Bug#892641: python-xarray: FTBFS and Debci failure with pandas 0.22.0

Adrian Bunk bunk at debian.org
Sun Mar 11 17:10:18 UTC 2018


Source: python-xarray
Version: 0.9.6-1
Severity: serious

https://ci.debian.net/packages/p/python-xarray/unstable/amd64/
https://tests.reproducible-builds.org/debian/rb-pkg/unstable/amd64/python-xarray.html

...
   dh_auto_test -O--buildsystem=pybuild
I: pybuild base:184: cd /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build; python3.6 -m pytest 
============================= test session starts ==============================
platform linux -- Python 3.6.4+, pytest-3.3.2, py-1.5.2, pluggy-0.6.0
rootdir: /build/1st/python-xarray-0.9.6, inifile: setup.cfg
collected 2460 items / 1 skipped

xarray/tests/test_accessors.py s...                                      [  0%]
xarray/tests/test_backends.py .ssssssssssssssssssssssssssssssssss.ssssss [  1%]
sssssssssssssssssssssssssssssssss.ssssssssssssssssssssssssssssssssssssss [  4%]
sssssssssssssssssssssssssssssssssssssssssssssss.ssssssssssssssssssssssss [  7%]
.ss.ssssssssssssssssssssssss.ssssssssssssssssssssssssssss.ssssssss..ssss [ 10%]
sssss.sssssssss.ssssssss..sssssssss.ssssssssssssssssssssssssssssssssssss [ 13%]
ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 16%]
ssssss.sssss..ssssssssssssssssss.ss.sssss..ssssssssssssssssss.ssssssssss [ 19%]
ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 22%]
ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 25%]
sssssssssssssssssssssssssssssssssssssssssssssssssssss.s..........        [ 27%]
xarray/tests/test_combine.py ............sssss                           [ 28%]
xarray/tests/test_computation.py ..................s                     [ 29%]
xarray/tests/test_conventions.py .....................................ss [ 30%]
ss.s.sssssssssssssssssss                                                 [ 31%]
xarray/tests/test_dask.py ssssssssssssssssssssssssssssssssssssss         [ 33%]
xarray/tests/test_dataarray.py .....................s................... [ 35%]
................................s................................FF..... [ 38%]
...................s...........F........................................ [ 41%]
..........s............................................................. [ 43%]
........................................................................ [ 46%]
........................................................................ [ 49%]
........................................................................ [ 52%]
...........                                                              [ 53%]
xarray/tests/test_dataset.py ..................s.....................s.. [ 54%]
F....................................................................... [ 57%]
.........................F.....F.........................s......s......s [ 60%]
...........................s......s......s.....................s........ [ 63%]
........................................................................ [ 66%]
........................................................................ [ 69%]
........................................................................ [ 72%]
........................................................................ [ 75%]
........................................................................ [ 78%]
........................................................................ [ 81%]
........................................                                 [ 82%]
xarray/tests/test_duck_array_ops.py .............                        [ 83%]
xarray/tests/test_extensions.py ....                                     [ 83%]
xarray/tests/test_formatting.py ............                             [ 84%]
xarray/tests/test_groupby.py .....                                       [ 84%]
xarray/tests/test_indexing.py .F..............                           [ 84%]
xarray/tests/test_merge.py .................                             [ 85%]
xarray/tests/test_options.py ..                                          [ 85%]
xarray/tests/test_plot.py .............................................. [ 87%]
........................................................................ [ 90%]
........................................................................ [ 93%]
....                                                                     [ 93%]
xarray/tests/test_tutorial.py s                                          [ 93%]
xarray/tests/test_ufuncs.py ....                                         [ 93%]
xarray/tests/test_utils.py ...................                           [ 94%]
xarray/tests/test_variable.py .......................................... [ 96%]
........................................................................ [ 99%]
...............s....                                                     [100%]

=================================== FAILURES ===================================
_________________________ TestDataArray.test_resample __________________________

self = <xarray.tests.test_dataarray.TestDataArray testMethod=test_resample>

    def test_resample(self):
        times = pd.date_range('2000-01-01', freq='6H', periods=10)
        array = DataArray(np.arange(10), [('time', times)])
    
        actual = array.resample('6H', dim='time')
        self.assertDataArrayIdentical(array, actual)
    
        actual = array.resample('24H', dim='time')
>       expected = DataArray(array.to_series().resample('24H', how='mean'))

xarray/tests/test_dataarray.py:1805: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/pandas/core/generic.py:5522: in resample
    base=base, key=on, level=level)
/usr/lib/python3/dist-packages/pandas/core/resample.py:999: in resample
    return tg._get_resampler(obj, kind=kind)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = TimeGrouper(freq=<24 * Hours>, axis=0, sort=True, closed='left', label='left', how='mean', convention='start', base=0)
obj = time               
2000-01-01 00:00:00    0
2000-01-01 06:00:00    1
2000-01-01 12:00:00    2
2000-01-01 18:00:00    ...0    5
2000-01-02 12:00:00    6
2000-01-02 18:00:00    7
2000-01-03 00:00:00    8
2000-01-03 06:00:00    9
dtype: int64
kind = None

    def _get_resampler(self, obj, kind=None):
        """
            return my resampler or raise if we have an invalid axis
    
            Parameters
            ----------
            obj : input object
            kind : string, optional
                'period','timestamp','timedelta' are valid
    
            Returns
            -------
            a Resampler
    
            Raises
            ------
            TypeError if incompatible axis
    
            """
        self._set_grouper(obj)
    
        ax = self.ax
        if isinstance(ax, DatetimeIndex):
            return DatetimeIndexResampler(obj,
                                          groupby=self,
                                          kind=kind,
                                          axis=self.axis)
        elif isinstance(ax, PeriodIndex) or kind == 'period':
            return PeriodIndexResampler(obj,
                                        groupby=self,
                                        kind=kind,
                                        axis=self.axis)
        elif isinstance(ax, TimedeltaIndex):
            return TimedeltaIndexResampler(obj,
                                           groupby=self,
                                           axis=self.axis)
    
        raise TypeError("Only valid with DatetimeIndex, "
                        "TimedeltaIndex or PeriodIndex, "
>                       "but got an instance of %r" % type(ax).__name__)
E       TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'MultiIndex'

/usr/lib/python3/dist-packages/pandas/core/resample.py:1116: TypeError
______________________ TestDataArray.test_resample_first _______________________

self = <xarray.tests.test_dataarray.TestDataArray testMethod=test_resample_first>

    def test_resample_first(self):
        times = pd.date_range('2000-01-01', freq='6H', periods=10)
        array = DataArray(np.arange(10), [('time', times)])
    
        actual = array.resample('1D', dim='time', how='first')
        expected = DataArray([0, 4, 8], [('time', times[::4])])
        self.assertDataArrayIdentical(expected, actual)
    
        # verify that labels don't use the first value
        actual = array.resample('24H', dim='time', how='first')
>       expected = DataArray(array.to_series().resample('24H', how='first'))

xarray/tests/test_dataarray.py:1824: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/pandas/core/generic.py:5522: in resample
    base=base, key=on, level=level)
/usr/lib/python3/dist-packages/pandas/core/resample.py:999: in resample
    return tg._get_resampler(obj, kind=kind)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = TimeGrouper(freq=<24 * Hours>, axis=0, sort=True, closed='left', label='left', how='mean', convention='start', base=0)
obj = time               
2000-01-01 00:00:00    0
2000-01-01 06:00:00    1
2000-01-01 12:00:00    2
2000-01-01 18:00:00    ...0    5
2000-01-02 12:00:00    6
2000-01-02 18:00:00    7
2000-01-03 00:00:00    8
2000-01-03 06:00:00    9
dtype: int64
kind = None

    def _get_resampler(self, obj, kind=None):
        """
            return my resampler or raise if we have an invalid axis
    
            Parameters
            ----------
            obj : input object
            kind : string, optional
                'period','timestamp','timedelta' are valid
    
            Returns
            -------
            a Resampler
    
            Raises
            ------
            TypeError if incompatible axis
    
            """
        self._set_grouper(obj)
    
        ax = self.ax
        if isinstance(ax, DatetimeIndex):
            return DatetimeIndexResampler(obj,
                                          groupby=self,
                                          kind=kind,
                                          axis=self.axis)
        elif isinstance(ax, PeriodIndex) or kind == 'period':
            return PeriodIndexResampler(obj,
                                        groupby=self,
                                        kind=kind,
                                        axis=self.axis)
        elif isinstance(ax, TimedeltaIndex):
            return TimedeltaIndexResampler(obj,
                                           groupby=self,
                                           axis=self.axis)
    
        raise TypeError("Only valid with DatetimeIndex, "
                        "TimedeltaIndex or PeriodIndex, "
>                       "but got an instance of %r" % type(ax).__name__)
E       TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'MultiIndex'

/usr/lib/python3/dist-packages/pandas/core/resample.py:1116: TypeError
_____________ TestDataArray.test_to_pandas_name_matches_coordinate _____________

self = <xarray.tests.test_dataarray.TestDataArray testMethod=test_to_pandas_name_matches_coordinate>

    def test_to_pandas_name_matches_coordinate(self):
        # coordinate with same name as array
        arr = DataArray([1, 2, 3], dims='x', name='x')
        series = arr.to_series()
        self.assertArrayEqual([1, 2, 3], series.values)
>       self.assertArrayEqual([0, 1, 2], series.index.values)

xarray/tests/test_dataarray.py:2135: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <xarray.tests.test_dataarray.TestDataArray testMethod=test_to_pandas_name_matches_coordinate>
a1 = [0, 1, 2], a2 = array([(0,), (1,), (2,)], dtype=object)

    def assertArrayEqual(self, a1, a2):
>       assert_array_equal(a1, a2)
E       AssertionError: 
E       Arrays are not equal
E       
E       (mismatch 100.0%)
E        x: array([0, 1, 2])
E        y: array([(0,), (1,), (2,)], dtype=object)

xarray/tests/__init__.py:155: AssertionError
____________________ TestDataset.test_dataset_dataset_math _____________________

self = <xarray.Variable (x: 3)>
array([100, 200, 300]), args = (), kwargs = {}

    def func(self, *args, **kwargs):
        try:
>           return getattr(self, name)(*args, **kwargs)
E           AttributeError: 'Variable' object has no attribute 'notna'

xarray/core/ops.py:193: AttributeError

During handling of the above exception, another exception occurred:

self = <xarray.tests.test_dataset.TestDataset testMethod=test_dataset_dataset_math>

    def test_dataset_dataset_math(self):
        ds = self.make_example_math_dataset()
    
        self.assertDatasetIdentical(ds, ds + 0 * ds)
        self.assertDatasetIdentical(ds, ds + {'foo': 0, 'bar': 0})
    
        expected = ds.apply(lambda x: 2 * x)
        self.assertDatasetIdentical(expected, 2 * ds)
        self.assertDatasetIdentical(expected, ds + ds)
        self.assertDatasetIdentical(expected, ds + ds.data_vars)
        self.assertDatasetIdentical(expected, ds + dict(ds.data_vars))
    
        actual = ds.copy(deep=True)
        expected_id = id(actual)
        actual += ds
        self.assertDatasetIdentical(expected, actual)
        self.assertEqual(expected_id, id(actual))
    
>       self.assertDatasetIdentical(ds == ds, ds.notnull())

xarray/tests/test_dataset.py:3031: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
xarray/core/dataset.py:2485: in func
    ds._variables[k] = f(self._variables[k], *args, **kwargs)
xarray/core/ops.py:195: in func
    return f(self, *args, **kwargs)
/usr/lib/python3/dist-packages/pandas/core/dtypes/missing.py:212: in notna
    res = isna(obj)
/usr/lib/python3/dist-packages/pandas/core/dtypes/missing.py:45: in isna
    return _isna(obj)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

obj = <xarray.Variable (x: 3)>
array([100, 200, 300])

    def _isna_new(obj):
        if is_scalar(obj):
            return lib.checknull(obj)
        # hack (for now) because MI registers as ndarray
        elif isinstance(obj, ABCMultiIndex):
            raise NotImplementedError("isna is not defined for MultiIndex")
        elif isinstance(obj, (ABCSeries, np.ndarray, ABCIndexClass)):
            return _isna_ndarraylike(obj)
        elif isinstance(obj, ABCGeneric):
>           return obj._constructor(obj._data.isna(func=isna))
E           AttributeError: 'Variable' object has no attribute '_constructor'

/usr/lib/python3/dist-packages/pandas/core/dtypes/missing.py:60: AttributeError
____________________ TestDataset.test_to_and_from_dataframe ____________________

self = <xarray.tests.test_dataset.TestDataset testMethod=test_to_and_from_dataframe>

    def test_to_and_from_dataframe(self):
        x = np.random.randn(10)
        y = np.random.randn(10)
        t = list('abcdefghij')
        ds = Dataset(OrderedDict([('a', ('t', x)),
                                  ('b', ('t', y)),
                                  ('t', ('t', t))]))
        expected = pd.DataFrame(np.array([x, y]).T, columns=['a', 'b'],
                                index=pd.Index(t, name='t'))
        actual = ds.to_dataframe()
        # use the .equals method to check all DataFrame metadata
>       assert expected.equals(actual), (expected, actual)
E       AssertionError: (          a         b
E         t                    
E         a  0.072263  0.754821
E         b  0.007085 -0.761382
E         c -0.756047 -2.248969
E         d  1.78...0.042313
E         f  1.096788 -1.234275
E         g -0.170281  1.474616
E         h -1.009202  0.194390
E         i  0.498159 -0.546068
E         j  0.158573  2.127260)
E       assert False
E        +  where False = <bound method NDFrame.equals of           a         b\nt                    \na  0.072263  0.754821\nb  0.007085 -0.76138...0.042313\nf  1.096788 -1.234275\ng -0.170281  1.474616\nh -1.009202  0.194390\ni  0.498159 -0.546068\nj  0.158573  2.127260>(          a         b\nt                    \na  0.072263  0.754821\nb  0.007085 -0.761382\nc -0.756047 -2.248969\nd  1.781... 0.042313\nf  1.096788 -1.234275\ng -0.170281  1.474616\nh -1.009202  0.194390\ni  0.498159 -0.546068\nj  0.158573  2.127260)
E        +    where <bound method NDFrame.equals of           a         b\nt                    \na  0.072263  0.754821\nb  0.007085 -0.76138...0.042313\nf  1.096788 -1.234275\ng -0.170281  1.474616\nh -1.009202  0.194390\ni  0.498159 -0.546068\nj  0.158573  2.127260> =           a         b\nt                    \na  0.072263  0.754821\nb  0.007085 -0.761382\nc -0.756047 -2.248969\nd  1.781... 0.042313\nf  1.096788 -1.234275\ng -0.170281  1.474616\nh -1.009202  0.194390\ni  0.498159 -0.546068\nj  0.158573  2.127260.equals

xarray/tests/test_dataset.py:2253: AssertionError
__________________________ TestDataset.test_unary_ops __________________________

self = <xarray.Variable (x: 3)>
array([100, 200, 300]), args = (), kwargs = {}

    def func(self, *args, **kwargs):
        try:
>           return getattr(self, name)(*args, **kwargs)
E           AttributeError: 'Variable' object has no attribute 'isna'

xarray/core/ops.py:193: AttributeError

During handling of the above exception, another exception occurred:

self = <xarray.tests.test_dataset.TestDataset testMethod=test_unary_ops>

    def test_unary_ops(self):
        ds = self.make_example_math_dataset()
    
        self.assertDatasetIdentical(ds.apply(abs), abs(ds))
        self.assertDatasetIdentical(ds.apply(lambda x: x + 4), ds + 4)
    
        for func in [lambda x: x.isnull(),
                     lambda x: x.round(),
                     lambda x: x.astype(int)]:
>           self.assertDatasetIdentical(ds.apply(func), func(ds))

xarray/tests/test_dataset.py:2981: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
xarray/tests/test_dataset.py:2978: in <lambda>
    for func in [lambda x: x.isnull(),
xarray/core/dataset.py:2485: in func
    ds._variables[k] = f(self._variables[k], *args, **kwargs)
xarray/core/ops.py:195: in func
    return f(self, *args, **kwargs)
/usr/lib/python3/dist-packages/pandas/core/dtypes/missing.py:45: in isna
    return _isna(obj)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

obj = <xarray.Variable (x: 3)>
array([100, 200, 300])

    def _isna_new(obj):
        if is_scalar(obj):
            return lib.checknull(obj)
        # hack (for now) because MI registers as ndarray
        elif isinstance(obj, ABCMultiIndex):
            raise NotImplementedError("isna is not defined for MultiIndex")
        elif isinstance(obj, (ABCSeries, np.ndarray, ABCIndexClass)):
            return _isna_ndarraylike(obj)
        elif isinstance(obj, ABCGeneric):
>           return obj._constructor(obj._data.isna(func=isna))
E           AttributeError: 'Variable' object has no attribute '_constructor'

/usr/lib/python3/dist-packages/pandas/core/dtypes/missing.py:60: AttributeError
___________________ TestIndexers.test_convert_label_indexer ____________________

    def _get_level_number(self, level):
        try:
            count = self.names.count(level)
            if count > 1:
                raise ValueError('The name %s occurs multiple times, use a '
                                 'level number' % level)
>           level = self.names.index(level)
E           ValueError: 2 is not in list

/usr/lib/python3/dist-packages/pandas/core/indexes/multi.py:655: ValueError

During handling of the above exception, another exception occurred:

self = <xarray.tests.test_indexing.TestIndexers testMethod=test_convert_label_indexer>

    def test_convert_label_indexer(self):
        # TODO: add tests that aren't just for edge cases
        index = pd.Index([1, 2, 3])
        with self.assertRaisesRegexp(KeyError, 'not all values found'):
            indexing.convert_label_indexer(index, [0])
        with self.assertRaises(KeyError):
            indexing.convert_label_indexer(index, 0)
        with self.assertRaisesRegexp(ValueError, 'does not have a MultiIndex'):
            indexing.convert_label_indexer(index, {'one': 0})
    
        mindex = pd.MultiIndex.from_product([['a', 'b'], [1, 2]],
                                            names=('one', 'two'))
        with self.assertRaisesRegexp(KeyError, 'not all values found'):
            indexing.convert_label_indexer(mindex, [0])
        with self.assertRaises(KeyError):
            indexing.convert_label_indexer(mindex, 0)
        with self.assertRaises(ValueError):
            indexing.convert_label_indexer(index, {'three': 0})
        with self.assertRaisesRegexp(KeyError, 'index to be fully lexsorted'):
>           indexing.convert_label_indexer(mindex, (slice(None), 1, 'no_level'))

xarray/tests/test_indexing.py:103: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
xarray/core/indexing.py:208: in convert_label_indexer
    indexer = index.get_locs(label)
/usr/lib/python3/dist-packages/pandas/core/indexes/multi.py:2485: in get_locs
    self.get_loc_level(k, level=i, drop_level=False)[0]),
/usr/lib/python3/dist-packages/pandas/core/indexes/multi.py:2196: in get_loc_level
    level = self._get_level_number(level)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

    def _get_level_number(self, level):
        try:
            count = self.names.count(level)
            if count > 1:
                raise ValueError('The name %s occurs multiple times, use a '
                                 'level number' % level)
            level = self.names.index(level)
        except ValueError:
            if not isinstance(level, int):
                raise KeyError('Level %s not found' % str(level))
            elif level < 0:
                level += self.nlevels
                if level < 0:
                    orig_level = level - self.nlevels
                    raise IndexError('Too many levels: Index has only %d '
                                     'levels, %d is not a valid level number' %
                                     (self.nlevels, orig_level))
            # Note: levels are zero-based
            elif level >= self.nlevels:
                raise IndexError('Too many levels: Index has only %d levels, '
>                                'not %d' % (self.nlevels, level + 1))
E               IndexError: Too many levels: Index has only 2 levels, not 3

/usr/lib/python3/dist-packages/pandas/core/indexes/multi.py:669: IndexError
=============================== warnings summary ===============================
.pybuild/pythonX.Y_3.6/build/xarray/tests/test_conventions.py::TestDatetime::test_decode_cf_datetime_overflow
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_conventions.py:206: RuntimeWarning: Unable to decode time axis into full numpy.datetime64 objects, continuing using dummy netCDF4.datetime objects instead, reason: dates out of range
    result = conventions.decode_cf_datetime(day, units)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_conventions.py::TestDatetime::test_decode_cf_datetime_transition_to_invalid
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/conventions.py:393: RuntimeWarning: Unable to decode time axis into full numpy.datetime64 objects, continuing using dummy netCDF4.datetime objects instead, reason: dates out of range
    result = decode_cf_datetime(example_value, units, calendar)
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/conventions.py:412: RuntimeWarning: Unable to decode time axis into full numpy.datetime64 objects, continuing using dummy netCDF4.datetime objects instead, reason: dates out of range
    calendar=self.calendar)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::TestDataArray::test_groupby_math
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:1649: FutureWarning: the order of the arguments on DataArray.to_dataset has changed; you now need to supply ``name`` as a keyword argument
    ds = array.coords['x'].to_dataset('X')

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::TestDataArray::test_resample
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/common.py:547: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
    label=label, base=base)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::TestDataArray::test_resample_first
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/common.py:547: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
    label=label, base=base)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::TestDataArray::test_resample_first_keep_attrs
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/common.py:547: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
    label=label, base=base)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::TestDataArray::test_resample_mean_keep_attrs
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/common.py:547: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
    label=label, base=base)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::TestDataArray::test_resample_skipna
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/common.py:547: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
    label=label, base=base)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::TestDataArray::test_resample_upsampling
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/common.py:547: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
    label=label, base=base)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-1-None-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=1,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-1-None-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=1,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-1-1-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=1,min_periods=1,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-1-1-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=1,min_periods=1,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-1-2-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=1,min_periods=1,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-1-2-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=1,min_periods=1,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-1-3-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=1,min_periods=1,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-1-3-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=1,min_periods=1,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-2-None-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=2,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-2-None-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=2,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-2-1-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=2,min_periods=1,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-2-1-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=2,min_periods=1,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-2-2-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=2,min_periods=2,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-2-2-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=2,min_periods=2,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-2-3-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=2,min_periods=2,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-2-3-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=2,min_periods=2,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-3-None-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=3,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-3-None-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=3,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-3-1-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=3,min_periods=1,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-3-1-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=3,min_periods=1,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-3-2-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=3,min_periods=2,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-3-2-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=3,min_periods=2,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-3-3-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=3,min_periods=3,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-3-3-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=3,min_periods=3,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-4-None-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=4,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-4-None-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=4,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-4-1-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=4,min_periods=1,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-4-1-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=4,min_periods=1,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-4-2-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=4,min_periods=2,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-4-2-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=4,min_periods=2,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-4-3-True]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=4,min_periods=3,center=True).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_pandas_compat[1-4-3-False]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py:2677: FutureWarning: pd.rolling_mean is deprecated for Series and will be removed in a future version, replace with 
  	Series.rolling(window=4,min_periods=3,center=False).mean()
    min_periods=min_periods)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[mean-1-None-True-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: Mean of empty slice
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[mean-1-None-False-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: Mean of empty slice
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[mean-1-1-True-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: Mean of empty slice
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[mean-1-1-False-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: Mean of empty slice
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[mean-1-2-True-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: Mean of empty slice
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[mean-1-2-False-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: Mean of empty slice
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[mean-1-3-True-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: Mean of empty slice
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[mean-1-3-False-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: Mean of empty slice
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[std-1-None-True-2]
  /usr/lib/python3/dist-packages/numpy/lib/nanfunctions.py:1427: RuntimeWarning: Degrees of freedom <= 0 for slice.
    keepdims=keepdims)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[std-1-None-False-2]
  /usr/lib/python3/dist-packages/numpy/lib/nanfunctions.py:1427: RuntimeWarning: Degrees of freedom <= 0 for slice.
    keepdims=keepdims)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[std-1-1-True-2]
  /usr/lib/python3/dist-packages/numpy/lib/nanfunctions.py:1427: RuntimeWarning: Degrees of freedom <= 0 for slice.
    keepdims=keepdims)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[std-1-1-False-2]
  /usr/lib/python3/dist-packages/numpy/lib/nanfunctions.py:1427: RuntimeWarning: Degrees of freedom <= 0 for slice.
    keepdims=keepdims)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[std-1-2-True-2]
  /usr/lib/python3/dist-packages/numpy/lib/nanfunctions.py:1427: RuntimeWarning: Degrees of freedom <= 0 for slice.
    keepdims=keepdims)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[std-1-2-False-2]
  /usr/lib/python3/dist-packages/numpy/lib/nanfunctions.py:1427: RuntimeWarning: Degrees of freedom <= 0 for slice.
    keepdims=keepdims)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[std-1-3-True-2]
  /usr/lib/python3/dist-packages/numpy/lib/nanfunctions.py:1427: RuntimeWarning: Degrees of freedom <= 0 for slice.
    keepdims=keepdims)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[std-1-3-False-2]
  /usr/lib/python3/dist-packages/numpy/lib/nanfunctions.py:1427: RuntimeWarning: Degrees of freedom <= 0 for slice.
    keepdims=keepdims)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[max-1-None-True-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: All-NaN slice encountered
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[max-1-None-False-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: All-NaN slice encountered
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[max-1-1-True-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: All-NaN slice encountered
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[max-1-1-False-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: All-NaN slice encountered
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[max-1-2-True-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: All-NaN slice encountered
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[max-1-2-False-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: All-NaN slice encountered
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[max-1-3-True-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: All-NaN slice encountered
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataarray.py::test_rolling_reduce[max-1-3-False-2]
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/variable.py:937: RuntimeWarning: All-NaN slice encountered
    axis=axis, **kwargs)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataset.py::TestDataset::test_align_indexes
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataset.py:1299: FutureWarning: inferring DataArray dimensions from dictionary like ``coords`` has been deprecated. Use an explicit list of ``dims`` instead.
    expected_x2 = Dataset({'foo': DataArray([2, 3, 1], coords={'x': [2, 3, 1]})})

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataset.py::TestDataset::test_constructor_0d
  /usr/lib/python3.6/unittest/case.py:605: FutureWarning: to_datetime is deprecated. Use self.to_pydatetime()
    testMethod()

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataset.py::TestDataset::test_resample_and_first
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/common.py:547: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
    label=label, base=base)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataset.py::TestDataset::test_resample_by_last_discarding_attrs
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/common.py:547: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
    label=label, base=base)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataset.py::TestDataset::test_resample_by_mean_discarding_attrs
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/common.py:547: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
    label=label, base=base)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_dataset.py::TestDataset::test_resample_by_mean_with_keep_attrs
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/common.py:547: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
    label=label, base=base)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_plot.py::TestPlot::test_subplot_kws
  /usr/lib/python3/dist-packages/matplotlib/cbook/deprecation.py:106: MatplotlibDeprecationWarning: The axisbg attribute was deprecated in version 2.0. Use facecolor instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_plot.py::TestDetermineCmapParams::test_integer_levels
  /usr/lib/python3/dist-packages/seaborn/apionly.py:6: UserWarning: As seaborn no longer sets a default style on import, the seaborn.apionly module is deprecated. It will be removed in a future version.
    warnings.warn(msg, UserWarning)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_plot.py::TestContour::test_single_level
  /usr/lib/python3/dist-packages/matplotlib/contour.py:1180: UserWarning: No contour levels were found within the data range.
    warnings.warn("No contour levels were found"

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_variable.py::TestVariable::test_index_0d_not_a_time
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/core/duck_array_ops.py:124: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False.
    flag_array = (arr1 == arr2)
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/__init__.py:158: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False.
    assert a1 == a2 or (a1 != a1 and a2 != a2)

.pybuild/pythonX.Y_3.6/build/xarray/tests/test_variable.py::TestIndexVariable::test_index_0d_not_a_time
  /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build/xarray/tests/__init__.py:158: FutureWarning: In the future, 'NAT == x' and 'x == NAT' will always be False.
    assert a1 == a2 or (a1 != a1 and a2 != a2)

-- Docs: http://doc.pytest.org/en/latest/warnings.html
====== 7 failed, 1720 passed, 734 skipped, 78 warnings in 107.06 seconds =======
E: pybuild pybuild:283: test: plugin distutils failed with: exit code=1: cd /build/1st/python-xarray-0.9.6/.pybuild/pythonX.Y_3.6/build; python3.6 -m pytest 
dh_auto_test: pybuild --test --test-pytest -i python{version} -p 3.6 returned exit code 13
make: *** [debian/rules:9: build] Error 25



More information about the debian-science-maintainers mailing list