[pymvpa] Biased estimates by leave-one-out cross-validations in PyMVPA 2
Yaroslav Halchenko
debian at onerussian.com
Sun Apr 22 16:45:17 UTC 2012
yeah -- we need to improve our documentation of Balancer... meanwhile
try something like
cv=CrossValidation(clf,
ChainNode([NFoldPartitioner(),
Balancer(attr='targets',
count=1, # for real data > 1
limit='partitions',
apply_selection=True
)],
space='partitions'))
On Sat, 21 Apr 2012, Ping-Hui Chiu wrote:
> Thanks Yaroslav! I tried the Balancer generator but it didn't help in the
> following case of binary classification on random samples:
> from mvpa2.suite import *
> clf=LinearCSVMC();
> cv=CrossValidation(clf,ChainNode([NFoldPartitioner(),Balancer()],space='partitio
> ns'))
> acc=[]
> for i in range(200):
> print i
> ds=Dataset(np.random.rand(200))
> [1]ds.sa['targets']=np.remainder(range(200),2)
> [2]ds.sa['chunks']=range(200)
> results=cv(ds)
> acc.append(1-np.mean(results))
> >>>print np.mean(acc),np.std(acc)
> 0.4106 0.212417960634
--
=------------------------------------------------------------------=
Keep in touch www.onerussian.com
Yaroslav Halchenko www.ohloh.net/accounts/yarikoptic
More information about the Pkg-ExpPsy-PyMVPA
mailing list