Bug#968210: statsmodels: arm* test failures/crashes
Rebecca N. Palmer
rebecca_palmer at zoho.com
Sun Aug 16 18:22:27 BST 2020
The TestZeroInflatedModel_probit issue appears to be a failure to
converge: as it does trigger warnings of that, and it's already skipped
on i386, I intend to ignore it.
qemu-arm64:
>>> a
<statsmodels.discrete.tests.test_count_model.TestZeroInflatedModel_probit
object at 0x4000d31130>
>>> a.res1.params
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'TestZeroInflatedModel_probit' object has no attribute
'res1'
>>> a.setup_class()
/usr/lib/python3/dist-packages/statsmodels/base/model.py:567:
ConvergenceWarning: Maximum Likelihood optimization failed to converge.
Check mle_retvals
warn("Maximum Likelihood optimization failed to converge. "
>>> a.res1.params
array([ 0.06225336, -0.64293239, -0.08217881, 0.00856726, -0.02679518,
1.4823691 ])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*0.01,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>> res_reg.params
array([ 0. , 0. , 0. , 0. , -0.02679517,
1.48236838])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*0.0,disp=0,maxiter=500)
>>> res_reg.params
array([ 0.0622522 , -0.6429312 , -0.08217381, 0.00856762, -0.02679573,
1.48237116])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*1e-6,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>> res_reg.params
array([ 0.06225361, -0.64293282, -0.08218008, 0.0085677 , -0.02679533,
1.48236748])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*1,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 2 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>> res_reg.params
array([ 0. , -0.64270273, -0.08204933, 0. , -0.02679321,
1.48237335])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*100,disp=0,maxiter=500)
>>> res_reg.params
array([ 0.05531257, -0.62025715, -0.06936752, 0.00781262, -0.02661252,
1.48282813])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*1e-4,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>> res_reg.params
array([ 0.06225332, -0.64293349, -0.08217681, 0.00856738, -0.02679517,
1.48236785])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*1e-3,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*1e-1,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 2 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 2 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>> res_reg.params
array([ 0.06224928, -0.64291724, -0.08216221, 0.00856535, -0.02679489,
1.48237496])
>>>
amd64:
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*0.01,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 3 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>> alpha
array([1., 1., 1., 1., 0., 0.])
>>> a.res1.params array([ 0.06225337, -0.6429324 ,
-0.0821788 , 0.00856726, -0.02679518,
1.4823691 ])
>>> res_reg.params
array([ 0.06225553, -0.64293539, -0.08217582, 0.00856681, -0.02679528,
1.48236907])
>>> a.res1.exog_names
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python3/dist-packages/statsmodels/base/wrapper.py",
line 36, in __getattribute__
obj = getattr(results, attr)
AttributeError: 'ZeroInflatedPoissonResults' object has no attribute
'exog_names'
>>> a.res1.model.exog_names
['inflate_x1', 'inflate_const', 'x1', 'x2', 'x3', 'const']
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*0.01,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 3 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*0.0001,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*0.000001,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*0.0,disp=0,maxiter=500)
>>> res_reg.params
array([ 0.06225335, -0.64293223, -0.08217877, 0.00856726, -0.02679523,
1.48236917])
>>> a.res1.params
array([ 0.06225337, -0.6429324 , -0.0821788 , 0.00856726, -0.02679518,
1.4823691 ])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*1e-8,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*1e-14,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 4 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*1,disp=0,maxiter=500)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 2 out of 4 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:71:
ConvergenceWarning: QC check did not pass for 1 out of 6 parameters
Try increasing solver accuracy or number of iterations, decreasing
alpha, or switch solvers
warnings.warn(message, ConvergenceWarning)
/usr/lib/python3/dist-packages/statsmodels/base/l1_solvers_common.py:144:
ConvergenceWarning: Could not trim params automatically due to failed QC
check. Trimming using trim_mode == 'size' will still work.
warnings.warn(msg, ConvergenceWarning)
>>> res_reg.params
array([ 0.06218367, -0.64270323, -0.08204927, 0.00855978, -0.02679348,
1.48237349])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*1e3,disp=0,maxiter=500)
>>> res_reg.params
array([ 0. , -0.4368156 , 0. , 0.00249224, -0.02523679,
1.48930201])
>>> alpha
array([1., 1., 1., 1., 0., 0.])
>>> a.res1.params
array([ 0.06225337, -0.6429324 , -0.0821788 , 0.00856726, -0.02679518,
1.4823691 ])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*10,disp=0,maxiter=500)
>>> res_reg.params
array([ 0.06155535, -0.64064802, -0.08088813, 0.00849131, -0.02677657,
1.48241694])
>>>
alpha=np.ones(6);alpha[-2:]=0;res_reg=a.res1.model.fit_regularized(alpha=alpha*100,disp=0,maxiter=500)
>>> res_reg.params
array([ 0.05531263, -0.62025736, -0.06936749, 0.00781262, -0.02661253,
1.48282804])
More information about the debian-science-maintainers
mailing list