPE_R9,
 };
 
 // the type of the read



View it on GitLab: https://salsa.debian.org/med-team/nanopolish/-/commit/55b8e2b0e229b35032e685927c412c4f34cc3c3f

-- 
View it on GitLab: https://salsa.debian.org/med-team/nanopolish/-/commit/55b8e2b0e229b35032e685927c412c4f34cc3c3f
You're receiving this email because of your account on salsa.debian.org.


-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://alioth-lists.debian.net/pipermail/debian-med-commit/attachments/20210422/86b5321f/attachment-0001.htm>


More information about the debian-med-commit mailing list