[saga] 01/01: Drop local modifications not included in the upstream source.

Sebastiaan Couwenberg sebastic at moszumanska.debian.org
Tue Jul 21 20:07:15 UTC 2015


This is an automated email from the git hooks/post-receive script.

sebastic pushed a commit to branch master
in repository saga.

commit 8cea1c2e6499b9bacb47ec0252d2ec069cc29a4a
Author: Bas Couwenberg <sebastic at xs4all.nl>
Date:   Tue Jul 21 21:40:14 2015 +0200

    Drop local modifications not included in the upstream source.
---
 src/modules/imagery/imagery_svm/svm.cpp | 3089 -------------------------------
 src/modules/imagery/imagery_svm/svm.h   |  101 -
 2 files changed, 3190 deletions(-)

diff --git a/src/modules/imagery/imagery_svm/svm.cpp b/src/modules/imagery/imagery_svm/svm.cpp
deleted file mode 100644
index 1ecb291..0000000
--- a/src/modules/imagery/imagery_svm/svm.cpp
+++ /dev/null
@@ -1,3089 +0,0 @@
-#include <math.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <ctype.h>
-#include <float.h>
-#include <string.h>
-#include <stdarg.h>
-#include <limits.h>
-#include "svm.h"
-int libsvm_version = LIBSVM_VERSION;
-typedef float Qfloat;
-typedef signed char schar;
-#ifndef min
-template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
-#endif
-#ifndef max
-template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
-#endif
-template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
-template <class S, class T> static inline void clone(T*& dst, S* src, int n)
-{
-	dst = new T[n];
-	memcpy((void *)dst,(void *)src,sizeof(T)*n);
-}
-static inline double powi(double base, int times)
-{
-	double tmp = base, ret = 1.0;
-
-	for(int t=times; t>0; t/=2)
-	{
-		if(t%2==1) ret*=tmp;
-		tmp = tmp * tmp;
-	}
-	return ret;
-}
-#define INF HUGE_VAL
-#define TAU 1e-12
-#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
-
-static void print_string_stdout(const char *s)
-{
-	fputs(s,stdout);
-	fflush(stdout);
-}
-static void (*svm_print_string) (const char *) = &print_string_stdout;
-#if 1
-static void info(const char *fmt,...)
-{
-	char buf[BUFSIZ];
-	va_list ap;
-	va_start(ap,fmt);
-	vsprintf(buf,fmt,ap);
-	va_end(ap);
-	(*svm_print_string)(buf);
-}
-#else
-static void info(const char *fmt,...) {}
-#endif
-
-//
-// Kernel Cache
-//
-// l is the number of total data items
-// size is the cache size limit in bytes
-//
-class Cache
-{
-public:
-	Cache(int l,long int size);
-	~Cache();
-
-	// request data [0,len)
-	// return some position p where [p,len) need to be filled
-	// (p >= len if nothing needs to be filled)
-	int get_data(const int index, Qfloat **data, int len);
-	void swap_index(int i, int j);	
-private:
-	int l;
-	long int size;
-	struct head_t
-	{
-		head_t *prev, *next;	// a circular list
-		Qfloat *data;
-		int len;		// data[0,len) is cached in this entry
-	};
-
-	head_t *head;
-	head_t lru_head;
-	void lru_delete(head_t *h);
-	void lru_insert(head_t *h);
-};
-
-Cache::Cache(int l_,long int size_):l(l_),size(size_)
-{
-	head = (head_t *)calloc(l,sizeof(head_t));	// initialized to 0
-	size /= sizeof(Qfloat);
-	size -= l * sizeof(head_t) / sizeof(Qfloat);
-	size = max(size, 2 * (long int) l);	// cache must be large enough for two columns
-	lru_head.next = lru_head.prev = &lru_head;
-}
-
-Cache::~Cache()
-{
-	for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
-		free(h->data);
-	free(head);
-}
-
-void Cache::lru_delete(head_t *h)
-{
-	// delete from current location
-	h->prev->next = h->next;
-	h->next->prev = h->prev;
-}
-
-void Cache::lru_insert(head_t *h)
-{
-	// insert to last position
-	h->next = &lru_head;
-	h->prev = lru_head.prev;
-	h->prev->next = h;
-	h->next->prev = h;
-}
-
-int Cache::get_data(const int index, Qfloat **data, int len)
-{
-	head_t *h = &head[index];
-	if(h->len) lru_delete(h);
-	int more = len - h->len;
-
-	if(more > 0)
-	{
-		// free old space
-		while(size < more)
-		{
-			head_t *old = lru_head.next;
-			lru_delete(old);
-			free(old->data);
-			size += old->len;
-			old->data = 0;
-			old->len = 0;
-		}
-
-		// allocate new space
-		h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
-		size -= more;
-		swap(h->len,len);
-	}
-
-	lru_insert(h);
-	*data = h->data;
-	return len;
-}
-
-void Cache::swap_index(int i, int j)
-{
-	if(i==j) return;
-
-	if(head[i].len) lru_delete(&head[i]);
-	if(head[j].len) lru_delete(&head[j]);
-	swap(head[i].data,head[j].data);
-	swap(head[i].len,head[j].len);
-	if(head[i].len) lru_insert(&head[i]);
-	if(head[j].len) lru_insert(&head[j]);
-
-	if(i>j) swap(i,j);
-	for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
-	{
-		if(h->len > i)
-		{
-			if(h->len > j)
-				swap(h->data[i],h->data[j]);
-			else
-			{
-				// give up
-				lru_delete(h);
-				free(h->data);
-				size += h->len;
-				h->data = 0;
-				h->len = 0;
-			}
-		}
-	}
-}
-
-//
-// Kernel evaluation
-//
-// the static method k_function is for doing single kernel evaluation
-// the constructor of Kernel prepares to calculate the l*l kernel matrix
-// the member function get_Q is for getting one column from the Q Matrix
-//
-class QMatrix {
-public:
-	virtual Qfloat *get_Q(int column, int len) const = 0;
-	virtual double *get_QD() const = 0;
-	virtual void swap_index(int i, int j) const = 0;
-	virtual ~QMatrix() {}
-};
-
-class Kernel: public QMatrix {
-public:
-	Kernel(int l, svm_node * const * x, const svm_parameter& param);
-	virtual ~Kernel();
-
-	static double k_function(const svm_node *x, const svm_node *y,
-				 const svm_parameter& param);
-	virtual Qfloat *get_Q(int column, int len) const = 0;
-	virtual double *get_QD() const = 0;
-	virtual void swap_index(int i, int j) const	// no so const...
-	{
-		swap(x[i],x[j]);
-		if(x_square) swap(x_square[i],x_square[j]);
-	}
-protected:
-
-	double (Kernel::*kernel_function)(int i, int j) const;
-
-private:
-	const svm_node **x;
-	double *x_square;
-
-	// svm_parameter
-	const int kernel_type;
-	const int degree;
-	const double gamma;
-	const double coef0;
-
-	static double dot(const svm_node *px, const svm_node *py);
-	double kernel_linear(int i, int j) const
-	{
-		return dot(x[i],x[j]);
-	}
-	double kernel_poly(int i, int j) const
-	{
-		return powi(gamma*dot(x[i],x[j])+coef0,degree);
-	}
-	double kernel_rbf(int i, int j) const
-	{
-		return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
-	}
-	double kernel_sigmoid(int i, int j) const
-	{
-		return tanh(gamma*dot(x[i],x[j])+coef0);
-	}
-	double kernel_precomputed(int i, int j) const
-	{
-		return x[i][(int)(x[j][0].value)].value;
-	}
-};
-
-Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
-:kernel_type(param.kernel_type), degree(param.degree),
- gamma(param.gamma), coef0(param.coef0)
-{
-	switch(kernel_type)
-	{
-		case LINEAR:
-			kernel_function = &Kernel::kernel_linear;
-			break;
-		case POLY:
-			kernel_function = &Kernel::kernel_poly;
-			break;
-		case RBF:
-			kernel_function = &Kernel::kernel_rbf;
-			break;
-		case SIGMOID:
-			kernel_function = &Kernel::kernel_sigmoid;
-			break;
-		case PRECOMPUTED:
-			kernel_function = &Kernel::kernel_precomputed;
-			break;
-	}
-
-	clone(x,x_,l);
-
-	if(kernel_type == RBF)
-	{
-		x_square = new double[l];
-		for(int i=0;i<l;i++)
-			x_square[i] = dot(x[i],x[i]);
-	}
-	else
-		x_square = 0;
-}
-
-Kernel::~Kernel()
-{
-	delete[] x;
-	delete[] x_square;
-}
-
-double Kernel::dot(const svm_node *px, const svm_node *py)
-{
-	double sum = 0;
-	while(px->index != -1 && py->index != -1)
-	{
-		if(px->index == py->index)
-		{
-			sum += px->value * py->value;
-			++px;
-			++py;
-		}
-		else
-		{
-			if(px->index > py->index)
-				++py;
-			else
-				++px;
-		}			
-	}
-	return sum;
-}
-
-double Kernel::k_function(const svm_node *x, const svm_node *y,
-			  const svm_parameter& param)
-{
-	switch(param.kernel_type)
-	{
-		case LINEAR:
-			return dot(x,y);
-		case POLY:
-			return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
-		case RBF:
-		{
-			double sum = 0;
-			while(x->index != -1 && y->index !=-1)
-			{
-				if(x->index == y->index)
-				{
-					double d = x->value - y->value;
-					sum += d*d;
-					++x;
-					++y;
-				}
-				else
-				{
-					if(x->index > y->index)
-					{	
-						sum += y->value * y->value;
-						++y;
-					}
-					else
-					{
-						sum += x->value * x->value;
-						++x;
-					}
-				}
-			}
-
-			while(x->index != -1)
-			{
-				sum += x->value * x->value;
-				++x;
-			}
-
-			while(y->index != -1)
-			{
-				sum += y->value * y->value;
-				++y;
-			}
-			
-			return exp(-param.gamma*sum);
-		}
-		case SIGMOID:
-			return tanh(param.gamma*dot(x,y)+param.coef0);
-		case PRECOMPUTED:  //x: test (validation), y: SV
-			return x[(int)(y->value)].value;
-		default:
-			return 0;  // Unreachable 
-	}
-}
-
-// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
-// Solves:
-//
-//	min 0.5(\alpha^T Q \alpha) + p^T \alpha
-//
-//		y^T \alpha = \delta
-//		y_i = +1 or -1
-//		0 <= alpha_i <= Cp for y_i = 1
-//		0 <= alpha_i <= Cn for y_i = -1
-//
-// Given:
-//
-//	Q, p, y, Cp, Cn, and an initial feasible point \alpha
-//	l is the size of vectors and matrices
-//	eps is the stopping tolerance
-//
-// solution will be put in \alpha, objective value will be put in obj
-//
-class Solver {
-public:
-	Solver() {};
-	virtual ~Solver() {};
-
-	struct SolutionInfo {
-		double obj;
-		double rho;
-		double upper_bound_p;
-		double upper_bound_n;
-		double r;	// for Solver_NU
-	};
-
-	void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
-		   double *alpha_, double Cp, double Cn, double eps,
-		   SolutionInfo* si, int shrinking);
-protected:
-	int active_size;
-	schar *y;
-	double *G;		// gradient of objective function
-	enum { LOWER_BOUND, UPPER_BOUND, FREE };
-	char *alpha_status;	// LOWER_BOUND, UPPER_BOUND, FREE
-	double *alpha;
-	const QMatrix *Q;
-	const double *QD;
-	double eps;
-	double Cp,Cn;
-	double *p;
-	int *active_set;
-	double *G_bar;		// gradient, if we treat free variables as 0
-	int l;
-	bool unshrink;	// XXX
-
-	double get_C(int i)
-	{
-		return (y[i] > 0)? Cp : Cn;
-	}
-	void update_alpha_status(int i)
-	{
-		if(alpha[i] >= get_C(i))
-			alpha_status[i] = UPPER_BOUND;
-		else if(alpha[i] <= 0)
-			alpha_status[i] = LOWER_BOUND;
-		else alpha_status[i] = FREE;
-	}
-	bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
-	bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
-	bool is_free(int i) { return alpha_status[i] == FREE; }
-	void swap_index(int i, int j);
-	void reconstruct_gradient();
-	virtual int select_working_set(int &i, int &j);
-	virtual double calculate_rho();
-	virtual void do_shrinking();
-private:
-	bool be_shrunk(int i, double Gmax1, double Gmax2);	
-};
-
-void Solver::swap_index(int i, int j)
-{
-	Q->swap_index(i,j);
-	swap(y[i],y[j]);
-	swap(G[i],G[j]);
-	swap(alpha_status[i],alpha_status[j]);
-	swap(alpha[i],alpha[j]);
-	swap(p[i],p[j]);
-	swap(active_set[i],active_set[j]);
-	swap(G_bar[i],G_bar[j]);
-}
-
-void Solver::reconstruct_gradient()
-{
-	// reconstruct inactive elements of G from G_bar and free variables
-
-	if(active_size == l) return;
-
-	int i,j;
-	int nr_free = 0;
-
-	for(j=active_size;j<l;j++)
-		G[j] = G_bar[j] + p[j];
-
-	for(j=0;j<active_size;j++)
-		if(is_free(j))
-			nr_free++;
-
-	if(2*nr_free < active_size)
-		info("\nWARNING: using -h 0 may be faster\n");
-
-	if (nr_free*l > 2*active_size*(l-active_size))
-	{
-		for(i=active_size;i<l;i++)
-		{
-			const Qfloat *Q_i = Q->get_Q(i,active_size);
-			for(j=0;j<active_size;j++)
-				if(is_free(j))
-					G[i] += alpha[j] * Q_i[j];
-		}
-	}
-	else
-	{
-		for(i=0;i<active_size;i++)
-			if(is_free(i))
-			{
-				const Qfloat *Q_i = Q->get_Q(i,l);
-				double alpha_i = alpha[i];
-				for(j=active_size;j<l;j++)
-					G[j] += alpha_i * Q_i[j];
-			}
-	}
-}
-
-void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
-		   double *alpha_, double Cp, double Cn, double eps,
-		   SolutionInfo* si, int shrinking)
-{
-	this->l = l;
-	this->Q = &Q;
-	QD=Q.get_QD();
-	clone(p, p_,l);
-	clone(y, y_,l);
-	clone(alpha,alpha_,l);
-	this->Cp = Cp;
-	this->Cn = Cn;
-	this->eps = eps;
-	unshrink = false;
-
-	// initialize alpha_status
-	{
-		alpha_status = new char[l];
-		for(int i=0;i<l;i++)
-			update_alpha_status(i);
-	}
-
-	// initialize active set (for shrinking)
-	{
-		active_set = new int[l];
-		for(int i=0;i<l;i++)
-			active_set[i] = i;
-		active_size = l;
-	}
-
-	// initialize gradient
-	{
-		G = new double[l];
-		G_bar = new double[l];
-		int i;
-		for(i=0;i<l;i++)
-		{
-			G[i] = p[i];
-			G_bar[i] = 0;
-		}
-		for(i=0;i<l;i++)
-			if(!is_lower_bound(i))
-			{
-				const Qfloat *Q_i = Q.get_Q(i,l);
-				double alpha_i = alpha[i];
-				int j;
-				for(j=0;j<l;j++)
-					G[j] += alpha_i*Q_i[j];
-				if(is_upper_bound(i))
-					for(j=0;j<l;j++)
-						G_bar[j] += get_C(i) * Q_i[j];
-			}
-	}
-
-	// optimization step
-
-	int iter = 0;
-	int max_iter = max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l);
-	int counter = min(l,1000)+1;
-	
-	while(iter < max_iter)
-	{
-		// show progress and do shrinking
-
-		if(--counter == 0)
-		{
-			counter = min(l,1000);
-			if(shrinking) do_shrinking();
-			info(".");
-		}
-
-		int i,j;
-		if(select_working_set(i,j)!=0)
-		{
-			// reconstruct the whole gradient
-			reconstruct_gradient();
-			// reset active set size and check
-			active_size = l;
-			info("*");
-			if(select_working_set(i,j)!=0)
-				break;
-			else
-				counter = 1;	// do shrinking next iteration
-		}
-		
-		++iter;
-
-		// update alpha[i] and alpha[j], handle bounds carefully
-		
-		const Qfloat *Q_i = Q.get_Q(i,active_size);
-		const Qfloat *Q_j = Q.get_Q(j,active_size);
-
-		double C_i = get_C(i);
-		double C_j = get_C(j);
-
-		double old_alpha_i = alpha[i];
-		double old_alpha_j = alpha[j];
-
-		if(y[i]!=y[j])
-		{
-			double quad_coef = QD[i]+QD[j]+2*Q_i[j];
-			if (quad_coef <= 0)
-				quad_coef = TAU;
-			double delta = (-G[i]-G[j])/quad_coef;
-			double diff = alpha[i] - alpha[j];
-			alpha[i] += delta;
-			alpha[j] += delta;
-			
-			if(diff > 0)
-			{
-				if(alpha[j] < 0)
-				{
-					alpha[j] = 0;
-					alpha[i] = diff;
-				}
-			}
-			else
-			{
-				if(alpha[i] < 0)
-				{
-					alpha[i] = 0;
-					alpha[j] = -diff;
-				}
-			}
-			if(diff > C_i - C_j)
-			{
-				if(alpha[i] > C_i)
-				{
-					alpha[i] = C_i;
-					alpha[j] = C_i - diff;
-				}
-			}
-			else
-			{
-				if(alpha[j] > C_j)
-				{
-					alpha[j] = C_j;
-					alpha[i] = C_j + diff;
-				}
-			}
-		}
-		else
-		{
-			double quad_coef = QD[i]+QD[j]-2*Q_i[j];
-			if (quad_coef <= 0)
-				quad_coef = TAU;
-			double delta = (G[i]-G[j])/quad_coef;
-			double sum = alpha[i] + alpha[j];
-			alpha[i] -= delta;
-			alpha[j] += delta;
-
-			if(sum > C_i)
-			{
-				if(alpha[i] > C_i)
-				{
-					alpha[i] = C_i;
-					alpha[j] = sum - C_i;
-				}
-			}
-			else
-			{
-				if(alpha[j] < 0)
-				{
-					alpha[j] = 0;
-					alpha[i] = sum;
-				}
-			}
-			if(sum > C_j)
-			{
-				if(alpha[j] > C_j)
-				{
-					alpha[j] = C_j;
-					alpha[i] = sum - C_j;
-				}
-			}
-			else
-			{
-				if(alpha[i] < 0)
-				{
-					alpha[i] = 0;
-					alpha[j] = sum;
-				}
-			}
-		}
-
-		// update G
-
-		double delta_alpha_i = alpha[i] - old_alpha_i;
-		double delta_alpha_j = alpha[j] - old_alpha_j;
-		
-		for(int k=0;k<active_size;k++)
-		{
-			G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
-		}
-
-		// update alpha_status and G_bar
-
-		{
-			bool ui = is_upper_bound(i);
-			bool uj = is_upper_bound(j);
-			update_alpha_status(i);
-			update_alpha_status(j);
-			int k;
-			if(ui != is_upper_bound(i))
-			{
-				Q_i = Q.get_Q(i,l);
-				if(ui)
-					for(k=0;k<l;k++)
-						G_bar[k] -= C_i * Q_i[k];
-				else
-					for(k=0;k<l;k++)
-						G_bar[k] += C_i * Q_i[k];
-			}
-
-			if(uj != is_upper_bound(j))
-			{
-				Q_j = Q.get_Q(j,l);
-				if(uj)
-					for(k=0;k<l;k++)
-						G_bar[k] -= C_j * Q_j[k];
-				else
-					for(k=0;k<l;k++)
-						G_bar[k] += C_j * Q_j[k];
-			}
-		}
-	}
-
-	if(iter >= max_iter)
-	{
-		if(active_size < l)
-		{
-			// reconstruct the whole gradient to calculate objective value
-			reconstruct_gradient();
-			active_size = l;
-			info("*");
-		}
-		info("\nWARNING: reaching max number of iterations");
-	}
-
-	// calculate rho
-
-	si->rho = calculate_rho();
-
-	// calculate objective value
-	{
-		double v = 0;
-		int i;
-		for(i=0;i<l;i++)
-			v += alpha[i] * (G[i] + p[i]);
-
-		si->obj = v/2;
-	}
-
-	// put back the solution
-	{
-		for(int i=0;i<l;i++)
-			alpha_[active_set[i]] = alpha[i];
-	}
-
-	// juggle everything back
-	/*{
-		for(int i=0;i<l;i++)
-			while(active_set[i] != i)
-				swap_index(i,active_set[i]);
-				// or Q.swap_index(i,active_set[i]);
-	}*/
-
-	si->upper_bound_p = Cp;
-	si->upper_bound_n = Cn;
-
-	info("\noptimization finished, #iter = %d\n",iter);
-
-	delete[] p;
-	delete[] y;
-	delete[] alpha;
-	delete[] alpha_status;
-	delete[] active_set;
-	delete[] G;
-	delete[] G_bar;
-}
-
-// return 1 if already optimal, return 0 otherwise
-int Solver::select_working_set(int &out_i, int &out_j)
-{
-	// return i,j such that
-	// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
-	// j: minimizes the decrease of obj value
-	//    (if quadratic coefficeint <= 0, replace it with tau)
-	//    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
-	
-	double Gmax = -INF;
-	double Gmax2 = -INF;
-	int Gmax_idx = -1;
-	int Gmin_idx = -1;
-	double obj_diff_min = INF;
-
-	for(int t=0;t<active_size;t++)
-		if(y[t]==+1)	
-		{
-			if(!is_upper_bound(t))
-				if(-G[t] >= Gmax)
-				{
-					Gmax = -G[t];
-					Gmax_idx = t;
-				}
-		}
-		else
-		{
-			if(!is_lower_bound(t))
-				if(G[t] >= Gmax)
-				{
-					Gmax = G[t];
-					Gmax_idx = t;
-				}
-		}
-
-	int i = Gmax_idx;
-	const Qfloat *Q_i = NULL;
-	if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
-		Q_i = Q->get_Q(i,active_size);
-
-	for(int j=0;j<active_size;j++)
-	{
-		if(y[j]==+1)
-		{
-			if (!is_lower_bound(j))
-			{
-				double grad_diff=Gmax+G[j];
-				if (G[j] >= Gmax2)
-					Gmax2 = G[j];
-				if (grad_diff > 0)
-				{
-					double obj_diff; 
-					double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
-					if (quad_coef > 0)
-						obj_diff = -(grad_diff*grad_diff)/quad_coef;
-					else
-						obj_diff = -(grad_diff*grad_diff)/TAU;
-
-					if (obj_diff <= obj_diff_min)
-					{
-						Gmin_idx=j;
-						obj_diff_min = obj_diff;
-					}
-				}
-			}
-		}
-		else
-		{
-			if (!is_upper_bound(j))
-			{
-				double grad_diff= Gmax-G[j];
-				if (-G[j] >= Gmax2)
-					Gmax2 = -G[j];
-				if (grad_diff > 0)
-				{
-					double obj_diff; 
-					double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
-					if (quad_coef > 0)
-						obj_diff = -(grad_diff*grad_diff)/quad_coef;
-					else
-						obj_diff = -(grad_diff*grad_diff)/TAU;
-
-					if (obj_diff <= obj_diff_min)
-					{
-						Gmin_idx=j;
-						obj_diff_min = obj_diff;
-					}
-				}
-			}
-		}
-	}
-
-	if(Gmax+Gmax2 < eps)
-		return 1;
-
-	out_i = Gmax_idx;
-	out_j = Gmin_idx;
-	return 0;
-}
-
-bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
-{
-	if(is_upper_bound(i))
-	{
-		if(y[i]==+1)
-			return(-G[i] > Gmax1);
-		else
-			return(-G[i] > Gmax2);
-	}
-	else if(is_lower_bound(i))
-	{
-		if(y[i]==+1)
-			return(G[i] > Gmax2);
-		else	
-			return(G[i] > Gmax1);
-	}
-	else
-		return(false);
-}
-
-void Solver::do_shrinking()
-{
-	int i;
-	double Gmax1 = -INF;		// max { -y_i * grad(f)_i | i in I_up(\alpha) }
-	double Gmax2 = -INF;		// max { y_i * grad(f)_i | i in I_low(\alpha) }
-
-	// find maximal violating pair first
-	for(i=0;i<active_size;i++)
-	{
-		if(y[i]==+1)	
-		{
-			if(!is_upper_bound(i))	
-			{
-				if(-G[i] >= Gmax1)
-					Gmax1 = -G[i];
-			}
-			if(!is_lower_bound(i))	
-			{
-				if(G[i] >= Gmax2)
-					Gmax2 = G[i];
-			}
-		}
-		else	
-		{
-			if(!is_upper_bound(i))	
-			{
-				if(-G[i] >= Gmax2)
-					Gmax2 = -G[i];
-			}
-			if(!is_lower_bound(i))	
-			{
-				if(G[i] >= Gmax1)
-					Gmax1 = G[i];
-			}
-		}
-	}
-
-	if(unshrink == false && Gmax1 + Gmax2 <= eps*10) 
-	{
-		unshrink = true;
-		reconstruct_gradient();
-		active_size = l;
-		info("*");
-	}
-
-	for(i=0;i<active_size;i++)
-		if (be_shrunk(i, Gmax1, Gmax2))
-		{
-			active_size--;
-			while (active_size > i)
-			{
-				if (!be_shrunk(active_size, Gmax1, Gmax2))
-				{
-					swap_index(i,active_size);
-					break;
-				}
-				active_size--;
-			}
-		}
-}
-
-double Solver::calculate_rho()
-{
-	double r;
-	int nr_free = 0;
-	double ub = INF, lb = -INF, sum_free = 0;
-	for(int i=0;i<active_size;i++)
-	{
-		double yG = y[i]*G[i];
-
-		if(is_upper_bound(i))
-		{
-			if(y[i]==-1)
-				ub = min(ub,yG);
-			else
-				lb = max(lb,yG);
-		}
-		else if(is_lower_bound(i))
-		{
-			if(y[i]==+1)
-				ub = min(ub,yG);
-			else
-				lb = max(lb,yG);
-		}
-		else
-		{
-			++nr_free;
-			sum_free += yG;
-		}
-	}
-
-	if(nr_free>0)
-		r = sum_free/nr_free;
-	else
-		r = (ub+lb)/2;
-
-	return r;
-}
-
-//
-// Solver for nu-svm classification and regression
-//
-// additional constraint: e^T \alpha = constant
-//
-class Solver_NU : public Solver
-{
-public:
-	Solver_NU() {}
-	void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
-		   double *alpha, double Cp, double Cn, double eps,
-		   SolutionInfo* si, int shrinking)
-	{
-		this->si = si;
-		Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
-	}
-private:
-	SolutionInfo *si;
-	int select_working_set(int &i, int &j);
-	double calculate_rho();
-	bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
-	void do_shrinking();
-};
-
-// return 1 if already optimal, return 0 otherwise
-int Solver_NU::select_working_set(int &out_i, int &out_j)
-{
-	// return i,j such that y_i = y_j and
-	// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
-	// j: minimizes the decrease of obj value
-	//    (if quadratic coefficeint <= 0, replace it with tau)
-	//    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
-
-	double Gmaxp = -INF;
-	double Gmaxp2 = -INF;
-	int Gmaxp_idx = -1;
-
-	double Gmaxn = -INF;
-	double Gmaxn2 = -INF;
-	int Gmaxn_idx = -1;
-
-	int Gmin_idx = -1;
-	double obj_diff_min = INF;
-
-	for(int t=0;t<active_size;t++)
-		if(y[t]==+1)
-		{
-			if(!is_upper_bound(t))
-				if(-G[t] >= Gmaxp)
-				{
-					Gmaxp = -G[t];
-					Gmaxp_idx = t;
-				}
-		}
-		else
-		{
-			if(!is_lower_bound(t))
-				if(G[t] >= Gmaxn)
-				{
-					Gmaxn = G[t];
-					Gmaxn_idx = t;
-				}
-		}
-
-	int ip = Gmaxp_idx;
-	int in = Gmaxn_idx;
-	const Qfloat *Q_ip = NULL;
-	const Qfloat *Q_in = NULL;
-	if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
-		Q_ip = Q->get_Q(ip,active_size);
-	if(in != -1)
-		Q_in = Q->get_Q(in,active_size);
-
-	for(int j=0;j<active_size;j++)
-	{
-		if(y[j]==+1)
-		{
-			if (!is_lower_bound(j))	
-			{
-				double grad_diff=Gmaxp+G[j];
-				if (G[j] >= Gmaxp2)
-					Gmaxp2 = G[j];
-				if (grad_diff > 0)
-				{
-					double obj_diff; 
-					double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
-					if (quad_coef > 0)
-						obj_diff = -(grad_diff*grad_diff)/quad_coef;
-					else
-						obj_diff = -(grad_diff*grad_diff)/TAU;
-
-					if (obj_diff <= obj_diff_min)
-					{
-						Gmin_idx=j;
-						obj_diff_min = obj_diff;
-					}
-				}
-			}
-		}
-		else
-		{
-			if (!is_upper_bound(j))
-			{
-				double grad_diff=Gmaxn-G[j];
-				if (-G[j] >= Gmaxn2)
-					Gmaxn2 = -G[j];
-				if (grad_diff > 0)
-				{
-					double obj_diff; 
-					double quad_coef = QD[in]+QD[j]-2*Q_in[j];
-					if (quad_coef > 0)
-						obj_diff = -(grad_diff*grad_diff)/quad_coef;
-					else
-						obj_diff = -(grad_diff*grad_diff)/TAU;
-
-					if (obj_diff <= obj_diff_min)
-					{
-						Gmin_idx=j;
-						obj_diff_min = obj_diff;
-					}
-				}
-			}
-		}
-	}
-
-	if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
-		return 1;
-
-	if (y[Gmin_idx] == +1)
-		out_i = Gmaxp_idx;
-	else
-		out_i = Gmaxn_idx;
-	out_j = Gmin_idx;
-
-	return 0;
-}
-
-bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
-{
-	if(is_upper_bound(i))
-	{
-		if(y[i]==+1)
-			return(-G[i] > Gmax1);
-		else	
-			return(-G[i] > Gmax4);
-	}
-	else if(is_lower_bound(i))
-	{
-		if(y[i]==+1)
-			return(G[i] > Gmax2);
-		else	
-			return(G[i] > Gmax3);
-	}
-	else
-		return(false);
-}
-
-void Solver_NU::do_shrinking()
-{
-	double Gmax1 = -INF;	// max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
-	double Gmax2 = -INF;	// max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
-	double Gmax3 = -INF;	// max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
-	double Gmax4 = -INF;	// max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
-
-	// find maximal violating pair first
-	int i;
-	for(i=0;i<active_size;i++)
-	{
-		if(!is_upper_bound(i))
-		{
-			if(y[i]==+1)
-			{
-				if(-G[i] > Gmax1) Gmax1 = -G[i];
-			}
-			else	if(-G[i] > Gmax4) Gmax4 = -G[i];
-		}
-		if(!is_lower_bound(i))
-		{
-			if(y[i]==+1)
-			{	
-				if(G[i] > Gmax2) Gmax2 = G[i];
-			}
-			else	if(G[i] > Gmax3) Gmax3 = G[i];
-		}
-	}
-
-	if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) 
-	{
-		unshrink = true;
-		reconstruct_gradient();
-		active_size = l;
-	}
-
-	for(i=0;i<active_size;i++)
-		if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
-		{
-			active_size--;
-			while (active_size > i)
-			{
-				if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
-				{
-					swap_index(i,active_size);
-					break;
-				}
-				active_size--;
-			}
-		}
-}
-
-double Solver_NU::calculate_rho()
-{
-	int nr_free1 = 0,nr_free2 = 0;
-	double ub1 = INF, ub2 = INF;
-	double lb1 = -INF, lb2 = -INF;
-	double sum_free1 = 0, sum_free2 = 0;
-
-	for(int i=0;i<active_size;i++)
-	{
-		if(y[i]==+1)
-		{
-			if(is_upper_bound(i))
-				lb1 = max(lb1,G[i]);
-			else if(is_lower_bound(i))
-				ub1 = min(ub1,G[i]);
-			else
-			{
-				++nr_free1;
-				sum_free1 += G[i];
-			}
-		}
-		else
-		{
-			if(is_upper_bound(i))
-				lb2 = max(lb2,G[i]);
-			else if(is_lower_bound(i))
-				ub2 = min(ub2,G[i]);
-			else
-			{
-				++nr_free2;
-				sum_free2 += G[i];
-			}
-		}
-	}
-
-	double r1,r2;
-	if(nr_free1 > 0)
-		r1 = sum_free1/nr_free1;
-	else
-		r1 = (ub1+lb1)/2;
-	
-	if(nr_free2 > 0)
-		r2 = sum_free2/nr_free2;
-	else
-		r2 = (ub2+lb2)/2;
-	
-	si->r = (r1+r2)/2;
-	return (r1-r2)/2;
-}
-
-//
-// Q matrices for various formulations
-//
-class SVC_Q: public Kernel
-{ 
-public:
-	SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
-	:Kernel(prob.l, prob.x, param)
-	{
-		clone(y,y_,prob.l);
-		cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
-		QD = new double[prob.l];
-		for(int i=0;i<prob.l;i++)
-			QD[i] = (this->*kernel_function)(i,i);
-	}
-	
-	Qfloat *get_Q(int i, int len) const
-	{
-		Qfloat *data;
-		int start, j;
-		if((start = cache->get_data(i,&data,len)) < len)
-		{
-			for(j=start;j<len;j++)
-				data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
-		}
-		return data;
-	}
-
-	double *get_QD() const
-	{
-		return QD;
-	}
-
-	void swap_index(int i, int j) const
-	{
-		cache->swap_index(i,j);
-		Kernel::swap_index(i,j);
-		swap(y[i],y[j]);
-		swap(QD[i],QD[j]);
-	}
-
-	~SVC_Q()
-	{
-		delete[] y;
-		delete cache;
-		delete[] QD;
-	}
-private:
-	schar *y;
-	Cache *cache;
-	double *QD;
-};
-
-class ONE_CLASS_Q: public Kernel
-{
-public:
-	ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
-	:Kernel(prob.l, prob.x, param)
-	{
-		cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
-		QD = new double[prob.l];
-		for(int i=0;i<prob.l;i++)
-			QD[i] = (this->*kernel_function)(i,i);
-	}
-	
-	Qfloat *get_Q(int i, int len) const
-	{
-		Qfloat *data;
-		int start, j;
-		if((start = cache->get_data(i,&data,len)) < len)
-		{
-			for(j=start;j<len;j++)
-				data[j] = (Qfloat)(this->*kernel_function)(i,j);
-		}
-		return data;
-	}
-
-	double *get_QD() const
-	{
-		return QD;
-	}
-
-	void swap_index(int i, int j) const
-	{
-		cache->swap_index(i,j);
-		Kernel::swap_index(i,j);
-		swap(QD[i],QD[j]);
-	}
-
-	~ONE_CLASS_Q()
-	{
-		delete cache;
-		delete[] QD;
-	}
-private:
-	Cache *cache;
-	double *QD;
-};
-
-class SVR_Q: public Kernel
-{ 
-public:
-	SVR_Q(const svm_problem& prob, const svm_parameter& param)
-	:Kernel(prob.l, prob.x, param)
-	{
-		l = prob.l;
-		cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
-		QD = new double[2*l];
-		sign = new schar[2*l];
-		index = new int[2*l];
-		for(int k=0;k<l;k++)
-		{
-			sign[k] = 1;
-			sign[k+l] = -1;
-			index[k] = k;
-			index[k+l] = k;
-			QD[k] = (this->*kernel_function)(k,k);
-			QD[k+l] = QD[k];
-		}
-		buffer[0] = new Qfloat[2*l];
-		buffer[1] = new Qfloat[2*l];
-		next_buffer = 0;
-	}
-
-	void swap_index(int i, int j) const
-	{
-		swap(sign[i],sign[j]);
-		swap(index[i],index[j]);
-		swap(QD[i],QD[j]);
-	}
-	
-	Qfloat *get_Q(int i, int len) const
-	{
-		Qfloat *data;
-		int j, real_i = index[i];
-		if(cache->get_data(real_i,&data,l) < l)
-		{
-			for(j=0;j<l;j++)
-				data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
-		}
-
-		// reorder and copy
-		Qfloat *buf = buffer[next_buffer];
-		next_buffer = 1 - next_buffer;
-		schar si = sign[i];
-		for(j=0;j<len;j++)
-			buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
-		return buf;
-	}
-
-	double *get_QD() const
-	{
-		return QD;
-	}
-
-	~SVR_Q()
-	{
-		delete cache;
-		delete[] sign;
-		delete[] index;
-		delete[] buffer[0];
-		delete[] buffer[1];
-		delete[] QD;
-	}
-private:
-	int l;
-	Cache *cache;
-	schar *sign;
-	int *index;
-	mutable int next_buffer;
-	Qfloat *buffer[2];
-	double *QD;
-};
-
-//
-// construct and solve various formulations
-//
-static void solve_c_svc(
-	const svm_problem *prob, const svm_parameter* param,
-	double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
-{
-	int l = prob->l;
-	double *minus_ones = new double[l];
-	schar *y = new schar[l];
-
-	int i;
-
-	for(i=0;i<l;i++)
-	{
-		alpha[i] = 0;
-		minus_ones[i] = -1;
-		if(prob->y[i] > 0) y[i] = +1; else y[i] = -1;
-	}
-
-	Solver s;
-	s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
-		alpha, Cp, Cn, param->eps, si, param->shrinking);
-
-	double sum_alpha=0;
-	for(i=0;i<l;i++)
-		sum_alpha += alpha[i];
-
-	if (Cp==Cn)
-		info("nu = %f\n", sum_alpha/(Cp*prob->l));
-
-	for(i=0;i<l;i++)
-		alpha[i] *= y[i];
-
-	delete[] minus_ones;
-	delete[] y;
-}
-
-static void solve_nu_svc(
-	const svm_problem *prob, const svm_parameter *param,
-	double *alpha, Solver::SolutionInfo* si)
-{
-	int i;
-	int l = prob->l;
-	double nu = param->nu;
-
-	schar *y = new schar[l];
-
-	for(i=0;i<l;i++)
-		if(prob->y[i]>0)
-			y[i] = +1;
-		else
-			y[i] = -1;
-
-	double sum_pos = nu*l/2;
-	double sum_neg = nu*l/2;
-
-	for(i=0;i<l;i++)
-		if(y[i] == +1)
-		{
-			alpha[i] = min(1.0,sum_pos);
-			sum_pos -= alpha[i];
-		}
-		else
-		{
-			alpha[i] = min(1.0,sum_neg);
-			sum_neg -= alpha[i];
-		}
-
-	double *zeros = new double[l];
-
-	for(i=0;i<l;i++)
-		zeros[i] = 0;
-
-	Solver_NU s;
-	s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
-		alpha, 1.0, 1.0, param->eps, si,  param->shrinking);
-	double r = si->r;
-
-	info("C = %f\n",1/r);
-
-	for(i=0;i<l;i++)
-		alpha[i] *= y[i]/r;
-
-	si->rho /= r;
-	si->obj /= (r*r);
-	si->upper_bound_p = 1/r;
-	si->upper_bound_n = 1/r;
-
-	delete[] y;
-	delete[] zeros;
-}
-
-static void solve_one_class(
-	const svm_problem *prob, const svm_parameter *param,
-	double *alpha, Solver::SolutionInfo* si)
-{
-	int l = prob->l;
-	double *zeros = new double[l];
-	schar *ones = new schar[l];
-	int i;
-
-	int n = (int)(param->nu*prob->l);	// # of alpha's at upper bound
-
-	for(i=0;i<n;i++)
-		alpha[i] = 1;
-	if(n<prob->l)
-		alpha[n] = param->nu * prob->l - n;
-	for(i=n+1;i<l;i++)
-		alpha[i] = 0;
-
-	for(i=0;i<l;i++)
-	{
-		zeros[i] = 0;
-		ones[i] = 1;
-	}
-
-	Solver s;
-	s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
-		alpha, 1.0, 1.0, param->eps, si, param->shrinking);
-
-	delete[] zeros;
-	delete[] ones;
-}
-
-static void solve_epsilon_svr(
-	const svm_problem *prob, const svm_parameter *param,
-	double *alpha, Solver::SolutionInfo* si)
-{
-	int l = prob->l;
-	double *alpha2 = new double[2*l];
-	double *linear_term = new double[2*l];
-	schar *y = new schar[2*l];
-	int i;
-
-	for(i=0;i<l;i++)
-	{
-		alpha2[i] = 0;
-		linear_term[i] = param->p - prob->y[i];
-		y[i] = 1;
-
-		alpha2[i+l] = 0;
-		linear_term[i+l] = param->p + prob->y[i];
-		y[i+l] = -1;
-	}
-
-	Solver s;
-	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
-		alpha2, param->C, param->C, param->eps, si, param->shrinking);
-
-	double sum_alpha = 0;
-	for(i=0;i<l;i++)
-	{
-		alpha[i] = alpha2[i] - alpha2[i+l];
-		sum_alpha += fabs(alpha[i]);
-	}
-	info("nu = %f\n",sum_alpha/(param->C*l));
-
-	delete[] alpha2;
-	delete[] linear_term;
-	delete[] y;
-}
-
-static void solve_nu_svr(
-	const svm_problem *prob, const svm_parameter *param,
-	double *alpha, Solver::SolutionInfo* si)
-{
-	int l = prob->l;
-	double C = param->C;
-	double *alpha2 = new double[2*l];
-	double *linear_term = new double[2*l];
-	schar *y = new schar[2*l];
-	int i;
-
-	double sum = C * param->nu * l / 2;
-	for(i=0;i<l;i++)
-	{
-		alpha2[i] = alpha2[i+l] = min(sum,C);
-		sum -= alpha2[i];
-
-		linear_term[i] = - prob->y[i];
-		y[i] = 1;
-
-		linear_term[i+l] = prob->y[i];
-		y[i+l] = -1;
-	}
-
-	Solver_NU s;
-	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
-		alpha2, C, C, param->eps, si, param->shrinking);
-
-	info("epsilon = %f\n",-si->r);
-
-	for(i=0;i<l;i++)
-		alpha[i] = alpha2[i] - alpha2[i+l];
-
-	delete[] alpha2;
-	delete[] linear_term;
-	delete[] y;
-}
-
-//
-// decision_function
-//
-struct decision_function
-{
-	double *alpha;
-	double rho;	
-};
-
-static decision_function svm_train_one(
-	const svm_problem *prob, const svm_parameter *param,
-	double Cp, double Cn)
-{
-	double *alpha = Malloc(double,prob->l);
-	Solver::SolutionInfo si;
-	switch(param->svm_type)
-	{
-		case C_SVC:
-			solve_c_svc(prob,param,alpha,&si,Cp,Cn);
-			break;
-		case NU_SVC:
-			solve_nu_svc(prob,param,alpha,&si);
-			break;
-		case ONE_CLASS:
-			solve_one_class(prob,param,alpha,&si);
-			break;
-		case EPSILON_SVR:
-			solve_epsilon_svr(prob,param,alpha,&si);
-			break;
-		case NU_SVR:
-			solve_nu_svr(prob,param,alpha,&si);
-			break;
-	}
-
-	info("obj = %f, rho = %f\n",si.obj,si.rho);
-
-	// output SVs
-
-	int nSV = 0;
-	int nBSV = 0;
-	for(int i=0;i<prob->l;i++)
-	{
-		if(fabs(alpha[i]) > 0)
-		{
-			++nSV;
-			if(prob->y[i] > 0)
-			{
-				if(fabs(alpha[i]) >= si.upper_bound_p)
-					++nBSV;
-			}
-			else
-			{
-				if(fabs(alpha[i]) >= si.upper_bound_n)
-					++nBSV;
-			}
-		}
-	}
-
-	info("nSV = %d, nBSV = %d\n",nSV,nBSV);
-
-	decision_function f;
-	f.alpha = alpha;
-	f.rho = si.rho;
-	return f;
-}
-
-// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
-static void sigmoid_train(
-	int l, const double *dec_values, const double *labels, 
-	double& A, double& B)
-{
-	double prior1=0, prior0 = 0;
-	int i;
-
-	for (i=0;i<l;i++)
-		if (labels[i] > 0) prior1+=1;
-		else prior0+=1;
-	
-	int max_iter=100;	// Maximal number of iterations
-	double min_step=1e-10;	// Minimal step taken in line search
-	double sigma=1e-12;	// For numerically strict PD of Hessian
-	double eps=1e-5;
-	double hiTarget=(prior1+1.0)/(prior1+2.0);
-	double loTarget=1/(prior0+2.0);
-	double *t=Malloc(double,l);
-	double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
-	double newA,newB,newf,d1,d2;
-	int iter; 
-	
-	// Initial Point and Initial Fun Value
-	A=0.0; B=log((prior0+1.0)/(prior1+1.0));
-	double fval = 0.0;
-
-	for (i=0;i<l;i++)
-	{
-		if (labels[i]>0) t[i]=hiTarget;
-		else t[i]=loTarget;
-		fApB = dec_values[i]*A+B;
-		if (fApB>=0)
-			fval += t[i]*fApB + log(1+exp(-fApB));
-		else
-			fval += (t[i] - 1)*fApB +log(1+exp(fApB));
-	}
-	for (iter=0;iter<max_iter;iter++)
-	{
-		// Update Gradient and Hessian (use H' = H + sigma I)
-		h11=sigma; // numerically ensures strict PD
-		h22=sigma;
-		h21=0.0;g1=0.0;g2=0.0;
-		for (i=0;i<l;i++)
-		{
-			fApB = dec_values[i]*A+B;
-			if (fApB >= 0)
-			{
-				p=exp(-fApB)/(1.0+exp(-fApB));
-				q=1.0/(1.0+exp(-fApB));
-			}
-			else
-			{
-				p=1.0/(1.0+exp(fApB));
-				q=exp(fApB)/(1.0+exp(fApB));
-			}
-			d2=p*q;
-			h11+=dec_values[i]*dec_values[i]*d2;
-			h22+=d2;
-			h21+=dec_values[i]*d2;
-			d1=t[i]-p;
-			g1+=dec_values[i]*d1;
-			g2+=d1;
-		}
-
-		// Stopping Criteria
-		if (fabs(g1)<eps && fabs(g2)<eps)
-			break;
-
-		// Finding Newton direction: -inv(H') * g
-		det=h11*h22-h21*h21;
-		dA=-(h22*g1 - h21 * g2) / det;
-		dB=-(-h21*g1+ h11 * g2) / det;
-		gd=g1*dA+g2*dB;
-
-
-		stepsize = 1;		// Line Search
-		while (stepsize >= min_step)
-		{
-			newA = A + stepsize * dA;
-			newB = B + stepsize * dB;
-
-			// New function value
-			newf = 0.0;
-			for (i=0;i<l;i++)
-			{
-				fApB = dec_values[i]*newA+newB;
-				if (fApB >= 0)
-					newf += t[i]*fApB + log(1+exp(-fApB));
-				else
-					newf += (t[i] - 1)*fApB +log(1+exp(fApB));
-			}
-			// Check sufficient decrease
-			if (newf<fval+0.0001*stepsize*gd)
-			{
-				A=newA;B=newB;fval=newf;
-				break;
-			}
-			else
-				stepsize = stepsize / 2.0;
-		}
-
-		if (stepsize < min_step)
-		{
-			info("Line search fails in two-class probability estimates\n");
-			break;
-		}
-	}
-
-	if (iter>=max_iter)
-		info("Reaching maximal iterations in two-class probability estimates\n");
-	free(t);
-}
-
-static double sigmoid_predict(double decision_value, double A, double B)
-{
-	double fApB = decision_value*A+B;
-	// 1-p used later; avoid catastrophic cancellation
-	if (fApB >= 0)
-		return exp(-fApB)/(1.0+exp(-fApB));
-	else
-		return 1.0/(1+exp(fApB)) ;
-}
-
-// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
-static void multiclass_probability(int k, double **r, double *p)
-{
-	int t,j;
-	int iter = 0, max_iter=max(100,k);
-	double **Q=Malloc(double *,k);
-	double *Qp=Malloc(double,k);
-	double pQp, eps=0.005/k;
-	
-	for (t=0;t<k;t++)
-	{
-		p[t]=1.0/k;  // Valid if k = 1
-		Q[t]=Malloc(double,k);
-		Q[t][t]=0;
-		for (j=0;j<t;j++)
-		{
-			Q[t][t]+=r[j][t]*r[j][t];
-			Q[t][j]=Q[j][t];
-		}
-		for (j=t+1;j<k;j++)
-		{
-			Q[t][t]+=r[j][t]*r[j][t];
-			Q[t][j]=-r[j][t]*r[t][j];
-		}
-	}
-	for (iter=0;iter<max_iter;iter++)
-	{
-		// stopping condition, recalculate QP,pQP for numerical accuracy
-		pQp=0;
-		for (t=0;t<k;t++)
-		{
-			Qp[t]=0;
-			for (j=0;j<k;j++)
-				Qp[t]+=Q[t][j]*p[j];
-			pQp+=p[t]*Qp[t];
-		}
-		double max_error=0;
-		for (t=0;t<k;t++)
-		{
-			double error=fabs(Qp[t]-pQp);
-			if (error>max_error)
-				max_error=error;
-		}
-		if (max_error<eps) break;
-		
-		for (t=0;t<k;t++)
-		{
-			double diff=(-Qp[t]+pQp)/Q[t][t];
-			p[t]+=diff;
-			pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
-			for (j=0;j<k;j++)
-			{
-				Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
-				p[j]/=(1+diff);
-			}
-		}
-	}
-	if (iter>=max_iter)
-		info("Exceeds max_iter in multiclass_prob\n");
-	for(t=0;t<k;t++) free(Q[t]);
-	free(Q);
-	free(Qp);
-}
-
-// Cross-validation decision values for probability estimates
-static void svm_binary_svc_probability(
-	const svm_problem *prob, const svm_parameter *param,
-	double Cp, double Cn, double& probA, double& probB)
-{
-	int i;
-	int nr_fold = 5;
-	int *perm = Malloc(int,prob->l);
-	double *dec_values = Malloc(double,prob->l);
-
-	// random shuffle
-	for(i=0;i<prob->l;i++) perm[i]=i;
-	for(i=0;i<prob->l;i++)
-	{
-		int j = i+rand()%(prob->l-i);
-		swap(perm[i],perm[j]);
-	}
-	for(i=0;i<nr_fold;i++)
-	{
-		int begin = i*prob->l/nr_fold;
-		int end = (i+1)*prob->l/nr_fold;
-		int j,k;
-		struct svm_problem subprob;
-
-		subprob.l = prob->l-(end-begin);
-		subprob.x = Malloc(struct svm_node*,subprob.l);
-		subprob.y = Malloc(double,subprob.l);
-			
-		k=0;
-		for(j=0;j<begin;j++)
-		{
-			subprob.x[k] = prob->x[perm[j]];
-			subprob.y[k] = prob->y[perm[j]];
-			++k;
-		}
-		for(j=end;j<prob->l;j++)
-		{
-			subprob.x[k] = prob->x[perm[j]];
-			subprob.y[k] = prob->y[perm[j]];
-			++k;
-		}
-		int p_count=0,n_count=0;
-		for(j=0;j<k;j++)
-			if(subprob.y[j]>0)
-				p_count++;
-			else
-				n_count++;
-
-		if(p_count==0 && n_count==0)
-			for(j=begin;j<end;j++)
-				dec_values[perm[j]] = 0;
-		else if(p_count > 0 && n_count == 0)
-			for(j=begin;j<end;j++)
-				dec_values[perm[j]] = 1;
-		else if(p_count == 0 && n_count > 0)
-			for(j=begin;j<end;j++)
-				dec_values[perm[j]] = -1;
-		else
-		{
-			svm_parameter subparam = *param;
-			subparam.probability=0;
-			subparam.C=1.0;
-			subparam.nr_weight=2;
-			subparam.weight_label = Malloc(int,2);
-			subparam.weight = Malloc(double,2);
-			subparam.weight_label[0]=+1;
-			subparam.weight_label[1]=-1;
-			subparam.weight[0]=Cp;
-			subparam.weight[1]=Cn;
-			struct svm_model *submodel = svm_train(&subprob,&subparam);
-			for(j=begin;j<end;j++)
-			{
-				svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); 
-				// ensure +1 -1 order; reason not using CV subroutine
-				dec_values[perm[j]] *= submodel->label[0];
-			}		
-			svm_free_and_destroy_model(&submodel);
-			svm_destroy_param(&subparam);
-		}
-		free(subprob.x);
-		free(subprob.y);
-	}		
-	sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
-	free(dec_values);
-	free(perm);
-}
-
-// Return parameter of a Laplace distribution 
-static double svm_svr_probability(
-	const svm_problem *prob, const svm_parameter *param)
-{
-	int i;
-	int nr_fold = 5;
-	double *ymv = Malloc(double,prob->l);
-	double mae = 0;
-
-	svm_parameter newparam = *param;
-	newparam.probability = 0;
-	svm_cross_validation(prob,&newparam,nr_fold,ymv);
-	for(i=0;i<prob->l;i++)
-	{
-		ymv[i]=prob->y[i]-ymv[i];
-		mae += fabs(ymv[i]);
-	}		
-	mae /= prob->l;
-	double std=sqrt(2*mae*mae);
-	int count=0;
-	mae=0;
-	for(i=0;i<prob->l;i++)
-		if (fabs(ymv[i]) > 5*std) 
-			count=count+1;
-		else 
-			mae+=fabs(ymv[i]);
-	mae /= (prob->l-count);
-	info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
-	free(ymv);
-	return mae;
-}
-
-
-// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
-// perm, length l, must be allocated before calling this subroutine
-static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
-{
-	int l = prob->l;
-	int max_nr_class = 16;
-	int nr_class = 0;
-	int *label = Malloc(int,max_nr_class);
-	int *count = Malloc(int,max_nr_class);
-	int *data_label = Malloc(int,l);	
-	int i;
-
-	for(i=0;i<l;i++)
-	{
-		int this_label = (int)prob->y[i];
-		int j;
-		for(j=0;j<nr_class;j++)
-		{
-			if(this_label == label[j])
-			{
-				++count[j];
-				break;
-			}
-		}
-		data_label[i] = j;
-		if(j == nr_class)
-		{
-			if(nr_class == max_nr_class)
-			{
-				max_nr_class *= 2;
-				label = (int *)realloc(label,max_nr_class*sizeof(int));
-				count = (int *)realloc(count,max_nr_class*sizeof(int));
-			}
-			label[nr_class] = this_label;
-			count[nr_class] = 1;
-			++nr_class;
-		}
-	}
-
-	int *start = Malloc(int,nr_class);
-	start[0] = 0;
-	for(i=1;i<nr_class;i++)
-		start[i] = start[i-1]+count[i-1];
-	for(i=0;i<l;i++)
-	{
-		perm[start[data_label[i]]] = i;
-		++start[data_label[i]];
-	}
-	start[0] = 0;
-	for(i=1;i<nr_class;i++)
-		start[i] = start[i-1]+count[i-1];
-
-	*nr_class_ret = nr_class;
-	*label_ret = label;
-	*start_ret = start;
-	*count_ret = count;
-	free(data_label);
-}
-
-//
-// Interface functions
-//
-svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
-{
-	svm_model *model = Malloc(svm_model,1);
-	model->param = *param;
-	model->free_sv = 0;	// XXX
-
-	if(param->svm_type == ONE_CLASS ||
-	   param->svm_type == EPSILON_SVR ||
-	   param->svm_type == NU_SVR)
-	{
-		// regression or one-class-svm
-		model->nr_class = 2;
-		model->label = NULL;
-		model->nSV = NULL;
-		model->probA = NULL; model->probB = NULL;
-		model->sv_coef = Malloc(double *,1);
-
-		if(param->probability && 
-		   (param->svm_type == EPSILON_SVR ||
-		    param->svm_type == NU_SVR))
-		{
-			model->probA = Malloc(double,1);
-			model->probA[0] = svm_svr_probability(prob,param);
-		}
-
-		decision_function f = svm_train_one(prob,param,0,0);
-		model->rho = Malloc(double,1);
-		model->rho[0] = f.rho;
-
-		int nSV = 0;
-		int i;
-		for(i=0;i<prob->l;i++)
-			if(fabs(f.alpha[i]) > 0) ++nSV;
-		model->l = nSV;
-		model->SV = Malloc(svm_node *,nSV);
-		model->sv_coef[0] = Malloc(double,nSV);
-		int j = 0;
-		for(i=0;i<prob->l;i++)
-			if(fabs(f.alpha[i]) > 0)
-			{
-				model->SV[j] = prob->x[i];
-				model->sv_coef[0][j] = f.alpha[i];
-				++j;
-			}		
-
-		free(f.alpha);
-	}
-	else
-	{
-		// classification
-		int l = prob->l;
-		int nr_class;
-		int *label = NULL;
-		int *start = NULL;
-		int *count = NULL;
-		int *perm = Malloc(int,l);
-
-		// group training data of the same class
-		svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
-		if(nr_class == 1) 
-			info("WARNING: training data in only one class. See README for details.\n");
-		
-		svm_node **x = Malloc(svm_node *,l);
-		int i;
-		for(i=0;i<l;i++)
-			x[i] = prob->x[perm[i]];
-
-		// calculate weighted C
-
-		double *weighted_C = Malloc(double, nr_class);
-		for(i=0;i<nr_class;i++)
-			weighted_C[i] = param->C;
-		for(i=0;i<param->nr_weight;i++)
-		{	
-			int j;
-			for(j=0;j<nr_class;j++)
-				if(param->weight_label[i] == label[j])
-					break;
-			if(j == nr_class)
-				fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
-			else
-				weighted_C[j] *= param->weight[i];
-		}
-
-		// train k*(k-1)/2 models
-		
-		bool *nonzero = Malloc(bool,l);
-		for(i=0;i<l;i++)
-			nonzero[i] = false;
-		decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
-
-		double *probA=NULL,*probB=NULL;
-		if (param->probability)
-		{
-			probA=Malloc(double,nr_class*(nr_class-1)/2);
-			probB=Malloc(double,nr_class*(nr_class-1)/2);
-		}
-
-		int p = 0;
-		for(i=0;i<nr_class;i++)
-			for(int j=i+1;j<nr_class;j++)
-			{
-				svm_problem sub_prob;
-				int si = start[i], sj = start[j];
-				int ci = count[i], cj = count[j];
-				sub_prob.l = ci+cj;
-				sub_prob.x = Malloc(svm_node *,sub_prob.l);
-				sub_prob.y = Malloc(double,sub_prob.l);
-				int k;
-				for(k=0;k<ci;k++)
-				{
-					sub_prob.x[k] = x[si+k];
-					sub_prob.y[k] = +1;
-				}
-				for(k=0;k<cj;k++)
-				{
-					sub_prob.x[ci+k] = x[sj+k];
-					sub_prob.y[ci+k] = -1;
-				}
-
-				if(param->probability)
-					svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
-
-				f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
-				for(k=0;k<ci;k++)
-					if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
-						nonzero[si+k] = true;
-				for(k=0;k<cj;k++)
-					if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
-						nonzero[sj+k] = true;
-				free(sub_prob.x);
-				free(sub_prob.y);
-				++p;
-			}
-
-		// build output
-
-		model->nr_class = nr_class;
-		
-		model->label = Malloc(int,nr_class);
-		for(i=0;i<nr_class;i++)
-			model->label[i] = label[i];
-		
-		model->rho = Malloc(double,nr_class*(nr_class-1)/2);
-		for(i=0;i<nr_class*(nr_class-1)/2;i++)
-			model->rho[i] = f[i].rho;
-
-		if(param->probability)
-		{
-			model->probA = Malloc(double,nr_class*(nr_class-1)/2);
-			model->probB = Malloc(double,nr_class*(nr_class-1)/2);
-			for(i=0;i<nr_class*(nr_class-1)/2;i++)
-			{
-				model->probA[i] = probA[i];
-				model->probB[i] = probB[i];
-			}
-		}
-		else
-		{
-			model->probA=NULL;
-			model->probB=NULL;
-		}
-
-		int total_sv = 0;
-		int *nz_count = Malloc(int,nr_class);
-		model->nSV = Malloc(int,nr_class);
-		for(i=0;i<nr_class;i++)
-		{
-			int nSV = 0;
-			for(int j=0;j<count[i];j++)
-				if(nonzero[start[i]+j])
-				{	
-					++nSV;
-					++total_sv;
-				}
-			model->nSV[i] = nSV;
-			nz_count[i] = nSV;
-		}
-		
-		info("Total nSV = %d\n",total_sv);
-
-		model->l = total_sv;
-		model->SV = Malloc(svm_node *,total_sv);
-		p = 0;
-		for(i=0;i<l;i++)
-			if(nonzero[i]) model->SV[p++] = x[i];
-
-		int *nz_start = Malloc(int,nr_class);
-		nz_start[0] = 0;
-		for(i=1;i<nr_class;i++)
-			nz_start[i] = nz_start[i-1]+nz_count[i-1];
-
-		model->sv_coef = Malloc(double *,nr_class-1);
-		for(i=0;i<nr_class-1;i++)
-			model->sv_coef[i] = Malloc(double,total_sv);
-
-		p = 0;
-		for(i=0;i<nr_class;i++)
-			for(int j=i+1;j<nr_class;j++)
-			{
-				// classifier (i,j): coefficients with
-				// i are in sv_coef[j-1][nz_start[i]...],
-				// j are in sv_coef[i][nz_start[j]...]
-
-				int si = start[i];
-				int sj = start[j];
-				int ci = count[i];
-				int cj = count[j];
-				
-				int q = nz_start[i];
-				int k;
-				for(k=0;k<ci;k++)
-					if(nonzero[si+k])
-						model->sv_coef[j-1][q++] = f[p].alpha[k];
-				q = nz_start[j];
-				for(k=0;k<cj;k++)
-					if(nonzero[sj+k])
-						model->sv_coef[i][q++] = f[p].alpha[ci+k];
-				++p;
-			}
-		
-		free(label);
-		free(probA);
-		free(probB);
-		free(count);
-		free(perm);
-		free(start);
-		free(x);
-		free(weighted_C);
-		free(nonzero);
-		for(i=0;i<nr_class*(nr_class-1)/2;i++)
-			free(f[i].alpha);
-		free(f);
-		free(nz_count);
-		free(nz_start);
-	}
-	return model;
-}
-
-// Stratified cross validation
-void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
-{
-	int i;
-	int *fold_start = Malloc(int,nr_fold+1);
-	int l = prob->l;
-	int *perm = Malloc(int,l);
-	int nr_class;
-
-	// stratified cv may not give leave-one-out rate
-	// Each class to l folds -> some folds may have zero elements
-	if((param->svm_type == C_SVC ||
-	    param->svm_type == NU_SVC) && nr_fold < l)
-	{
-		int *start = NULL;
-		int *label = NULL;
-		int *count = NULL;
-		svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
-
-		// random shuffle and then data grouped by fold using the array perm
-		int *fold_count = Malloc(int,nr_fold);
-		int c;
-		int *index = Malloc(int,l);
-		for(i=0;i<l;i++)
-			index[i]=perm[i];
-		for (c=0; c<nr_class; c++) 
-			for(i=0;i<count[c];i++)
-			{
-				int j = i+rand()%(count[c]-i);
-				swap(index[start[c]+j],index[start[c]+i]);
-			}
-		for(i=0;i<nr_fold;i++)
-		{
-			fold_count[i] = 0;
-			for (c=0; c<nr_class;c++)
-				fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
-		}
-		fold_start[0]=0;
-		for (i=1;i<=nr_fold;i++)
-			fold_start[i] = fold_start[i-1]+fold_count[i-1];
-		for (c=0; c<nr_class;c++)
-			for(i=0;i<nr_fold;i++)
-			{
-				int begin = start[c]+i*count[c]/nr_fold;
-				int end = start[c]+(i+1)*count[c]/nr_fold;
-				for(int j=begin;j<end;j++)
-				{
-					perm[fold_start[i]] = index[j];
-					fold_start[i]++;
-				}
-			}
-		fold_start[0]=0;
-		for (i=1;i<=nr_fold;i++)
-			fold_start[i] = fold_start[i-1]+fold_count[i-1];
-		free(start);	
-		free(label);
-		free(count);	
-		free(index);
-		free(fold_count);
-	}
-	else
-	{
-		for(i=0;i<l;i++) perm[i]=i;
-		for(i=0;i<l;i++)
-		{
-			int j = i+rand()%(l-i);
-			swap(perm[i],perm[j]);
-		}
-		for(i=0;i<=nr_fold;i++)
-			fold_start[i]=i*l/nr_fold;
-	}
-
-	for(i=0;i<nr_fold;i++)
-	{
-		int begin = fold_start[i];
-		int end = fold_start[i+1];
-		int j,k;
-		struct svm_problem subprob;
-
-		subprob.l = l-(end-begin);
-		subprob.x = Malloc(struct svm_node*,subprob.l);
-		subprob.y = Malloc(double,subprob.l);
-			
-		k=0;
-		for(j=0;j<begin;j++)
-		{
-			subprob.x[k] = prob->x[perm[j]];
-			subprob.y[k] = prob->y[perm[j]];
-			++k;
-		}
-		for(j=end;j<l;j++)
-		{
-			subprob.x[k] = prob->x[perm[j]];
-			subprob.y[k] = prob->y[perm[j]];
-			++k;
-		}
-		struct svm_model *submodel = svm_train(&subprob,param);
-		if(param->probability && 
-		   (param->svm_type == C_SVC || param->svm_type == NU_SVC))
-		{
-			double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
-			for(j=begin;j<end;j++)
-				target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
-			free(prob_estimates);			
-		}
-		else
-			for(j=begin;j<end;j++)
-				target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
-		svm_free_and_destroy_model(&submodel);
-		free(subprob.x);
-		free(subprob.y);
-	}		
-	free(fold_start);
-	free(perm);	
-}
-
-
-int svm_get_svm_type(const svm_model *model)
-{
-	return model->param.svm_type;
-}
-
-int svm_get_nr_class(const svm_model *model)
-{
-	return model->nr_class;
-}
-
-void svm_get_labels(const svm_model *model, int* label)
-{
-	if (model->label != NULL)
-		for(int i=0;i<model->nr_class;i++)
-			label[i] = model->label[i];
-}
-
-double svm_get_svr_probability(const svm_model *model)
-{
-	if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
-	    model->probA!=NULL)
-		return model->probA[0];
-	else
-	{
-		fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
-		return 0;
-	}
-}
-
-double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
-{
-	int i;
-	if(model->param.svm_type == ONE_CLASS ||
-	   model->param.svm_type == EPSILON_SVR ||
-	   model->param.svm_type == NU_SVR)
-	{
-		double *sv_coef = model->sv_coef[0];
-		double sum = 0;
-		for(i=0;i<model->l;i++)
-			sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
-		sum -= model->rho[0];
-		*dec_values = sum;
-
-		if(model->param.svm_type == ONE_CLASS)
-			return (sum>0)?1:-1;
-		else
-			return sum;
-	}
-	else
-	{
-		int nr_class = model->nr_class;
-		int l = model->l;
-		
-		double *kvalue = Malloc(double,l);
-		for(i=0;i<l;i++)
-			kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
-
-		int *start = Malloc(int,nr_class);
-		start[0] = 0;
-		for(i=1;i<nr_class;i++)
-			start[i] = start[i-1]+model->nSV[i-1];
-
-		int *vote = Malloc(int,nr_class);
-		for(i=0;i<nr_class;i++)
-			vote[i] = 0;
-
-		int p=0;
-		for(i=0;i<nr_class;i++)
-			for(int j=i+1;j<nr_class;j++)
-			{
-				double sum = 0;
-				int si = start[i];
-				int sj = start[j];
-				int ci = model->nSV[i];
-				int cj = model->nSV[j];
-				
-				int k;
-				double *coef1 = model->sv_coef[j-1];
-				double *coef2 = model->sv_coef[i];
-				for(k=0;k<ci;k++)
-					sum += coef1[si+k] * kvalue[si+k];
-				for(k=0;k<cj;k++)
-					sum += coef2[sj+k] * kvalue[sj+k];
-				sum -= model->rho[p];
-				dec_values[p] = sum;
-
-				if(dec_values[p] > 0)
-					++vote[i];
-				else
-					++vote[j];
-				p++;
-			}
-
-		int vote_max_idx = 0;
-		for(i=1;i<nr_class;i++)
-			if(vote[i] > vote[vote_max_idx])
-				vote_max_idx = i;
-
-		free(kvalue);
-		free(start);
-		free(vote);
-		return model->label[vote_max_idx];
-	}
-}
-
-double svm_predict(const svm_model *model, const svm_node *x)
-{
-	int nr_class = model->nr_class;
-	double *dec_values;
-	if(model->param.svm_type == ONE_CLASS ||
-	   model->param.svm_type == EPSILON_SVR ||
-	   model->param.svm_type == NU_SVR)
-		dec_values = Malloc(double, 1);
-	else 
-		dec_values = Malloc(double, nr_class*(nr_class-1)/2);
-	double pred_result = svm_predict_values(model, x, dec_values);
-	free(dec_values);
-	return pred_result;
-}
-
-double svm_predict_probability(
-	const svm_model *model, const svm_node *x, double *prob_estimates)
-{
-	if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
-	    model->probA!=NULL && model->probB!=NULL)
-	{
-		int i;
-		int nr_class = model->nr_class;
-		double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
-		svm_predict_values(model, x, dec_values);
-
-		double min_prob=1e-7;
-		double **pairwise_prob=Malloc(double *,nr_class);
-		for(i=0;i<nr_class;i++)
-			pairwise_prob[i]=Malloc(double,nr_class);
-		int k=0;
-		for(i=0;i<nr_class;i++)
-			for(int j=i+1;j<nr_class;j++)
-			{
-				pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
-				pairwise_prob[j][i]=1-pairwise_prob[i][j];
-				k++;
-			}
-		multiclass_probability(nr_class,pairwise_prob,prob_estimates);
-
-		int prob_max_idx = 0;
-		for(i=1;i<nr_class;i++)
-			if(prob_estimates[i] > prob_estimates[prob_max_idx])
-				prob_max_idx = i;
-		for(i=0;i<nr_class;i++)
-			free(pairwise_prob[i]);
-		free(dec_values);
-		free(pairwise_prob);	     
-		return model->label[prob_max_idx];
-	}
-	else 
-		return svm_predict(model, x);
-}
-
-static const char *svm_type_table[] =
-{
-	"c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
-};
-
-static const char *kernel_type_table[]=
-{
-	"linear","polynomial","rbf","sigmoid","precomputed",NULL
-};
-
-int svm_save_model(const char *model_file_name, const svm_model *model)
-{
-	FILE *fp = fopen(model_file_name,"w");
-	if(fp==NULL) return -1;
-
-	const svm_parameter& param = model->param;
-
-	fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
-	fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
-
-	if(param.kernel_type == POLY)
-		fprintf(fp,"degree %d\n", param.degree);
-
-	if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
-		fprintf(fp,"gamma %g\n", param.gamma);
-
-	if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
-		fprintf(fp,"coef0 %g\n", param.coef0);
-
-	int nr_class = model->nr_class;
-	int l = model->l;
-	fprintf(fp, "nr_class %d\n", nr_class);
-	fprintf(fp, "total_sv %d\n",l);
-	
-	{
-		fprintf(fp, "rho");
-		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
-			fprintf(fp," %g",model->rho[i]);
-		fprintf(fp, "\n");
-	}
-	
-	if(model->label)
-	{
-		fprintf(fp, "label");
-		for(int i=0;i<nr_class;i++)
-			fprintf(fp," %d",model->label[i]);
-		fprintf(fp, "\n");
-	}
-
-	if(model->probA) // regression has probA only
-	{
-		fprintf(fp, "probA");
-		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
-			fprintf(fp," %g",model->probA[i]);
-		fprintf(fp, "\n");
-	}
-	if(model->probB)
-	{
-		fprintf(fp, "probB");
-		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
-			fprintf(fp," %g",model->probB[i]);
-		fprintf(fp, "\n");
-	}
-
-	if(model->nSV)
-	{
-		fprintf(fp, "nr_sv");
-		for(int i=0;i<nr_class;i++)
-			fprintf(fp," %d",model->nSV[i]);
-		fprintf(fp, "\n");
-	}
-
-	fprintf(fp, "SV\n");
-	const double * const *sv_coef = model->sv_coef;
-	const svm_node * const *SV = model->SV;
-
-	for(int i=0;i<l;i++)
-	{
-		for(int j=0;j<nr_class-1;j++)
-			fprintf(fp, "%.16g ",sv_coef[j][i]);
-
-		const svm_node *p = SV[i];
-
-		if(param.kernel_type == PRECOMPUTED)
-			fprintf(fp,"0:%d ",(int)(p->value));
-		else
-			while(p->index != -1)
-			{
-				fprintf(fp,"%d:%.8g ",p->index,p->value);
-				p++;
-			}
-		fprintf(fp, "\n");
-	}
-	if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
-	else return 0;
-}
-
-static char *line = NULL;
-static int max_line_len;
-
-static char* readline(FILE *input)
-{
-	int len;
-
-	if(fgets(line,max_line_len,input) == NULL)
-		return NULL;
-
-	while(strrchr(line,'\n') == NULL)
-	{
-		max_line_len *= 2;
-		line = (char *) realloc(line,max_line_len);
-		len = (int) strlen(line);
-		if(fgets(line+len,max_line_len-len,input) == NULL)
-			break;
-	}
-	return line;
-}
-
-svm_model *svm_load_model(const char *model_file_name)
-{
-	FILE *fp = fopen(model_file_name,"rb");
-	if(fp==NULL) return NULL;
-	
-	// read parameters
-
-	svm_model *model = Malloc(svm_model,1);
-	svm_parameter& param = model->param;
-	model->rho = NULL;
-	model->probA = NULL;
-	model->probB = NULL;
-	model->label = NULL;
-	model->nSV = NULL;
-
-	char cmd[81];
-	while(1)
-	{
-		fscanf(fp,"%80s",cmd);
-
-		if(strcmp(cmd,"svm_type")==0)
-		{
-			fscanf(fp,"%80s",cmd);
-			int i;
-			for(i=0;svm_type_table[i];i++)
-			{
-				if(strcmp(svm_type_table[i],cmd)==0)
-				{
-					param.svm_type=i;
-					break;
-				}
-			}
-			if(svm_type_table[i] == NULL)
-			{
-				fprintf(stderr,"unknown svm type.\n");
-				free(model->rho);
-				free(model->label);
-				free(model->nSV);
-				free(model);
-				return NULL;
-			}
-		}
-		else if(strcmp(cmd,"kernel_type")==0)
-		{		
-			fscanf(fp,"%80s",cmd);
-			int i;
-			for(i=0;kernel_type_table[i];i++)
-			{
-				if(strcmp(kernel_type_table[i],cmd)==0)
-				{
-					param.kernel_type=i;
-					break;
-				}
-			}
-			if(kernel_type_table[i] == NULL)
-			{
-				fprintf(stderr,"unknown kernel function.\n");
-				free(model->rho);
-				free(model->label);
-				free(model->nSV);
-				free(model);
-				return NULL;
-			}
-		}
-		else if(strcmp(cmd,"degree")==0)
-			fscanf(fp,"%d",&param.degree);
-		else if(strcmp(cmd,"gamma")==0)
-			fscanf(fp,"%lf",&param.gamma);
-		else if(strcmp(cmd,"coef0")==0)
-			fscanf(fp,"%lf",&param.coef0);
-		else if(strcmp(cmd,"nr_class")==0)
-			fscanf(fp,"%d",&model->nr_class);
-		else if(strcmp(cmd,"total_sv")==0)
-			fscanf(fp,"%d",&model->l);
-		else if(strcmp(cmd,"rho")==0)
-		{
-			int n = model->nr_class * (model->nr_class-1)/2;
-			model->rho = Malloc(double,n);
-			for(int i=0;i<n;i++)
-				fscanf(fp,"%lf",&model->rho[i]);
-		}
-		else if(strcmp(cmd,"label")==0)
-		{
-			int n = model->nr_class;
-			model->label = Malloc(int,n);
-			for(int i=0;i<n;i++)
-				fscanf(fp,"%d",&model->label[i]);
-		}
-		else if(strcmp(cmd,"probA")==0)
-		{
-			int n = model->nr_class * (model->nr_class-1)/2;
-			model->probA = Malloc(double,n);
-			for(int i=0;i<n;i++)
-				fscanf(fp,"%lf",&model->probA[i]);
-		}
-		else if(strcmp(cmd,"probB")==0)
-		{
-			int n = model->nr_class * (model->nr_class-1)/2;
-			model->probB = Malloc(double,n);
-			for(int i=0;i<n;i++)
-				fscanf(fp,"%lf",&model->probB[i]);
-		}
-		else if(strcmp(cmd,"nr_sv")==0)
-		{
-			int n = model->nr_class;
-			model->nSV = Malloc(int,n);
-			for(int i=0;i<n;i++)
-				fscanf(fp,"%d",&model->nSV[i]);
-		}
-		else if(strcmp(cmd,"SV")==0)
-		{
-			while(1)
-			{
-				int c = getc(fp);
-				if(c==EOF || c=='\n') break;	
-			}
-			break;
-		}
-		else
-		{
-			fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
-			free(model->rho);
-			free(model->label);
-			free(model->nSV);
-			free(model);
-			return NULL;
-		}
-	}
-
-	// read sv_coef and SV
-
-	int elements = 0;
-	long pos = ftell(fp);
-
-	max_line_len = 1024;
-	line = Malloc(char,max_line_len);
-	char *p,*endptr,*idx,*val;
-
-	while(readline(fp)!=NULL)
-	{
-		p = strtok(line,":");
-		while(1)
-		{
-			p = strtok(NULL,":");
-			if(p == NULL)
-				break;
-			++elements;
-		}
-	}
-	elements += model->l;
-
-	fseek(fp,pos,SEEK_SET);
-
-	int m = model->nr_class - 1;
-	int l = model->l;
-	model->sv_coef = Malloc(double *,m);
-	int i;
-	for(i=0;i<m;i++)
-		model->sv_coef[i] = Malloc(double,l);
-	model->SV = Malloc(svm_node*,l);
-	svm_node *x_space = NULL;
-	if(l>0) x_space = Malloc(svm_node,elements);
-
-	int j=0;
-	for(i=0;i<l;i++)
-	{
-		readline(fp);
-		model->SV[i] = &x_space[j];
-
-		p = strtok(line, " \t");
-		model->sv_coef[0][i] = strtod(p,&endptr);
-		for(int k=1;k<m;k++)
-		{
-			p = strtok(NULL, " \t");
-			model->sv_coef[k][i] = strtod(p,&endptr);
-		}
-
-		while(1)
-		{
-			idx = strtok(NULL, ":");
-			val = strtok(NULL, " \t");
-
-			if(val == NULL)
-				break;
-			x_space[j].index = (int) strtol(idx,&endptr,10);
-			x_space[j].value = strtod(val,&endptr);
-
-			++j;
-		}
-		x_space[j++].index = -1;
-	}
-	free(line);
-
-	if (ferror(fp) != 0 || fclose(fp) != 0)
-		return NULL;
-
-	model->free_sv = 1;	// XXX
-	return model;
-}
-
-void svm_free_model_content(svm_model* model_ptr)
-{
-	if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL)
-		free((void *)(model_ptr->SV[0]));
-	if(model_ptr->sv_coef)
-	{
-		for(int i=0;i<model_ptr->nr_class-1;i++)
-			free(model_ptr->sv_coef[i]);
-	}
-
-	free(model_ptr->SV);
-	model_ptr->SV = NULL;
-
-	free(model_ptr->sv_coef);
-	model_ptr->sv_coef = NULL;
-
-	free(model_ptr->rho);
-	model_ptr->rho = NULL;
-
-	free(model_ptr->label);
-	model_ptr->label= NULL;
-
-	free(model_ptr->probA);
-	model_ptr->probA = NULL;
-
-	free(model_ptr->probB);
-	model_ptr->probB= NULL;
-
-	free(model_ptr->nSV);
-	model_ptr->nSV = NULL;
-}
-
-void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
-{
-	if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)
-	{
-		svm_free_model_content(*model_ptr_ptr);
-		free(*model_ptr_ptr);
-		*model_ptr_ptr = NULL;
-	}
-}
-
-void svm_destroy_param(svm_parameter* param)
-{
-	free(param->weight_label);
-	free(param->weight);
-}
-
-const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
-{
-	// svm_type
-
-	int svm_type = param->svm_type;
-	if(svm_type != C_SVC &&
-	   svm_type != NU_SVC &&
-	   svm_type != ONE_CLASS &&
-	   svm_type != EPSILON_SVR &&
-	   svm_type != NU_SVR)
-		return "unknown svm type";
-	
-	// kernel_type, degree
-	
-	int kernel_type = param->kernel_type;
-	if(kernel_type != LINEAR &&
-	   kernel_type != POLY &&
-	   kernel_type != RBF &&
-	   kernel_type != SIGMOID &&
-	   kernel_type != PRECOMPUTED)
-		return "unknown kernel type";
-
-	if(param->gamma < 0)
-		return "gamma < 0";
-
-	if(param->degree < 0)
-		return "degree of polynomial kernel < 0";
-
-	// cache_size,eps,C,nu,p,shrinking
-
-	if(param->cache_size <= 0)
-		return "cache_size <= 0";
-
-	if(param->eps <= 0)
-		return "eps <= 0";
-
-	if(svm_type == C_SVC ||
-	   svm_type == EPSILON_SVR ||
-	   svm_type == NU_SVR)
-		if(param->C <= 0)
-			return "C <= 0";
-
-	if(svm_type == NU_SVC ||
-	   svm_type == ONE_CLASS ||
-	   svm_type == NU_SVR)
-		if(param->nu <= 0 || param->nu > 1)
-			return "nu <= 0 or nu > 1";
-
-	if(svm_type == EPSILON_SVR)
-		if(param->p < 0)
-			return "p < 0";
-
-	if(param->shrinking != 0 &&
-	   param->shrinking != 1)
-		return "shrinking != 0 and shrinking != 1";
-
-	if(param->probability != 0 &&
-	   param->probability != 1)
-		return "probability != 0 and probability != 1";
-
-	if(param->probability == 1 &&
-	   svm_type == ONE_CLASS)
-		return "one-class SVM probability output not supported yet";
-
-
-	// check whether nu-svc is feasible
-	
-	if(svm_type == NU_SVC)
-	{
-		int l = prob->l;
-		int max_nr_class = 16;
-		int nr_class = 0;
-		int *label = Malloc(int,max_nr_class);
-		int *count = Malloc(int,max_nr_class);
-
-		int i;
-		for(i=0;i<l;i++)
-		{
-			int this_label = (int)prob->y[i];
-			int j;
-			for(j=0;j<nr_class;j++)
-				if(this_label == label[j])
-				{
-					++count[j];
-					break;
-				}
-			if(j == nr_class)
-			{
-				if(nr_class == max_nr_class)
-				{
-					max_nr_class *= 2;
-					label = (int *)realloc(label,max_nr_class*sizeof(int));
-					count = (int *)realloc(count,max_nr_class*sizeof(int));
-				}
-				label[nr_class] = this_label;
-				count[nr_class] = 1;
-				++nr_class;
-			}
-		}
-	
-		for(i=0;i<nr_class;i++)
-		{
-			int n1 = count[i];
-			for(int j=i+1;j<nr_class;j++)
-			{
-				int n2 = count[j];
-				if(param->nu*(n1+n2)/2 > min(n1,n2))
-				{
-					free(label);
-					free(count);
-					return "specified nu is infeasible";
-				}
-			}
-		}
-		free(label);
-		free(count);
-	}
-
-	return NULL;
-}
-
-int svm_check_probability_model(const svm_model *model)
-{
-	return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
-		model->probA!=NULL && model->probB!=NULL) ||
-		((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
-		 model->probA!=NULL);
-}
-
-void svm_set_print_string_function(void (*print_func)(const char *))
-{
-	if(print_func == NULL)
-		svm_print_string = &print_string_stdout;
-	else
-		svm_print_string = print_func;
-}
diff --git a/src/modules/imagery/imagery_svm/svm.h b/src/modules/imagery/imagery_svm/svm.h
deleted file mode 100644
index dbc5e08..0000000
--- a/src/modules/imagery/imagery_svm/svm.h
+++ /dev/null
@@ -1,101 +0,0 @@
-#ifndef _LIBSVM_H
-#define _LIBSVM_H
-
-#define LIBSVM_VERSION 311
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-extern int libsvm_version;
-
-struct svm_node
-{
-	int index;
-	double value;
-};
-
-struct svm_problem
-{
-	int l;
-	double *y;
-	struct svm_node **x;
-};
-
-enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };	/* svm_type */
-enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
-
-struct svm_parameter
-{
-	int svm_type;
-	int kernel_type;
-	int degree;	/* for poly */
-	double gamma;	/* for poly/rbf/sigmoid */
-	double coef0;	/* for poly/sigmoid */
-
-	/* these are for training only */
-	double cache_size; /* in MB */
-	double eps;	/* stopping criteria */
-	double C;	/* for C_SVC, EPSILON_SVR and NU_SVR */
-	int nr_weight;		/* for C_SVC */
-	int *weight_label;	/* for C_SVC */
-	double* weight;		/* for C_SVC */
-	double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */
-	double p;	/* for EPSILON_SVR */
-	int shrinking;	/* use the shrinking heuristics */
-	int probability; /* do probability estimates */
-};
-
-//
-// svm_model
-// 
-struct svm_model
-{
-	struct svm_parameter param;	/* parameter */
-	int nr_class;		/* number of classes, = 2 in regression/one class svm */
-	int l;			/* total #SV */
-	struct svm_node **SV;		/* SVs (SV[l]) */
-	double **sv_coef;	/* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
-	double *rho;		/* constants in decision functions (rho[k*(k-1)/2]) */
-	double *probA;		/* pariwise probability information */
-	double *probB;
-
-	/* for classification only */
-
-	int *label;		/* label of each class (label[k]) */
-	int *nSV;		/* number of SVs for each class (nSV[k]) */
-				/* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
-	/* XXX */
-	int free_sv;		/* 1 if svm_model is created by svm_load_model*/
-				/* 0 if svm_model is created by svm_train */
-};
-
-struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
-void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
-
-int svm_save_model(const char *model_file_name, const struct svm_model *model);
-struct svm_model *svm_load_model(const char *model_file_name);
-
-int svm_get_svm_type(const struct svm_model *model);
-int svm_get_nr_class(const struct svm_model *model);
-void svm_get_labels(const struct svm_model *model, int *label);
-double svm_get_svr_probability(const struct svm_model *model);
-
-double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
-double svm_predict(const struct svm_model *model, const struct svm_node *x);
-double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
-
-void svm_free_model_content(struct svm_model *model_ptr);
-void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
-void svm_destroy_param(struct svm_parameter *param);
-
-const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
-int svm_check_probability_model(const struct svm_model *model);
-
-void svm_set_print_string_function(void (*print_func)(const char *));
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _LIBSVM_H */

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-grass/saga.git



More information about the Pkg-grass-devel mailing list