[med-svn] [Git][python-team/packages/python-pynndescent][upstream] New upstream version 0.5.7

Andreas Tille (@tille) gitlab at salsa.debian.org
Sun Jul 17 20:42:11 BST 2022



Andreas Tille pushed to branch upstream at Debian Python Team / packages / python-pynndescent


Commits:
d3f6540a by Andreas Tille at 2022-07-17T16:57:11+02:00
New upstream version 0.5.7
- - - - -


13 changed files:

- PKG-INFO
- pynndescent.egg-info/PKG-INFO
- pynndescent/distances.py
- pynndescent/graph_utils.py
- pynndescent/optimal_transport.py
- pynndescent/pynndescent_.py
- pynndescent/rp_trees.py
- pynndescent/sparse.py
- pynndescent/sparse_nndescent.py
- pynndescent/tests/test_distances.py
- pynndescent/tests/test_pynndescent_.py
- pynndescent/utils.py
- setup.py


Changes:

=====================================
PKG-INFO
=====================================
@@ -1,6 +1,6 @@
 Metadata-Version: 1.2
 Name: pynndescent
-Version: 0.5.6
+Version: 0.5.7
 Summary: Nearest Neighbor Descent
 Home-page: http://github.com/lmcinnes/pynndescent
 Author: Leland McInnes


=====================================
pynndescent.egg-info/PKG-INFO
=====================================
@@ -1,6 +1,6 @@
 Metadata-Version: 1.2
 Name: pynndescent
-Version: 0.5.6
+Version: 0.5.7
 Summary: Nearest Neighbor Descent
 Home-page: http://github.com/lmcinnes/pynndescent
 Author: Leland McInnes


=====================================
pynndescent/distances.py
=====================================
@@ -142,7 +142,7 @@ def weighted_minkowski(x, y, w=_mock_ones, p=2):
     """
     result = 0.0
     for i in range(x.shape[0]):
-        result += (w[i] * np.abs(x[i] - y[i])) ** p
+        result += w[i] * np.abs(x[i] - y[i]) ** p
 
     return result ** (1.0 / p)
 


=====================================
pynndescent/graph_utils.py
=====================================
@@ -145,10 +145,10 @@ def find_component_connection_edge(
     best_edge = (indices[0][0], indices[1][0])
 
     while changed[0] or changed[1]:
-        result = search_closure(
+        inds, dists, _ = search_closure(
             query_points, candidate_indices, search_size, epsilon, visited
         )
-        inds, dists = deheap_sort(result)
+        inds, dists = deheap_sort(inds, dists)
         for i in range(dists.shape[0]):
             for j in range(dists.shape[1]):
                 if dists[i, j] < best_dist:


=====================================
pynndescent/optimal_transport.py
=====================================
@@ -935,7 +935,7 @@ def network_simplex_core(node_arc_data, spanning_tree, graph, max_iter):
     fastmath=True,
     parallel=True,
     locals={"diff": numba.float32, "result": numba.float32},
-    cache=True,
+    cache=False,
 )
 def right_marginal_error(u, K, v, y):
     uK = u @ K
@@ -950,7 +950,7 @@ def right_marginal_error(u, K, v, y):
     fastmath=True,
     parallel=True,
     locals={"diff": numba.float32, "result": numba.float32},
-    cache=True,
+    cache=False,
 )
 def right_marginal_error_batch(u, K, v, y):
     uK = K.T @ u
@@ -962,7 +962,7 @@ def right_marginal_error_batch(u, K, v, y):
     return np.sqrt(result)
 
 
- at numba.njit(fastmath=True, parallel=True, cache=True)
+ at numba.njit(fastmath=True, parallel=True, cache=False)
 def transport_plan(K, u, v):
     i_dim = K.shape[0]
     j_dim = K.shape[1]
@@ -974,7 +974,7 @@ def transport_plan(K, u, v):
     return result
 
 
- at numba.njit(fastmath=True, parallel=True, locals={"result": numba.float32}, cache=True)
+ at numba.njit(fastmath=True, parallel=True, locals={"result": numba.float32}, cache=False)
 def relative_change_in_plan(old_u, old_v, new_u, new_v):
     i_dim = old_u.shape[0]
     j_dim = old_v.shape[0]
@@ -987,7 +987,7 @@ def relative_change_in_plan(old_u, old_v, new_u, new_v):
     return result / (i_dim * j_dim)
 
 
- at numba.njit(fastmath=True, parallel=True, cache=True)
+ at numba.njit(fastmath=True, parallel=True, cache=False)
 def precompute_K_prime(K, x):
     i_dim = K.shape[0]
     j_dim = K.shape[1]
@@ -1003,7 +1003,7 @@ def precompute_K_prime(K, x):
     return result
 
 
- at numba.njit(fastmath=True, parallel=True, cache=True)
+ at numba.njit(fastmath=True, parallel=True, cache=False)
 def K_from_cost(cost, regularization):
     i_dim = cost.shape[0]
     j_dim = cost.shape[1]
@@ -1131,7 +1131,7 @@ def sinkhorn_distance(x, y, cost=_dummy_cost, regularization=1.0):
     return result
 
 
- at numba.njit(fastmath=True, parallel=True, cache=True)
+ at numba.njit(fastmath=True, parallel=True, cache=False)
 def sinkhorn_distance_batch(x, y, cost=_dummy_cost, regularization=1.0):
     dim_x = x.shape[0]
     dim_y = y.shape[0]


=====================================
pynndescent/pynndescent_.py
=====================================
@@ -63,7 +63,7 @@ def is_c_contiguous(array_like):
     return flags is not None and flags["C_CONTIGUOUS"]
 
 
- at numba.njit(parallel=True, cache=True)
+ at numba.njit(parallel=True, cache=False)
 def generate_leaf_updates(leaf_block, dist_thresholds, data, dist):
 
     updates = [[(-1, -1, np.inf)] for i in range(leaf_block.shape[0])]
@@ -156,7 +156,7 @@ def init_from_neighbor_graph(heap, indices, distances):
     return
 
 
- at numba.njit(parallel=True, cache=True)
+ at numba.njit(parallel=True, cache=False)
 def generate_graph_updates(
     new_candidate_block, old_candidate_block, dist_thresholds, data, dist
 ):
@@ -372,7 +372,7 @@ def nn_descent(
             verbose=verbose,
         )
 
-    return deheap_sort(current_graph)
+    return deheap_sort(current_graph[0], current_graph[1])
 
 
 @numba.njit(parallel=True)
@@ -946,22 +946,25 @@ class NNDescent:
 
         if not hasattr(self, "_search_forest"):
             if self._rp_forest is None:
-                # We don't have a forest, so make a small search forest
-                current_random_state = check_random_state(self.random_state)
-                rp_forest = make_forest(
-                    self._raw_data,
-                    self.n_neighbors,
-                    self.n_search_trees,
-                    self.leaf_size,
-                    self.rng_state,
-                    current_random_state,
-                    self.n_jobs,
-                    self._angular_trees,
-                )
-                self._search_forest = [
-                    convert_tree_format(tree, self._raw_data.shape[0])
-                    for tree in rp_forest
-                ]
+                if self.tree_init:
+                    # We don't have a forest, so make a small search forest
+                    current_random_state = check_random_state(self.random_state)
+                    rp_forest = make_forest(
+                        self._raw_data,
+                        self.n_neighbors,
+                        self.n_search_trees,
+                        self.leaf_size,
+                        self.rng_state,
+                        current_random_state,
+                        self.n_jobs,
+                        self._angular_trees,
+                    )
+                    self._search_forest = [
+                        convert_tree_format(tree, self._raw_data.shape[0])
+                        for tree in rp_forest
+                    ]
+                else:
+                    self._search_forest = []
             else:
                 # convert the best trees into a search forest
                 tree_scores = [
@@ -1118,22 +1121,26 @@ class NNDescent:
         # reorder according to the search tree leaf order
         if self.verbose:
             print(ts(), "Resorting data and graph based on tree order")
-        self._vertex_order = self._search_forest[0].indices
-        row_ordered_graph = self._search_graph[self._vertex_order, :].tocsc()
-        self._search_graph = row_ordered_graph[:, self._vertex_order]
-        self._search_graph = self._search_graph.tocsr()
-        self._search_graph.sort_indices()
 
-        if self._is_sparse:
-            self._raw_data = self._raw_data[self._vertex_order, :]
-        else:
-            self._raw_data = np.ascontiguousarray(self._raw_data[self._vertex_order, :])
+        if self.tree_init:
+            self._vertex_order = self._search_forest[0].indices
+            row_ordered_graph = self._search_graph[self._vertex_order, :].tocsc()
+            self._search_graph = row_ordered_graph[:, self._vertex_order]
+            self._search_graph = self._search_graph.tocsr()
+            self._search_graph.sort_indices()
 
-        tree_order = np.argsort(self._vertex_order)
-        self._search_forest = tuple(
-            resort_tree_indices(tree, tree_order)
-            for tree in self._search_forest[: self.n_search_trees]
-        )
+            if self._is_sparse:
+                self._raw_data = self._raw_data[self._vertex_order, :]
+            else:
+                self._raw_data = np.ascontiguousarray(self._raw_data[self._vertex_order, :])
+
+            tree_order = np.argsort(self._vertex_order)
+            self._search_forest = tuple(
+                resort_tree_indices(tree, tree_order)
+                for tree in self._search_forest[: self.n_search_trees]
+            )
+        else:
+            self._vertex_order = np.arange(self._raw_data.shape[0])
 
         if self.compressed:
             if self.verbose:
@@ -1149,34 +1156,42 @@ class NNDescent:
         if self.verbose:
             print(ts(), "Building and compiling search function")
 
-        tree_hyperplanes = self._search_forest[0].hyperplanes
-        tree_offsets = self._search_forest[0].offsets
-        tree_indices = self._search_forest[0].indices
-        tree_children = self._search_forest[0].children
+        if self.tree_init:
+            tree_hyperplanes = self._search_forest[0].hyperplanes
+            tree_offsets = self._search_forest[0].offsets
+            tree_indices = self._search_forest[0].indices
+            tree_children = self._search_forest[0].children
+
+            @numba.njit(
+                [
+                    numba.types.Array(numba.types.int32, 1, "C", readonly=True)(
+                        numba.types.Array(numba.types.float32, 1, "C", readonly=True),
+                        numba.types.Array(numba.types.int64, 1, "C", readonly=False),
+                    )
+                ],
+                locals={"node": numba.types.uint32, "side": numba.types.boolean},
+            )
+            def tree_search_closure(point, rng_state):
+                node = 0
+                while tree_children[node, 0] > 0:
+                    side = select_side(
+                        tree_hyperplanes[node], tree_offsets[node], point, rng_state
+                    )
+                    if side == 0:
+                        node = tree_children[node, 0]
+                    else:
+                        node = tree_children[node, 1]
 
-        @numba.njit(
-            [
-                numba.types.Array(numba.types.int32, 1, "C", readonly=True)(
-                    numba.types.Array(numba.types.float32, 1, "C", readonly=True),
-                    numba.types.Array(numba.types.int64, 1, "C", readonly=False),
-                )
-            ],
-            locals={"node": numba.types.uint32, "side": numba.types.boolean},
-        )
-        def tree_search_closure(point, rng_state):
-            node = 0
-            while tree_children[node, 0] > 0:
-                side = select_side(
-                    tree_hyperplanes[node], tree_offsets[node], point, rng_state
-                )
-                if side == 0:
-                    node = tree_children[node, 0]
-                else:
-                    node = tree_children[node, 1]
+                return -tree_children[node]
 
-            return -tree_children[node]
+            self._tree_search = tree_search_closure
+        else:
+            @numba.njit()
+            def tree_search_closure(point, rng_state):
+                return (0, 0)
 
-        self._tree_search = tree_search_closure
+            self._tree_search = tree_search_closure
+            tree_indices = np.zeros(1, dtype=np.int64)
 
         alternative_dot = pynnd_dist.alternative_dot
         alternative_cosine = pynnd_dist.alternative_cosine
@@ -1301,50 +1316,63 @@ class NNDescent:
             return result
 
         self._search_function = search_closure
+        self._deheap_function = numba.njit(parallel=self.parallel_batch_queries)(
+            deheap_sort.py_func
+        )
+
         # Force compilation of the search function (hardcoded k, epsilon)
         query_data = self._raw_data[:1]
-        _ = self._search_function(
+        inds, dists, _ = self._search_function(
             query_data, 5, 0.0, self._visited, self.search_rng_state
         )
+        _ = self._deheap_function(inds, dists)
 
     def _init_sparse_search_function(self):
 
         if self.verbose:
             print(ts(), "Building and compiling sparse search function")
 
-        tree_hyperplanes = self._search_forest[0].hyperplanes
-        tree_offsets = self._search_forest[0].offsets
-        tree_indices = self._search_forest[0].indices
-        tree_children = self._search_forest[0].children
+        if self.tree_init:
+            tree_hyperplanes = self._search_forest[0].hyperplanes
+            tree_offsets = self._search_forest[0].offsets
+            tree_indices = self._search_forest[0].indices
+            tree_children = self._search_forest[0].children
+
+            @numba.njit(
+                [
+                    numba.types.Array(numba.types.int32, 1, "C", readonly=True)(
+                        numba.types.Array(numba.types.int32, 1, "C", readonly=True),
+                        numba.types.Array(numba.types.float32, 1, "C", readonly=True),
+                        numba.types.Array(numba.types.int64, 1, "C", readonly=False),
+                    )
+                ],
+                locals={"node": numba.types.uint32, "side": numba.types.boolean},
+            )
+            def sparse_tree_search_closure(point_inds, point_data, rng_state):
+                node = 0
+                while tree_children[node, 0] > 0:
+                    side = sparse_select_side(
+                        tree_hyperplanes[node],
+                        tree_offsets[node],
+                        point_inds,
+                        point_data,
+                        rng_state,
+                    )
+                    if side == 0:
+                        node = tree_children[node, 0]
+                    else:
+                        node = tree_children[node, 1]
 
-        @numba.njit(
-            [
-                numba.types.Array(numba.types.int32, 1, "C", readonly=True)(
-                    numba.types.Array(numba.types.int32, 1, "C", readonly=True),
-                    numba.types.Array(numba.types.float32, 1, "C", readonly=True),
-                    numba.types.Array(numba.types.int64, 1, "C", readonly=False),
-                )
-            ],
-            locals={"node": numba.types.uint32, "side": numba.types.boolean},
-        )
-        def sparse_tree_search_closure(point_inds, point_data, rng_state):
-            node = 0
-            while tree_children[node, 0] > 0:
-                side = sparse_select_side(
-                    tree_hyperplanes[node],
-                    tree_offsets[node],
-                    point_inds,
-                    point_data,
-                    rng_state,
-                )
-                if side == 0:
-                    node = tree_children[node, 0]
-                else:
-                    node = tree_children[node, 1]
+                return -tree_children[node]
 
-            return -tree_children[node]
+            self._tree_search = sparse_tree_search_closure
+        else:
+            @numba.njit()
+            def sparse_tree_search_closure(point_inds, point_data, rng_state):
+                return (0, 0)
 
-        self._tree_search = sparse_tree_search_closure
+            self._tree_search = sparse_tree_search_closure
+            tree_indices = np.zeros(1, dtype=np.int64)
 
         from pynndescent.distances import alternative_dot, alternative_cosine
 
@@ -1508,10 +1536,13 @@ class NNDescent:
             return result
 
         self._search_function = search_closure
+        self._deheap_function = numba.njit(parallel=self.parallel_batch_queries)(
+            deheap_sort.py_func
+        )
 
         # Force compilation of the search function (hardcoded k, epsilon)
         query_data = self._raw_data[:1]
-        _ = self._search_function(
+        inds, dists, _ = self._search_function(
             query_data.indices,
             query_data.indptr,
             query_data.data,
@@ -1520,6 +1551,7 @@ class NNDescent:
             self._visited,
             self.search_rng_state,
         )
+        _ = self._deheap_function(inds, dists)
 
     @property
     def neighbor_graph(self):
@@ -1600,7 +1632,7 @@ class NNDescent:
                 self._init_search_function()
 
             query_data = np.asarray(query_data).astype(np.float32, order="C")
-            result = self._search_function(
+            indices, dists, _ = self._search_function(
                 query_data, k, epsilon, self._visited, self.search_rng_state
             )
         else:
@@ -1614,7 +1646,7 @@ class NNDescent:
             if not query_data.has_sorted_indices:
                 query_data.sort_indices()
 
-            result = self._search_function(
+            indices, dists, _ = self._search_function(
                 query_data.indices,
                 query_data.indptr,
                 query_data.data,
@@ -1624,7 +1656,7 @@ class NNDescent:
                 self.search_rng_state,
             )
 
-        indices, dists = deheap_sort(result)
+        indices, dists = self._deheap_function(indices, dists)
         # Sort to input graph_data order
         indices = self._vertex_order[indices]
 
@@ -1634,16 +1666,16 @@ class NNDescent:
         return indices, dists
 
     def update(self, X):
-        if not hasattr(self, "_search_graph"):
-            self._init_search_graph()
-
         current_random_state = check_random_state(self.random_state)
         rng_state = current_random_state.randint(INT32_MIN, INT32_MAX, 3).astype(
             np.int64
         )
         X = check_array(X, dtype=np.float32, accept_sparse="csr", order="C")
 
-        original_order = np.argsort(self._vertex_order)
+        if hasattr(self, "_vertex_order"):
+            original_order = np.argsort(self._vertex_order)
+        else:
+            original_order = np.ones(self._raw_data.shape[0], dtype=np.bool_)
 
         if self._is_sparse:
             self._raw_data = sparse_vstack([self._raw_data, X])
@@ -1693,6 +1725,24 @@ class NNDescent:
                 verbose=self.verbose,
             )
 
+            # Remove search graph and search function
+            # and rerun prepare if it was run previously
+            if (
+                    hasattr(self, "_search_graph") or
+                    hasattr(self, "_search_function") or
+                    hasattr(self, "_search_forest")
+            ):
+                if hasattr(self, "_search_graph"):
+                    del self._search_graph
+
+                if hasattr(self, "_search_forest"):
+                    del self._search_forest
+
+                if hasattr(self, "_search_function"):
+                    del self._search_function
+
+                self.prepare()
+
 
 class PyNNDescentTransformer(BaseEstimator, TransformerMixin):
     """PyNNDescentTransformer for fast approximate nearest neighbor transformer.


=====================================
pynndescent/rp_trees.py
=====================================
@@ -1219,7 +1219,7 @@ def renumbaify_tree(tree):
         "result": numba.float32,
         "i": numba.uint32,
     },
-    cache=True,
+    cache=False,
 )
 def score_tree(tree, neighbor_indices, data, rng_state):
     result = 0.0
@@ -1237,11 +1237,11 @@ def score_tree(tree, neighbor_indices, data, rng_state):
     return result / numba.float32(neighbor_indices.shape[0])
 
 
- at numba.njit(nogil=True, parallel=True, locals={"node": numba.int32}, cache=True)
+ at numba.njit(nogil=True, locals={"node": numba.int32}, cache=False)
 def score_linked_tree(tree, neighbor_indices):
     result = 0.0
     n_nodes = len(tree.children)
-    for i in numba.prange(n_nodes):
+    for i in range(n_nodes):
         node = numba.int32(i)
         left_child = tree.children[node][0]
         right_child = tree.children[node][1]


=====================================
pynndescent/sparse.py
=====================================
@@ -938,7 +938,7 @@ def sparse_symmetric_kl_divergence(ind1, data1, ind2, data2):
     return symmetric_kl_divergence(dense_data1, dense_data2)
 
 
- at numba.njit(parallel=True, cache=True)
+ at numba.njit(parallel=True, cache=False)
 def diversify(
     indices,
     distances,
@@ -993,7 +993,7 @@ def diversify(
     return indices, distances
 
 
- at numba.njit(parallel=True, cache=True)
+ at numba.njit(parallel=True, cache=False)
 def diversify_csr(
     graph_indptr,
     graph_indices,


=====================================
pynndescent/sparse_nndescent.py
=====================================
@@ -24,7 +24,7 @@ locale.setlocale(locale.LC_NUMERIC, "C")
 EMPTY_GRAPH = make_heap(1, 1)
 
 
- at numba.njit(parallel=True, cache=True)
+ at numba.njit(parallel=True, cache=False)
 def generate_leaf_updates(leaf_block, dist_thresholds, inds, indptr, data, dist):
 
     updates = [[(-1, -1, np.inf)] for i in range(leaf_block.shape[0])]
@@ -122,7 +122,7 @@ def init_random(n_neighbors, inds, indptr, data, heap, dist, rng_state):
     return
 
 
- at numba.njit(parallel=True, cache=True)
+ at numba.njit(parallel=True, cache=False)
 def generate_graph_updates(
     new_candidate_block, old_candidate_block, dist_thresholds, inds, indptr, data, dist
 ):
@@ -343,4 +343,4 @@ def nn_descent(
             verbose=verbose,
         )
 
-    return deheap_sort(current_graph)
+    return deheap_sort(current_graph[0], current_graph[1])


=====================================
pynndescent/tests/test_distances.py
=====================================
@@ -5,6 +5,7 @@ import pynndescent.distances as dist
 import pynndescent.sparse as spdist
 from scipy import stats
 from scipy.sparse import csr_matrix
+from scipy.version import full_version as scipy_full_version
 from sklearn.metrics import pairwise_distances
 from sklearn.neighbors import BallTree
 from sklearn.preprocessing import normalize
@@ -241,9 +242,12 @@ def test_seuclidean(spatial_data):
     )
 
 
+ at pytest.mark.skipif(
+    scipy_full_version < "1.8", reason="incorrect function in scipy<1.8"
+)
 def test_weighted_minkowski(spatial_data):
     v = np.abs(np.random.randn(spatial_data.shape[1]))
-    dist_matrix = pairwise_distances(spatial_data, metric="wminkowski", w=v, p=3)
+    dist_matrix = pairwise_distances(spatial_data, metric="minkowski", w=v, p=3)
     test_matrix = np.array(
         [
             [


=====================================
pynndescent/tests/test_pynndescent_.py
=====================================
@@ -435,3 +435,65 @@ def test_joblib_dump():
 
     np.testing.assert_equal(neighbors1, neighbors2)
     np.testing.assert_equal(distances1, distances2)
+
+ at pytest.mark.parametrize("metric", ["euclidean", "cosine"])
+def test_update_no_prepare_query_accuracy(nn_data, metric):
+    nnd = NNDescent(nn_data[200:800], metric=metric, n_neighbors=10, random_state=None)
+    nnd.update(nn_data[800:])
+
+    knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.2)
+
+    true_nnd = NearestNeighbors(metric=metric).fit(nn_data[200:])
+    true_indices = true_nnd.kneighbors(nn_data[:200], 10, return_distance=False)
+
+    num_correct = 0.0
+    for i in range(true_indices.shape[0]):
+        num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
+
+    percent_correct = num_correct / (true_indices.shape[0] * 10)
+    assert percent_correct >= 0.95, (
+        "NN-descent query did not get 95% " "accuracy on nearest neighbors"
+    )
+
+ at pytest.mark.parametrize("metric", ["euclidean", "cosine"])
+def test_update_w_prepare_query_accuracy(nn_data, metric):
+    nnd = NNDescent(nn_data[200:800], metric=metric, n_neighbors=10, random_state=None, compressed=False)
+    nnd.prepare()
+
+    nnd.update(nn_data[800:])
+    nnd.prepare()
+
+    knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.2)
+
+    true_nnd = NearestNeighbors(metric=metric).fit(nn_data[200:])
+    true_indices = true_nnd.kneighbors(nn_data[:200], 10, return_distance=False)
+
+    num_correct = 0.0
+    for i in range(true_indices.shape[0]):
+        num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
+
+    percent_correct = num_correct / (true_indices.shape[0] * 10)
+    assert percent_correct >= 0.95, (
+        "NN-descent query did not get 95% " "accuracy on nearest neighbors"
+    )
+
+ at pytest.mark.parametrize("metric", ["euclidean", "cosine"])
+def test_tree_init_false(nn_data, metric):
+    nnd = NNDescent(
+        nn_data[200:], metric=metric, n_neighbors=10, random_state=None, tree_init=False
+    )
+    nnd.prepare()
+
+    knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.2)
+
+    true_nnd = NearestNeighbors(metric=metric).fit(nn_data[200:])
+    true_indices = true_nnd.kneighbors(nn_data[:200], 10, return_distance=False)
+
+    num_correct = 0.0
+    for i in range(true_indices.shape[0]):
+        num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i]))
+
+    percent_correct = num_correct / (true_indices.shape[0] * 10)
+    assert percent_correct >= 0.95, (
+        "NN-descent query did not get 95% " "accuracy on nearest neighbors"
+    )


=====================================
pynndescent/utils.py
=====================================
@@ -223,48 +223,36 @@ def siftdown(heap1, heap2, elt):
             elt = swap
 
 
- at numba.njit(cache=True)
-def deheap_sort(heap):
-    """Given an array of heaps (of graph_indices and weights), unpack the heap
-    out to give and array of sorted lists of graph_indices and weights by increasing
-    weight. This is effectively just the second half of heap sort (the first
-    half not being required since we already have the graph_data in a heap).
+ at numba.njit(parallel=True, cache=False)
+def deheap_sort(indices, distances):
+    """Given two arrays representing a heap (indices and distances), reorder the 
+     arrays by increasing distance. This is effectively just the second half of
+     heap sort (the first half not being required since we already have the
+     graph_data in a heap).
+
+     Note that this is done in-place.
 
     Parameters
     ----------
-    heap : array of shape (3, n_samples, n_neighbors)
-        The heap to turn into sorted lists.
+    indices : array of shape (n_samples, n_neighbors)
+        The graph indices to sort by distance.
+    distances : array of shape (n_samples, n_neighbors)
+        The corresponding edge distance.
 
     Returns
     -------
-    graph_indices, weights: arrays of shape (n_samples, n_neighbors)
-        The graph_indices and weights sorted by increasing weight.
+    indices, distances: arrays of shape (n_samples, n_neighbors)
+        The indices and distances sorted by increasing distance.
     """
-    indices = heap[0]
-    weights = heap[1]
-
-    for i in range(indices.shape[0]):
+    for i in numba.prange(indices.shape[0]):
+        # starting from the end of the array and moving back
+        for j in range(indices.shape[1] - 1, 0, -1):
+            indices[i, 0], indices[i, j] = indices[i, j], indices[i, 0]
+            distances[i, 0], distances[i, j] = distances[i, j], distances[i, 0]
 
-        ind_heap = indices[i]
-        dist_heap = weights[i]
+            siftdown(distances[i, :j], indices[i, :j], 0)
 
-        for j in range(ind_heap.shape[0] - 1):
-            ind_heap[0], ind_heap[ind_heap.shape[0] - j - 1] = (
-                ind_heap[ind_heap.shape[0] - j - 1],
-                ind_heap[0],
-            )
-            dist_heap[0], dist_heap[dist_heap.shape[0] - j - 1] = (
-                dist_heap[dist_heap.shape[0] - j - 1],
-                dist_heap[0],
-            )
-
-            siftdown(
-                dist_heap[: dist_heap.shape[0] - j - 1],
-                ind_heap[: ind_heap.shape[0] - j - 1],
-                0,
-            )
-
-    return indices.astype(np.int64), weights
+    return indices, distances
 
 
 # @numba.njit()
@@ -306,7 +294,7 @@ def deheap_sort(heap):
 #         return -1
 
 
- at numba.njit(parallel=True, locals={"idx": numba.types.int64}, cache=True)
+ at numba.njit(parallel=True, locals={"idx": numba.types.int64}, cache=False)
 def new_build_candidates(current_graph, max_candidates, rng_state, n_threads):
     """Build a heap of candidate neighbors for nearest neighbor descent. For
     each vertex the candidate neighbors are any current neighbors, and any
@@ -606,7 +594,7 @@ def checked_flagged_heap_push(priorities, indices, flags, p, n, f):
         "i": numba.uint32,
         "j": numba.uint32,
     },
-    cache=True,
+    cache=False,
 )
 def apply_graph_updates_low_memory(current_graph, updates, n_threads):
 
@@ -701,7 +689,7 @@ def initalize_heap_from_graph_indices(heap, graph_indices, data, metric):
     return heap
 
 
- at numba.njit(parallel=True, cache=True)
+ at numba.njit(parallel=True, cache=False)
 def sparse_initalize_heap_from_graph_indices(
     heap, graph_indices, data_indptr, data_indices, data_vals, metric
 ):


=====================================
setup.py
=====================================
@@ -8,7 +8,7 @@ def readme():
 
 configuration = {
     "name": "pynndescent",
-    "version": "0.5.6",
+    "version": "0.5.7",
     "description": "Nearest Neighbor Descent",
     "long_description": readme(),
     "classifiers": [



View it on GitLab: https://salsa.debian.org/python-team/packages/python-pynndescent/-/commit/d3f6540a1d75451f5592815c940ac812b3d1e1ff

-- 
View it on GitLab: https://salsa.debian.org/python-team/packages/python-pynndescent/-/commit/d3f6540a1d75451f5592815c940ac812b3d1e1ff
You're receiving this email because of your account on salsa.debian.org.


-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://alioth-lists.debian.net/pipermail/debian-med-commit/attachments/20220717/67e458cf/attachment-0001.htm>


More information about the debian-med-commit mailing list