[saga] 01/03: Imported Upstream version 2.2.5

Johan Van de Wauw johanvdw-guest at moszumanska.debian.org
Fri Mar 4 18:54:23 UTC 2016


This is an automated email from the git hooks/post-receive script.

johanvdw-guest pushed a commit to branch master
in repository saga.

commit 4c78f4987dd3a383f4919dd1b9b19fae85034265
Author: Johan Van de Wauw <Johan Van de Wauw johan.vandewauw at gmail.com>
Date:   Fri Mar 4 17:34:33 2016 +0100

    Imported Upstream version 2.2.5
---
 Makefile.in                                        |     4 +-
 README                                             |     2 +-
 configure                                          |    20 +-
 configure.ac                                       |     4 +-
 .../Interpolation_NaturalNeighbour.cpp             |   155 +-
 src/modules/grid/grid_gridding/Makefile.am         |     3 +
 src/modules/grid/grid_gridding/Makefile.in         |    27 +-
 src/modules/grid/grid_gridding/nn/config.h         |     9 +
 src/modules/grid/grid_gridding/nn/delaunay.c       |   379 +-
 src/modules/grid/grid_gridding/nn/delaunay.h       |    36 +-
 src/modules/grid/grid_gridding/nn/hash.c           |   131 +-
 src/modules/grid/grid_gridding/nn/hash.h           |    26 +-
 src/modules/grid/grid_gridding/nn/istack.c         |    36 +-
 src/modules/grid/grid_gridding/nn/istack.h         |    17 +-
 src/modules/grid/grid_gridding/nn/lpi.c            |    12 +-
 src/modules/grid/grid_gridding/nn/nan.h            |    25 +-
 src/modules/grid/grid_gridding/nn/nn.h             |   202 +-
 src/modules/grid/grid_gridding/nn/nn_internal.h    |    38 +
 src/modules/grid/grid_gridding/nn/nnai.c           |   108 +-
 .../grid/grid_gridding/nn/nncommon-vulnerable.c    |    90 +
 src/modules/grid/grid_gridding/nn/nncommon.c       |   323 +-
 src/modules/grid/grid_gridding/nn/nnpi.c           |   681 +-
 src/modules/grid/grid_gridding/nn/triangle.c       | 15930 +++++++++++++++++++
 src/modules/grid/grid_gridding/nn/triangle.h       |   288 +
 src/modules/grid/grid_gridding/nn/version.h        |     5 +-
 src/modules/grid/grid_tools/Grid_Orientation.cpp   |     6 +-
 src/modules/imagery/imagery_svm/svm.cpp            |  3089 ++++
 src/modules/imagery/imagery_svm/svm.h              |   101 +
 .../io/io_grid_grib2/g2clib-1.0.4/cmplxpack.c      |    78 +
 .../io/io_grid_grib2/g2clib-1.0.4/compack.c        |   419 +
 .../io/io_grid_grib2/g2clib-1.0.4/comunpack.c      |   333 +
 .../io/io_grid_grib2/g2clib-1.0.4/dec_jpeg2000.c   |   147 +
 .../io/io_grid_grib2/g2clib-1.0.4/dec_png.c        |   144 +
 .../io/io_grid_grib2/g2clib-1.0.4/drstemplates.c   |   157 +
 .../io/io_grid_grib2/g2clib-1.0.4/drstemplates.h   |    72 +
 .../io/io_grid_grib2/g2clib-1.0.4/enc_jpeg2000.c   |   190 +
 .../io/io_grid_grib2/g2clib-1.0.4/enc_png.c        |   138 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_addfield.c    |   513 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_addgrid.c     |   246 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_addlocal.c    |   150 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_create.c      |   130 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_free.c        |    47 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_getfld.c      |   553 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_gribend.c     |   125 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_info.c        |   193 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_miss.c        |    72 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_unpack1.c     |   102 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_unpack2.c     |    82 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_unpack3.c     |   216 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_unpack4.c     |   187 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_unpack5.c     |   154 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_unpack6.c     |   100 +
 .../io/io_grid_grib2/g2clib-1.0.4/g2_unpack7.c     |   154 +
 src/modules/io/io_grid_grib2/g2clib-1.0.4/gbits.c  |   127 +
 src/modules/io/io_grid_grib2/g2clib-1.0.4/getdim.c |   130 +
 .../io/io_grid_grib2/g2clib-1.0.4/getpoly.c        |    83 +
 src/modules/io/io_grid_grib2/g2clib-1.0.4/grib2.h  |   254 +
 .../io/io_grid_grib2/g2clib-1.0.4/gridtemplates.c  |   176 +
 .../io/io_grid_grib2/g2clib-1.0.4/gridtemplates.h  |    99 +
 .../io/io_grid_grib2/g2clib-1.0.4/int_power.c      |    33 +
 .../io/io_grid_grib2/g2clib-1.0.4/jpcpack.c        |   178 +
 .../io/io_grid_grib2/g2clib-1.0.4/jpcunpack.c      |    75 +
 .../io/io_grid_grib2/g2clib-1.0.4/misspack.c       |   535 +
 src/modules/io/io_grid_grib2/g2clib-1.0.4/mkieee.c |   126 +
 .../io/io_grid_grib2/g2clib-1.0.4/pack_gp.c        |  1450 ++
 .../io/io_grid_grib2/g2clib-1.0.4/pdstemplates.c   |   271 +
 .../io/io_grid_grib2/g2clib-1.0.4/pdstemplates.h   |   121 +
 .../io/io_grid_grib2/g2clib-1.0.4/pngpack.c        |   165 +
 .../io/io_grid_grib2/g2clib-1.0.4/pngunpack.c      |    79 +
 src/modules/io/io_grid_grib2/g2clib-1.0.4/rdieee.c |    81 +
 src/modules/io/io_grid_grib2/g2clib-1.0.4/reduce.c |   413 +
 src/modules/io/io_grid_grib2/g2clib-1.0.4/seekgb.c |    83 +
 .../io/io_grid_grib2/g2clib-1.0.4/simpack.c        |   184 +
 .../io/io_grid_grib2/g2clib-1.0.4/simunpack.c      |    79 +
 .../io/io_grid_grib2/g2clib-1.0.4/specpack.c       |   131 +
 .../io/io_grid_grib2/g2clib-1.0.4/specunpack.c     |   118 +
 .../simulation/sim_fire_spreading/fireLib.c        |  1817 +++
 .../simulation/sim_fire_spreading/fireLib.h        |   551 +
 .../diffusion_gradient_concentration.cpp           |    26 +-
 .../terrain_analysis/ta_compound/TA_Standard.cpp   |    19 +-
 .../ta_hydrology/Flow_AreaDownslope.cpp            |     6 +-
 .../ta_slope_stability/WETNESS_01.cpp              |     6 +-
 src/saga_core/saga_api/saga_api.h                  |     4 +-
 src/saga_core/saga_cmd/saga_cmd.cpp                |     4 +-
 src/saga_core/saga_gui/res/saga.bra.txt            |     8 +-
 src/saga_core/saga_gui/res/saga.ger.txt            |     8 +-
 src/saga_core/saga_gui/res/saga.lng.txt            |     8 +-
 src/saga_core/saga_gui/wksp_base_control.cpp       |    30 +-
 src/saga_core/saga_gui/wksp_base_control.h         |     4 +-
 src/saga_core/saga_gui/wksp_base_item.cpp          |    12 +-
 src/saga_core/saga_gui/wksp_data_control.cpp       |    41 +-
 src/saga_core/saga_gui/wksp_data_control.h         |     6 +-
 src/scripting/helper/make_saga_release.bat         |     2 +-
 93 files changed, 33023 insertions(+), 969 deletions(-)

diff --git a/Makefile.in b/Makefile.in
index 9d944ed..5426f90 100644
--- a/Makefile.in
+++ b/Makefile.in
@@ -82,8 +82,8 @@ subdir = .
 DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \
 	$(top_srcdir)/configure $(am__configure_deps) \
 	$(srcdir)/config.h.in $(dist_toolchains_DATA) AUTHORS COPYING \
-	ChangeLog NEWS README compile config.guess config.sub \
-	install-sh missing ltmain.sh
+	ChangeLog NEWS README compile config.guess config.sub depcomp \
+	install-sh missing py-compile ltmain.sh
 ACLOCAL_M4 = $(top_srcdir)/aclocal.m4
 am__aclocal_m4_deps = $(top_srcdir)/m4/ax_lib_postgresql.m4 \
 	$(top_srcdir)/m4/ax_pkg_swig.m4 \
diff --git a/README b/README
index 5a01ea5..9040856 100755
--- a/README
+++ b/README
@@ -1,6 +1,6 @@
 _______________________________________________________________________________
 
-         SAGA 2.2.4 - System for Automated Geoscientific Analyses
+         SAGA 2.2.5 - System for Automated Geoscientific Analyses
 _______________________________________________________________________________
 
 * Introduction
diff --git a/configure b/configure
index 25af572..1d91600 100755
--- a/configure
+++ b/configure
@@ -1,6 +1,6 @@
 #! /bin/sh
 # Guess values for system-dependent variables and create Makefiles.
-# Generated by GNU Autoconf 2.69 for saga 2.2.4.
+# Generated by GNU Autoconf 2.69 for saga 2.2.5.
 #
 # Report bugs to <BUG-REPORT-ADDRESS>.
 #
@@ -590,8 +590,8 @@ MAKEFLAGS=
 # Identity of this package.
 PACKAGE_NAME='saga'
 PACKAGE_TARNAME='saga'
-PACKAGE_VERSION='2.2.4'
-PACKAGE_STRING='saga 2.2.4'
+PACKAGE_VERSION='2.2.5'
+PACKAGE_STRING='saga 2.2.5'
 PACKAGE_BUGREPORT='BUG-REPORT-ADDRESS'
 PACKAGE_URL=''
 
@@ -1389,7 +1389,7 @@ if test "$ac_init_help" = "long"; then
   # Omit some internal or obsolete options to make the list less imposing.
   # This message is too long to be a string in the A/UX 3.1 sh.
   cat <<_ACEOF
-\`configure' configures saga 2.2.4 to adapt to many kinds of systems.
+\`configure' configures saga 2.2.5 to adapt to many kinds of systems.
 
 Usage: $0 [OPTION]... [VAR=VALUE]...
 
@@ -1459,7 +1459,7 @@ fi
 
 if test -n "$ac_init_help"; then
   case $ac_init_help in
-     short | recursive ) echo "Configuration of saga 2.2.4:";;
+     short | recursive ) echo "Configuration of saga 2.2.5:";;
    esac
   cat <<\_ACEOF
 
@@ -1588,7 +1588,7 @@ fi
 test -n "$ac_init_help" && exit $ac_status
 if $ac_init_version; then
   cat <<\_ACEOF
-saga configure 2.2.4
+saga configure 2.2.5
 generated by GNU Autoconf 2.69
 
 Copyright (C) 2012 Free Software Foundation, Inc.
@@ -2132,7 +2132,7 @@ cat >config.log <<_ACEOF
 This file contains any messages produced by compilers while
 running configure, to aid debugging if configure makes a mistake.
 
-It was created by saga $as_me 2.2.4, which was
+It was created by saga $as_me 2.2.5, which was
 generated by GNU Autoconf 2.69.  Invocation command line was
 
   $ $0 $@
@@ -2999,7 +2999,7 @@ fi
 
 # Define the identity of the package.
  PACKAGE='saga'
- VERSION='2.2.4'
+ VERSION='2.2.5'
 
 
 cat >>confdefs.h <<_ACEOF
@@ -18770,7 +18770,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
 # report actual input values of CONFIG_FILES etc. instead of their
 # values after options handling.
 ac_log="
-This file was extended by saga $as_me 2.2.4, which was
+This file was extended by saga $as_me 2.2.5, which was
 generated by GNU Autoconf 2.69.  Invocation command line was
 
   CONFIG_FILES    = $CONFIG_FILES
@@ -18836,7 +18836,7 @@ _ACEOF
 cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
 ac_cs_version="\\
-saga config.status 2.2.4
+saga config.status 2.2.5
 configured by $0, generated by GNU Autoconf 2.69,
   with options \\"\$ac_cs_config\\"
 
diff --git a/configure.ac b/configure.ac
index 0571691..e5cafd9 100755
--- a/configure.ac
+++ b/configure.ac
@@ -1,9 +1,9 @@
-# $Id: configure.ac 2819 2016-02-23 21:11:29Z johanvdw $
+# $Id: configure.ac 2832 2016-02-25 12:41:39Z oconrad $
 #                                               -*- Autoconf -*-
 # Process this file with autoconf to produce a configure script.
 
 AC_PREREQ(2.59)
-AC_INIT(saga, 2.2.4, BUG-REPORT-ADDRESS)
+AC_INIT(saga, 2.2.5, BUG-REPORT-ADDRESS)
 AC_CONFIG_SRCDIR([src/saga_core/saga_gui/wksp_data_menu_files.cpp])
 AC_CONFIG_HEADER([config.h])
 AC_CONFIG_MACRO_DIR([m4])
diff --git a/src/modules/grid/grid_gridding/Interpolation_NaturalNeighbour.cpp b/src/modules/grid/grid_gridding/Interpolation_NaturalNeighbour.cpp
index 4e27184..2bbe52a 100755
--- a/src/modules/grid/grid_gridding/Interpolation_NaturalNeighbour.cpp
+++ b/src/modules/grid/grid_gridding/Interpolation_NaturalNeighbour.cpp
@@ -77,113 +77,134 @@ CInterpolation_NaturalNeighbour::CInterpolation_NaturalNeighbour(void)
 {
 	Set_Name		(_TL("Natural Neighbour"));
 
-	Set_Author		(SG_T("O. Conrad (c) 2008"));
+	Set_Author		("O.Conrad (c) 2008");
 
 	Set_Description	(_TW(
-		"Natural Neighbour method for grid interpolation from irregular distributed points.")
+		"Natural Neighbour method for grid interpolation from irregular distributed points. "
+		"This tool makes use of the 'nn - Natural Neighbours interpolation library' created "
+		"and maintained by Pavel Sakov, CSIRO Marine Research. "
+		"Find more information about this library at:\n"
+		"<a href=\"http://github.com/sakov/nn-c\">github.com/sakov/nn-c</a>."
+	));
+
+	Parameters.Add_Choice(
+		NULL	, "METHOD"	, _TL("Method"),
+		_TL(""),
+		CSG_String::Format("%s|%s|%s|",
+			_TL("Linear"),
+			_TL("Sibson"),
+			_TL("Non-Sibsonian")
+		), 1
 	);
 
-	Parameters.Add_Value(
-		NULL	, "SIBSON"	, _TL("Sibson"),
-		_TL(""),
-		PARAMETER_TYPE_Bool	, true
+	Parameters.Add_Double(
+		NULL	, "WEIGHT"	, _TL("Minimum Weight"),
+		_TL("restricts extrapolation by assigning minimal allowed weight for a vertex (normally \"-1\" or so; lower values correspond to lower reliability; \"0\" means no extrapolation)"),
+		0.0, 0.0, false, 0.0, true
 	);
 }
 
 
 ///////////////////////////////////////////////////////////
 //														 //
-//														 //
-//														 //
 ///////////////////////////////////////////////////////////
 
 //---------------------------------------------------------
 bool CInterpolation_NaturalNeighbour::Interpolate(void)
 {
-	int			i, n, x, y;
-	double		zMin, zMax;
-	TSG_Point	p;
-
-	nn_rule		= Parameters("SIBSON")->asBool() ? SIBSON : NON_SIBSONIAN;
-
 	//-----------------------------------------------------
-	point	*pSrc	= (point  *)SG_Malloc(m_pShapes->Get_Count() * sizeof(point));
-	double	*zSrc	= (double *)SG_Malloc(m_pShapes->Get_Count() * sizeof(double));
+	// initialize points
 
-	for(i=0, n=0; i<m_pShapes->Get_Count() && Set_Progress(i, m_pShapes->Get_Count()); i++)
+	int		 nn_nPoints	= 0;
+	point	*nn_pPoints	= (point *)SG_Malloc(m_pShapes->Get_Count() * sizeof(point));
+
+	for(int iPoint=0; iPoint<m_pShapes->Get_Count() && Set_Progress(iPoint, m_pShapes->Get_Count()); iPoint++)
 	{
-		CSG_Shape	*pShape	= m_pShapes->Get_Shape(i);
+		CSG_Shape	*pShape	= m_pShapes->Get_Shape(iPoint);
 
 		if( !pShape->is_NoData(m_zField) )
 		{
-			pSrc[n].x	= pShape->Get_Point(0).x;
-			pSrc[n].y	= pShape->Get_Point(0).y;
-			pSrc[n].z	= zSrc[n]	= pShape->asDouble(m_zField);
-
-			if( n == 0 )
-				zMin	= zMax	= pSrc[n].z;
-			else if( zMin > pSrc[n].z )
-				zMin	= pSrc[n].z;
-			else if( zMax < pSrc[n].z )
-				zMax	= pSrc[n].z;
-
-			n++;
+			nn_pPoints[nn_nPoints].x	= pShape->Get_Point(0).x;
+			nn_pPoints[nn_nPoints].y	= pShape->Get_Point(0).y;
+			nn_pPoints[nn_nPoints].z	= pShape->asDouble(m_zField);
+
+			nn_nPoints++;
 		}
 	}
 
-	Process_Set_Text(_TL("triangulating"));
-	delaunay	*pTIN	= delaunay_build(n, pSrc, 0, NULL, 0, NULL);
+	if( nn_nPoints < 3 )
+	{
+		SG_FREE_SAFE(nn_pPoints);
+
+		Error_Set(_TL("less than 3 valid points"));
+
+		return( false );
+	}
 
 	//-----------------------------------------------------
-	double	*xDst	= (double *)SG_Malloc(m_pGrid->Get_NCells() * sizeof(double));
-	double	*yDst	= (double *)SG_Malloc(m_pGrid->Get_NCells() * sizeof(double));
-	double	*zDst	= (double *)SG_Malloc(m_pGrid->Get_NCells() * sizeof(double));
+	// initialize grid
+
+	int		 nn_nCells;
+	point	*nn_pCells	= NULL;
+
+	points_generate(
+		m_pGrid->Get_XMin(), m_pGrid->Get_XMax(),
+		m_pGrid->Get_YMin(), m_pGrid->Get_YMax(),
+		m_pGrid->Get_NX  (), m_pGrid->Get_NY  (),
+		&nn_nCells, &nn_pCells
+	);
 
-	for(y=0, i=0, p.y=m_pGrid->Get_YMin(); y<m_pGrid->Get_NY() && Set_Progress(y, m_pGrid->Get_NY()); y++, p.y+=m_pGrid->Get_Cellsize())
+	if( nn_nCells != m_pGrid->Get_NCells() )
 	{
-		for(x=0, p.x=m_pGrid->Get_XMin(); x<m_pGrid->Get_NX(); x++, p.x+=m_pGrid->Get_Cellsize(), i++)
-		{
-			xDst[i]	= p.x;
-			yDst[i]	= p.y;
-			zDst[i]	= NaN;
-		}
+		SG_FREE_SAFE(nn_pPoints);
+		SG_FREE_SAFE(nn_pCells );
+
+		Error_Set(_TL("grid cells array creation"));
+
+		return( false );
 	}
 
 	//-----------------------------------------------------
-	Process_Set_Text(_TL("creating interpolator"));
-	nnai	*pNN	= nnai_build(pTIN, (long)m_pGrid->Get_NCells(), xDst, yDst);
-
     Process_Set_Text(_TL("interpolating"));
-    nnai_interpolate(pNN, zSrc, zDst);
+
+	double	Weight	= Parameters("WEIGHT")->asDouble();
+
+	switch( Parameters("METHOD")->asInt() )
+	{
+	case  0:
+        lpi_interpolate_points (nn_nPoints, nn_pPoints        , nn_nCells, nn_pCells);
+		break;
+
+	default:
+		nn_rule	= SIBSON;
+        nnpi_interpolate_points(nn_nPoints, nn_pPoints, Weight, nn_nCells, nn_pCells);
+		break;
+
+	case  2:
+		nn_rule	= NON_SIBSONIAN;
+        nnpi_interpolate_points(nn_nPoints, nn_pPoints, Weight, nn_nCells, nn_pCells);
+		break;
+	}
 
 	//-----------------------------------------------------
-	for(y=0, i=0; y<m_pGrid->Get_NY() && Set_Progress(y, m_pGrid->Get_NY()); y++)
+	#pragma omp parallel for
+	for(int iCell=0; iCell<m_pGrid->Get_NCells(); iCell++)
 	{
-		for(x=0; x<m_pGrid->Get_NX(); x++, i++)
+		double	z	= nn_pCells[iCell].z;
+
+		if( SG_is_NaN(z) )
 		{
-			double	z	= zDst[i];
-
-			if( zMin <= z && z <= zMax )
-			{
-				m_pGrid->Set_Value(x, y, z);
-			}
-			else
-			{
-				m_pGrid->Set_NoData(x, y);
-			}
+			m_pGrid->Set_NoData(iCell);
+		}
+		else
+		{
+			m_pGrid->Set_Value(iCell, z);
 		}
 	}
 
 	//-----------------------------------------------------
-	nnai_destroy(pNN);
-
-	delaunay_destroy(pTIN);
-
-	SG_Free(xDst);
-	SG_Free(yDst);
-	SG_Free(zDst);
-	SG_Free(zSrc);
-	SG_Free(pSrc);
+	SG_FREE_SAFE(nn_pPoints);
+	SG_FREE_SAFE(nn_pCells );
 
 	//-----------------------------------------------------
 	return( true );
diff --git a/src/modules/grid/grid_gridding/Makefile.am b/src/modules/grid/grid_gridding/Makefile.am
index 941c9d8..30669cc 100755
--- a/src/modules/grid/grid_gridding/Makefile.am
+++ b/src/modules/grid/grid_gridding/Makefile.am
@@ -33,6 +33,7 @@ Shepard.cpp\
 ./nn/lpi.c\
 ./nn/nnai.c\
 ./nn/nncommon.c\
+./nn/nncommon-vulnerable.c\
 ./nn/nnpi.c\
 Interpolation.h\
 Interpolation_AngularDistance.h\
@@ -45,11 +46,13 @@ kernel_density.h\
 MLB_Interface.h\
 Shapes2Grid.h\
 Shepard.h\
+./nn/config.h\
 ./nn/delaunay.h\
 ./nn/hash.h\
 ./nn/istack.h\
 ./nn/nan.h\
 ./nn/nn.h\
+./nn/nn_internal.h\
 ./nn/version.h
 
 if TRIANGLE
diff --git a/src/modules/grid/grid_gridding/Makefile.in b/src/modules/grid/grid_gridding/Makefile.in
index 9689401..b6a4096 100644
--- a/src/modules/grid/grid_gridding/Makefile.in
+++ b/src/modules/grid/grid_gridding/Makefile.in
@@ -139,15 +139,16 @@ am__libgrid_gridding_la_SOURCES_DIST = Interpolation.cpp \
 	Interpolation_Triangulation.cpp kernel_density.cpp \
 	MLB_Interface.cpp Shapes2Grid.cpp Shepard.cpp ./nn/delaunay.c \
 	./nn/hash.c ./nn/istack.c ./nn/lpi.c ./nn/nnai.c \
-	./nn/nncommon.c ./nn/nnpi.c Interpolation.h \
-	Interpolation_AngularDistance.h \
+	./nn/nncommon.c ./nn/nncommon-vulnerable.c ./nn/nnpi.c \
+	Interpolation.h Interpolation_AngularDistance.h \
 	Interpolation_InverseDistance.h \
 	Interpolation_NaturalNeighbour.h \
 	Interpolation_NearestNeighbour.h Interpolation_Shepard.h \
 	Interpolation_Triangulation.h kernel_density.h MLB_Interface.h \
-	Shapes2Grid.h Shepard.h ./nn/delaunay.h ./nn/hash.h \
-	./nn/istack.h ./nn/nan.h ./nn/nn.h ./nn/version.h \
-	./nn/triangle.c ./nn/triangle.h
+	Shapes2Grid.h Shepard.h ./nn/config.h ./nn/delaunay.h \
+	./nn/hash.h ./nn/istack.h ./nn/nan.h ./nn/nn.h \
+	./nn/nn_internal.h ./nn/version.h ./nn/triangle.c \
+	./nn/triangle.h
 am__dirstamp = $(am__leading_dot)dirstamp
 @TRIANGLE_TRUE at am__objects_1 = ./nn/triangle.lo
 am_libgrid_gridding_la_OBJECTS = Interpolation.lo \
@@ -158,7 +159,8 @@ am_libgrid_gridding_la_OBJECTS = Interpolation.lo \
 	Interpolation_Triangulation.lo kernel_density.lo \
 	MLB_Interface.lo Shapes2Grid.lo Shepard.lo ./nn/delaunay.lo \
 	./nn/hash.lo ./nn/istack.lo ./nn/lpi.lo ./nn/nnai.lo \
-	./nn/nncommon.lo ./nn/nnpi.lo $(am__objects_1)
+	./nn/nncommon.lo ./nn/nncommon-vulnerable.lo ./nn/nnpi.lo \
+	$(am__objects_1)
 libgrid_gridding_la_OBJECTS = $(am_libgrid_gridding_la_OBJECTS)
 AM_V_lt = $(am__v_lt_ at AM_V@)
 am__v_lt_ = $(am__v_lt_ at AM_DEFAULT_V@)
@@ -410,15 +412,15 @@ libgrid_gridding_la_SOURCES = Interpolation.cpp \
 	Interpolation_Triangulation.cpp kernel_density.cpp \
 	MLB_Interface.cpp Shapes2Grid.cpp Shepard.cpp ./nn/delaunay.c \
 	./nn/hash.c ./nn/istack.c ./nn/lpi.c ./nn/nnai.c \
-	./nn/nncommon.c ./nn/nnpi.c Interpolation.h \
-	Interpolation_AngularDistance.h \
+	./nn/nncommon.c ./nn/nncommon-vulnerable.c ./nn/nnpi.c \
+	Interpolation.h Interpolation_AngularDistance.h \
 	Interpolation_InverseDistance.h \
 	Interpolation_NaturalNeighbour.h \
 	Interpolation_NearestNeighbour.h Interpolation_Shepard.h \
 	Interpolation_Triangulation.h kernel_density.h MLB_Interface.h \
-	Shapes2Grid.h Shepard.h ./nn/delaunay.h ./nn/hash.h \
-	./nn/istack.h ./nn/nan.h ./nn/nn.h ./nn/version.h \
-	$(am__append_1)
+	Shapes2Grid.h Shepard.h ./nn/config.h ./nn/delaunay.h \
+	./nn/hash.h ./nn/istack.h ./nn/nan.h ./nn/nn.h \
+	./nn/nn_internal.h ./nn/version.h $(am__append_1)
 @TRIANGLE_FALSE at AM_CFLAGS = -DUSE_QHULL
 libgrid_gridding_la_LIBADD = $(top_srcdir)/src/saga_core/saga_api/libsaga_api.la
 all: all-am
@@ -502,6 +504,8 @@ nn/$(DEPDIR)/$(am__dirstamp):
 ./nn/lpi.lo: nn/$(am__dirstamp) nn/$(DEPDIR)/$(am__dirstamp)
 ./nn/nnai.lo: nn/$(am__dirstamp) nn/$(DEPDIR)/$(am__dirstamp)
 ./nn/nncommon.lo: nn/$(am__dirstamp) nn/$(DEPDIR)/$(am__dirstamp)
+./nn/nncommon-vulnerable.lo: nn/$(am__dirstamp) \
+	nn/$(DEPDIR)/$(am__dirstamp)
 ./nn/nnpi.lo: nn/$(am__dirstamp) nn/$(DEPDIR)/$(am__dirstamp)
 ./nn/triangle.lo: nn/$(am__dirstamp) nn/$(DEPDIR)/$(am__dirstamp)
 
@@ -532,6 +536,7 @@ distclean-compile:
 @AMDEP_TRUE@@am__include@ @am__quote at ./nn/$(DEPDIR)/istack.Plo at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./nn/$(DEPDIR)/lpi.Plo at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./nn/$(DEPDIR)/nnai.Plo at am__quote@
+ at AMDEP_TRUE@@am__include@ @am__quote at ./nn/$(DEPDIR)/nncommon-vulnerable.Plo at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./nn/$(DEPDIR)/nncommon.Plo at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./nn/$(DEPDIR)/nnpi.Plo at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./nn/$(DEPDIR)/triangle.Plo at am__quote@
diff --git a/src/modules/grid/grid_gridding/nn/config.h b/src/modules/grid/grid_gridding/nn/config.h
new file mode 100755
index 0000000..fc0109d
--- /dev/null
+++ b/src/modules/grid/grid_gridding/nn/config.h
@@ -0,0 +1,9 @@
+/* config.h.  Generated from config.h.in by configure.  */
+#if defined(_WIN32)
+#define isnan _isnan
+#define copysign _copysign
+#define rint (int)
+#define M_PI 3.14159265358979323846
+#define TRILIBRARY
+#define NO_TIMER
+#endif
diff --git a/src/modules/grid/grid_gridding/nn/delaunay.c b/src/modules/grid/grid_gridding/nn/delaunay.c
index dc98875..fa55f33 100755
--- a/src/modules/grid/grid_gridding/nn/delaunay.c
+++ b/src/modules/grid/grid_gridding/nn/delaunay.c
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: delaunay.c 911 2011-02-14 16:38:15Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           delaunay.c
@@ -15,16 +12,18 @@
  * Description:    None
  *
  * Revisions:      10/06/2003 PS: delaunay_build(); delaunay_destroy();
- *                 struct delaunay: from now on, only shallow copy of the
- *                 input data is contained in struct delaunay. This saves
- *                 memory and is consistent with libcsa.
- *
- * Modified:       Joao Cardoso, 4/2/2003
- *                 Adapted for use with Qhull instead of "triangle".
+ *                   struct delaunay: from now on, only shallow copy of the
+ *                   input data is contained in struct delaunay. This saves
+ *                   memory and is consistent with libcsa.
+ *                 30/10/2007 PS: added delaunay_addflag() and
+ *                   delaunay_resetflags(); modified delaunay_circles_find()
+ *                   to reset the flags to 0 on return. This is very important
+ *                   for large datasets, many thanks to John Gerschwitz,
+ *                   Petroleum Geo-Services, for identifying the problem.
  *
  *****************************************************************************/
 
-//#define USE_QHULL
+#define ANSI_DECLARATORS        /* for triangle.h */
 
 #include <stdlib.h>
 #include <stdio.h>
@@ -33,23 +32,24 @@
 #include <string.h>
 #include <limits.h>
 #include <float.h>
-#ifdef USE_QHULL
-#include <qhull/qhull_a.h>
-#else
 #include "triangle.h"
-#endif
 #include "istack.h"
 #include "nan.h"
 #include "delaunay.h"
+#include "nn.h"
+#include "nn_internal.h"
+
+/*
+ * This parameter is used in search of tricircles containing a given point:
+ *   if there are no more triangles than N_SEARCH_TURNON
+ *     do linear search
+ *   else
+ *     do more complicated stuff
+ */
+#define N_SEARCH_TURNON 20
+#define N_FLAGS_TURNON 1000
+#define N_FLAGS_INC 100
 
-int circle_build(circle* c, point* p0, point* p1, point* p2);
-int circle_contains(circle* c, point* p);
-
-#ifdef USE_QHULL
-static int cw(delaunay *d, triangle *t);
-#endif
-
-#ifndef USE_QHULL
 static void tio_init(struct triangulateio* tio)
 {
     tio->pointlist = NULL;
@@ -111,7 +111,7 @@ static void tio_destroy(struct triangulateio* tio)
 
 static delaunay* delaunay_create()
 {
-    delaunay* d = (delaunay *)malloc(sizeof(delaunay));
+    delaunay* d = malloc(sizeof(delaunay));
 
     d->npoints = 0;
     d->points = NULL;
@@ -131,6 +131,9 @@ static delaunay* delaunay_create()
     d->first_id = -1;
     d->t_in = NULL;
     d->t_out = NULL;
+    d->nflags = 0;
+    d->nflagsallocated = 0;
+    d->flagids = NULL;
 
     return d;
 }
@@ -171,12 +174,12 @@ static void tio2delaunay(struct triangulateio* tio_out, delaunay* d)
 
     d->ntriangles = tio_out->numberoftriangles;
     if (d->ntriangles > 0) {
-        d->triangles = (triangle *)malloc(d->ntriangles * sizeof(triangle));
-        d->neighbours = (triangle_neighbours *)malloc(d->ntriangles * sizeof(triangle_neighbours));
-        d->circles = (circle *)malloc(d->ntriangles * sizeof(circle));
-        d->n_point_triangles = (int *)calloc(d->npoints, sizeof(int));
-        d->point_triangles = (int **)malloc(d->npoints * sizeof(int*));
-        d->flags = (int *)calloc(d->ntriangles, sizeof(int));
+        d->triangles = malloc(d->ntriangles * sizeof(triangle));
+        d->neighbours = malloc(d->ntriangles * sizeof(triangle_neighbours));
+        d->circles = malloc(d->ntriangles * sizeof(circle));
+        d->n_point_triangles = calloc(d->npoints, sizeof(int));
+        d->point_triangles = malloc(d->npoints * sizeof(int*));
+        d->flags = calloc(d->ntriangles, sizeof(int));
     }
 
     if (nn_verbose)
@@ -186,6 +189,7 @@ static void tio2delaunay(struct triangulateio* tio_out, delaunay* d)
         triangle* t = &d->triangles[i];
         triangle_neighbours* n = &d->neighbours[i];
         circle* c = &d->circles[i];
+        int status;
 
         t->vids[0] = tio_out->trianglelist[offset];
         t->vids[1] = tio_out->trianglelist[offset + 1];
@@ -195,7 +199,8 @@ static void tio2delaunay(struct triangulateio* tio_out, delaunay* d)
         n->tids[1] = tio_out->neighborlist[offset + 1];
         n->tids[2] = tio_out->neighborlist[offset + 2];
 
-        circle_build(c, &d->points[t->vids[0]], &d->points[t->vids[1]], &d->points[t->vids[2]]);
+        status = circle_build1(c, &d->points[t->vids[0]], &d->points[t->vids[1]], &d->points[t->vids[2]]);
+        assert(status);
 
         if (nn_verbose)
             fprintf(stderr, "  %d: (%d,%d,%d)\n", i, t->vids[0], t->vids[1], t->vids[2]);
@@ -210,7 +215,7 @@ static void tio2delaunay(struct triangulateio* tio_out, delaunay* d)
     if (d->ntriangles > 0) {
         for (i = 0; i < d->npoints; ++i) {
             if (d->n_point_triangles[i] > 0)
-                d->point_triangles[i] = (int *)malloc(d->n_point_triangles[i] * sizeof(int));
+                d->point_triangles[i] = malloc(d->n_point_triangles[i] * sizeof(int));
             else
                 d->point_triangles[i] = NULL;
             d->n_point_triangles[i] = 0;
@@ -229,11 +234,10 @@ static void tio2delaunay(struct triangulateio* tio_out, delaunay* d)
 
     if (tio_out->edgelist != NULL) {
         d->nedges = tio_out->numberofedges;
-        d->edges = (int *)malloc(d->nedges * 2 * sizeof(int));
+        d->edges = malloc(d->nedges * 2 * sizeof(int));
         memcpy(d->edges, tio_out->edgelist, d->nedges * 2 * sizeof(int));
     }
 }
-#endif
 
 /* Builds Delaunay triangulation of the given array of points.
  *
@@ -246,7 +250,6 @@ static void tio2delaunay(struct triangulateio* tio_out, delaunay* d)
  * @return Delaunay triangulation structure with triangulation results
  */
 delaunay* delaunay_build(int np, point points[], int ns, int segments[], int nh, double holes[])
-#ifndef USE_QHULL
 {
     delaunay* d = delaunay_create();
     struct triangulateio tio_in;
@@ -263,7 +266,7 @@ delaunay* delaunay_build(int np, point points[], int ns, int segments[], int nh,
         return NULL;
     }
 
-    tio_in.pointlist = (double *)malloc(np * 2 * sizeof(double));
+    tio_in.pointlist = malloc(np * 2 * sizeof(double));
     tio_in.numberofpoints = np;
     for (i = 0, j = 0; i < np; ++i) {
         tio_in.pointlist[j++] = points[i].x;
@@ -271,13 +274,13 @@ delaunay* delaunay_build(int np, point points[], int ns, int segments[], int nh,
     }
 
     if (ns > 0) {
-        tio_in.segmentlist = (int *)malloc(ns * 2 * sizeof(int));
+        tio_in.segmentlist = malloc(ns * 2 * sizeof(int));
         tio_in.numberofsegments = ns;
         memcpy(tio_in.segmentlist, segments, ns * 2 * sizeof(int));
     }
 
     if (nh > 0) {
-        tio_in.holelist = (double *)malloc(nh * 2 * sizeof(double));
+        tio_in.holelist = malloc(nh * 2 * sizeof(double));
         tio_in.numberofholes = nh;
         memcpy(tio_in.holelist, holes, nh * 2 * sizeof(double));
     }
@@ -312,230 +315,8 @@ delaunay* delaunay_build(int np, point points[], int ns, int segments[], int nh,
 
     return d;
 }
-#else /* USE_QHULL */
-{
-  delaunay* d = (delaunay *)malloc(sizeof(delaunay));
-
-  coordT *qpoints;                     /* array of coordinates for each point */
-  boolT ismalloc = False;              /* True if qhull should free points */
-  char flags[64] = "qhull d Qbb Qt";   /* option flags for qhull */
-  facetT *facet,*neighbor,**neighborp; /* variables to walk through facets */
-  vertexT *vertex, **vertexp;          /* variables to walk through vertex */
-
-  int curlong, totlong;                /* memory remaining after qh_memfreeshort */
-  FILE *outfile = stdout;
-  FILE *errfile = stderr;              /* error messages from qhull code */
-
-  int i, j;
-  int exitcode;
-  int dim, ntriangles;
-  int numfacets, numsimplicial, numridges, totneighbors, numcoplanars, numtricoplanars;	 
-    
-  dim = 2;
-
-  assert(sizeof(realT) == sizeof(double)); /* Qhull was compiled with doubles? */
-
-  if (np == 0 || ns > 0 || nh > 0) {
-    fprintf(stderr, "segments=%d holes=%d\n, aborting Qhull implementation, use 'triangle' instead.\n", ns, nh);
-    free(d);
-    return NULL;
-  }
-
-  qpoints = (coordT *) malloc(np * (dim+1) * sizeof(coordT));
-
-  for (i=0; i<np; i++) {
-    qpoints[i*dim] = points[i].x;
-    qpoints[i*dim+1] = points[i].y;
-  }
-   
-  if (!nn_verbose)
-    outfile = NULL;
-  if (nn_verbose)
-    strcat(flags, " s");
-  if (nn_verbose > 1)
-    strcat(flags, " Ts");
-
-  if (nn_verbose)
-    fflush(stderr);
-
-  /*
-   * climax 
-   */
-
-  exitcode = qh_new_qhull (dim, np, qpoints, ismalloc,
-			   flags, outfile, errfile);
-
-  if(!exitcode) {
-
-    if (nn_verbose)
-      fflush(stderr);
-
-    d->xmin = DBL_MAX;
-    d->xmax = -DBL_MAX;
-    d->ymin = DBL_MAX;
-    d->ymax = -DBL_MAX;
-
-    d->npoints = np;
-    d->points = malloc(np * sizeof(point));
-    for (i = 0; i < np; ++i) {
-      point* p = &d->points[i];
-
-      p->x = points[i].x;
-      p->y = points[i].y;
-      p->z = points[i].z;
-
-      if (p->x < d->xmin)
-	d->xmin = p->x;
-      if (p->x > d->xmax)
-	d->xmax = p->x;
-      if (p->y < d->ymin)
-	d->ymin = p->y;
-      if (p->y > d->ymax)
-	d->ymax = p->y;
-    }
-
-    if (nn_verbose) {
-      fprintf(stderr, "input:\n");
-      for (i = 0; i < np; ++i) {
-	point* p = &d->points[i];
-
-	fprintf(stderr, "  %d: %15.7g %15.7g %15.7g\n",
-		i, p->x, p->y, p->z);
-      }
-    }
-
-    qh_findgood_all (qh facet_list);
-    qh_countfacets (qh facet_list, NULL, !qh_ALL, &numfacets,
-		    &numsimplicial, &totneighbors, &numridges,
-		    &numcoplanars, &numtricoplanars);
-
-    ntriangles = 0;
-    FORALLfacets {
-      if (!facet->upperdelaunay && facet->simplicial)
-	ntriangles++;
-    }
-
-    d->ntriangles = ntriangles;
-    d->triangles = malloc(d->ntriangles * sizeof(triangle));
-    d->neighbours = malloc(d->ntriangles * sizeof(triangle_neighbours));
-    d->circles = malloc(d->ntriangles * sizeof(circle));
-
-    if (nn_verbose)
-      fprintf(stderr, "triangles:\tneighbors:\n");
-
-    i = 0;      
-    FORALLfacets {
-      if (!facet->upperdelaunay && facet->simplicial) {
-	triangle* t = &d->triangles[i];        
-	triangle_neighbours* n = &d->neighbours[i];
-	circle* c = &d->circles[i];
-
-	j = 0;
-	FOREACHvertex_(facet->vertices)
-	  t->vids[j++] = qh_pointid(vertex->point);
-
-	j = 0;
-	FOREACHneighbor_(facet)
-	  n->tids[j++] = neighbor->visitid ? neighbor->visitid - 1 : - 1;
-
-	/* Put triangle vertices in counterclockwise order, as
-	 * 'triangle' do.
-	 * The same needs to be done with the neighbors.
-	 *
-	 * The following works, i.e., it seems that Qhull maintains a
-	 * relationship between the vertices and the neighbors
-	 * triangles, but that is not said anywhere, so if this stop
-	 * working in a future Qhull release, you know what you have
-	 * to do, reorder the neighbors.
-	 */
-
-	if(cw(d, t)) {
-	  int tmp = t->vids[1];
-	  t->vids[1] = t->vids[2];
-	  t->vids[2] = tmp;
-
-	  tmp = n->tids[1];
-	  n->tids[1] = n->tids[2];
-	  n->tids[2] = tmp;
-	}
-
-	circle_build(c, &d->points[t->vids[0]], &d->points[t->vids[1]],
-		     &d->points[t->vids[2]]);
-
-	if (nn_verbose)
-            fprintf(stderr, "  %d: (%d,%d,%d)\t(%d,%d,%d)\n",
-		    i, t->vids[0], t->vids[1], t->vids[2], n->tids[0],
-		    n->tids[1], n->tids[2]);
-
-	i++;
-      }
-    }
-
-    d->flags = calloc(d->ntriangles, sizeof(int));
-
-    d->n_point_triangles = calloc(d->npoints, sizeof(int));
-    for (i = 0; i < d->ntriangles; ++i) {
-      triangle* t = &d->triangles[i];
-
-      for (j = 0; j < 3; ++j)
-	d->n_point_triangles[t->vids[j]]++;
-    }
-    d->point_triangles = malloc(d->npoints * sizeof(int*));
-    for (i = 0; i < d->npoints; ++i) {
-      if (d->n_point_triangles[i] > 0)
-	d->point_triangles[i] = malloc(d->n_point_triangles[i] * sizeof(int));
-      else
-	d->point_triangles[i] = NULL;
-      d->n_point_triangles[i] = 0;
-    }
-    for (i = 0; i < d->ntriangles; ++i) {
-      triangle* t = &d->triangles[i];
-
-      for (j = 0; j < 3; ++j) {
-	int vid = t->vids[j];
-
-	d->point_triangles[vid][d->n_point_triangles[vid]] = i;
-	d->n_point_triangles[vid]++;
-      }
-    }
-
-    d->nedges = 0;
-    d->edges = NULL;
-
-    d->t_in = NULL;
-    d->t_out = NULL;
-    d->first_id = -1;
-
-  } else {
-    free(d);
-    d = NULL;
-  }
-
-  free(qpoints);
-  qh_freeqhull(!qh_ALL);                 /* free long memory */
-  qh_memfreeshort (&curlong, &totlong);  /* free short memory and memory allocator */
-  if (curlong || totlong) 
-    fprintf (errfile,
-	     "qhull: did not free %d bytes of long memory (%d pieces)\n",
-	     totlong, curlong);
-
-  return d;
-}
-
- /* returns 1 if a,b,c are clockwise ordered */
-static int cw(delaunay *d, triangle *t)
-{
-  point* pa = &d->points[t->vids[0]];
-  point* pb = &d->points[t->vids[1]];
-  point* pc = &d->points[t->vids[2]];
 
-  return ((pb->x - pa->x)*(pc->y - pa->y) <
-	  (pc->x - pa->x)*(pb->y - pa->y));
-}
-
-#endif
-
-/* Releases memory engaged in the Delaunay triangulation structure.
+/* Destroys Delaunay triangulation.
  *
  * @param d Structure to be destroyed
  */
@@ -554,12 +335,6 @@ void delaunay_destroy(delaunay* d)
     }
     if (d->nedges > 0)
         free(d->edges);
-#ifdef USE_QHULL
-    /* This is a shallow copy if we're not using qhull so we don't
-     * need to free it */
-    if (d->points != NULL)
-        free(d->points);
-#endif
     if (d->n_point_triangles != NULL)
         free(d->n_point_triangles);
     if (d->flags != NULL)
@@ -574,12 +349,14 @@ void delaunay_destroy(delaunay* d)
         istack_destroy(d->t_in);
     if (d->t_out != NULL)
         istack_destroy(d->t_out);
+    if (d->flagids != NULL)
+        free(d->flagids);
     free(d);
 }
 
 /* Returns whether the point p is on the right side of the vector (p0, p1).
  */
-static int on_right_side(point* p, point* p0, point* p1)
+static int onrightside(point* p, point* p0, point* p1)
 {
     return (p1->x - p->x) * (p0->y - p->y) > (p0->x - p->x) * (p1->y - p->y);
 }
@@ -606,7 +383,7 @@ int delaunay_xytoi(delaunay* d, point* p, int id)
         for (i = 0; i < 3; ++i) {
             int i1 = (i + 1) % 3;
 
-            if (on_right_side(p, &d->points[t->vids[i]], &d->points[t->vids[i1]])) {
+            if (onrightside(p, &d->points[t->vids[i]], &d->points[t->vids[i1]])) {
                 id = d->neighbours[id].tids[(i + 2) % 3];
                 if (id < 0)
                     return id;
@@ -619,6 +396,25 @@ int delaunay_xytoi(delaunay* d, point* p, int id)
     return id;
 }
 
+static void delaunay_addflag(delaunay* d, int i)
+{
+    if (d->nflags == d->nflagsallocated) {
+        d->nflagsallocated += N_FLAGS_INC;
+        d->flagids = realloc(d->flagids, d->nflagsallocated * sizeof(int));
+    }
+    d->flagids[d->nflags] = i;
+    d->nflags++;
+}
+
+static void delaunay_resetflags(delaunay* d)
+{
+    int i;
+
+    for (i = 0; i < d->nflags; ++i)
+        d->flags[d->flagids[i]] = 0;
+    d->nflags = 0;
+}
+
 /* Finds all tricircles specified point belongs to.
  *
  * @param d Delaunay triangulation
@@ -630,7 +426,7 @@ int delaunay_xytoi(delaunay* d, point* p, int id)
  *
  * There is a standard search procedure involving search through triangle
  * neighbours (not through vertex neighbours). It must be a bit faster due to
- * the smaller number of triangle neighbours (3 per triangle) but can fail
+ * the smaller number of triangle neighbours (3 per triangle) but may fail
  * for a point outside convex hall.
  *
  * We may wish to modify this procedure in future: first check if the point
@@ -640,6 +436,15 @@ int delaunay_xytoi(delaunay* d, point* p, int id)
  */
 void delaunay_circles_find(delaunay* d, point* p, int* n, int** out)
 {
+    /*
+     * This flag was introduced as a hack to handle some degenerate cases. It 
+     * is set to 1 only if the triangle associated with the first circle is
+     * already known to contain the point. In this case the circle is assumed 
+     * to contain the point without a check. In my practice this turned
+     * useful in some cases when point p coincided with one of the vertices
+     * of a thin triangle. 
+     */
+    int contains = 0;
     int i;
 
     if (d->t_in == NULL) {
@@ -648,20 +453,42 @@ void delaunay_circles_find(delaunay* d, point* p, int* n, int** out)
     }
 
     /*
+     * if there are only a few data points, do linear search
+     */
+    if (d->ntriangles <= N_SEARCH_TURNON) {
+        istack_reset(d->t_out);
+
+        for (i = 0; i < d->ntriangles; ++i) {
+            if (circle_contains(&d->circles[i], p)) {
+                istack_push(d->t_out, i);
+            }
+        }
+
+        *n = d->t_out->n;
+        *out = d->t_out->v;
+
+        return;
+    }
+    /*
+     * otherwise, do a more complicated stuff
+     */
+
+    /*
      * It is important to have a reasonable seed here. If the last search
      * was successful -- start with the last found tricircle, otherwhile (i) 
-     * try to find a triangle containing (x,y); if fails then (ii) check
+     * try to find a triangle containing p; if fails then (ii) check
      * tricircles from the last search; if fails then (iii) make linear
      * search through all tricircles 
      */
     if (d->first_id < 0 || !circle_contains(&d->circles[d->first_id], p)) {
         /*
-         * if any triangle contains (x,y) -- start with this triangle 
+         * if any triangle contains p -- start with this triangle 
          */
         d->first_id = delaunay_xytoi(d, p, d->first_id);
+        contains = (d->first_id >= 0);
 
         /*
-         * if no triangle contains (x,y), there still is a chance that it is
+         * if no triangle contains p, there still is a chance that it is
          * inside some of circumcircles 
          */
         if (d->first_id < 0) {
@@ -679,7 +506,7 @@ void delaunay_circles_find(delaunay* d, point* p, int* n, int** out)
             /*
              * if unsuccessful, search through all circles 
              */
-            if (tid < 0 || tid == nn) {
+            if (tid < 0 || i == nn) {
                 double nt = d->ntriangles;
 
                 for (tid = 0; tid < nt; ++tid) {
@@ -702,6 +529,7 @@ void delaunay_circles_find(delaunay* d, point* p, int* n, int** out)
 
     istack_push(d->t_in, d->first_id);
     d->flags[d->first_id] = 1;
+    delaunay_addflag(d, d->first_id);
 
     /*
      * main cycle 
@@ -710,7 +538,7 @@ void delaunay_circles_find(delaunay* d, point* p, int* n, int** out)
         int tid = istack_pop(d->t_in);
         triangle* t = &d->triangles[tid];
 
-        if (circle_contains(&d->circles[tid], p)) {
+        if (contains || circle_contains(&d->circles[tid], p)) {
             istack_push(d->t_out, tid);
             for (i = 0; i < 3; ++i) {
                 int vid = t->vids[i];
@@ -723,12 +551,15 @@ void delaunay_circles_find(delaunay* d, point* p, int* n, int** out)
                     if (d->flags[ntid] == 0) {
                         istack_push(d->t_in, ntid);
                         d->flags[ntid] = 1;
+                        delaunay_addflag(d, ntid);
                     }
                 }
             }
         }
+        contains = 0;
     }
 
     *n = d->t_out->n;
     *out = d->t_out->v;
+    delaunay_resetflags(d);
 }
diff --git a/src/modules/grid/grid_gridding/nn/delaunay.h b/src/modules/grid/grid_gridding/nn/delaunay.h
index b73d874..996e848 100755
--- a/src/modules/grid/grid_gridding/nn/delaunay.h
+++ b/src/modules/grid/grid_gridding/nn/delaunay.h
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: delaunay.h 911 2011-02-14 16:38:15Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           delaunay.h
@@ -14,7 +11,9 @@
  *
  * Description:    None
  *
- * Revisions:      None
+ * Revisions:      30/10/2007 PS: Added fields nflags, nflagsallocated and
+ *                   flagids for flag accounting, to make it possible to reset
+ *                   only engaged flags rather than the whole array.
  *
  *****************************************************************************/
 
@@ -37,11 +36,25 @@ typedef struct {
     double r;
 } circle;
 
-#if !defined(_ISTACK_H)
+#if !defined(_ISTACK_STRUCT)
+#define _ISTACK_STRUCT
 struct istack;
 typedef struct istack istack;
 #endif
 
+#if !defined(_DELAUNAY_STRUCT)
+#define _DELAUNAY_STRUCT
+struct delaunay;
+typedef struct delaunay delaunay;
+#endif
+
+/** Structure to perform the Delaunay triangulation of a given array of points.
+ *
+ * Contains a deep copy of the input array of points.
+ * Contains triangles, circles and edges resulted from the triangulation.
+ * Contains neighbour triangles for each triangle.
+ * Contains point to triangle map.
+ */
 struct delaunay {
     int npoints;
     point* points;
@@ -74,6 +87,19 @@ struct delaunay {
                                  * new search */
     istack* t_in;
     istack* t_out;
+
+    /*
+     * to keep track of flags set to 1 in the case of very large data sets
+     */
+    int nflags;
+    int nflagsallocated;
+    int* flagids;
 };
 
+/*
+ * delaunay_build() and delaunay_destroy() belong to "nn.h"
+ */
+void delaunay_circles_find(delaunay* d, point* p, int* n, int** out);
+int delaunay_xytoi(delaunay* d, point* p, int seed);
+
 #endif
diff --git a/src/modules/grid/grid_gridding/nn/hash.c b/src/modules/grid/grid_gridding/nn/hash.c
index 930763c..1678fa1 100755
--- a/src/modules/grid/grid_gridding/nn/hash.c
+++ b/src/modules/grid/grid_gridding/nn/hash.c
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: hash.c 911 2011-02-14 16:38:15Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           hash.c
@@ -20,9 +17,11 @@
 #include <string.h>
 #include <stdlib.h>
 #include <assert.h>
+#include <math.h>
 #include "hash.h"
 
 #define INT_PER_DOUBLE 2
+#define BYTE_PER_INT 4
 
 /** A hash table consists of an array of these buckets.
  */
@@ -52,17 +51,11 @@ struct hashtable {
  */
 hashtable* ht_create(int size, ht_keycp cp, ht_keyeq eq, ht_key2hash hash)
 {
-    hashtable* table = (hashtable *)malloc(sizeof(hashtable));
+    hashtable* table = malloc(sizeof(hashtable));
     ht_bucket** bucket;
     int i;
 
-    assert(sizeof(double) == INT_PER_DOUBLE * sizeof(int));
-    /*
-     * (used in d1hash() and d2hash()) 
-     */
-
-    if (table == NULL)
-        return NULL;
+    assert(table != NULL);
 
     if (size <= 0) {
         free(table);
@@ -70,7 +63,8 @@ hashtable* ht_create(int size, ht_keycp cp, ht_keyeq eq, ht_key2hash hash)
     }
 
     table->size = size;
-    table->table = (ht_bucket **)malloc(sizeof(ht_bucket*) * size);
+    table->table = malloc(sizeof(ht_bucket*) * size);
+    assert(table->table != NULL);
     bucket = table->table;
 
     if (bucket == NULL) {
@@ -138,9 +132,8 @@ void* ht_insert(hashtable* table, void* key, void* data)
      * pointing at it. 
      */
     if ((table->table)[val] == NULL) {
-        bucket = (ht_bucket *)malloc(sizeof(ht_bucket));
-        if (bucket == NULL)
-            return NULL;
+        bucket = malloc(sizeof(ht_bucket));
+        assert(bucket != NULL);
 
         bucket->key = table->cp(key);
         bucket->next = NULL;
@@ -152,7 +145,7 @@ void* ht_insert(hashtable* table, void* key, void* data)
         table->naccum++;
         table->nhash++;
 
-        return bucket->data;
+        return NULL;
     }
 
     /*
@@ -179,8 +172,7 @@ void* ht_insert(hashtable* table, void* key, void* data)
      * was larger than this one. 
      */
     bucket = (ht_bucket*) malloc(sizeof(ht_bucket));
-    if (bucket == NULL)
-        return 0;
+    assert(bucket != NULL);
     bucket->key = table->cp(key);
     bucket->data = data;
     bucket->next = (table->table)[val];
@@ -190,7 +182,7 @@ void* ht_insert(hashtable* table, void* key, void* data)
     table->n++;
     table->naccum++;
 
-    return data;
+    return NULL;
 }
 
 /* Returns a pointer to the data associated with a key.  If the key has
@@ -296,7 +288,7 @@ void ht_process(hashtable* table, void (*func) (void*))
 
 static unsigned int strhash(void* key)
 {
-    char* str = (char*) key;
+    char* str = key;
     unsigned int hashvalue = 0;
 
     while (*str != 0) {
@@ -310,19 +302,19 @@ static unsigned int strhash(void* key)
 
 static void* strcp(void* key)
 {
-    return strdup((const char *)key);
+    return strdup(key);
 }
 
 static int streq(void* key1, void* key2)
 {
-    return !strcmp((const char *)key1, (const char *)key2);
+    return !strcmp(key1, key2);
 }
 
 /* functions for for double keys */
 
 static unsigned int d1hash(void* key)
 {
-    unsigned int* v = (unsigned int*) key;
+    unsigned int* v = key;
 
 #if INT_PER_DOUBLE == 2
     return v[0] + v[1];
@@ -333,14 +325,14 @@ static unsigned int d1hash(void* key)
 
 static void* d1cp(void* key)
 {
-    double* newkey = (double *)malloc(sizeof(double));
+    double* newkey = malloc(sizeof(double));
 
     *newkey = *(double*) key;
 
     return newkey;
 }
 
-int d1eq(void* key1, void* key2)
+static int d1eq(void* key1, void* key2)
 {
     return *(double*) key1 == *(double*) key2;
 }
@@ -349,11 +341,9 @@ int d1eq(void* key1, void* key2)
  * functions for for double[2] keys 
  */
 
-#include "math.h"
-
 static unsigned int d2hash(void* key)
 {
-    unsigned int* v = (unsigned int*) key;
+    unsigned int* v = key;
 
 #if INT_PER_DOUBLE == 2
     /*
@@ -368,7 +358,7 @@ static unsigned int d2hash(void* key)
 
 static void* d2cp(void* key)
 {
-    double* newkey = (double *)malloc(sizeof(double) * 2);
+    double* newkey = malloc(sizeof(double) * 2);
 
     newkey[0] = ((double*) key)[0];
     newkey[1] = ((double*) key)[1];
@@ -381,13 +371,68 @@ static int d2eq(void* key1, void* key2)
     return (((double*) key1)[0] == ((double*) key2)[0]) && (((double*) key1)[1] == ((double*) key2)[1]);
 }
 
+/* 
+ * functions for for int[1] keys 
+ */
+
+static unsigned int i1hash(void* key)
+{
+    return ((unsigned int*) key)[0];
+}
+
+static void* i1cp(void* key)
+{
+    int* newkey = malloc(sizeof(int));
+
+    newkey[0] = ((int*) key)[0];
+
+    return newkey;
+}
+
+static int i1eq(void* key1, void* key2)
+{
+    return (((int*) key1)[0] == ((int*) key2)[0]);
+}
+
+/* 
+ * functions for for int[2] keys 
+ */
+
+static unsigned int i2hash(void* key)
+{
+#if BYTE_PER_INT >= 4
+    unsigned int* v = key;
+
+    return v[0] + (v[1] << 16);
+#else
+#error not implemented
+#endif
+}
+
+static void* i2cp(void* key)
+{
+    int* newkey = malloc(sizeof(int) * 2);
+
+    newkey[0] = ((int*) key)[0];
+    newkey[1] = ((int*) key)[1];
+
+    return newkey;
+}
+
+static int i2eq(void* key1, void* key2)
+{
+    return (((int*) key1)[0] == ((int*) key2)[0]) && (((int*) key1)[1] == ((int*) key2)[1]);
+}
+
 hashtable* ht_create_d1(int size)
 {
+    assert(sizeof(double) == INT_PER_DOUBLE * sizeof(int));
     return ht_create(size, d1cp, d1eq, d1hash);
 }
 
 hashtable* ht_create_d2(int size)
 {
+    assert(sizeof(double) == INT_PER_DOUBLE * sizeof(int));
     return ht_create(size, d2cp, d2eq, d2hash);
 }
 
@@ -396,7 +441,33 @@ hashtable* ht_create_str(int size)
     return ht_create(size, strcp, streq, strhash);
 }
 
-#ifdef HT_TEST
+hashtable* ht_create_i1(int size)
+{
+    return ht_create(size, i1cp, i1eq, i1hash);
+}
+
+hashtable* ht_create_i2(int size)
+{
+    assert(sizeof(int) == BYTE_PER_INT);
+    return ht_create(size, i2cp, i2eq, i2hash);
+}
+
+int ht_getnentries(hashtable* table)
+{
+    return table->n;
+}
+
+int ht_getsize(hashtable* table)
+{
+    return table->size;
+}
+
+int ht_getnfilled(hashtable* table)
+{
+    return table->nhash;
+}
+
+#if defined(HT_TEST)
 
 #include <stdio.h>
 #include <limits.h>
diff --git a/src/modules/grid/grid_gridding/nn/hash.h b/src/modules/grid/grid_gridding/nn/hash.h
index 3ae0cee..87e99b4 100755
--- a/src/modules/grid/grid_gridding/nn/hash.h
+++ b/src/modules/grid/grid_gridding/nn/hash.h
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: hash.h 911 2011-02-14 16:38:15Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           hash.h
@@ -49,6 +46,8 @@ hashtable* ht_create(int size, ht_keycp cp, ht_keyeq eq, ht_key2hash hash);
 hashtable* ht_create_d1(int size);      /* double[1] */
 hashtable* ht_create_d2(int size);      /* double[2] */
 hashtable* ht_create_str(int size);     /* char* */
+hashtable* ht_create_i1(int size);      /* int[1] */
+hashtable* ht_create_i2(int size);      /* int[2] */
 
 /** Destroys a hash table.
  * (Take care of deallocating data by ht_process() prior to destroying the
@@ -95,4 +94,25 @@ void* ht_delete(hashtable* table, void* key);
  */
 void ht_process(hashtable* table, void (*func) (void*));
 
+/** Get the number of committed entries.
+ *
+ * @param table The hash table
+ * @return The number of committed entries
+ */
+int ht_getnentries(hashtable* table);
+
+/** Get the size of the table.
+ *
+ * @param table The hash table
+ * @return The size of the table
+ */
+int ht_getsize(hashtable* table);
+
+/** Get the number of table elements filled.
+ *
+ * @param table The hash table
+ * @return The number of table elements filled
+ */
+int ht_getnfilled(hashtable* table);
+
 #endif                          /* _HASH_H */
diff --git a/src/modules/grid/grid_gridding/nn/istack.c b/src/modules/grid/grid_gridding/nn/istack.c
index bce8f8c..827c2cd 100755
--- a/src/modules/grid/grid_gridding/nn/istack.c
+++ b/src/modules/grid/grid_gridding/nn/istack.c
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: istack.c 911 2011-02-14 16:38:15Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           istack.c
@@ -25,19 +22,22 @@
 #include <string.h>
 #include "istack.h"
 
-static void istack_init(istack* s)
+istack* istack_create(void)
 {
+    istack* s = malloc(sizeof(istack));
+
     s->n = 0;
     s->nallocated = STACK_NSTART;
-    s->v = (int *)malloc(STACK_NSTART * sizeof(int));
+    s->v = malloc(STACK_NSTART * sizeof(int));
+    return s;
 }
 
-istack* istack_create()
+void istack_destroy(istack* s)
 {
-    istack* s = (istack *)malloc(sizeof(istack));
-
-    istack_init(s);
-    return s;
+    if (s != NULL) {
+        free(s->v);
+        free(s);
+    }
 }
 
 void istack_reset(istack* s)
@@ -58,8 +58,8 @@ int istack_contains(istack* s, int v)
 void istack_push(istack* s, int v)
 {
     if (s->n == s->nallocated) {
-        s->v = (int *)realloc(s->v, (s->nallocated + STACK_NINC) * sizeof(int));
-        s->nallocated += STACK_NINC;
+        s->nallocated *= 2;
+        s->v = realloc(s->v, s->nallocated * sizeof(int));
     }
 
     s->v[s->n] = v;
@@ -72,10 +72,12 @@ int istack_pop(istack* s)
     return s->v[s->n];
 }
 
-void istack_destroy(istack* s)
+int istack_getnentries(istack* s)
 {
-    if (s != NULL) {
-        free(s->v);
-        free(s);
-    }
+    return s->n;
+}
+
+int* istack_getentries(istack* s)
+{
+    return s->v;
 }
diff --git a/src/modules/grid/grid_gridding/nn/istack.h b/src/modules/grid/grid_gridding/nn/istack.h
index aa0ec90..bce3ae8 100755
--- a/src/modules/grid/grid_gridding/nn/istack.h
+++ b/src/modules/grid/grid_gridding/nn/istack.h
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: istack.h 911 2011-02-14 16:38:15Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           istack.h
@@ -21,17 +18,23 @@
 #if !defined(_ISTACK_H)
 #define _ISTACK_H
 
-typedef struct {
+#if !defined(_ISTACK_STRUCT)
+#define _ISTACK_STRUCT
+struct istack;
+typedef struct istack istack;
+#endif
+
+struct istack {
     int n;
     int nallocated;
     int* v;
-} istack;
+};
 
-int istack_contains(istack* s, int v);
-istack* istack_create();
+istack* istack_create(void);
 void istack_destroy(istack* s);
 void istack_push(istack* s, int v);
 int istack_pop(istack* s);
+int istack_contains(istack* s, int v);
 void istack_reset(istack* s);
 
 #endif
diff --git a/src/modules/grid/grid_gridding/nn/lpi.c b/src/modules/grid/grid_gridding/nn/lpi.c
index de6417c..765f5ac 100755
--- a/src/modules/grid/grid_gridding/nn/lpi.c
+++ b/src/modules/grid/grid_gridding/nn/lpi.c
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: lpi.c 911 2011-02-14 16:38:15Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           linear.c
@@ -28,6 +25,8 @@
 #include <stdio.h>
 #include "nan.h"
 #include "delaunay.h"
+#include "nn.h"
+#include "nn_internal.h"
 
 typedef struct {
     double w[3];
@@ -48,10 +47,10 @@ int delaunay_xytoi(delaunay* d, point* p, int seed);
 lpi* lpi_build(delaunay* d)
 {
     int i;
-    lpi* l = (lpi *)malloc(sizeof(lpi));
+    lpi* l = malloc(sizeof(lpi));
 
     l->d = d;
-    l->weights = (lweights *)malloc(d->ntriangles * sizeof(lweights));
+    l->weights = malloc(d->ntriangles * sizeof(lweights));
 
     for (i = 0; i < d->ntriangles; ++i) {
         triangle* t = &d->triangles[i];
@@ -119,8 +118,7 @@ void lpi_interpolate_point(lpi* l, point* p)
         p->z = NaN;
 }
 
-/* Linearly interpolates data from one array of points for another array of
- * points.
+/* Linearly interpolates data in an array of points.
  *
  * @param nin Number of input points
  * @param pin Array of input points [pin]
diff --git a/src/modules/grid/grid_gridding/nn/nan.h b/src/modules/grid/grid_gridding/nn/nan.h
index 6a8e11c..4a3add1 100755
--- a/src/modules/grid/grid_gridding/nn/nan.h
+++ b/src/modules/grid/grid_gridding/nn/nan.h
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: nan.h 911 2011-02-14 16:38:15Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           nan.h
@@ -22,22 +19,22 @@
 #if !defined(_NAN_H)
 #define _NAN_H
 
+#if defined(__GNUC__) && !defined(__INTEL_COMPILER)
 
-#if defined(__GNUC__)
-	static const double NaN = 0.0 / 0.0;
+static const double NaN = 0.0 / 0.0;
 
-#elif defined(BIG_ENDIAN) || defined(_BIG_ENDIAN)
-	static const long long lNaN = 0x7fffffffffffffff;
-	#define NaN (*(double*)&lNaN)
+#elif defined(_WIN32)
 
-#elif defined(_SAGA_VC)
-	static const __int64 lNaN = 0xfff8000000000000;
-	#define NaN (*(double*)&lNaN)
+static unsigned _int64 lNaN = ((unsigned _int64) 1 << 63) - 1;
+
+#define NaN (*(double*)&lNaN)
 
 #else
-	static const long long lNaN = 0xfff8000000000000;
-	#define NaN (*(double*)&lNaN)
-#endif
 
+static const long long lNaN = ((unsigned long long) 1 << 63) - 1;
+
+#define NaN (*(double*)&lNaN)
+
+#endif
 
 #endif
diff --git a/src/modules/grid/grid_gridding/nn/nn.h b/src/modules/grid/grid_gridding/nn/nn.h
index b218f83..b1a9636 100755
--- a/src/modules/grid/grid_gridding/nn/nn.h
+++ b/src/modules/grid/grid_gridding/nn/nn.h
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: nn.h 1082 2011-06-08 08:07:00Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           nn.h
@@ -21,14 +18,14 @@
 #if !defined(_NN_H)
 #define _NN_H
 
-//---------------------------------------------------------
-#ifdef __cplusplus
-extern "C" {
+#ifdef __cplusplus
+extern "C" {
 #endif
-//---------------------------------------------------------
 
 typedef enum { SIBSON, NON_SIBSONIAN } NN_RULE;
 
+/* "point" is a basic data structure in this package.
+ */
 #if !defined(_POINT_STRUCT)
 #define _POINT_STRUCT
 typedef struct {
@@ -38,31 +35,68 @@ typedef struct {
 } point;
 #endif
 
+/* Constructors for interpolators in this package require Delaunay
+ * triangulation of the input data.
+ */
+#if !defined(_DELAUNAY_STRUCT)
+#define _DELAUNAY_STRUCT
+struct delaunay;
+typedef struct delaunay delaunay;
+#endif
+
+/** Builds Delaunay triangulation of the given array of points.
+ *
+ * @param np Number of points
+ * @param points Array of points [np] (input)
+ * @param ns Number of forced segments
+ * @param segments Array of (forced) segment endpoint indices [2*ns]
+ * @param nh Number of holes
+ * @param holes Array of hole (x,y) coordinates [2*nh]
+ * @return Delaunay triangulation structure with triangulation results
+ */
+delaunay* delaunay_build(int np, point points[], int ns, int segments[], int nh, double holes[]);
+
+/** Destroys Delaunay triangulation.
+ *
+ * @param d Structure to be destroyed
+ */
+void delaunay_destroy(delaunay* d);
+
 /** Smoothes the input point array by averaging the input x,y and z values
  ** for each cell within virtual rectangular nx by ny grid. The corners of the
  ** grid are created from min and max values of the input array. It also frees
  ** the original array and returns results and new dimension via original
  ** data and size pointers.
  *
- * @param pn Pointer to number of points (input/output)
- * @param ppoints Pointer to array of points (input/output) [*pn]
+ * @param n Pointer to number of points (input/output)
+ * @param p Pointer to array of points (input/output) [*n]
  * @param nx Number of x nodes in decimation
  * @param ny Number of y nodes in decimation
  */
-void points_thin(int* n, point** points, int nx, int ny);
+void points_thingrid(int* n, point** p, int nx, int ny);
+
+/** Smoothes the input point array by averaging the input data (X,Y and Z
+ ** values) until the sum of the distances between points does not exceed the
+ ** specified maximum value. It also frees the original array and returns
+ ** results and new dimension via original data and size pointers. 
+ *
+ * @param n Pointer to number of points (input/output)
+ * @param p Pointer to array of points (input/output) [*n]
+ * @param rmax Maximum allowed accumulated distance
+ */
+void points_thinlin(int* n, point** p, double rmax);
 
-/** Generates rectangular grid nx by ny using min and max x and y values from
- ** the input point array. Allocates space for the output point array, be sure
- ** to free it when necessary!
+/* Calculates X and/or Y ranges of the input array of points. If necessary,
+ * adjusts the range according to the zoom value.
  *
  * @param n Number of points
- * @param points Array of points [n]
- * @param nx Number of x nodes
- * @param ny Number of y nodes
- * @param nout Pointer to number of output points
- * @param pout Ppointer to array of output points [*nout]
+ * @param points Array of points
+ * @param xmin Min X value if *xmin = NaN on input, not changed otherwise
+ * @param xmax Max X value if *xmax = NaN on input, not changed otherwise
+ * @param ymin Min Y value if *ymin = NaN on input, not changed otherwise
+ * @param ymax Max Y value if *ymax = NaN on input, not changed otherwise
  */
-void points_generate1(int n, point points[], int nx, int ny, double zoom, int* nout, point** pout);
+void points_getrange(int n, point points[], double zoom, double* xmin, double* xmax, double* ymin, double* ymax);
 
 /** Generates rectangular grid nx by ny using specified min and max x and y 
  ** values. Allocates space for the output point array, be sure to free it
@@ -78,7 +112,7 @@ void points_generate1(int n, point points[], int nx, int ny, double zoom, int* n
  * @param nout Pointer to number of output points
  * @param pout Pointer to array of output points [*nout]
  */
-void points_generate2(double xmin, double xmax, double ymin, double ymax, int nx, int ny, int* nout, point** pout);
+void points_generate(double xmin, double xmax, double ymin, double ymax, int nx, int ny, int* nout, point** pout);
 
 /** Reads array of points from a columnar file.
  *
@@ -106,39 +140,12 @@ double points_scaletosquare(int n, point* points);
  */
 void points_scale(int n, point* points, double k);
 
-/** Structure to perform the Delaunay triangulation of a given array of points.
- *
- * Contains a deep copy of the input array of points.
- * Contains triangles, circles and edges resulted from the triangulation.
- * Contains neighbour triangles for each triangle.
- * Contains point to triangle map.
- */
-struct delaunay;
-typedef struct delaunay delaunay;
-
-/** Builds Delaunay triangulation of the given array of points.
- *
- * @param np Number of points
- * @param points Array of points [np] (input)
- * @param ns Number of forced segments
- * @param segments Array of (forced) segment endpoint indices [2*ns]
- * @param nh Number of holes
- * @param holes Array of hole (x,y) coordinates [2*nh]
- * @return Delaunay triangulation with triangulation results
- */
-delaunay* delaunay_build(int np, point points[], int ns, int segments[], int nh, double holes[]);
-
-/** Destroys Delaunay triangulation.
+/** `lpi' -- "Linear Point Interpolator" is a structure for linear
+ ** interpolation of data on a "point-to-point" basis.
  *
- * @param d Structure to be destroyed
- */
-void delaunay_destroy(delaunay* d);
-
-/** `lpi' -- "linear point interpolator" is a structure for
- * conducting linear interpolation on a given data on a "point-to-point" basis.
- * It interpolates linearly within each triangle resulted from the Delaunay
- * triangluation of input data. `lpi' is much faster than all
- * Natural Neighbours interpolators below.
+ * `lpi' interpolates linearly within each triangle resulted from the Delaunay
+ * triangluation of the input data. `lpi' is much faster than all Natural
+ * Neighbours interpolators below.
  */
 struct lpi;
 typedef struct lpi lpi;
@@ -163,8 +170,7 @@ void lpi_destroy(lpi* l);
  */
 void lpi_interpolate_point(lpi* l, point* p);
 
-/* Linearly interpolates data from one array of points for another array of
- * points.
+/** Linearly interpolates data in an array of points.
  *
  * @param nin Number of input points
  * @param pin Array of input points [pin]
@@ -173,12 +179,12 @@ void lpi_interpolate_point(lpi* l, point* p);
  */
 void lpi_interpolate_points(int nin, point pin[], int nout, point pout[]);
 
-/** `nnpi' -- "Natural Neighbours point interpolator" is a
- * structure for conducting Natural Neighbours interpolation on a given data on
- * a "point-to-point" basis. Because it involves weight calculation for each
- * next output point, it is not particularly suitable for consequitive
- * interpolations on the same set of observation points -- use 
- * `nnhpi' or `nnai' in these cases.
+/** `nnpi' -- "Natural Neighbours Point Interpolator" is a structure for
+ ** Natural Neighbours interpolation of data on a "point-to-point" basis.
+ *
+ * Because it involves weight calculation for each output point, it is not
+ * designed to take advantage of consequitive interpolations on the same 
+ * sets of input and output points -- use `nnhpi' or `nnai' in these cases.
  */
 struct nnpi;
 typedef struct nnpi nnpi;
@@ -196,15 +202,14 @@ nnpi* nnpi_create(delaunay* d);
  */
 void nnpi_destroy(nnpi* nn);
 
-/** Finds Natural Neighbours-interpolated value in a point.
+/** Performs Natural Neighbours interpolation in a point.
  *
  * @param nn NN point interpolator
  * @param p Point to be interpolated (p->x, p->y -- input; p->z -- output)
  */
 void nnpi_interpolate_point(nnpi* nn, point* p);
 
-/** Natural Neighbours-interpolates data in one array of points for another
- ** array of points.
+/** Performs Natural Neighbours interpolation in an array of points.
  *
  * @param nin Number of input points
  * @param pin Array of input points [pin]
@@ -215,16 +220,21 @@ void nnpi_interpolate_point(nnpi* nn, point* p);
 void nnpi_interpolate_points(int nin, point pin[], double wmin, int nout, point pout[]);
 
 /** Sets minimal allowed weight for Natural Neighbours interpolation.
+ *
+ * For Sibson interpolation, setting wmin = 0 is equivalent to interpolating
+ * inside convex hall of the data only (returning NaNs otherwise).
+ *
  * @param nn Natural Neighbours point interpolator
  * @param wmin Minimal allowed weight
  */
 void nnpi_setwmin(nnpi* nn, double wmin);
 
-/** `nnhpi' is a structure for conducting consequitive
- * Natural Neighbours interpolations on a given spatial data set in a random
- * sequence of points from a set of finite size, taking advantage of repeated
- * interpolations in the same point. It allows to modify Z
- * coordinate of data between interpolations.
+/** `nnhpi' -- "Natural Neighbours Hashing Point Interpolator" -- is a
+ ** structure for conducting consequitive Natural Neighbours interpolations
+ ** from the same set of observation points, designed to take advantage of
+ ** repeated interpolations in the same point. It allows to modify Z
+ ** coordinate of observed data between interpolations (because this does not
+ ** affect the interpolant weights).
  */
 struct nnhpi;
 typedef struct nnhpi nnhpi;
@@ -243,7 +253,7 @@ nnhpi* nnhpi_create(delaunay* d, int size);
  */
 void nnhpi_destroy(nnhpi* nn);
 
-/** Finds Natural Neighbours-interpolated value in a point.
+/** Performs Natural Neighbours interpolation in a point.
  *
  * @param nnhpi NN hashing point interpolator
  * @param p Point to be interpolated (p->x, p->y -- input; p->z -- output)
@@ -251,6 +261,7 @@ void nnhpi_destroy(nnhpi* nn);
 void nnhpi_interpolate(nnhpi* nn, point* p);
 
 /** Modifies interpolated data.
+ *
  * Finds point* pd in the underlying Delaunay triangulation such that
  * pd->x = p->x and pd->y = p->y, and copies p->z to pd->z. Exits with error
  * if the point is not found.
@@ -261,27 +272,35 @@ void nnhpi_interpolate(nnhpi* nn, point* p);
 void nnhpi_modify_data(nnhpi* nn, point* p);
 
 /** Sets minimal allowed weight for Natural Neighbours interpolation.
+ *
+ * For Sibson interpolation, setting wmin = 0 is equivalent to interpolating
+ * inside convex hall of the data only (returning NaNs otherwise).
+ *
  * @param nn Natural Neighbours point hashing interpolator
  * @param wmin Minimal allowed weight
  */
 void nnhpi_setwmin(nnhpi* nn, double wmin);
 
-/* `nnai' is a tructure for conducting consequitive Natural
- * Neighbours interpolations on a given spatial data set in a given array of
- * points. It allows to modify Z coordinate of data between interpolations.
- * `nnai' is the fastest of the three Natural Neighbours
- * interpolators here.
+/** `nnai' -- "Natural Neighbours Array Interpolator" is a structure for
+ ** conducting consequitive Natural Neighbours interpolations from the same
+ ** set of observation points in the same set of points. It allows to modify Z
+ ** coordinate of data between interpolations (because this does not
+ ** affect the interpolant weights).
+ *
+ * `nnai' is the fastest of the three Natural Neighbours interpolators in `nn'
+ * library.
  */
 struct nnai;
 typedef struct nnai nnai;
 
-/** Builds Natural Neighbours array interpolator. This includes calculation of
- * weights used in nnai_interpolate().
+/** Builds Natural Neighbours array interpolator.
+ *
+ * This includes calculation of weights used in nnai_interpolate().
  *
  * @param d Delaunay triangulation
  * @return Natural Neighbours interpolation
  */
-nnai* nnai_build(delaunay* d, long n, double* x, double* y);
+nnai* nnai_build(delaunay* d, int n, double* x, double* y);
 
 /** Destroys Natural Neighbours array interpolator.
  *
@@ -290,8 +309,8 @@ nnai* nnai_build(delaunay* d, long n, double* x, double* y);
 void nnai_destroy(nnai* nn);
 
 /** Conducts NN interpolation in a fixed array of output points using 
- * data specified for a fixed array of input points. Uses pre-calculated
- * weights.
+ ** data specified in a fixed array of input points. Uses pre-calculated
+ ** weights.
  *
  * @param nn NN array interpolator
  * @param zin input data [nn->d->npoints]
@@ -300,6 +319,10 @@ void nnai_destroy(nnai* nn);
 void nnai_interpolate(nnai* nn, double* zin, double* zout);
 
 /** Sets minimal allowed weight for Natural Neighbours interpolation.
+ *
+ * For Sibson interpolation, setting wmin = 0 is equivalent to interpolating
+ * inside convex hall of the input data only (returning NaNs otherwise).
+ *
  * @param nn Natural Neighbours array interpolator
  * @param wmin Minimal allowed weight
  */
@@ -312,9 +335,10 @@ void nnai_setwmin(nnai* nn, double wmin);
  */
 extern int nn_verbose;
 
-/* Switches between weight calculation methods.
- * SIBSON -- classic Sibson method
- * NON_SIBSONIAN -- simpler and (I think) more robust method
+/* Switches between different formulations for NN weights.
+ * SIBSON -- classic formulation by Sibson
+ * NON_SIBSONIAN -- alternative formulation by Belikov & Semenov
+ *                  
  */
 extern NN_RULE nn_rule;
 
@@ -326,17 +350,9 @@ extern char* nn_version;
  * debugging purposes).
  */
 extern int nn_test_vertice;
-
-//---------------------------------------------------------
-#include <float.h>
-
-#include "delaunay.h"
-#include "nan.h"
-
-#ifdef __cplusplus
-}	// extern "C" {
+
+#ifdef __cplusplus
+}
 #endif
-//---------------------------------------------------------
-
 
 #endif                          /* _NN_H */
diff --git a/src/modules/grid/grid_gridding/nn/nn_internal.h b/src/modules/grid/grid_gridding/nn/nn_internal.h
new file mode 100755
index 0000000..3eb91fb
--- /dev/null
+++ b/src/modules/grid/grid_gridding/nn/nn_internal.h
@@ -0,0 +1,38 @@
+/******************************************************************************
+ *
+ * File:           nn_internal.h
+ *
+ * Created:        11/03/2005
+ *
+ * Author:         Pavel Sakov
+ *                 CSIRO Marine Research
+ *
+ * Purpose:        Header for internal stuff in the nn library
+ *
+ * Description:    None
+ *
+ * Revisions:      None
+ *
+ *****************************************************************************/
+
+#if !defined(_NN_INTERNAL_H)
+#define _NN_INTERNAL_H
+
+/*
+ * nnpi.c
+ */
+void nnpi_calculate_weights(nnpi* nn, point* p);
+int nnpi_get_nvertices(nnpi* nn);
+int* nnpi_get_vertices(nnpi* nn);
+double* nnpi_get_weights(nnpi* nn);
+
+/*
+ * nncommon.c, nncommon-vulnerable.c
+ */
+int circle_build1(circle* c, point* p0, point* p1, point* p2);
+int circle_build2(circle* c, point* p0, point* p1, point* p2);
+int circle_contains(circle* c, point* p);
+void nn_quit(char* format, ...);
+int str2double(char* token, double* value);
+
+#endif
diff --git a/src/modules/grid/grid_gridding/nn/nnai.c b/src/modules/grid/grid_gridding/nn/nnai.c
index 9c12eaf..676ba07 100755
--- a/src/modules/grid/grid_gridding/nn/nnai.c
+++ b/src/modules/grid/grid_gridding/nn/nnai.c
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: nnai.c 1082 2011-06-08 08:07:00Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           nnai.c
@@ -13,12 +10,12 @@
  * Purpose:        Code for:
  *                 -- Natural Neighbours Array Interpolator
  *
- * Description:    `nnai' is a tructure for conducting
- *                 consequitive Natural Neighbours interpolations on a given
- *                 spatial data set in a given array of points. It allows to
- *                 modify Z coordinate of data in between interpolations.
- *                 `nnai' is the fastest of the three Natural
- *                 Neighbours interpolators in `nn' library.
+ * Description:    `nnai' is a structure for conducting repeated Natural
+ *                 Neighbours interpolations when locations of input and output
+ *                 data points do not change. It re-uses interpolation weights
+ *                 calculated during initialisation and can be substantially
+ *                 faster than the more generic Natural Neighbours Point
+ *                 Interpolator `nnpi'.
  *
  * Revisions:      None
  *
@@ -28,9 +25,10 @@
 #include <stdio.h>
 #include <string.h>
 #include <math.h>
-#include "nn.h"
-#include "delaunay.h"
 #include "nan.h"
+#include "delaunay.h"
+#include "nn.h"
+#include "nn_internal.h"
 
 typedef struct {
     int nvertices;
@@ -47,24 +45,16 @@ struct nnai {
     nn_weights* weights;
 };
 
-void nn_quit(char* format, ...);
-void nnpi_calculate_weights(nnpi* nn);
-int nnpi_get_nvertices(nnpi* nn);
-int* nnpi_get_vertices(nnpi* nn);
-double* nnpi_get_weights(nnpi* nn);
-void nnpi_normalize_weights(nnpi* nn);
-void nnpi_reset(nnpi* nn);
-void nnpi_set_point(nnpi* nn, point* p);
-
-/* Builds Natural Neighbours array interpolator. This includes calculation of
- * weights used in nnai_interpolate().
+/** Builds Natural Neighbours array interpolator.
+ *
+ * This includes calculation of weights used in nnai_interpolate().
  *
  * @param d Delaunay triangulation
  * @return Natural Neighbours interpolation
  */
-nnai* nnai_build(delaunay* d, long n, double* x, double* y)
+nnai* nnai_build(delaunay* d, int n, double* x, double* y)
 {
-    nnai* nn = (nnai *)malloc(sizeof(nnai));
+    nnai* nn = malloc(sizeof(nnai));
     nnpi* nnpi = nnpi_create(d);
     int* vertices;
     double* weights;
@@ -75,11 +65,11 @@ nnai* nnai_build(delaunay* d, long n, double* x, double* y)
 
     nn->d = d;
     nn->n = n;
-    nn->x = (double *)malloc(n * sizeof(double));
+    nn->x = malloc(n * sizeof(double));
     memcpy(nn->x, x, n * sizeof(double));
-    nn->y = (double *)malloc(n * sizeof(double));
+    nn->y = malloc(n * sizeof(double));
     memcpy(nn->y, y, n * sizeof(double));
-    nn->weights = (nn_weights *)malloc(n * sizeof(nn_weights));
+    nn->weights = malloc(n * sizeof(nn_weights));
 
     for (i = 0; i < n; ++i) {
         nn_weights* w = &nn->weights[i];
@@ -88,18 +78,15 @@ nnai* nnai_build(delaunay* d, long n, double* x, double* y)
         p.x = x[i];
         p.y = y[i];
 
-        nnpi_reset(nnpi);
-        nnpi_set_point(nnpi, &p);
-        nnpi_calculate_weights(nnpi);
-        nnpi_normalize_weights(nnpi);
+        nnpi_calculate_weights(nnpi, &p);
 
         vertices = nnpi_get_vertices(nnpi);
         weights = nnpi_get_weights(nnpi);
 
         w->nvertices = nnpi_get_nvertices(nnpi);
-        w->vertices = (int *)malloc(w->nvertices * sizeof(int));
+        w->vertices = malloc(w->nvertices * sizeof(int));
         memcpy(w->vertices, vertices, w->nvertices * sizeof(int));
-        w->weights = (double *)malloc(w->nvertices * sizeof(double));
+        w->weights = malloc(w->nvertices * sizeof(double));
         memcpy(w->weights, weights, w->nvertices * sizeof(double));
     }
 
@@ -130,7 +117,7 @@ void nnai_destroy(nnai* nn)
 }
 
 /* Conducts NN interpolation in a fixed array of output points using 
- * data specified for a fixed array of input points. Uses pre-calculated
+ * data specified in a fixed array of input points. Uses pre-calculated
  * weights.
  *
  * @param nn NN array interpolator
@@ -160,7 +147,11 @@ void nnai_interpolate(nnai* nn, double* zin, double* zout)
     }
 }
 
-/** Sets minimal allowed weight for Natural Neighbours interpolation.
+/* Sets minimal allowed weight for Natural Neighbours interpolation.
+ *
+ * For Sibson interpolation, setting wmin = 0 is equivalent to interpolating
+ * inside convex hall of the data only (returning NaNs otherwise).
+ *
  * @param nn Natural Neighbours array interpolator
  * @param wmin Minimal allowed weight
  */
@@ -192,21 +183,17 @@ static double franke(double x, double y)
         - 0.2 * exp(-SQ(x - 4.0) - SQ(y - 7.0));
 }
 
-/* *INDENT-OFF* */
 static void usage()
 {
-    printf(
-"Usage: nn_test [-v|-V] [-n <nin> <nxout>]\n"
-"Options:\n"
-"  -a              -- use non-Sibsonian interpolation rule\n"
-"  -n <nin> <nout>:\n"
-"            <nin> -- number of input points (default = 10000)\n"
-"           <nout> -- number of output points per side (default = 64)\n"
-"  -v              -- verbose\n"
-"  -V              -- very verbose\n"
-);
+    printf("Usage: nnai_test [-v|-V] [-n <nin> <nxout>]\n");
+    printf("Options:\n");
+    printf("  -a              -- use non-Sibsonian interpolation rule\n");
+    printf("  -n <nin> <nout>:\n");
+    printf("            <nin> -- number of input points (default = 10000)\n");
+    printf("           <nout> -- number of output points per side (default = 64)\n");
+    printf("  -v              -- verbose\n");
+    printf("  -V              -- very verbose\n");
 }
-/* *INDENT-ON* */
 
 int main(int argc, char* argv[])
 {
@@ -272,8 +259,8 @@ int main(int argc, char* argv[])
      */
     printf("  generating data:\n");
     fflush(stdout);
-    pin = (point *)malloc(nin * sizeof(point));
-    zin = (double *)malloc(nin * sizeof(double));
+    pin = malloc(nin * sizeof(point));
+    zin = malloc(nin * sizeof(double));
     for (i = 0; i < nin; ++i) {
         point* p = &pin[i];
 
@@ -295,10 +282,10 @@ int main(int argc, char* argv[])
     /*
      * generate output points 
      */
-    points_generate2(-0.1, 1.1, -0.1, 1.1, nx, nx, &nout, &pout);
-    xout = (double *)malloc(nout * sizeof(double));
-    yout = (double *)malloc(nout * sizeof(double));
-    zout = (double *)malloc(nout * sizeof(double));
+    points_generate(-0.1, 1.1, -0.1, 1.1, nx, nx, &nout, &pout);
+    xout = malloc(nout * sizeof(double));
+    yout = malloc(nout * sizeof(double));
+    zout = malloc(nout * sizeof(double));
     for (i = 0; i < nout; ++i) {
         point* p = &pout[i];
 
@@ -346,6 +333,9 @@ int main(int argc, char* argv[])
     if (!nn_verbose)
         printf("    control point: (%f, %f, %f) (expected z = %f)\n", xout[cpi], yout[cpi], zout[cpi], franke(xout[cpi], yout[cpi]));
 
+    /*
+     * interpolate one more time
+     */
     printf("  interpolating one more time:\n");
     fflush(stdout);
     nnai_interpolate(nn, zin, zout);
@@ -364,6 +354,9 @@ int main(int argc, char* argv[])
     if (!nn_verbose)
         printf("    control point: (%f, %f, %f) (expected z = %f)\n", xout[cpi], yout[cpi], zout[cpi], franke(xout[cpi], yout[cpi]));
 
+    /*
+     * change the data
+     */
     printf("  entering new data:\n");
     fflush(stdout);
     for (i = 0; i < nin; ++i) {
@@ -375,6 +368,9 @@ int main(int argc, char* argv[])
             printf("    (%f, %f, %f)\n", p->x, p->y, p->z);
     }
 
+    /*
+     * interpolate
+     */
     printf("  interpolating:\n");
     fflush(stdout);
     nnai_interpolate(nn, zin, zout);
@@ -385,6 +381,9 @@ int main(int argc, char* argv[])
     if (!nn_verbose)
         printf("    control point: (%f, %f, %f) (expected z = %f)\n", xout[cpi], yout[cpi], zout[cpi], xout[cpi] * xout[cpi] - yout[cpi] * yout[cpi]);
 
+    /*
+     * restore old data
+     */
     printf("  restoring data:\n");
     fflush(stdout);
     for (i = 0; i < nin; ++i) {
@@ -396,6 +395,9 @@ int main(int argc, char* argv[])
             printf("    (%f, %f, %f)\n", p->x, p->y, p->z);
     }
 
+    /*
+     * interpolate
+     */
     printf("  interpolating:\n");
     fflush(stdout);
     nnai_interpolate(nn, zin, zout);
diff --git a/src/modules/grid/grid_gridding/nn/nncommon-vulnerable.c b/src/modules/grid/grid_gridding/nn/nncommon-vulnerable.c
new file mode 100755
index 0000000..0eaec2b
--- /dev/null
+++ b/src/modules/grid/grid_gridding/nn/nncommon-vulnerable.c
@@ -0,0 +1,90 @@
+/******************************************************************************
+ *
+ * File:           nncommon-vulnerable.c
+ *
+ * Created:        05/08/2004
+ *
+ * Author:         Pavel Sakov
+ *                 CSIRO Marine Research
+ *
+ * Purpose:        Stuff for NN interpolation library found to be vulnerable
+ *                 from -O2 optimisation by gcc.
+ *
+ * Description:    None
+ *
+ * Revisions:      07/04/2005 PS: Changed numerics to force underflow when
+ *                 there is a substantial loss of precision.
+ *                 15/04/2005 PS: Further improved numerics. Looks like it
+ *                 became pretty good, so I had to split circle_build() into
+ *                 circle_build1() -- for general use, and circle_build2() --
+ *                 for use in nnpi_triangle_process() (it signals loss of
+ *                 precision in Watson's algorithm).
+ *
+ *****************************************************************************/
+
+#include <math.h>
+#include "delaunay.h"
+#include "nan.h"
+#include "nn.h"
+#include "nn_internal.h"
+
+#define MULT 1.0e+7
+
+int circle_build1(circle* c, point* p1, point* p2, point* p3)
+{
+    double x2 = p2->x - p1->x;
+    double y2 = p2->y - p1->y;
+    double x3 = p3->x - p1->x;
+    double y3 = p3->y - p1->y;
+
+    double denom = x2 * y3 - y2 * x3;
+    double frac;
+
+    if (denom == 0.0) {
+        c->x = NaN;
+        c->y = NaN;
+        c->r = NaN;
+        return 0;
+    }
+
+    frac = (x2 * (x2 - x3) + y2 * (y2 - y3)) / denom;
+    c->x = (x3 + frac * y3) / 2.0;
+    c->y = (y3 - frac * x3) / 2.0;
+    c->r = hypot(c->x, c->y);
+    c->x += p1->x;
+    c->y += p1->y;
+
+    return 1;
+}
+
+int circle_build2(circle* c, point* p1, point* p2, point* p3)
+{
+    double x2 = p2->x - p1->x;
+    double y2 = p2->y - p1->y;
+    double x3 = p3->x - p1->x;
+    double y3 = p3->y - p1->y;
+
+    double denom = x2 * y3 - y2 * x3;
+    double frac;
+
+    if (denom == 0) {
+        c->x = NaN;
+        c->y = NaN;
+        c->r = NaN;
+        return 0;
+    }
+
+    frac = (x2 * (x2 - x3) + y2 * (y2 - y3)) / denom;
+    c->x = (x3 + frac * y3) / 2.0;
+    c->y = (y3 - frac * x3) / 2.0;
+    c->r = hypot(c->x, c->y);
+    if (c->r > (fabs(x2) + fabs(x3) + fabs(y2) + fabs(y3)) * MULT) {
+        c->x = NaN;
+        c->y = NaN;
+    } else {
+        c->x += p1->x;
+        c->y += p1->y;
+    }
+
+    return 1;
+}
diff --git a/src/modules/grid/grid_gridding/nn/nncommon.c b/src/modules/grid/grid_gridding/nn/nncommon.c
index e9f5ef5..15a4cc5 100755
--- a/src/modules/grid/grid_gridding/nn/nncommon.c
+++ b/src/modules/grid/grid_gridding/nn/nncommon.c
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: nncommon.c 968 2011-03-25 13:26:46Z oconrad $
- *********************************************************/
 /******************************************************************************
  *
  * File:           nncommon.c
@@ -20,11 +17,10 @@
  *                   necessary.
  *                 09/04/2003 PS: Modified points_read() to read from a
  *                   file specified by name, not by handle.
+ *                 05/08/2004 PS: Moved circle_build() to
+ *                   nncommon-vulnerable.c.
  *
  *****************************************************************************/
-#ifdef _SAGA_MSW
-   #define isnan    _isnan
-#endif
 
 #include <stdlib.h>
 #include <stdio.h>
@@ -35,10 +31,15 @@
 #include <float.h>
 #include <string.h>
 #include <errno.h>
-#include "nan.h"
+#include "config.h"
 #include "delaunay.h"
+#include "nan.h"
+#include "nn.h"
+#include "nn_internal.h"
 
 #define BUFSIZE 1024
+#define EPS 1.0e-15
+#define NALLOCATED_START 1024
 
 int nn_verbose = 0;
 int nn_test_vertice = -1;
@@ -53,7 +54,7 @@ void nn_quit(char* format, ...)
     fflush(stdout);             /* just in case, to have the exit message
                                  * last */
 
-    fprintf(stderr, "error: nn: ");
+    fprintf(stderr, "  error: libnn: ");
     va_start(args, format);
     vfprintf(stderr, format, args);
     va_end(args);
@@ -61,42 +62,12 @@ void nn_quit(char* format, ...)
     exit(1);
 }
 
-int circle_build(circle* c, point* p1, point* p2, point* p3)
-{
-    double x1sq = p1->x * p1->x;
-    double x2sq = p2->x * p2->x;
-    double x3sq = p3->x * p3->x;
-    double y1sq = p1->y * p1->y;
-    double y2sq = p2->y * p2->y;
-    double y3sq = p3->y * p3->y;
-    double t1 = x3sq - x2sq + y3sq - y2sq;
-    double t2 = x1sq - x3sq + y1sq - y3sq;
-    double t3 = x2sq - x1sq + y2sq - y1sq;
-    double D = (p1->x * (p2->y - p3->y) + p2->x * (p3->y - p1->y) + p3->x * (p1->y - p2->y)) * 2.0;
-
-    if (D == 0.0)
-        return 0;
-
-    c->x = (p1->y * t1 + p2->y * t2 + p3->y * t3) / D;
-    c->y = -(p1->x * t1 + p2->x * t2 + p3->x * t3) / D;
-    c->r = hypot(c->x - p1->x, c->y - p1->y);
-
-    return 1;
-}
-
-/* This procedure has taken it final shape after a number of tries. The problem
- * was to have the calculated and stored radii being the same if (x,y) is
- * exactly on the circle border (i.e. not to use FCPU extended precision in
- * the radius calculation). This may have little effect in practice but was
- * important in some tests when both input and output data were placed
- * in rectangular grid nodes.
- */
 int circle_contains(circle* c, point* p)
 {
     return hypot(c->x - p->x, c->y - p->y) <= c->r;
 }
 
-/* Smoothes the input point array by averaging the input x,y and z values
+/* Smoothes the input point array by averaging the input x, y and z values
  * for each cell within virtual rectangular nx by ny grid. The corners of the
  * grid are created from min and max values of the input array. It also frees
  * the original array and returns results and new dimension via original
@@ -107,7 +78,7 @@ int circle_contains(circle* c, point* p)
  * @param nx Number of x nodes in decimation
  * @param ny Number of y nodes in decimation
  */
-void points_thin(int* pn, point** ppoints, int nx, int ny)
+void points_thingrid(int* pn, point** ppoints, int nx, int ny)
 {
     int n = *pn;
     point* points = *ppoints;
@@ -116,15 +87,15 @@ void points_thin(int* pn, point** ppoints, int nx, int ny)
     double ymin = DBL_MAX;
     double ymax = -DBL_MAX;
     int nxy = nx * ny;
-    double* sumx = (double *)calloc(nxy, sizeof(double));
-    double* sumy = (double *)calloc(nxy, sizeof(double));
-    double* sumz = (double *)calloc(nxy, sizeof(double));
-    int* count = (int *)calloc(nxy, sizeof(int));
+    double* sumx = calloc(nxy, sizeof(double));
+    double* sumy = calloc(nxy, sizeof(double));
+    double* sumz = calloc(nxy, sizeof(double));
+    int* count = calloc(nxy, sizeof(int));
     double stepx = 0.0;
     double stepy = 0.0;
     int nnew = 0;
     point* pointsnew = NULL;
-    int i, j, ii;
+    int i, j, ii, index;
 
     if (nn_verbose)
         fprintf(stderr, "thinned: %d points -> ", *pn);
@@ -135,10 +106,6 @@ void points_thin(int* pn, point** ppoints, int nx, int ny)
         *pn = 0;
         if (nn_verbose)
             fprintf(stderr, "0 points");
-			free(sumx);
-			free(sumy);
-			free(sumz);
-			free(count);
         return;
     }
 
@@ -162,13 +129,26 @@ void points_thin(int* pn, point** ppoints, int nx, int ny)
         point* p = &points[ii];
         int index;
 
-        /*
-         * Following is the portion of the code which really depends on the
-         * floating point particulars. Do not be surprised if different
-         * compilers/options give different results here. 
-         */
-        i = (nx == 1) ? 0 : (int)((p->x - xmin) / stepx);
-        j = (ny == 1) ? 0 : (int)((p->y - ymin) / stepy);
+        if (nx == 1)
+            i = 0;
+        else {
+            double fi = (p->x - xmin) / stepx;
+
+            if (fabs(rint(fi) - fi) < EPS)
+                i = rint(fi);
+            else
+                i = (int) floor(fi);
+        }
+        if (ny == 1)
+            j = 0;
+        else {
+            double fj = (p->y - ymin) / stepy;
+
+            if (fabs(rint(fj) - fj) < EPS)
+                j = rint(fj);
+            else
+                j = (int) floor(fj);
+        }
 
         if (i == nx)
             i--;
@@ -190,12 +170,10 @@ void points_thin(int* pn, point** ppoints, int nx, int ny)
         }
     }
 
-    pointsnew = (point *)malloc(nnew * sizeof(point));
+    pointsnew = malloc(nnew * sizeof(point));
 
-    ii = 0;
-    for (j = 0; j < ny; ++j) {
-        for (i = 0; i < nx; ++i) {
-            int index = i + j * nx;
+    for (j = 0, index = 0, ii = 0; j < ny; ++j) {
+        for (i = 0; i < nx; ++i, ++index) {
             int nn = count[index];
 
             if (nn > 0) {
@@ -222,82 +200,169 @@ void points_thin(int* pn, point** ppoints, int nx, int ny)
     *pn = nnew;
 }
 
-/* Generates rectangular grid nx by ny using min and max x and y values from
- * the input point array. Allocates space for the output point array, be sure
- * to free it when necessary!
+/* Smoothes the input point array by averaging the input data (X,Y and Z
+ * values) until the sum of the distances between points does not exceed the
+ * specified maximum value. It also frees the original array and returns
+ * results and new dimension via original data and size pointers. 
  *
- * @param n Number of points
- * @param points Array of points [n]
- * @param nx Number of x nodes
- * @param ny Number of y nodes
- * @param zoom Zoom coefficient
- * @param nout Pointer to number of output points
- * @param pout Pointer to array of output points [*nout]
+ * @param pn Pointer to number of points (input/output)
+ * @param ppoints Pointer to array of points (input/output) [*pn]
+ * @param rmax Maximum allowed accumulated distance
  */
-void points_generate1(int nin, point pin[], int nx, int ny, double zoom, int* nout, point** pout)
+void points_thinlin(int* nin, point** pin, double rmax)
 {
-    double xmin = DBL_MAX;
-    double xmax = -DBL_MAX;
-    double ymin = DBL_MAX;
-    double ymax = -DBL_MAX;
-    double stepx, stepy;
-    double x0, xx, yy;
-    int i, j, ii;
+    int nout = 0;
+    int nallocated = NALLOCATED_START;
+    point* pout = malloc(nallocated * sizeof(point));
+    double n = 0;
+    double sum_x = 0.0;
+    double sum_y = 0.0;
+    double sum_z = 0.0;
+    double sum_r = 0.0;
+    point* pprev = NULL;
+    int i;
 
-    if (nx < 1 || ny < 1) {
-        *pout = NULL;
-        *nout = 0;
-        return;
-    }
+    for (i = 0; i < *nin; ++i) {
+        point* p = &(*pin)[i];
+        double dist;
+
+        if (isnan(p->x) || isnan(p->y) || isnan(p->z)) {
+            if (pprev != NULL) {
+                /*
+                 * write point 
+                 */
+                if (nout == nallocated) {
+                    nallocated = nallocated * 2;
+                    pout = realloc(pout, nallocated * sizeof(point));
+                }
+                pout[nout].x = sum_x / (double) n;
+                pout[nout].y = sum_y / (double) n;
+                pout[nout].z = sum_z / (double) n;
+                nout++;
+                /*
+                 * reset cluster 
+                 */
+                pprev = NULL;
+            }
+            continue;
+        }
 
-    for (ii = 0; ii < nin; ++ii) {
-        point* p = &pin[ii];
+        /*
+         * init cluster 
+         */
+        if (pprev == NULL) {
+            sum_x = p->x;
+            sum_y = p->y;
+            sum_z = p->z;
+            sum_r = 0.0;
+            n = 1;
+            pprev = p;
+            continue;
+        }
 
-        if (p->x < xmin)
-            xmin = p->x;
-        if (p->x > xmax)
-            xmax = p->x;
-        if (p->y < ymin)
-            ymin = p->y;
-        if (p->y > ymax)
-            ymax = p->y;
+        dist = hypot(p->x - pprev->x, p->y - pprev->y);
+        if (sum_r + dist > rmax) {
+            /*
+             * write point 
+             */
+            if (nout == nallocated) {
+                nallocated = nallocated * 2;
+                pout = realloc(pout, nallocated * sizeof(point));
+            }
+            pout[nout].x = sum_x / (double) n;
+            pout[nout].y = sum_y / (double) n;
+            pout[nout].z = sum_z / (double) n;
+            nout++;
+            /*
+             * reset cluster 
+             */
+            pprev = NULL;
+        } else {
+            /*
+             * add to cluster 
+             */
+            sum_x += p->x;
+            sum_y += p->y;
+            sum_z += p->z;
+            sum_r += dist;
+            n++;
+            pprev = p;
+        }
     }
 
-    if (isnan(zoom) || zoom <= 0.0)
-        zoom = 1.0;
+    free(*pin);
+    *pin = realloc(pout, nout * sizeof(point));
+    *nin = nout;
+}
 
-    if (zoom != 1.0) {
-        double xdiff2 = (xmax - xmin) / 2.0;
-        double ydiff2 = (ymax - ymin) / 2.0;
-        double xav = (xmax + xmin) / 2.0;
-        double yav = (ymax + ymin) / 2.0;
+/* Calculates X and/or Y ranges of the input array of points. If necessary,
+ * adjusts the range according to the zoom value.
+ *
+ * @param n Number of points
+ * @param points Array of points
+ * @param xmin Min X value if *xmin = NaN on input, not changed otherwise
+ * @param xmax Max X value if *xmax = NaN on input, not changed otherwise
+ * @param ymin Min Y value if *ymin = NaN on input, not changed otherwise
+ * @param ymax Max Y value if *ymax = NaN on input, not changed otherwise
+ */
+void points_getrange(int n, point points[], double zoom, double* xmin, double* xmax, double* ymin, double* ymax)
+{
+    int i;
 
-        xmin = xav - xdiff2 * zoom;
-        xmax = xav + xdiff2 * zoom;
-        ymin = yav - ydiff2 * zoom;
-        ymax = yav + ydiff2 * zoom;
+    if (xmin != NULL) {
+        if (isnan(*xmin))
+            *xmin = DBL_MAX;
+        else
+            xmin = NULL;
+    }
+    if (xmax != NULL) {
+        if (isnan(*xmax))
+            *xmax = -DBL_MAX;
+        else
+            xmax = NULL;
+    }
+    if (ymin != NULL) {
+        if (isnan(*ymin))
+            *ymin = DBL_MAX;
+        else
+            ymin = NULL;
+    }
+    if (ymax != NULL) {
+        if (isnan(*ymax))
+            *ymax = -DBL_MAX;
+        else
+            ymax = NULL;
     }
 
-    *nout = nx * ny;
-    *pout = (point *)malloc(*nout * sizeof(point));
+    for (i = 0; i < n; ++i) {
+        point* p = &points[i];
 
-    stepx = (nx > 1) ? (xmax - xmin) / (nx - 1) : 0.0;
-    stepy = (ny > 1) ? (ymax - ymin) / (ny - 1) : 0.0;
-    x0 = (nx > 1) ? xmin : (xmin + xmax) / 2.0;
-    yy = (ny > 1) ? ymin : (ymin + ymax) / 2.0;
+        if (xmin != NULL && p->x < *xmin)
+            *xmin = p->x;
+        if (xmax != NULL && p->x > *xmax)
+            *xmax = p->x;
+        if (ymin != NULL && p->y < *ymin)
+            *ymin = p->y;
+        if (ymax != NULL && p->y > *ymax)
+            *ymax = p->y;
+    }
 
-    ii = 0;
-    for (j = 0; j < ny; ++j) {
-        xx = x0;
-        for (i = 0; i < nx; ++i) {
-            point* p = &(*pout)[ii];
+    if (isnan(zoom) || zoom <= 0.0 || zoom == 1.0)
+        return;
 
-            p->x = xx;
-            p->y = yy;
-            xx += stepx;
-            ii++;
-        }
-        yy += stepy;
+    if (xmin != NULL && xmax != NULL) {
+        double xdiff2 = (*xmax - *xmin) / 2.0;
+        double xav = (*xmax + *xmin) / 2.0;
+
+        *xmin = xav - xdiff2 * zoom;
+        *xmax = xav + xdiff2 * zoom;
+    }
+    if (ymin != NULL && ymax != NULL) {
+        double ydiff2 = (*ymax - *ymin) / 2.0;
+        double yav = (*ymax + *ymin) / 2.0;
+
+        *ymin = yav - ydiff2 * zoom;
+        *ymax = yav + ydiff2 * zoom;
     }
 }
 
@@ -314,7 +379,7 @@ void points_generate1(int nin, point pin[], int nx, int ny, double zoom, int* no
  * @param nout Pointer to number of output points
  * @param pout Pointer to array of output points [*nout]
  */
-void points_generate2(double xmin, double xmax, double ymin, double ymax, int nx, int ny, int* nout, point** pout)
+void points_generate(double xmin, double xmax, double ymin, double ymax, int nx, int ny, int* nout, point** pout)
 {
     double stepx, stepy;
     double x0, xx, yy;
@@ -327,7 +392,7 @@ void points_generate2(double xmin, double xmax, double ymin, double ymax, int nx
     }
 
     *nout = nx * ny;
-    *pout = (point *)malloc(*nout * sizeof(point));
+    *pout = malloc(*nout * sizeof(point));
 
     stepx = (nx > 1) ? (xmax - xmin) / (nx - 1) : 0.0;
     stepy = (ny > 1) ? (ymax - ymin) / (ny - 1) : 0.0;
@@ -349,7 +414,7 @@ void points_generate2(double xmin, double xmax, double ymin, double ymax, int nx
     }
 }
 
-static int str2double(char* token, double* value)
+int str2double(char* token, double* value)
 {
     char* end = NULL;
 
@@ -368,8 +433,6 @@ static int str2double(char* token, double* value)
     return 1;
 }
 
-#define NALLOCATED_START 1024
-
 /* Reads array of points from a columnar file.
  *
  * @param fname File name (can be "stdin" for standard input)
@@ -403,14 +466,14 @@ void points_read(char* fname, int dim, int* n, point** points)
         }
     }
 
-    *points = (point *)malloc(nallocated * sizeof(point));
+    *points = malloc(nallocated * sizeof(point));
     *n = 0;
     while (fgets(buf, BUFSIZE, f) != NULL) {
         point* p;
 
         if (*n == nallocated) {
             nallocated *= 2;
-            *points = (point *)realloc(*points, nallocated * sizeof(point));
+            *points = realloc(*points, nallocated * sizeof(point));
         }
 
         p = &(*points)[*n];
@@ -440,7 +503,7 @@ void points_read(char* fname, int dim, int* n, point** points)
         free(*points);
         *points = NULL;
     } else
-        *points = (point *)realloc(*points, *n * sizeof(point));
+        *points = realloc(*points, *n * sizeof(point));
 
     if (f != stdin)
         if (fclose(f) != 0)
diff --git a/src/modules/grid/grid_gridding/nn/nnpi.c b/src/modules/grid/grid_gridding/nn/nnpi.c
index 072f4ef..4b570e7 100755
--- a/src/modules/grid/grid_gridding/nn/nnpi.c
+++ b/src/modules/grid/grid_gridding/nn/nnpi.c
@@ -1,7 +1,4 @@
-/**********************************************************
- * Version $Id: nnpi.c 911 2011-02-14 16:38:15Z reklov_w $
- *********************************************************/
- /*****************************************************************************
+/*****************************************************************************
  *
  * File:           nnpi.c
  *
@@ -14,22 +11,28 @@
  *                 -- Natural Neighbours Point Interpolator
  *                 -- Natural Neighbours Point Hashing Interpolator
  *
- * Description:    `nnpi' -- "Natural Neighbours Point
- *                 Interpolator" -- is a structure for conducting Natural
- *                 Neighbours interpolation on a given data on a
- *                 "point-to-point" basis. Because it involves weight
- *                 calculation for each next output point, it is not
- *                 particularly suitable for consequitive interpolations on
- *                 the same set of observation points -- use
- *                 `nnhpi' or `nnai'
- *                 in these cases.
+ * Description:    `nnpi' -- "Natural Neighbours Point Interpolator" -- is a
+ *                 structure for conducting Natural Neighbours interpolation on
+ *                 a "point-to-point" basis. Because it calculates weights for
+ *                 each output point, `nnpi' does not take advantage of
+ *                 repeated interpolations when locations of input and output
+ *                 data points do not change -- use `nnhpi' or `nnai' in these
+ *                 cases.
  *
- *                 `nnhpi' is a structure for
- *                 conducting consequitive Natural Neighbours interpolations
- *                 on a given spatial data set in a random sequence of points
- *                 from a set of finite size, taking advantage of repeated
- *                 interpolations in the same point. It allows to modify Z
- *                 coordinate of data in between interpolations.
+ *                 `nnhpi' -- "Natural Neighbours Hashing Point Interpolator"
+ *                 is a structure for conducting repeated Natural Neighbours
+ *                 interpolations when (i) input data points have constant
+ *                 locations and (ii) locations of output data points are often
+ *                 repeated.
+ *
+ *                 For Sibson NN interpolation this code uses Dave Watson's
+ *                 algorithm (Watson, D. F. nngridr: An implementation of
+ *                 natural neighbour interpolation. David Watson, 1994).
+ *
+ *                 For non-Sibsonian NN interpolation this code uses Eq.(40)
+ *                 from Sukumar, N., Moran, B., Semenov, A. Yu, and
+ *                 Belikov V. V. Natural neighbour Galerkin methods.
+ *                 Int. J. Numer. Meth. Engng 2001, v.50: 1�27.
  *
  *
  * Revisions:      01/04/2003 PS: modified nnpi_triangle_process(): for
@@ -38,6 +41,22 @@
  *                   data point itself. The later approach have found leading
  *                   to inconsistencies of the new point position with the 
  *                   earlier built triangulation.
+ *                 22/11/2006 PS: introduced special treatment for big circles
+ *                   by moving their centers in a certain way, closer to the
+ *                   data points; added hashtable nn->bad to account for
+ *                   such events. Modified _nnpi_calculate_weights() to handle
+ *                   the case when instead of being in between two data points
+ *                   the interpolation point is close to a data point.
+ *                 30/10/2007 PS: Modified treatment of degenerate cases in 
+ *                   nnpi_triangle_process(), many thanks to John Gerschwitz,
+ *                   Petroleum Geo-Services, for exposing the defect introduced
+ *                   in v. 1.69. Changed EPS_SAME from 1.0e-15 to 1.0e-8. Also
+ *                   modified nnpi_calculate_weights().
+ *                 30/10/2007 PS: Got rid of memset(nn->d->flags, ...) in
+ *                   nnpi_reset(). The flags are reset now internally on return
+ *                   from delaunay_circles_find(). This is very important
+ *                   for large datasets, many thanks to John Gerschwitz,
+ *                   Petroleum Geo-Services, for identifying the problem.
  *
  *****************************************************************************/
 
@@ -48,43 +67,38 @@
 #include <string.h>
 #include <assert.h>
 #include <math.h>
-#include "nn.h"
-#include "delaunay.h"
+#include "config.h"
 #include "nan.h"
 #include "hash.h"
+#include "istack.h"
+#include "delaunay.h"
+#include "nn.h"
+#include "nn_internal.h"
 
 struct nnpi {
     delaunay* d;
-    point* p;
     double wmin;
+    int n;                      /* number of points processed */
     /*
      * work variables 
      */
+    int ncircles;
     int nvertices;
     int nallocated;
     int* vertices;              /* vertex indices */
     double* weights;
-    int n;                      /* number of points processed */
+    double dx, dy;              /* vertex perturbation */
+    hashtable* bad;             /* ids of vertices that require a special
+                                 * treatment */
 };
 
-int circle_build(circle* c, point* p0, point* p1, point* p2);
-int circle_contains(circle* c, point* p);
-void delaunay_circles_find(delaunay* d, point* p, int* n, int** out);
-int delaunay_xytoi(delaunay* d, point* p, int seed);
-void nn_quit(char* format, ...);
-
 #define NSTART 10
 #define NINC 10
-#define EPS_SHIFT 1.0e-9
-#define N_SEARCH_TURNON 20
+#define EPS_SHIFT 1.0e-5
 #define BIGNUMBER 1.0e+100
-
-#ifndef min
-#define min(x,y) ((x) < (y) ? (x) : (y))
-#endif
-#ifndef max
-#define max(x,y) ((x) > (y) ? (x) : (y))
-#endif
+#define EPS_WMIN 1.0e-6
+#define HT_SIZE 100
+#define EPS_SAME 1.0e-8
 
 /* Creates Natural Neighbours point interpolator.
  *
@@ -93,16 +107,17 @@ void nn_quit(char* format, ...);
  */
 nnpi* nnpi_create(delaunay* d)
 {
-    nnpi* nn = (nnpi *)malloc(sizeof(nnpi));
+    nnpi* nn = malloc(sizeof(nnpi));
 
     nn->d = d;
     nn->wmin = -DBL_MAX;
-    nn->vertices = (int *)calloc(NSTART, sizeof(int));
-    nn->weights = (double *)calloc(NSTART, sizeof(double));
+    nn->n = 0;
+    nn->ncircles = 0;
+    nn->vertices = calloc(NSTART, sizeof(int));
+    nn->weights = calloc(NSTART, sizeof(double));
     nn->nvertices = 0;
     nn->nallocated = NSTART;
-    nn->p = NULL;
-    nn->n = 0;
+    nn->bad = NULL;
 
     return nn;
 }
@@ -121,8 +136,11 @@ void nnpi_destroy(nnpi* nn)
 void nnpi_reset(nnpi* nn)
 {
     nn->nvertices = 0;
-    nn->p = NULL;
-    memset(nn->d->flags, 0, nn->d->ntriangles * sizeof(int));
+    nn->ncircles = 0;
+    if (nn->bad != NULL) {
+        ht_destroy(nn->bad);
+        nn->bad = NULL;
+    }
 }
 
 static void nnpi_add_weight(nnpi* nn, int vertex, double w)
@@ -132,6 +150,12 @@ static void nnpi_add_weight(nnpi* nn, int vertex, double w)
     /*
      * find whether the vertex is already in the list 
      */
+    /*
+     * For clustered data the number of natural neighbours for a point may
+     * be quite big ( a few hundreds in example 2), and using hashtable here
+     * could accelerate things a bit. However, profiling shows that use of
+     * linear search is not a major issue.
+     */
     for (i = 0; i < nn->nvertices; ++i)
         if (nn->vertices[i] == vertex)
             break;
@@ -141,8 +165,8 @@ static void nnpi_add_weight(nnpi* nn, int vertex, double w)
          * get more memory if necessary 
          */
         if (nn->nvertices == nn->nallocated) {
-            nn->vertices = (int *)realloc(nn->vertices, (nn->nallocated + NINC) * sizeof(int));
-            nn->weights = (double *)realloc(nn->weights, (nn->nallocated + NINC) * sizeof(double));
+            nn->vertices = realloc(nn->vertices, (nn->nallocated + NINC) * sizeof(int));
+            nn->weights = realloc(nn->weights, (nn->nallocated + NINC) * sizeof(double));
             nn->nallocated += NINC;
         }
 
@@ -152,29 +176,8 @@ static void nnpi_add_weight(nnpi* nn, int vertex, double w)
         nn->vertices[i] = vertex;
         nn->weights[i] = w;
         nn->nvertices++;
-    } else {                    /* in the list */
-
-        if (nn_rule == SIBSON)
-            nn->weights[i] += w;
-        else if (w > nn->weights[i])
-            nn->weights[i] = w;
-    }
-}
-
-static double triangle_scale_get(delaunay* d, triangle* t)
-{
-    double x0 = d->points[t->vids[0]].x;
-    double x1 = d->points[t->vids[1]].x;
-    double x2 = d->points[t->vids[2]].x;
-    double y0 = d->points[t->vids[0]].y;
-    double y1 = d->points[t->vids[1]].y;
-    double y2 = d->points[t->vids[2]].y;
-    double xmin = min(min(x0, x1), x2);
-    double xmax = max(max(x0, x1), x2);
-    double ymin = min(min(y0, y1), y2);
-    double ymax = max(max(y0, y1), y2);
-
-    return xmax - xmin + ymax - ymin;
+    } else                      /* in the list */
+        nn->weights[i] += w;
 }
 
 /* This is a central procedure for the Natural Neighbours interpolation. It
@@ -190,78 +193,332 @@ static void nnpi_triangle_process(nnpi* nn, point* p, int i)
     circle cs[3];
     int j;
 
-    assert(circle_contains(c, p));
+    /*
+     * There used to be a useful assertion here:
+     *
+     * assert(circle_contains(c, p));
+     *
+     * I removed it after introducing flag `contains' to 
+     * delaunay_circles_find(). It looks like the code is robust enough to
+     * run without this assertion.
+     */
 
-    if (nn_rule == SIBSON) {
-        point pp;
+    /*
+     * Sibson interpolation by using Watson's algorithm 
+     */
+    for (j = 0; j < 3; ++j) {
+        int j1 = (j + 1) % 3;
+        int j2 = (j + 2) % 3;
+        int v1 = t->vids[j1];
+        int v2 = t->vids[j2];
+
+        if (!circle_build2(&cs[j], &d->points[v1], &d->points[v2], p)) {
+            point* p1 = &d->points[v1];
+            point* p2 = &d->points[v2];
+
+            if ((fabs(p1->x - p->x) + fabs(p1->y - p->y)) / c->r < EPS_SAME) {
+                /*
+                 * if (p1->x == p->x && p1->y == p->y) {
+                 */
+                nnpi_add_weight(nn, v1, BIGNUMBER);
+                return;
+            } else if ((fabs(p2->x - p->x) + fabs(p2->y - p->y)) / c->r < EPS_SAME) {
+                /*
+                 * } else if (p2->x == p->x && p2->y == p->y) {
+                 */
+                nnpi_add_weight(nn, v2, BIGNUMBER);
+                return;
+            }
+        }
+    }
 
-        pp.x = p->x;
-        pp.y = p->y;
-        /*
-         * Sibson interpolation by using Watson's algorithm 
-         */
-        do {
-            for (j = 0; j < 3; ++j) {
-                int j1 = (j + 1) % 3;
-                int j2 = (j + 2) % 3;
-                int v1 = t->vids[j1];
-                int v2 = t->vids[j2];
-
-                if (!circle_build(&cs[j], &d->points[v1], &d->points[v2], &pp)) {
-                    double scale = triangle_scale_get(d, t);
-
-                    if (d->points[v1].y == d->points[v2].y)
-                        pp.y += EPS_SHIFT * scale;
-                    else
-                        pp.x += EPS_SHIFT * scale;
-                    break;
+    for (j = 0; j < 3; ++j) {
+        int j1 = (j + 1) % 3;
+        int j2 = (j + 2) % 3;
+        double det = ((cs[j1].x - c->x) * (cs[j2].y - c->y) - (cs[j2].x - c->x) * (cs[j1].y - c->y));
+
+        if (isnan(det)) {
+            /*
+             * Here, if the determinant is NaN, then the interpolation point
+             * is almost in between two data points. This case is difficult to
+             * handle robustly because the areas (determinants) calculated by
+             * Watson's algorithm are obtained as a diference between two big
+             * numbers. This case is handled here in the following way.
+             *
+             * If a circle is recognised as very large in circle_build2(), then
+             * its parameters are replaced by NaNs, which results in the
+             * variable `det' above being NaN.
+             * 
+             * When this happens inside convex hall of the data, there is
+             * always a triangle on another side of the edge, processing of
+             * which also produces an invalid circle. Processing of this edge
+             * yields two pairs of infinite determinants, with singularities 
+             * of each pair cancelling if the point moves slightly off the edge.
+             *
+             * Each of the determinants corresponds to the (signed) area of a
+             * triangle, and an inifinite determinant corresponds to the area of
+             * a triangle with one vertex moved to infinity. "Subtracting" one
+             * triangle from another within each pair yields a valid
+             * quadrilateral (in fact, a trapezoid). The doubled area of these
+             * quadrilaterals is calculated in the cycle over ii below.
+             */
+            int j1bad = isnan(cs[j1].x);
+            int key[2];
+            double* v = NULL;
+
+            key[0] = t->vids[j];
+
+            if (nn->bad == NULL)
+                nn->bad = ht_create_i2(HT_SIZE);
+
+            key[1] = (j1bad) ? t->vids[j2] : t->vids[j1];
+            v = ht_find(nn->bad, &key);
+
+            if (v == NULL) {
+                v = malloc(8 * sizeof(double));
+                if (j1bad) {
+                    v[0] = cs[j2].x;
+                    v[1] = cs[j2].y;
+                } else {
+                    v[0] = cs[j1].x;
+                    v[1] = cs[j1].y;
+                }
+                v[2] = c->x;
+                v[3] = c->y;
+                (void) ht_insert(nn->bad, &key, v);
+                det = 0.0;
+            } else {
+                int ii;
+
+                if (j1bad) {
+                    v[6] = cs[j2].x;
+                    v[7] = cs[j2].y;
+                } else {
+                    v[6] = cs[j1].x;
+                    v[7] = cs[j1].y;
                 }
+                v[4] = c->x;
+                v[5] = c->y;
+
+                det = 0;
+                for (ii = 0; ii < 4; ++ii) {
+                    int ii1 = (ii + 1) % 4;
+
+                    det += (v[ii * 2] + v[ii1 * 2]) * (v[ii * 2 + 1] - v[ii1 * 2 + 1]);
+                }
+                det = fabs(det);
+
+                free(v);
+                ht_delete(nn->bad, &key);
             }
-        } while (j != 3);
+        }
+
+        nnpi_add_weight(nn, t->vids[j], det);
+    }
+}
+
+static int compare_int(const void* p1, const void* p2)
+{
+    int* v1 = (int*) p1;
+    int* v2 = (int*) p2;
+
+    if (*v1 > *v2)
+        return 1;
+    else if (*v1 < *v2)
+        return -1;
+    else
+        return 0;
+}
+
+typedef struct {
+    point* p0;
+    point* p1;
+    point* p;
+    int i;
+} indexedpoint;
 
-        for (j = 0; j < 3; ++j) {
-            int j1 = (j + 1) % 3;
-            int j2 = (j + 2) % 3;
-            double det = ((cs[j1].x - c->x) * (cs[j2].y - c->y) - (cs[j2].x - c->x) * (cs[j1].y - c->y));
+static int onleftside(point* p, point* p0, point* p1)
+{
+    return (p0->x - p->x) * (p1->y - p->y) > (p1->x - p->x) * (p0->y - p->y);
+}
+
+static int compare_indexedpoints(const void* pp1, const void* pp2)
+{
+    indexedpoint* ip1 = (indexedpoint*) pp1;
+    indexedpoint* ip2 = (indexedpoint*) pp2;
+    point* p0 = ip1->p0;
+    point* p1 = ip1->p1;
+    point* a = ip1->p;
+    point* b = ip2->p;
+
+    if (onleftside(a, p0, b)) {
+        if (onleftside(a, p0, p1) && !onleftside(b, p0, p1))
+            /*
+             * (the reason for the second check is that while we want to sort
+             * the natural neighbours in a clockwise manner, one needs to break
+             * the circuit at some point)
+             */
+            return 1;
+        else
+            return -1;
+    } else {
+        if (onleftside(b, p0, p1) && !onleftside(a, p0, p1))
+            /*
+             * (see the comment above)
+             */
+            return -1;
+        else
+            return 1;
+    }
+}
 
-            nnpi_add_weight(nn, t->vids[j], det);
+static void nnpi_getneighbours(nnpi* nn, point* p, int nt, int* tids, int* n, int** nids)
+{
+    delaunay* d = nn->d;
+    istack* neighbours = istack_create();
+    indexedpoint* v = NULL;
+    int i;
+
+    for (i = 0; i < nt; ++i) {
+        triangle* t = &d->triangles[tids[i]];
+
+        istack_push(neighbours, t->vids[0]);
+        istack_push(neighbours, t->vids[1]);
+        istack_push(neighbours, t->vids[2]);
+    }
+    qsort(neighbours->v, neighbours->n, sizeof(int), compare_int);
+
+    v = malloc(sizeof(indexedpoint) * neighbours->n);
+
+    v[0].p = &d->points[neighbours->v[0]];
+    v[0].i = neighbours->v[0];
+    *n = 1;
+    for (i = 1; i < neighbours->n; ++i) {
+        if (neighbours->v[i] == neighbours->v[i - 1])
+            continue;
+        v[*n].p = &d->points[neighbours->v[i]];
+        v[*n].i = neighbours->v[i];
+        (*n)++;
+    }
+
+    /*
+     * I assume that if there is exactly one tricircle the point belongs to,
+     * then number of natural neighbours *n = 3, and they are already sorted
+     * in the right way in triangulation process.
+     */
+    if (*n > 3) {
+        v[0].p0 = NULL;
+        v[0].p1 = NULL;
+        for (i = 1; i < *n; ++i) {
+            v[i].p0 = p;
+            v[i].p1 = v[0].p;
         }
-    } else if (nn_rule == NON_SIBSONIAN) {
-        double d1 = c->r - hypot(p->x - c->x, p->y - c->y);
 
-        for (i = 0; i < 3; ++i) {
-            int vid = t->vids[i];
-            point* pp = &d->points[vid];
-            double d2 = hypot(p->x - pp->x, p->y - pp->y);
+        qsort(&v[1], *n - 1, sizeof(indexedpoint), compare_indexedpoints);
+    }
 
-            if (d2 == 0.0)
-                nnpi_add_weight(nn, vid, BIGNUMBER);
-            else
-                nnpi_add_weight(nn, vid, d1 / d2);
+    (*nids) = malloc(*n * sizeof(int));
+
+    for (i = 0; i < *n; ++i)
+        (*nids)[i] = v[i].i;
+
+    istack_destroy(neighbours);
+    free(v);
+}
+
+static int nnpi_neighbours_process(nnpi* nn, point* p, int n, int* nids)
+{
+    delaunay* d = nn->d;
+    int i;
+
+    for (i = 0; i < n; ++i) {
+        int im1 = (i + n - 1) % n;
+        int ip1 = (i + 1) % n;
+        point* p0 = &d->points[nids[i]];
+        point* pp1 = &d->points[nids[ip1]];
+        point* pm1 = &d->points[nids[im1]];
+        double nom1, nom2, denom1, denom2;
+
+        denom1 = (p0->x - p->x) * (pp1->y - p->y) - (p0->y - p->y) * (pp1->x - p->x);
+        denom2 = (p0->x - p->x) * (pm1->y - p->y) - (p0->y - p->y) * (pm1->x - p->x);
+        if (denom1 == 0.0) {
+            if (p->x == p0->x && p->y == p0->y) {
+                nnpi_add_weight(nn, nids[i], BIGNUMBER);
+                return 1;
+            } else if (p->x == pp1->x && p->y == pp1->y) {
+                nnpi_add_weight(nn, nids[ip1], BIGNUMBER);
+                return 1;
+            } else {
+                nn->dx = EPS_SHIFT * (pp1->y - p0->y);
+                nn->dy = -EPS_SHIFT * (pp1->x - p0->x);
+                return 0;
+            }
         }
-    } else
-        nn_quit("unknown rule\n");
+        if (denom2 == 0.0) {
+            if (p->x == pm1->x && p->y == pm1->y) {
+                nnpi_add_weight(nn, nids[im1], BIGNUMBER);
+                return 1;
+            } else {
+                nn->dx = EPS_SHIFT * (pm1->y - p0->y);
+                nn->dy = -EPS_SHIFT * (pm1->x - p0->x);
+                return 0;
+            }
+        }
+
+        nom1 = (p0->x - pp1->x) * (pp1->x - p->x) + (p0->y - pp1->y) * (pp1->y - p->y);
+        nom2 = (p0->x - pm1->x) * (pm1->x - p->x) + (p0->y - pm1->y) * (pm1->y - p->y);
+        nnpi_add_weight(nn, nids[i], nom1 / denom1 - nom2 / denom2);
+    }
+
+    return 1;
 }
 
-void nnpi_calculate_weights(nnpi* nn)
+static int _nnpi_calculate_weights(nnpi* nn, point* p)
 {
-    point* p = nn->p;
-    int n = nn->d->ntriangles;
+    int* tids = NULL;
     int i;
 
-    if (n > N_SEARCH_TURNON) {
-        int* tids;
+    delaunay_circles_find(nn->d, p, &nn->ncircles, &tids);
+    if (nn->ncircles == 0)
+        return 1;
 
-        delaunay_circles_find(nn->d, p, &n, &tids);
-        for (i = 0; i < n; ++i)
+    /*
+     * The algorithms of calculating weights for Sibson and non-Sibsonian
+     * interpolations are quite different; in the first case, the weights are
+     * calculated by processing Delaunay triangles whose tricircles contain
+     * the interpolated point; in the second case, they are calculated by
+     * processing triplets of natural neighbours by moving clockwise or
+     * counterclockwise around the interpolated point.
+     */
+    if (nn_rule == SIBSON) {
+        for (i = 0; i < nn->ncircles; ++i)
             nnpi_triangle_process(nn, p, tids[i]);
+        if (nn->bad != NULL) {
+            int nentries = ht_getnentries(nn->bad);
+
+            if (nentries > 0) {
+                ht_process(nn->bad, free);
+                return 0;
+            }
+        }
+        return 1;
+    } else if (nn_rule == NON_SIBSONIAN) {
+        int nneigh = 0;
+        int* nids = NULL;
+        int status;
+
+        nnpi_getneighbours(nn, p, nn->ncircles, tids, &nneigh, &nids);
+        status = nnpi_neighbours_process(nn, p, nneigh, nids);
+        free(nids);
+
+        return status;
     } else
-        for (i = 0; i < n; ++i)
-            if (circle_contains(&nn->d->circles[i], p))
-                nnpi_triangle_process(nn, p, i);
+        nn_quit("programming error");
+
+    return 0;
 }
 
-void nnpi_normalize_weights(nnpi* nn)
+static void nnpi_normalize_weights(nnpi* nn)
 {
     int n = nn->nvertices;
     double sum = 0.0;
@@ -274,7 +531,89 @@ void nnpi_normalize_weights(nnpi* nn)
         nn->weights[i] /= sum;
 }
 
-/* Finds Natural Neighbours-interpolated value for a point.
+#define RANDOM (double) rand() / ((double) RAND_MAX + 1.0)
+
+void nnpi_calculate_weights(nnpi* nn, point* p)
+{
+    point pp;
+    int nvertices = 0;
+    int* vertices = NULL;
+    double* weights = NULL;
+    int i;
+
+    nnpi_reset(nn);
+
+    if (_nnpi_calculate_weights(nn, p)) {
+        nnpi_normalize_weights(nn);
+        return;
+    }
+
+    nnpi_reset(nn);
+
+    nn->dx = (nn->d->xmax - nn->d->xmin) * EPS_SHIFT;
+    nn->dy = (nn->d->ymax - nn->d->ymin) * EPS_SHIFT;
+
+    pp.x = p->x + nn->dx;
+    pp.y = p->y + nn->dy;
+
+    while (!_nnpi_calculate_weights(nn, &pp)) {
+        nnpi_reset(nn);
+        pp.x = p->x + nn->dx * RANDOM;
+        pp.y = p->y + nn->dy * RANDOM;
+    }
+    nnpi_normalize_weights(nn);
+
+    nvertices = nn->nvertices;
+    if (nvertices > 0) {
+        vertices = malloc(nvertices * sizeof(int));
+        memcpy(vertices, nn->vertices, nvertices * sizeof(int));
+        weights = malloc(nvertices * sizeof(double));
+        memcpy(weights, nn->weights, nvertices * sizeof(double));
+    }
+
+    nnpi_reset(nn);
+
+    pp.x = 2.0 * p->x - pp.x;
+    pp.y = 2.0 * p->y - pp.y;
+
+    while (!_nnpi_calculate_weights(nn, &pp) || nn->nvertices == 0) {
+        nnpi_reset(nn);
+        pp.x = p->x + nn->dx * RANDOM;
+        pp.y = p->y + nn->dy * RANDOM;
+    }
+    nnpi_normalize_weights(nn);
+
+    if (nvertices > 0)
+        for (i = 0; i < nn->nvertices; ++i)
+            nn->weights[i] /= 2.0;
+
+    for (i = 0; i < nvertices; ++i)
+        nnpi_add_weight(nn, vertices[i], weights[i] / 2.0);
+
+    if (nvertices > 0) {
+        free(vertices);
+        free(weights);
+    }
+}
+
+typedef struct {
+    double* v;
+    int i;
+} indexedvalue;
+
+static int cmp_iv(const void* p1, const void* p2)
+{
+    double v1 = *((indexedvalue *) p1)->v;
+    double v2 = *((indexedvalue *) p2)->v;
+
+    if (v1 > v2)
+        return -1;
+    if (v1 < v2)
+        return 1;
+    return 0;
+}
+
+/* Performs Natural Neighbours interpolation in a point.
  *
  * @param nn NN interpolation
  * @param p Point to be interpolated (p->x, p->y -- input; p->z -- output)
@@ -284,34 +623,48 @@ void nnpi_interpolate_point(nnpi* nn, point* p)
     delaunay* d = nn->d;
     int i;
 
-    nnpi_reset(nn);
-    nn->p = p;
-    nnpi_calculate_weights(nn);
-    nnpi_normalize_weights(nn);
+    nnpi_calculate_weights(nn, p);
 
     if (nn_verbose) {
         if (nn_test_vertice == -1) {
+            indexedvalue* ivs = NULL;
+
+            if (nn->nvertices > 0) {
+                ivs = malloc(nn->nvertices * sizeof(indexedvalue));
+
+                for (i = 0; i < nn->nvertices; ++i) {
+                    ivs[i].i = nn->vertices[i];
+                    ivs[i].v = &nn->weights[i];
+                }
+
+                qsort(ivs, nn->nvertices, sizeof(indexedvalue), cmp_iv);
+            }
+
             if (nn->n == 0)
                 fprintf(stderr, "weights:\n");
-            fprintf(stderr, "  %d: {", nn->n);
+            fprintf(stderr, "  %d: (%.10g, %10g)\n", nn->n, p->x, p->y);
+            fprintf(stderr, "  %4s %15s %15s %15s %15s\n", "id", "x", "y", "z", "w");
             for (i = 0; i < nn->nvertices; ++i) {
-                fprintf(stderr, "(%d,%.5g)", nn->vertices[i], nn->weights[i]);
-                if (i < nn->nvertices - 1)
-                    fprintf(stderr, ", ");
+                int ii = ivs[i].i;
+                point* pp = &d->points[ii];
+
+                fprintf(stderr, "  %5d %15.10g %15.10g %15.10g %15f\n", ii, pp->x, pp->y, pp->z, *ivs[i].v);
             }
-            fprintf(stderr, "}\n");
+
+            if (nn->nvertices > 0)
+                free(ivs);
         } else {
             double w = 0.0;
 
             if (nn->n == 0)
-                fprintf(stderr, "weights for vertex %d:\n", nn_test_vertice);
+                fprintf(stderr, "weight of vertex %d:\n", nn_test_vertice);
             for (i = 0; i < nn->nvertices; ++i) {
                 if (nn->vertices[i] == nn_test_vertice) {
                     w = nn->weights[i];
                     break;
                 }
             }
-            fprintf(stderr, "%15.7g %15.7g %15.7g\n", p->x, p->y, w);
+            fprintf(stderr, "  (%.10g, %.10g): %.7g\n", p->x, p->y, w);
         }
     }
 
@@ -349,7 +702,7 @@ void nnpi_interpolate_points(int nin, point pin[], double wmin, int nout, point
     int seed = 0;
     int i;
 
-    nn->wmin = wmin;
+    nnpi_setwmin(nn, wmin);
 
     if (nn_verbose) {
         fprintf(stderr, "xytoi:\n");
@@ -377,24 +730,21 @@ void nnpi_interpolate_points(int nin, point pin[], double wmin, int nout, point
 }
 
 /* Sets minimal allowed weight for Natural Neighbours interpolation.
+ *
+ * For Sibson interpolation, setting wmin = 0 is equivalent to interpolating
+ * inside convex hall of the data only (returning NaNs otherwise).
+ *
  * @param nn Natural Neighbours point interpolator
  * @param wmin Minimal allowed weight
  */
 void nnpi_setwmin(nnpi* nn, double wmin)
 {
-    nn->wmin = wmin;
+    nn->wmin = (wmin == 0) ? -EPS_WMIN : wmin;
 }
 
-/* Sets point to interpolate in.
- * @param nn Natural Neighbours point interpolator
- * @param p Point to interpolate in
- */
-void nnpi_set_point(nnpi* nn, point* p)
-{
-    nn->p = p;
-}
-
-/* Gets number of data points involved in current interpolation.
+/* Gets number of data points involved in current interpolation. For use by
+ * `nnai'.
+ *
  * @return Number of data points involved in current interpolation
  */
 int nnpi_get_nvertices(nnpi* nn)
@@ -402,7 +752,9 @@ int nnpi_get_nvertices(nnpi* nn)
     return nn->nvertices;
 }
 
-/* Gets indices of data points involved in current interpolation.
+/* Gets indices of data points involved in current interpolation. For use by
+ * `nnai'.
+ *
  * @return indices of data points involved in current interpolation
  */
 int* nnpi_get_vertices(nnpi* nn)
@@ -410,7 +762,8 @@ int* nnpi_get_vertices(nnpi* nn)
     return nn->vertices;
 }
 
-/* Gets weights of data points involved in current interpolation.
+/* Gets weights of data points involved in current interpolation. For use by
+ * `nnai'.
  * @return weights of data points involved in current interpolation
  */
 double* nnpi_get_weights(nnpi* nn)
@@ -423,7 +776,7 @@ double* nnpi_get_weights(nnpi* nn)
  */
 
 struct nnhpi {
-    struct nnpi* nnpi;
+    nnpi* nnpi;
     hashtable* ht_data;
     hashtable* ht_weights;
     int n;                      /* number of points processed */
@@ -443,7 +796,7 @@ typedef struct {
  */
 nnhpi* nnhpi_create(delaunay* d, int size)
 {
-    nnhpi* nn = (nnhpi *)malloc(sizeof(nnhpi));
+    nnhpi* nn = malloc(sizeof(nnhpi));
     int i;
 
     nn->nnpi = nnpi_create(d);
@@ -493,18 +846,15 @@ void nnhpi_interpolate(nnhpi* nnhpi, point* p)
     int i;
 
     if (ht_find(ht_weights, p) != NULL) {
-        weights = (nn_weights *)ht_find(ht_weights, p);
+        weights = ht_find(ht_weights, p);
         if (nn_verbose)
             fprintf(stderr, "  <hashtable>\n");
     } else {
-        nnpi_reset(nnpi);
-        nnpi->p = p;
-        nnpi_calculate_weights(nnpi);
-        nnpi_normalize_weights(nnpi);
+        nnpi_calculate_weights(nnpi, p);
 
-        weights = (nn_weights *)malloc(sizeof(nn_weights));
-        weights->vertices = (int *)malloc(sizeof(int) * nnpi->nvertices);
-        weights->weights = (double *)malloc(sizeof(double) * nnpi->nvertices);
+        weights = malloc(sizeof(nn_weights));
+        weights->vertices = malloc(sizeof(int) * nnpi->nvertices);
+        weights->weights = malloc(sizeof(double) * nnpi->nvertices);
 
         weights->nvertices = nnpi->nvertices;
 
@@ -565,6 +915,7 @@ void nnhpi_interpolate(nnhpi* nnhpi, point* p)
 }
 
 /* Modifies interpolated data.
+ *
  * Finds point* pd in the underlying Delaunay triangulation such that
  * pd->x = p->x and pd->y = p->y, and copies p->z to pd->z. Exits with error
  * if the point is not found.
@@ -574,13 +925,17 @@ void nnhpi_interpolate(nnhpi* nnhpi, point* p)
  */
 void nnhpi_modify_data(nnhpi* nnhpi, point* p)
 {
-    point* orig = (point *)ht_find(nnhpi->ht_data, p);
+    point* orig = ht_find(nnhpi->ht_data, p);
 
     assert(orig != NULL);
     orig->z = p->z;
 }
 
 /* Sets minimal allowed weight for Natural Neighbours interpolation.
+ *
+ * For Sibson interpolation, setting wmin = 0 is equivalent to interpolating
+ * inside convex hall of the data only (returning NaNs otherwise).
+ *
  * @param nn Natural Neighbours point hashing interpolator
  * @param wmin Minimal allowed weight
  */
@@ -684,7 +1039,7 @@ int main(int argc, char* argv[])
      */
     printf("  generating data:\n");
     fflush(stdout);
-    pin = (point *)malloc(nin * sizeof(point));
+    pin = malloc(nin * sizeof(point));
     for (i = 0; i < nin; ++i) {
         point* p = &pin[i];
 
@@ -705,7 +1060,7 @@ int main(int argc, char* argv[])
     /*
      * generate output points 
      */
-    points_generate2(-0.1, 1.1, -0.1, 1.1, nx, nx, &nout, &pout);
+    points_generate(-0.1, 1.1, -0.1, 1.1, nx, nx, &nout, &pout);
     cpi = (nx / 2) * (nx + 1);
 
     gettimeofday(&tv0, &tz);
@@ -843,9 +1198,9 @@ int main(int argc, char* argv[])
     {
         hashtable* ht = nn->ht_data;
 
-        printf("    input points: %d entries, %d table elements, %d filled elements\n", ht->n, ht->size, ht->nhash);
+        printf("    input points: %d entries, %d table elements, %d filled elements\n", ht_getnentries(ht), ht_getsize(ht), ht_getnfilled(ht));
         ht = nn->ht_weights;
-        printf("    weights: %d entries, %d table elements, %d filled elements\n", ht->n, ht->size, ht->nhash);
+        printf("    weights: %d entries, %d table elements, %d filled elements\n", ht_getnentries(ht), ht_getsize(ht), ht_getnfilled(ht));
     }
     printf("\n");
 
diff --git a/src/modules/grid/grid_gridding/nn/triangle.c b/src/modules/grid/grid_gridding/nn/triangle.c
new file mode 100755
index 0000000..cbf9890
--- /dev/null
+++ b/src/modules/grid/grid_gridding/nn/triangle.c
@@ -0,0 +1,15930 @@
+/*****************************************************************************/
+/*                                                                           */
+/*      888888888        ,o,                          / 888                  */
+/*         888    88o88o  "    o8888o  88o8888o o88888o 888  o88888o         */
+/*         888    888    888       88b 888  888 888 888 888 d888  88b        */
+/*         888    888    888  o88^o888 888  888 "88888" 888 8888oo888        */
+/*         888    888    888 C888  888 888  888  /      888 q888             */
+/*         888    888    888  "88o^888 888  888 Cb      888  "88oooo"        */
+/*                                              "8oo8D                       */
+/*                                                                           */
+/*  A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.      */
+/*  (triangle.c)                                                             */
+/*                                                                           */
+/*  Version 1.4                                                              */
+/*  November 1, 2002                                                         */
+/*                                                                           */
+/*  Copyright 1993, 1995, 1997, 1998, 2002                                   */
+/*  Jonathan Richard Shewchuk                                                */
+/*  2360 Woolsey #H                                                          */
+/*  Berkeley, California  94705-1927                                         */
+/*  jrs at cs.berkeley.edu                                                      */
+/*                                                                           */
+/*  This program may be freely redistributed under the condition that the    */
+/*    copyright notices (including this entire header and the copyright      */
+/*    notice printed when the `-h' switch is selected) are not removed, and  */
+/*    no compensation is received.  Private, research, and institutional     */
+/*    use is free.  You may distribute modified versions of this code UNDER  */
+/*    THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE   */
+/*    SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE   */
+/*    AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR    */
+/*    NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as    */
+/*    part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT  */
+/*    WITH THE AUTHOR.  (If you are not directly supplying this code to a    */
+/*    customer, and you are instead telling them how they can obtain it for  */
+/*    free, then you are not required to make any arrangement with me.)      */
+/*                                                                           */
+/*  Hypertext instructions for Triangle are available on the Web at          */
+/*                                                                           */
+/*      http://www.cs.cmu.edu/~quake/triangle.html                           */
+/*                                                                           */
+/*  Some of the references listed below are marked with an asterisk.  [*]    */
+/*    These references are available for downloading from the Web page       */
+/*                                                                           */
+/*      http://www.cs.cmu.edu/~quake/triangle.research.html                  */
+/*                                                                           */
+/*  Three papers discussing aspects of Triangle are available.  A short      */
+/*    overview appears in "Triangle:  Engineering a 2D Quality Mesh          */
+/*    Generator and Delaunay Triangulator," in Applied Computational         */
+/*    Geometry:  Towards Geometric Engineering, Ming C. Lin and Dinesh       */
+/*    Manocha, editors, Lecture Notes in Computer Science volume 1148,       */
+/*    pages 203-222, Springer-Verlag, Berlin, May 1996 (from the First ACM   */
+/*    Workshop on Applied Computational Geometry).  [*]                      */
+/*                                                                           */
+/*    The algorithms are discussed in the greatest detail in "Delaunay       */
+/*    Refinement Algorithms for Triangular Mesh Generation," Computational   */
+/*    Geometry:  Theory and Applications 22(1-3):21-74, May 2002.  [*]       */
+/*                                                                           */
+/*    More detail about the data structures may be found in my dissertation: */
+/*    "Delaunay Refinement Mesh Generation," Ph.D. thesis, Technical Report  */
+/*    CMU-CS-97-137, School of Computer Science, Carnegie Mellon University, */
+/*    Pittsburgh, Pennsylvania, 18 May 1997.  [*]                            */
+/*                                                                           */
+/*  Triangle was created as part of the Archimedes project in the School of  */
+/*    Computer Science at Carnegie Mellon University.  Archimedes is a       */
+/*    system for compiling parallel finite element solvers.  For further     */
+/*    information, see Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F.   */
+/*    Kallivokas, David R. O'Hallaron, Jonathan R. Shewchuk, and Jifeng Xu,  */
+/*    "Large-scale Simulation of Elastic Wave Propagation in Heterogeneous   */
+/*    Media on Parallel Computers," Computer Methods in Applied Mechanics    */
+/*    and Engineering 152(1-2):85-102, 22 January 1998.                      */
+/*                                                                           */
+/*  Triangle's Delaunay refinement algorithm for quality mesh generation is  */
+/*    a hybrid of one due to Jim Ruppert, "A Delaunay Refinement Algorithm   */
+/*    for Quality 2-Dimensional Mesh Generation," Journal of Algorithms      */
+/*    18(3):548-585, May 1995 [*], and one due to L. Paul Chew, "Guaranteed- */
+/*    Quality Mesh Generation for Curved Surfaces," Proceedings of the Ninth */
+/*    Annual Symposium on Computational Geometry (San Diego, California),    */
+/*    pages 274-280, Association for Computing Machinery, May 1993.          */
+/*                                                                           */
+/*  The Delaunay refinement algorithm has been modified so that it           */
+/*    consistently meshes domains with small input angles, as described in   */
+/*    my lengthy journal article listed above, or in abbreviated form in     */
+/*    Jonathan Richard Shewchuk, "Mesh Generation for Domains with Small     */
+/*    Angles," Proceedings of the Sixteenth Annual Symposium on              */
+/*    Computational Geometry (Hong Kong), pages 1-10, Association for        */
+/*    Computing Machinery, June 2000.  [*]                                   */
+/*                                                                           */
+/*  My implementation of the divide-and-conquer and incremental Delaunay     */
+/*    triangulation algorithms follows closely the presentation of Guibas    */
+/*    and Stolfi, even though I use a triangle-based data structure instead  */
+/*    of their quad-edge data structure.  (In fact, I originally implemented */
+/*    Triangle using the quad-edge data structure, but the switch to a       */
+/*    triangle-based data structure sped Triangle by a factor of two.)  The  */
+/*    mesh manipulation primitives and the two aforementioned Delaunay       */
+/*    triangulation algorithms are described by Leonidas J. Guibas and Jorge */
+/*    Stolfi, "Primitives for the Manipulation of General Subdivisions and   */
+/*    the Computation of Voronoi Diagrams," ACM Transactions on Graphics     */
+/*    4(2):74-123, April 1985.                                               */
+/*                                                                           */
+/*  Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai   */
+/*    Lee and Bruce J. Schachter, "Two Algorithms for Constructing the       */
+/*    Delaunay Triangulation," International Journal of Computer and         */
+/*    Information Science 9(3):219-242, 1980.  Triangle's improvement of the */
+/*    divide-and-conquer algorithm by alternating between vertical and       */
+/*    horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and-  */
+/*    Conquer Algorithm for Constructing Delaunay Triangulations,"           */
+/*    Algorithmica 2(2):137-151, 1987.                                       */
+/*                                                                           */
+/*  The incremental insertion algorithm was first proposed by C. L. Lawson,  */
+/*    "Software for C1 Surface Interpolation," in Mathematical Software III, */
+/*    John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977.     */
+/*    For point location, I use the algorithm of Ernst P. Mucke, Isaac       */
+/*    Saias, and Binhai Zhu, "Fast Randomized Point Location Without         */
+/*    Preprocessing in Two- and Three-Dimensional Delaunay Triangulations,"  */
+/*    Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
+/*    ACM, May 1996.  [*]  If I were to randomize the order of vertex        */
+/*    insertion (I currently don't bother), their result combined with the   */
+/*    result of Kenneth L. Clarkson and Peter W. Shor, "Applications of      */
+/*    Random Sampling in Computational Geometry II," Discrete &              */
+/*    Computational Geometry 4(1):387-421, 1989, would yield an expected     */
+/*    O(n^{4/3}) bound on running time.                                      */
+/*                                                                           */
+/*  The O(n log n) sweepline Delaunay triangulation algorithm is taken from  */
+/*    Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams",          */
+/*    Algorithmica 2(2):153-174, 1987.  A random sample of edges on the      */
+/*    boundary of the triangulation are maintained in a splay tree for the   */
+/*    purpose of point location.  Splay trees are described by Daniel        */
+/*    Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
+/*    Trees," Journal of the ACM 32(3):652-686, July 1985.                   */
+/*                                                                           */
+/*  The algorithms for exact computation of the signs of determinants are    */
+/*    described in Jonathan Richard Shewchuk, "Adaptive Precision Floating-  */
+/*    Point Arithmetic and Fast Robust Geometric Predicates," Discrete &     */
+/*    Computational Geometry 18(3):305-363, October 1997.  (Also available   */
+/*    as Technical Report CMU-CS-96-140, School of Computer Science,         */
+/*    Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996.)  [*]  */
+/*    An abbreviated version appears as Jonathan Richard Shewchuk, "Robust   */
+/*    Adaptive Floating-Point Geometric Predicates," Proceedings of the      */
+/*    Twelfth Annual Symposium on Computational Geometry, ACM, May 1996. [*] */
+/*    Many of the ideas for my exact arithmetic routines originate with      */
+/*    Douglas M. Priest, "Algorithms for Arbitrary Precision Floating Point  */
+/*    Arithmetic," Tenth Symposium on Computer Arithmetic, pp. 132-143, IEEE */
+/*    Computer Society Press, 1991.  [*]  Many of the ideas for the correct  */
+/*    evaluation of the signs of determinants are taken from Steven Fortune  */
+/*    and Christopher J. Van Wyk, "Efficient Exact Arithmetic for Computa-   */
+/*    tional Geometry," Proceedings of the Ninth Annual Symposium on         */
+/*    Computational Geometry, ACM, pp. 163-172, May 1993, and from Steven    */
+/*    Fortune, "Numerical Stability of Algorithms for 2D Delaunay Triangu-   */
+/*    lations," International Journal of Computational Geometry & Applica-   */
+/*    tions 5(1-2):193-213, March-June 1995.                                 */
+/*                                                                           */
+/*  For definitions of and results involving Delaunay triangulations,        */
+/*    constrained and conforming versions thereof, and other aspects of      */
+/*    triangular mesh generation, see the excellent survey by Marshall Bern  */
+/*    and David Eppstein, "Mesh Generation and Optimal Triangulation," in    */
+/*    Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang,         */
+/*    editors, World Scientific, Singapore, pp. 23-90, 1992.  [*]            */
+/*                                                                           */
+/*  The time for incrementally adding PSLG (planar straight line graph)      */
+/*    segments to create a constrained Delaunay triangulation is probably    */
+/*    O(t^2) per segment in the worst case and O(t) per segment in the       */
+/*    common case, where t is the number of triangles that intersect the     */
+/*    segment before it is inserted.  This doesn't count point location,     */
+/*    which can be much more expensive.  I could improve this to O(d log d)  */
+/*    time, but d is usually quite small, so it's not worth the bother.      */
+/*    (This note does not apply to conforming Delaunay triangulations, for   */
+/*    which a different method is used to insert segments.)                  */
+/*                                                                           */
+/*  The time for adding segments to a conforming Delaunay triangulation is   */
+/*    not clear, but does not depend upon t alone.  In some cases, very      */
+/*    small features (like a vertex lying next to a segment) can cause a     */
+/*    single segment to be split an arbitrary number of times.  Of course,   */
+/*    floating-point precision is a practical barrier to how much this can   */
+/*    happen.                                                                */
+/*                                                                           */
+/*  The time for deleting a vertex from a Delaunay triangulation is O(d^2)   */
+/*    in the worst case and O(d) in the common case, where d is the degree   */
+/*    of the vertex being deleted.  I could improve this to O(d log d) time, */
+/*    but d is usually quite small, so it's not worth the bother.            */
+/*                                                                           */
+/*  Ruppert's Delaunay refinement algorithm typically generates triangles    */
+/*    at a linear rate (constant time per triangle) after the initial        */
+/*    triangulation is formed.  There may be pathological cases where        */
+/*    quadratic time is required, but these never arise in practice.         */
+/*                                                                           */
+/*  The geometric predicates (circumcenter calculations, segment             */
+/*    intersection formulae, etc.) appear in my "Lecture Notes on Geometric  */
+/*    Robustness" at http://www.cs.berkeley.edu/~jrs/mesh.html .             */
+/*                                                                           */
+/*  If you make any improvements to this code, please please please let me   */
+/*    know, so that I may obtain the improvements.  Even if you don't change */
+/*    the code, I'd still love to hear what it's being used for.             */
+/*                                                                           */
+/*  Disclaimer:  Neither I nor Carnegie Mellon warrant this code in any way  */
+/*    whatsoever.  This code is provided "as-is".  Use at your own risk.     */
+/*                                                                           */
+/*****************************************************************************/
+
+/* For single precision (which will save some memory and reduce paging),     */
+/*   define the symbol SINGLE by using the -DSINGLE compiler switch or by    */
+/*   writing "#define SINGLE" below.                                         */
+/*                                                                           */
+/* For double precision (which will allow you to refine meshes to a smaller  */
+/*   edge length), leave SINGLE undefined.                                   */
+/*                                                                           */
+/* Double precision uses more memory, but improves the resolution of the     */
+/*   meshes you can generate with Triangle.  It also reduces the likelihood  */
+/*   of a floating exception due to overflow.  Finally, it is much faster    */
+/*   than single precision on 64-bit architectures like the DEC Alpha.  I    */
+/*   recommend double precision unless you want to generate a mesh for which */
+/*   you do not have enough memory.                                          */
+
+/* #define SINGLE */
+
+#ifdef SINGLE
+#define REAL float
+#else /* not SINGLE */
+#define REAL double
+#endif /* not SINGLE */
+
+/* If yours is not a Unix system, define the NO_TIMER compiler switch to     */
+/*   remove the Unix-specific timing code.                                   */
+
+/* #define NO_TIMER */
+
+/* To insert lots of self-checks for internal errors, define the SELF_CHECK  */
+/*   symbol.  This will slow down the program significantly.  It is best to  */
+/*   define the symbol using the -DSELF_CHECK compiler switch, but you could */
+/*   write "#define SELF_CHECK" below.  If you are modifying this code, I    */
+/*   recommend you turn self-checks on until your work is debugged.          */
+
+/* #define SELF_CHECK */
+
+/* To compile Triangle as a callable object library (triangle.o), define the */
+/*   TRILIBRARY symbol.  Read the file triangle.h for details on how to call */
+/*   the procedure triangulate() that results.                               */
+
+/* #define TRILIBRARY */
+
+/* It is possible to generate a smaller version of Triangle using one or     */
+/*   both of the following symbols.  Define the REDUCED symbol to eliminate  */
+/*   all features that are primarily of research interest; specifically, the */
+/*   -i, -F, -s, and -C switches.  Define the CDT_ONLY symbol to eliminate   */
+/*   all meshing algorithms above and beyond constrained Delaunay            */
+/*   triangulation; specifically, the -r, -q, -a, -S, and -s switches.       */
+/*   These reductions are most likely to be useful when generating an object */
+/*   library (triangle.o) by defining the TRILIBRARY symbol.                 */
+
+/* #define REDUCED */
+/* #define CDT_ONLY */
+
+/* On some machines, my exact arithmetic routines might be defeated by the   */
+/*   use of internal extended precision floating-point registers.  The best  */
+/*   way to solve this problem is to set the floating-point registers to use */
+/*   single or double precision internally.  On 80x86 processors, this may   */
+/*   be accomplished by setting the CPU86 symbol for the Microsoft C         */
+/*   compiler, or the LINUX symbol for the gcc compiler running on Linux.    */
+/*                                                                           */
+/* An inferior solution is to declare certain values as `volatile', thus     */
+/*   forcing them to be stored to memory and rounded off.  Unfortunately,    */
+/*   this solution might slow Triangle down quite a bit.  To use volatile    */
+/*   values, write "#define INEXACT volatile" below.  Normally, however,     */
+/*   INEXACT should be defined to be nothing.  ("#define INEXACT".)          */
+/*                                                                           */
+/* For more discussion, see http://www.cs.cmu.edu/~quake/robust.pc.html .    */
+/*   For yet more discussion, see Section 5 of my paper, "Adaptive Precision */
+/*   Floating-Point Arithmetic and Fast Robust Geometric Predicates" (also   */
+/*   available as Section 6.6 of my dissertation).                           */
+
+/* #define CPU86 */
+/* #define LINUX */
+
+#define INEXACT /* Nothing */
+/* #define INEXACT volatile */
+
+/* Maximum number of characters in a file name (including the null).         */
+
+#define FILENAMESIZE 512
+
+/* Maximum number of characters in a line read from a file (including the    */
+/*   null).                                                                  */
+
+#define INPUTLINESIZE 512
+
+/* For efficiency, a variety of data structures are allocated in bulk.  The  */
+/*   following constants determine how many of each structure is allocated   */
+/*   at once.                                                                */
+
+#define TRIPERBLOCK 4092           /* Number of triangles allocated at once. */
+#define SUBSEGPERBLOCK 508       /* Number of subsegments allocated at once. */
+#define VERTEXPERBLOCK 4092         /* Number of vertices allocated at once. */
+#define VIRUSPERBLOCK 1020   /* Number of virus triangles allocated at once. */
+/* Number of encroached subsegments allocated at once. */
+#define BADSUBSEGPERBLOCK 252
+/* Number of skinny triangles allocated at once. */
+#define BADTRIPERBLOCK 4092
+/* Number of flipped triangles allocated at once. */
+#define FLIPSTACKERPERBLOCK 252
+/* Number of splay tree nodes allocated at once. */
+#define SPLAYNODEPERBLOCK 508
+
+/* The vertex types.   A DEADVERTEX has been deleted entirely.  An           */
+/*   UNDEADVERTEX is not part of the mesh, but is written to the output      */
+/*   .node file and affects the node indexing in the other output files.     */
+
+#define INPUTVERTEX 0
+#define SEGMENTVERTEX 1
+#define FREEVERTEX 2
+#define DEADVERTEX -32768
+#define UNDEADVERTEX -32767
+
+/* The next line is used to outsmart some very stupid compilers.  If your    */
+/*   compiler is smarter, feel free to replace the "int" with "void".        */
+/*   Not that it matters.                                                    */
+
+#define VOID int
+
+/* Two constants for algorithms based on random sampling.  Both constants    */
+/*   have been chosen empirically to optimize their respective algorithms.   */
+
+/* Used for the point location scheme of Mucke, Saias, and Zhu, to decide    */
+/*   how large a random sample of triangles to inspect.                      */
+
+#define SAMPLEFACTOR 11
+
+/* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
+/*   of boundary edges should be maintained in the splay tree for point      */
+/*   location on the front.                                                  */
+
+#define SAMPLERATE 10
+
+/* A number that speaks for itself, every kissable digit.                    */
+
+#define PI 3.141592653589793238462643383279502884197169399375105820974944592308
+
+/* Another fave.                                                             */
+
+#define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732
+
+/* And here's one for those of you who are intimidated by math.              */
+
+#define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+#include "config.h"
+#ifndef NO_TIMER
+#include <sys/time.h>
+#endif /* not NO_TIMER */
+#ifdef CPU86
+#include <float.h>
+#endif /* CPU86 */
+#ifdef LINUX
+#include <fpu_control.h>
+#endif /* LINUX */
+#ifdef TRILIBRARY
+#include "triangle.h"
+#endif /* TRILIBRARY */
+
+/* A few forward declarations.                                               */
+
+#ifndef TRILIBRARY
+char *readline();
+char *findfield();
+#endif /* not TRILIBRARY */
+
+/* Labels that signify whether a record consists primarily of pointers or of */
+/*   floating-point words.  Used to make decisions about data alignment.     */
+
+enum wordtype {POINTER, FLOATINGPOINT};
+
+/* Labels that signify the result of point location.  The result of a        */
+/*   search indicates that the point falls in the interior of a triangle, on */
+/*   an edge, on a vertex, or outside the mesh.                              */
+
+enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};
+
+/* Labels that signify the result of vertex insertion.  The result indicates */
+/*   that the vertex was inserted with complete success, was inserted but    */
+/*   encroaches upon a subsegment, was not inserted because it lies on a     */
+/*   segment, or was not inserted because another vertex occupies the same   */
+/*   location.                                                               */
+
+enum insertvertexresult {SUCCESSFULVERTEX, ENCROACHINGVERTEX, VIOLATINGVERTEX,
+                         DUPLICATEVERTEX};
+
+/* Labels that signify the result of direction finding.  The result          */
+/*   indicates that a segment connecting the two query points falls within   */
+/*   the direction triangle, along the left edge of the direction triangle,  */
+/*   or along the right edge of the direction triangle.                      */
+
+enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};
+
+/*****************************************************************************/
+/*                                                                           */
+/*  The basic mesh data structures                                           */
+/*                                                                           */
+/*  There are three:  vertices, triangles, and subsegments (abbreviated      */
+/*  `subseg').  These three data structures, linked by pointers, comprise    */
+/*  the mesh.  A vertex simply represents a mesh vertex and its properties.  */
+/*  A triangle is a triangle.  A subsegment is a special data structure used */
+/*  to represent an impenetrable edge of the mesh (perhaps on the outer      */
+/*  boundary, on the boundary of a hole, or part of an internal boundary     */
+/*  separating two triangulated regions).  Subsegments represent boundaries, */
+/*  defined by the user, that triangles may not lie across.                  */
+/*                                                                           */
+/*  A triangle consists of a list of three vertices, a list of three         */
+/*  adjoining triangles, a list of three adjoining subsegments (when         */
+/*  segments exist), an arbitrary number of optional user-defined            */
+/*  floating-point attributes, and an optional area constraint.  The latter  */
+/*  is an upper bound on the permissible area of each triangle in a region,  */
+/*  used for mesh refinement.                                                */
+/*                                                                           */
+/*  For a triangle on a boundary of the mesh, some or all of the neighboring */
+/*  triangles may not be present.  For a triangle in the interior of the     */
+/*  mesh, often no neighboring subsegments are present.  Such absent         */
+/*  triangles and subsegments are never represented by NULL pointers; they   */
+/*  are represented by two special records:  `dummytri', the triangle that   */
+/*  fills "outer space", and `dummysub', the omnipresent subsegment.         */
+/*  `dummytri' and `dummysub' are used for several reasons; for instance,    */
+/*  they can be dereferenced and their contents examined without violating   */
+/*  protected memory.                                                        */
+/*                                                                           */
+/*  However, it is important to understand that a triangle includes other    */
+/*  information as well.  The pointers to adjoining vertices, triangles, and */
+/*  subsegments are ordered in a way that indicates their geometric relation */
+/*  to each other.  Furthermore, each of these pointers contains orientation */
+/*  information.  Each pointer to an adjoining triangle indicates which face */
+/*  of that triangle is contacted.  Similarly, each pointer to an adjoining  */
+/*  subsegment indicates which side of that subsegment is contacted, and how */
+/*  the subsegment is oriented relative to the triangle.                     */
+/*                                                                           */
+/*  The data structure representing a subsegment may be thought to be        */
+/*  abutting the edge of one or two triangle data structures:  either        */
+/*  sandwiched between two triangles, or resting against one triangle on an  */
+/*  exterior boundary or hole boundary.                                      */
+/*                                                                           */
+/*  A subsegment consists of a list of two vertices, a list of two           */
+/*  adjoining subsegments, and a list of two adjoining triangles.  One of    */
+/*  the two adjoining triangles may not be present (though there should      */
+/*  always be one), and neighboring subsegments might not be present.        */
+/*  Subsegments also store a user-defined integer "boundary marker".         */
+/*  Typically, this integer is used to indicate what boundary conditions are */
+/*  to be applied at that location in a finite element simulation.           */
+/*                                                                           */
+/*  Like triangles, subsegments maintain information about the relative      */
+/*  orientation of neighboring objects.                                      */
+/*                                                                           */
+/*  Vertices are relatively simple.  A vertex is a list of floating-point    */
+/*  numbers, starting with the x, and y coordinates, followed by an          */
+/*  arbitrary number of optional user-defined floating-point attributes,     */
+/*  followed by an integer boundary marker.  During the segment insertion    */
+/*  phase, there is also a pointer from each vertex to a triangle that may   */
+/*  contain it.  Each pointer is not always correct, but when one is, it     */
+/*  speeds up segment insertion.  These pointers are assigned values once    */
+/*  at the beginning of the segment insertion phase, and are not used or     */
+/*  updated except during this phase.  Edge flipping during segment          */
+/*  insertion will render some of them incorrect.  Hence, don't rely upon    */
+/*  them for anything.                                                       */
+/*                                                                           */
+/*  Other than the exception mentioned above, vertices have no information   */
+/*  about what triangles, subfacets, or subsegments they are linked to.      */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  Handles                                                                  */
+/*                                                                           */
+/*  The oriented triangle (`otri') and oriented subsegment (`osub') data     */
+/*  structures defined below do not themselves store any part of the mesh.   */
+/*  The mesh itself is made of `triangle's, `subseg's, and `vertex's.        */
+/*                                                                           */
+/*  Oriented triangles and oriented subsegments will usually be referred to  */
+/*  as "handles."  A handle is essentially a pointer into the mesh; it       */
+/*  allows you to "hold" one particular part of the mesh.  Handles are used  */
+/*  to specify the regions in which one is traversing and modifying the mesh.*/
+/*  A single `triangle' may be held by many handles, or none at all.  (The   */
+/*  latter case is not a memory leak, because the triangle is still          */
+/*  connected to other triangles in the mesh.)                               */
+/*                                                                           */
+/*  An `otri' is a handle that holds a triangle.  It holds a specific edge   */
+/*  of the triangle.  An `osub' is a handle that holds a subsegment.  It     */
+/*  holds either the left or right side of the subsegment.                   */
+/*                                                                           */
+/*  Navigation about the mesh is accomplished through a set of mesh          */
+/*  manipulation primitives, further below.  Many of these primitives take   */
+/*  a handle and produce a new handle that holds the mesh near the first     */
+/*  handle.  Other primitives take two handles and glue the corresponding    */
+/*  parts of the mesh together.  The orientation of the handles is           */
+/*  important.  For instance, when two triangles are glued together by the   */
+/*  bond() primitive, they are glued at the edges on which the handles lie.  */
+/*                                                                           */
+/*  Because vertices have no information about which triangles they are      */
+/*  attached to, I commonly represent a vertex by use of a handle whose      */
+/*  origin is the vertex.  A single handle can simultaneously represent a    */
+/*  triangle, an edge, and a vertex.                                         */
+/*                                                                           */
+/*****************************************************************************/
+
+/* The triangle data structure.  Each triangle contains three pointers to    */
+/*   adjoining triangles, plus three pointers to vertices, plus three        */
+/*   pointers to subsegments (declared below; these pointers are usually     */
+/*   `dummysub').  It may or may not also contain user-defined attributes    */
+/*   and/or a floating-point "area constraint."  It may also contain extra   */
+/*   pointers for nodes, when the user asks for high-order elements.         */
+/*   Because the size and structure of a `triangle' is not decided until     */
+/*   runtime, I haven't simply declared the type `triangle' as a struct.     */
+
+typedef REAL **triangle;            /* Really:  typedef triangle *triangle   */
+
+/* An oriented triangle:  includes a pointer to a triangle and orientation.  */
+/*   The orientation denotes an edge of the triangle.  Hence, there are      */
+/*   three possible orientations.  By convention, each edge always points    */
+/*   counterclockwise about the corresponding triangle.                      */
+
+struct otri {
+  triangle *tri;
+  int orient;                                         /* Ranges from 0 to 2. */
+};
+
+/* The subsegment data structure.  Each subsegment contains two pointers to  */
+/*   adjoining subsegments, plus two pointers to vertices, plus two pointers */
+/*   to adjoining triangles, plus one boundary marker.                       */
+
+typedef REAL **subseg;                  /* Really:  typedef subseg *subseg   */
+
+/* An oriented subsegment:  includes a pointer to a subsegment and an        */
+/*   orientation.  The orientation denotes a side of the edge.  Hence, there */
+/*   are two possible orientations.  By convention, the edge is always       */
+/*   directed so that the "side" denoted is the right side of the edge.      */
+
+struct osub {
+  subseg *ss;
+  int ssorient;                                       /* Ranges from 0 to 1. */
+};
+
+/* The vertex data structure.  Each vertex is actually an array of REALs.    */
+/*   The number of REALs is unknown until runtime.  An integer boundary      */
+/*   marker, and sometimes a pointer to a triangle, is appended after the    */
+/*   REALs.                                                                  */
+
+typedef REAL *vertex;
+
+/* A queue used to store encroached subsegments.  Each subsegment's vertices */
+/*   are stored so that we can check whether a subsegment is still the same. */
+
+struct badsubseg {
+  subseg encsubseg;                             /* An encroached subsegment. */
+  vertex subsegorg, subsegdest;                         /* Its two vertices. */
+};
+
+/* A queue used to store bad triangles.  The key is the square of the cosine */
+/*   of the smallest angle of the triangle.  Each triangle's vertices are    */
+/*   stored so that one can check whether a triangle is still the same.      */
+
+struct badtriang {
+  triangle poortri;                       /* A skinny or too-large triangle. */
+  REAL key;                             /* cos^2 of smallest (apical) angle. */
+  vertex triangorg, triangdest, triangapex;           /* Its three vertices. */
+  struct badtriang *nexttriang;             /* Pointer to next bad triangle. */
+};
+
+/* A stack of triangles flipped during the most recent vertex insertion.     */
+/*   The stack is used to undo the vertex insertion if the vertex encroaches */
+/*   upon a subsegment.                                                      */
+
+struct flipstacker {
+  triangle flippedtri;                       /* A recently flipped triangle. */
+  struct flipstacker *prevflip;               /* Previous flip in the stack. */
+};
+
+/* A node in a heap used to store events for the sweepline Delaunay          */
+/*   algorithm.  Nodes do not point directly to their parents or children in */
+/*   the heap.  Instead, each node knows its position in the heap, and can   */
+/*   look up its parent and children in a separate array.  The `eventptr'    */
+/*   points either to a `vertex' or to a triangle (in encoded format, so     */
+/*   that an orientation is included).  In the latter case, the origin of    */
+/*   the oriented triangle is the apex of a "circle event" of the sweepline  */
+/*   algorithm.  To distinguish site events from circle events, all circle   */
+/*   events are given an invalid (smaller than `xmin') x-coordinate `xkey'.  */
+
+struct event {
+  REAL xkey, ykey;                              /* Coordinates of the event. */
+  VOID *eventptr;      /* Can be a vertex or the location of a circle event. */
+  int heapposition;              /* Marks this event's position in the heap. */
+};
+
+/* A node in the splay tree.  Each node holds an oriented ghost triangle     */
+/*   that represents a boundary edge of the growing triangulation.  When a   */
+/*   circle event covers two boundary edges with a triangle, so that they    */
+/*   are no longer boundary edges, those edges are not immediately deleted   */
+/*   from the tree; rather, they are lazily deleted when they are next       */
+/*   encountered.  (Since only a random sample of boundary edges are kept    */
+/*   in the tree, lazy deletion is faster.)  `keydest' is used to verify     */
+/*   that a triangle is still the same as when it entered the splay tree; if */
+/*   it has been rotated (due to a circle event), it no longer represents a  */
+/*   boundary edge and should be deleted.                                    */
+
+struct splaynode {
+  struct otri keyedge;                     /* Lprev of an edge on the front. */
+  vertex keydest;           /* Used to verify that splay node is still live. */
+  struct splaynode *lchild, *rchild;              /* Children in splay tree. */
+};
+
+/* A type used to allocate memory.  firstblock is the first block of items.  */
+/*   nowblock is the block from which items are currently being allocated.   */
+/*   nextitem points to the next slab of free memory for an item.            */
+/*   deaditemstack is the head of a linked list (stack) of deallocated items */
+/*   that can be recycled.  unallocateditems is the number of items that     */
+/*   remain to be allocated from nowblock.                                   */
+/*                                                                           */
+/* Traversal is the process of walking through the entire list of items, and */
+/*   is separate from allocation.  Note that a traversal will visit items on */
+/*   the "deaditemstack" stack as well as live items.  pathblock points to   */
+/*   the block currently being traversed.  pathitem points to the next item  */
+/*   to be traversed.  pathitemsleft is the number of items that remain to   */
+/*   be traversed in pathblock.                                              */
+/*                                                                           */
+/* itemwordtype is set to POINTER or FLOATINGPOINT, and is used to suggest   */
+/*   what sort of word the record is primarily made up of.  alignbytes       */
+/*   determines how new records should be aligned in memory.  itembytes and  */
+/*   itemwords are the length of a record in bytes (after rounding up) and   */
+/*   words.  itemsperblock is the number of items allocated at once in a     */
+/*   single block.  items is the number of currently allocated items.        */
+/*   maxitems is the maximum number of items that have been allocated at     */
+/*   once; it is the current number of items plus the number of records kept */
+/*   on deaditemstack.                                                       */
+
+struct memorypool {
+  VOID **firstblock, **nowblock;
+  VOID *nextitem;
+  VOID *deaditemstack;
+  VOID **pathblock;
+  VOID *pathitem;
+  enum wordtype itemwordtype;
+  int alignbytes;
+  int itembytes, itemwords;
+  int itemsperblock;
+  long items, maxitems;
+  int unallocateditems;
+  int pathitemsleft;
+};
+
+
+/* Global constants.                                                         */
+
+REAL splitter;       /* Used to split REAL factors for exact multiplication. */
+REAL epsilon;                             /* Floating-point machine epsilon. */
+REAL resulterrbound;
+REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
+REAL iccerrboundA, iccerrboundB, iccerrboundC;
+REAL o3derrboundA, o3derrboundB, o3derrboundC;
+
+/* Random number seed is not constant, but I've made it global anyway.       */
+
+unsigned long randomseed;                     /* Current random number seed. */
+
+
+/* Mesh data structure.  Triangle operates on only one mesh, but the mesh    */
+/*   structure is used (instead of global variables) to allow reentrancy.    */
+
+struct mesh {
+
+/* Variables used to allocate memory for triangles, subsegments, vertices,   */
+/*   viri (triangles being eaten), encroached segments, bad (skinny or too   */
+/*   large) triangles, and splay tree nodes.                                 */
+
+  struct memorypool triangles;
+  struct memorypool subsegs;
+  struct memorypool vertices;
+  struct memorypool viri;
+  struct memorypool badsubsegs;
+  struct memorypool badtriangles;
+  struct memorypool flipstackers;
+  struct memorypool splaynodes;
+
+/* Variables that maintain the bad triangle queues.  The queues are          */
+/*   ordered from 63 (highest priority) to 0 (lowest priority).              */
+
+  struct badtriang *queuefront[64];
+  struct badtriang *queuetail[64];
+  int nextnonemptyq[64];
+  int firstnonemptyq;
+
+/* Variable that maintains the stack of recently flipped triangles.          */
+
+  struct flipstacker *lastflip;
+
+/* Other variables. */
+
+  REAL xmin, xmax, ymin, ymax;                            /* x and y bounds. */
+  REAL xminextreme;      /* Nonexistent x value used as a flag in sweepline. */
+  int invertices;                               /* Number of input vertices. */
+  int inelements;                              /* Number of input triangles. */
+  int insegments;                               /* Number of input segments. */
+  int holes;                                       /* Number of input holes. */
+  int regions;                                   /* Number of input regions. */
+  int undeads;    /* Number of input vertices that don't appear in the mesh. */
+  long edges;                                     /* Number of output edges. */
+  int mesh_dim;                                /* Dimension (ought to be 2). */
+  int nextras;                           /* Number of attributes per vertex. */
+  int eextras;                         /* Number of attributes per triangle. */
+  long hullsize;                          /* Number of edges in convex hull. */
+  int steinerleft;                 /* Number of Steiner points not yet used. */
+  int vertexmarkindex;         /* Index to find boundary marker of a vertex. */
+  int vertex2triindex;     /* Index to find a triangle adjacent to a vertex. */
+  int highorderindex;  /* Index to find extra nodes for high-order elements. */
+  int elemattribindex;            /* Index to find attributes of a triangle. */
+  int areaboundindex;             /* Index to find area bound of a triangle. */
+  int checksegments;         /* Are there segments in the triangulation yet? */
+  int checkquality;                  /* Has quality triangulation begun yet? */
+  int readnodefile;                           /* Has a .node file been read? */
+  long samples;              /* Number of random samples for point location. */
+
+  long incirclecount;                 /* Number of incircle tests performed. */
+  long counterclockcount;     /* Number of counterclockwise tests performed. */
+  long orient3dcount;           /* Number of 3D orientation tests performed. */
+  long hyperbolacount;      /* Number of right-of-hyperbola tests performed. */
+  long circumcentercount;  /* Number of circumcenter calculations performed. */
+  long circletopcount;       /* Number of circle top calculations performed. */
+
+/* Triangular bounding box vertices.                                         */
+
+  vertex infvertex1, infvertex2, infvertex3;
+
+/* Pointer to the `triangle' that occupies all of "outer space."             */
+
+  triangle *dummytri;
+  triangle *dummytribase;    /* Keep base address so we can free() it later. */
+
+/* Pointer to the omnipresent subsegment.  Referenced by any triangle or     */
+/*   subsegment that isn't really connected to a subsegment at that          */
+/*   location.                                                               */
+
+  subseg *dummysub;
+  subseg *dummysubbase;      /* Keep base address so we can free() it later. */
+
+/* Pointer to a recently visited triangle.  Improves point location if       */
+/*   proximate vertices are inserted sequentially.                           */
+
+  struct otri recenttri;
+
+};                                                  /* End of `struct mesh'. */
+
+
+/* Data structure for command line switches and file names.  This structure  */
+/*   is used (instead of global variables) to allow reentrancy.              */
+
+struct behavior {
+
+/* Switches for the triangulator.                                            */
+/*   poly: -p switch.  refine: -r switch.                                    */
+/*   quality: -q switch.                                                     */
+/*     minangle: minimum angle bound, specified after -q switch.             */
+/*     goodangle: cosine squared of minangle.                                */
+/*   vararea: -a switch without number.                                      */
+/*   fixedarea: -a switch with number.                                       */
+/*     maxarea: maximum area bound, specified after -a switch.               */
+/*   usertest: -u switch.                                                    */
+/*   regionattrib: -A switch.  convex: -c switch.                            */
+/*   weighted: 1 for -w switch, 2 for -W switch.  jettison: -j switch        */
+/*   firstnumber: inverse of -z switch.  All items are numbered starting     */
+/*     from `firstnumber'.                                                   */
+/*   edgesout: -e switch.  voronoi: -v switch.                               */
+/*   neighbors: -n switch.  geomview: -g switch.                             */
+/*   nobound: -B switch.  nopolywritten: -P switch.                          */
+/*   nonodewritten: -N switch.  noelewritten: -E switch.                     */
+/*   noiterationnum: -I switch.  noholes: -O switch.                         */
+/*   noexact: -X switch.                                                     */
+/*   order: element order, specified after -o switch.                        */
+/*   nobisect: count of how often -Y switch is selected.                     */
+/*   steiner: maximum number of Steiner points, specified after -S switch.   */
+/*   incremental: -i switch.  sweepline: -F switch.                          */
+/*   dwyer: inverse of -l switch.                                            */
+/*   splitseg: -s switch.                                                    */
+/*   nolenses: -L switch.  docheck: -C switch.                               */
+/*   quiet: -Q switch.  verbose: count of how often -V switch is selected.   */
+/*   usesegments: -p, -r, -q, or -c switch; determines whether segments are  */
+/*     used at all.                                                          */
+/*                                                                           */
+/* Read the instructions to find out the meaning of these switches.          */
+
+  int poly, refine, quality, vararea, fixedarea, usertest;
+  int regionattrib, convex, weighted, jettison;
+  int firstnumber;
+  int edgesout, voronoi, neighbors, geomview;
+  int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
+  int noholes, noexact, nolenses;
+  int incremental, sweepline, dwyer;
+  int splitseg;
+  int docheck;
+  int quiet, verbose;
+  int usesegments;
+  int order;
+  int nobisect;
+  int steiner;
+  REAL minangle, goodangle;
+  REAL maxarea;
+
+/* Variables for file names.                                                 */
+
+#ifndef TRILIBRARY
+  char innodefilename[FILENAMESIZE];
+  char inelefilename[FILENAMESIZE];
+  char inpolyfilename[FILENAMESIZE];
+  char areafilename[FILENAMESIZE];
+  char outnodefilename[FILENAMESIZE];
+  char outelefilename[FILENAMESIZE];
+  char outpolyfilename[FILENAMESIZE];
+  char edgefilename[FILENAMESIZE];
+  char vnodefilename[FILENAMESIZE];
+  char vedgefilename[FILENAMESIZE];
+  char neighborfilename[FILENAMESIZE];
+  char offfilename[FILENAMESIZE];
+#endif /* not TRILIBRARY */
+
+};                                              /* End of `struct behavior'. */
+
+
+/*****************************************************************************/
+/*                                                                           */
+/*  Mesh manipulation primitives.  Each triangle contains three pointers to  */
+/*  other triangles, with orientations.  Each pointer points not to the      */
+/*  first byte of a triangle, but to one of the first three bytes of a       */
+/*  triangle.  It is necessary to extract both the triangle itself and the   */
+/*  orientation.  To save memory, I keep both pieces of information in one   */
+/*  pointer.  To make this possible, I assume that all triangles are aligned */
+/*  to four-byte boundaries.  The decode() routine below decodes a pointer,  */
+/*  extracting an orientation (in the range 0 to 2) and a pointer to the     */
+/*  beginning of a triangle.  The encode() routine compresses a pointer to a */
+/*  triangle and an orientation into a single pointer.  My assumptions that  */
+/*  triangles are four-byte-aligned and that the `unsigned long' type is     */
+/*  long enough to hold a pointer are two of the few kludges in this program.*/
+/*                                                                           */
+/*  Subsegments are manipulated similarly.  A pointer to a subsegment        */
+/*  carries both an address and an orientation in the range 0 to 1.          */
+/*                                                                           */
+/*  The other primitives take an oriented triangle or oriented subsegment,   */
+/*  and return an oriented triangle or oriented subsegment or vertex; or     */
+/*  they change the connections in the data structure.                       */
+/*                                                                           */
+/*  Below, triangles and subsegments are denoted by their vertices.  The     */
+/*  triangle abc has origin (org) a, destination (dest) b, and apex (apex)   */
+/*  c.  These vertices occur in counterclockwise order about the triangle.   */
+/*  The handle abc may simultaneously denote vertex a, edge ab, and triangle */
+/*  abc.                                                                     */
+/*                                                                           */
+/*  Similarly, the subsegment ab has origin (sorg) a and destination (sdest) */
+/*  b.  If ab is thought to be directed upward (with b directly above a),    */
+/*  then the handle ab is thought to grasp the right side of ab, and may     */
+/*  simultaneously denote vertex a and edge ab.                              */
+/*                                                                           */
+/*  An asterisk (*) denotes a vertex whose identity is unknown.              */
+/*                                                                           */
+/*  Given this notation, a partial list of mesh manipulation primitives      */
+/*  follows.                                                                 */
+/*                                                                           */
+/*                                                                           */
+/*  For triangles:                                                           */
+/*                                                                           */
+/*  sym:  Find the abutting triangle; same edge.                             */
+/*  sym(abc) -> ba*                                                          */
+/*                                                                           */
+/*  lnext:  Find the next edge (counterclockwise) of a triangle.             */
+/*  lnext(abc) -> bca                                                        */
+/*                                                                           */
+/*  lprev:  Find the previous edge (clockwise) of a triangle.                */
+/*  lprev(abc) -> cab                                                        */
+/*                                                                           */
+/*  onext:  Find the next edge counterclockwise with the same origin.        */
+/*  onext(abc) -> ac*                                                        */
+/*                                                                           */
+/*  oprev:  Find the next edge clockwise with the same origin.               */
+/*  oprev(abc) -> a*b                                                        */
+/*                                                                           */
+/*  dnext:  Find the next edge counterclockwise with the same destination.   */
+/*  dnext(abc) -> *ba                                                        */
+/*                                                                           */
+/*  dprev:  Find the next edge clockwise with the same destination.          */
+/*  dprev(abc) -> cb*                                                        */
+/*                                                                           */
+/*  rnext:  Find the next edge (counterclockwise) of the adjacent triangle.  */
+/*  rnext(abc) -> *a*                                                        */
+/*                                                                           */
+/*  rprev:  Find the previous edge (clockwise) of the adjacent triangle.     */
+/*  rprev(abc) -> b**                                                        */
+/*                                                                           */
+/*  org:  Origin          dest:  Destination          apex:  Apex            */
+/*  org(abc) -> a         dest(abc) -> b              apex(abc) -> c         */
+/*                                                                           */
+/*  bond:  Bond two triangles together at the resepective handles.           */
+/*  bond(abc, bad)                                                           */
+/*                                                                           */
+/*                                                                           */
+/*  For subsegments:                                                         */
+/*                                                                           */
+/*  ssym:  Reverse the orientation of a subsegment.                          */
+/*  ssym(ab) -> ba                                                           */
+/*                                                                           */
+/*  spivot:  Find adjoining subsegment with the same origin.                 */
+/*  spivot(ab) -> a*                                                         */
+/*                                                                           */
+/*  snext:  Find next subsegment in sequence.                                */
+/*  snext(ab) -> b*                                                          */
+/*                                                                           */
+/*  sorg:  Origin                      sdest:  Destination                   */
+/*  sorg(ab) -> a                      sdest(ab) -> b                        */
+/*                                                                           */
+/*  sbond:  Bond two subsegments together at the respective origins.         */
+/*  sbond(ab, ac)                                                            */
+/*                                                                           */
+/*                                                                           */
+/*  For interacting tetrahedra and subfacets:                                */
+/*                                                                           */
+/*  tspivot:  Find a subsegment abutting a triangle.                         */
+/*  tspivot(abc) -> ba                                                       */
+/*                                                                           */
+/*  stpivot:  Find a triangle abutting a subsegment.                         */
+/*  stpivot(ab) -> ba*                                                       */
+/*                                                                           */
+/*  tsbond:  Bond a triangle to a subsegment.                                */
+/*  tsbond(abc, ba)                                                          */
+/*                                                                           */
+/*****************************************************************************/
+
+/********* Mesh manipulation primitives begin here                   *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/* Fast lookup arrays to speed some of the mesh manipulation primitives.     */
+
+int plus1mod3[3] = {1, 2, 0};
+int minus1mod3[3] = {2, 0, 1};
+
+/********* Primitives for triangles                                  *********/
+/*                                                                           */
+/*                                                                           */
+
+/* decode() converts a pointer to an oriented triangle.  The orientation is  */
+/*   extracted from the two least significant bits of the pointer.           */
+
+#define decode(ptr, otri)                                                     \
+  (otri).orient = (int) ((unsigned long) (ptr) & (unsigned long) 3l);         \
+  (otri).tri = (triangle *)                                                   \
+                  ((unsigned long) (ptr) ^ (unsigned long) (otri).orient)
+
+/* encode() compresses an oriented triangle into a single pointer.  It       */
+/*   relies on the assumption that all triangles are aligned to four-byte    */
+/*   boundaries, so the two least significant bits of (otri).tri are zero.   */
+
+#define encode(otri)                                                          \
+  (triangle) ((unsigned long) (otri).tri | (unsigned long) (otri).orient)
+
+/* The following handle manipulation primitives are all described by Guibas  */
+/*   and Stolfi.  However, Guibas and Stolfi use an edge-based data          */
+/*   structure, whereas I use a triangle-based data structure.               */
+
+/* sym() finds the abutting triangle, on the same edge.  Note that the edge  */
+/*   direction is necessarily reversed, because the handle specified by an   */
+/*   oriented triangle is directed counterclockwise around the triangle.     */
+
+#define sym(otri1, otri2)                                                     \
+  ptr = (otri1).tri[(otri1).orient];                                          \
+  decode(ptr, otri2);
+
+#define symself(otri)                                                         \
+  ptr = (otri).tri[(otri).orient];                                            \
+  decode(ptr, otri);
+
+/* lnext() finds the next edge (counterclockwise) of a triangle.             */
+
+#define lnext(otri1, otri2)                                                   \
+  (otri2).tri = (otri1).tri;                                                  \
+  (otri2).orient = plus1mod3[(otri1).orient]
+
+#define lnextself(otri)                                                       \
+  (otri).orient = plus1mod3[(otri).orient]
+
+/* lprev() finds the previous edge (clockwise) of a triangle.                */
+
+#define lprev(otri1, otri2)                                                   \
+  (otri2).tri = (otri1).tri;                                                  \
+  (otri2).orient = minus1mod3[(otri1).orient]
+
+#define lprevself(otri)                                                       \
+  (otri).orient = minus1mod3[(otri).orient]
+
+/* onext() spins counterclockwise around a vertex; that is, it finds the     */
+/*   next edge with the same origin in the counterclockwise direction.  This */
+/*   edge is part of a different triangle.                                   */
+
+#define onext(otri1, otri2)                                                   \
+  lprev(otri1, otri2);                                                        \
+  symself(otri2);
+
+#define onextself(otri)                                                       \
+  lprevself(otri);                                                            \
+  symself(otri);
+
+/* oprev() spins clockwise around a vertex; that is, it finds the next edge  */
+/*   with the same origin in the clockwise direction.  This edge is part of  */
+/*   a different triangle.                                                   */
+
+#define oprev(otri1, otri2)                                                   \
+  sym(otri1, otri2);                                                          \
+  lnextself(otri2);
+
+#define oprevself(otri)                                                       \
+  symself(otri);                                                              \
+  lnextself(otri);
+
+/* dnext() spins counterclockwise around a vertex; that is, it finds the     */
+/*   next edge with the same destination in the counterclockwise direction.  */
+/*   This edge is part of a different triangle.                              */
+
+#define dnext(otri1, otri2)                                                   \
+  sym(otri1, otri2);                                                          \
+  lprevself(otri2);
+
+#define dnextself(otri)                                                       \
+  symself(otri);                                                              \
+  lprevself(otri);
+
+/* dprev() spins clockwise around a vertex; that is, it finds the next edge  */
+/*   with the same destination in the clockwise direction.  This edge is     */
+/*   part of a different triangle.                                           */
+
+#define dprev(otri1, otri2)                                                   \
+  lnext(otri1, otri2);                                                        \
+  symself(otri2);
+
+#define dprevself(otri)                                                       \
+  lnextself(otri);                                                            \
+  symself(otri);
+
+/* rnext() moves one edge counterclockwise about the adjacent triangle.      */
+/*   (It's best understood by reading Guibas and Stolfi.  It involves        */
+/*   changing triangles twice.)                                              */
+
+#define rnext(otri1, otri2)                                                   \
+  sym(otri1, otri2);                                                          \
+  lnextself(otri2);                                                           \
+  symself(otri2);
+
+#define rnextself(otri)                                                       \
+  symself(otri);                                                              \
+  lnextself(otri);                                                            \
+  symself(otri);
+
+/* rprev() moves one edge clockwise about the adjacent triangle.             */
+/*   (It's best understood by reading Guibas and Stolfi.  It involves        */
+/*   changing triangles twice.)                                              */
+
+#define rprev(otri1, otri2)                                                   \
+  sym(otri1, otri2);                                                          \
+  lprevself(otri2);                                                           \
+  symself(otri2);
+
+#define rprevself(otri)                                                       \
+  symself(otri);                                                              \
+  lprevself(otri);                                                            \
+  symself(otri);
+
+/* These primitives determine or set the origin, destination, or apex of a   */
+/* triangle.                                                                 */
+
+#define org(otri, vertexptr)                                                  \
+  vertexptr = (vertex) (otri).tri[plus1mod3[(otri).orient] + 3]
+
+#define dest(otri, vertexptr)                                                 \
+  vertexptr = (vertex) (otri).tri[minus1mod3[(otri).orient] + 3]
+
+#define apex(otri, vertexptr)                                                 \
+  vertexptr = (vertex) (otri).tri[(otri).orient + 3]
+
+#define setorg(otri, vertexptr)                                               \
+  (otri).tri[plus1mod3[(otri).orient] + 3] = (triangle) vertexptr
+
+#define setdest(otri, vertexptr)                                              \
+  (otri).tri[minus1mod3[(otri).orient] + 3] = (triangle) vertexptr
+
+#define setapex(otri, vertexptr)                                              \
+  (otri).tri[(otri).orient + 3] = (triangle) vertexptr
+
+/* Bond two triangles together.                                              */
+
+#define bond(otri1, otri2)                                                    \
+  (otri1).tri[(otri1).orient] = encode(otri2);                                \
+  (otri2).tri[(otri2).orient] = encode(otri1)
+
+/* Dissolve a bond (from one side).  Note that the other triangle will still */
+/*   think it's connected to this triangle.  Usually, however, the other     */
+/*   triangle is being deleted entirely, or bonded to another triangle, so   */
+/*   it doesn't matter.                                                      */
+
+#define dissolve(otri)                                                        \
+  (otri).tri[(otri).orient] = (triangle) m->dummytri
+
+/* Copy an oriented triangle.                                                */
+
+#define otricopy(otri1, otri2)                                                \
+  (otri2).tri = (otri1).tri;                                                  \
+  (otri2).orient = (otri1).orient
+
+/* Test for equality of oriented triangles.                                  */
+
+#define otriequal(otri1, otri2)                                               \
+  (((otri1).tri == (otri2).tri) &&                                            \
+   ((otri1).orient == (otri2).orient))
+
+/* Primitives to infect or cure a triangle with the virus.  These rely on    */
+/*   the assumption that all subsegments are aligned to four-byte boundaries.*/
+
+#define infect(otri)                                                          \
+  (otri).tri[6] = (triangle)                                                  \
+                    ((unsigned long) (otri).tri[6] | (unsigned long) 2l)
+
+#define uninfect(otri)                                                        \
+  (otri).tri[6] = (triangle)                                                  \
+                    ((unsigned long) (otri).tri[6] & ~ (unsigned long) 2l)
+
+/* Test a triangle for viral infection.                                      */
+
+#define infected(otri)                                                        \
+  (((unsigned long) (otri).tri[6] & (unsigned long) 2l) != 0l)
+
+/* Check or set a triangle's attributes.                                     */
+
+#define elemattribute(otri, attnum)                                           \
+  ((REAL *) (otri).tri)[m->elemattribindex + (attnum)]
+
+#define setelemattribute(otri, attnum, value)                                 \
+  ((REAL *) (otri).tri)[m->elemattribindex + (attnum)] = value
+
+/* Check or set a triangle's maximum area bound.                             */
+
+#define areabound(otri)  ((REAL *) (otri).tri)[m->areaboundindex]
+
+#define setareabound(otri, value)                                             \
+  ((REAL *) (otri).tri)[m->areaboundindex] = value
+
+/* Check or set a triangle's deallocation.  Its second pointer is set to     */
+/*   NULL to indicate that it is not allocated.  (Its first pointer is used  */
+/*   for the stack of dead items.)  Its fourth pointer (its first vertex)    */
+/*   is set to NULL in case a `badtriang' structure points to it.            */
+
+#define deadtri(tria)  ((tria)[1] == (triangle) NULL)
+
+#define killtri(tria)                                                         \
+  (tria)[1] = (triangle) NULL;                                                \
+  (tria)[3] = (triangle) NULL
+
+/********* Primitives for subsegments                                *********/
+/*                                                                           */
+/*                                                                           */
+
+/* sdecode() converts a pointer to an oriented subsegment.  The orientation  */
+/*   is extracted from the least significant bit of the pointer.  The two    */
+/*   least significant bits (one for orientation, one for viral infection)   */
+/*   are masked out to produce the real pointer.                             */
+
+#define sdecode(sptr, osub)                                                   \
+  (osub).ssorient = (int) ((unsigned long) (sptr) & (unsigned long) 1l);      \
+  (osub).ss = (subseg *)                                                      \
+              ((unsigned long) (sptr) & ~ (unsigned long) 3l)
+
+/* sencode() compresses an oriented subsegment into a single pointer.  It    */
+/*   relies on the assumption that all subsegments are aligned to two-byte   */
+/*   boundaries, so the least significant bit of (osub).ss is zero.          */
+
+#define sencode(osub)                                                         \
+  (subseg) ((unsigned long) (osub).ss | (unsigned long) (osub).ssorient)
+
+/* ssym() toggles the orientation of a subsegment.                           */
+
+#define ssym(osub1, osub2)                                                    \
+  (osub2).ss = (osub1).ss;                                                    \
+  (osub2).ssorient = 1 - (osub1).ssorient
+
+#define ssymself(osub)                                                        \
+  (osub).ssorient = 1 - (osub).ssorient
+
+/* spivot() finds the other subsegment (from the same segment) that shares   */
+/*   the same origin.                                                        */
+
+#define spivot(osub1, osub2)                                                  \
+  sptr = (osub1).ss[(osub1).ssorient];                                        \
+  sdecode(sptr, osub2)
+
+#define spivotself(osub)                                                      \
+  sptr = (osub).ss[(osub).ssorient];                                          \
+  sdecode(sptr, osub)
+
+/* snext() finds the next subsegment (from the same segment) in sequence;    */
+/*   one whose origin is the input subsegment's destination.                 */
+
+#define snext(osub1, osub2)                                                   \
+  sptr = (osub1).ss[1 - (osub1).ssorient];                                    \
+  sdecode(sptr, osub2)
+
+#define snextself(osub)                                                       \
+  sptr = (osub).ss[1 - (osub).ssorient];                                      \
+  sdecode(sptr, osub)
+
+/* These primitives determine or set the origin or destination of a          */
+/*   subsegment.                                                             */
+
+#define sorg(osub, vertexptr)                                                 \
+  vertexptr = (vertex) (osub).ss[2 + (osub).ssorient]
+
+#define sdest(osub, vertexptr)                                                \
+  vertexptr = (vertex) (osub).ss[3 - (osub).ssorient]
+
+#define setsorg(osub, vertexptr)                                              \
+  (osub).ss[2 + (osub).ssorient] = (subseg) vertexptr
+
+#define setsdest(osub, vertexptr)                                             \
+  (osub).ss[3 - (osub).ssorient] = (subseg) vertexptr
+
+/* These primitives read or set a boundary marker.  Boundary markers are     */
+/*   used to hold user-defined tags for setting boundary conditions in       */
+/*   finite element solvers.                                                 */
+
+#define mark(osub)  (* (int *) ((osub).ss + 6))
+
+#define setmark(osub, value)                                                  \
+  * (int *) ((osub).ss + 6) = value
+
+/* Bond two subsegments together.                                            */
+
+#define sbond(osub1, osub2)                                                   \
+  (osub1).ss[(osub1).ssorient] = sencode(osub2);                              \
+  (osub2).ss[(osub2).ssorient] = sencode(osub1)
+
+/* Dissolve a subsegment bond (from one side).  Note that the other          */
+/*   subsegment will still think it's connected to this subsegment.          */
+
+#define sdissolve(osub)                                                       \
+  (osub).ss[(osub).ssorient] = (subseg) m->dummysub
+
+/* Copy a subsegment.                                                        */
+
+#define subsegcopy(osub1, osub2)                                              \
+  (osub2).ss = (osub1).ss;                                                    \
+  (osub2).ssorient = (osub1).ssorient
+
+/* Test for equality of subsegments.                                         */
+
+#define subsegequal(osub1, osub2)                                             \
+  (((osub1).ss == (osub2).ss) &&                                              \
+   ((osub1).ssorient == (osub2).ssorient))
+
+/* Check or set a subsegment's deallocation.  Its second pointer is set to   */
+/*   NULL to indicate that it is not allocated.  (Its first pointer is used  */
+/*   for the stack of dead items.)  Its third pointer (its first vertex)     */
+/*   is set to NULL in case a `badsubseg' structure points to it.            */
+
+#define deadsubseg(sub)  ((sub)[1] == (subseg) NULL)
+
+#define killsubseg(sub)                                                       \
+  (sub)[1] = (subseg) NULL;                                                   \
+  (sub)[2] = (subseg) NULL
+
+/********* Primitives for interacting triangles and subsegments      *********/
+/*                                                                           */
+/*                                                                           */
+
+/* tspivot() finds a subsegment abutting a triangle.                         */
+
+#define tspivot(otri, osub)                                                   \
+  sptr = (subseg) (otri).tri[6 + (otri).orient];                              \
+  sdecode(sptr, osub)
+
+/* stpivot() finds a triangle abutting a subsegment.  It requires that the   */
+/*   variable `ptr' of type `triangle' be defined.                           */
+
+#define stpivot(osub, otri)                                                   \
+  ptr = (triangle) (osub).ss[4 + (osub).ssorient];                            \
+  decode(ptr, otri)
+
+/* Bond a triangle to a subsegment.                                          */
+
+#define tsbond(otri, osub)                                                    \
+  (otri).tri[6 + (otri).orient] = (triangle) sencode(osub);                   \
+  (osub).ss[4 + (osub).ssorient] = (subseg) encode(otri)
+
+/* Dissolve a bond (from the triangle side).                                 */
+
+#define tsdissolve(otri)                                                      \
+  (otri).tri[6 + (otri).orient] = (triangle) m->dummysub
+
+/* Dissolve a bond (from the subsegment side).                               */
+
+#define stdissolve(osub)                                                      \
+  (osub).ss[4 + (osub).ssorient] = (subseg) m->dummytri
+
+/********* Primitives for vertices                                   *********/
+/*                                                                           */
+/*                                                                           */
+
+#define vertexmark(vx)  ((int *) (vx))[m->vertexmarkindex]
+
+#define setvertexmark(vx, value)                                              \
+  ((int *) (vx))[m->vertexmarkindex] = value
+
+#define vertextype(vx)  ((int *) (vx))[m->vertexmarkindex + 1]
+
+#define setvertextype(vx, value)                                              \
+  ((int *) (vx))[m->vertexmarkindex + 1] = value
+
+#define vertex2tri(vx)  ((triangle *) (vx))[m->vertex2triindex]
+
+#define setvertex2tri(vx, value)                                              \
+  ((triangle *) (vx))[m->vertex2triindex] = value
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Mesh manipulation primitives end here                     *********/
+
+/********* User-defined triangle evaluation routine begins here      *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triunsuitable()   Determine if a triangle is unsuitable, and thus must   */
+/*                    be further refined.                                    */
+/*                                                                           */
+/*  You may write your own procedure that decides whether or not a selected  */
+/*  triangle is too big (and needs to be refined).  There are two ways to do */
+/*  this.                                                                    */
+/*                                                                           */
+/*  (1)  Modify the procedure `triunsuitable' below, then recompile          */
+/*  Triangle.                                                                */
+/*                                                                           */
+/*  (2)  Define the symbol EXTERNAL_TEST (either by adding the definition    */
+/*  to this file, or by using the appropriate compiler switch).  This way,   */
+/*  you can compile triangle.c separately from your test.  Write your own    */
+/*  `triunsuitable' procedure in a separate C file (using the same prototype */
+/*  as below).  Compile it and link the object code with triangle.o.         */
+/*                                                                           */
+/*  This procedure returns 1 if the triangle is too large and should be      */
+/*  refined; 0 otherwise.                                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef EXTERNAL_TEST
+
+#ifdef ANSI_DECLARATORS
+extern int triunsuitable(vertex triorg, vertex tridest, vertex triapex,
+                         REAL area);
+#else /* not ANSI_DECLARATORS */
+extern int triunsuitable();
+#endif /* not ANSI_DECLARATORS */
+
+#else /* not EXTERNAL_TEST */
+
+#ifdef ANSI_DECLARATORS
+int triunsuitable(vertex triorg, vertex tridest, vertex triapex, REAL area)
+#else /* not ANSI_DECLARATORS */
+int triunsuitable(triorg, tridest, triapex, area)
+vertex triorg;                              /* The triangle's origin vertex. */
+vertex tridest;                        /* The triangle's destination vertex. */
+vertex triapex;                               /* The triangle's apex vertex. */
+REAL area;                                      /* The area of the triangle. */
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL dxoa, dxda, dxod;
+  REAL dyoa, dyda, dyod;
+  REAL oalen, dalen, odlen;
+  REAL maxlen;
+
+  dxoa = triorg[0] - triapex[0];
+  dyoa = triorg[1] - triapex[1];
+  dxda = tridest[0] - triapex[0];
+  dyda = tridest[1] - triapex[1];
+  dxod = triorg[0] - tridest[0];
+  dyod = triorg[1] - tridest[1];
+  /* Find the squares of the lengths of the triangle's three edges. */
+  oalen = dxoa * dxoa + dyoa * dyoa;
+  dalen = dxda * dxda + dyda * dyda;
+  odlen = dxod * dxod + dyod * dyod;
+  /* Find the square of the length of the longest edge. */
+  maxlen = (dalen > oalen) ? dalen : oalen;
+  maxlen = (odlen > maxlen) ? odlen : maxlen;
+
+  if (maxlen > 0.05 * (triorg[0] * triorg[0] + triorg[1] * triorg[1]) + 0.02) {
+    return 1;
+  } else {
+    return 0;
+  }
+}
+
+#endif /* not EXTERNAL_TEST */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* User-defined triangle evaluation routine ends here        *********/
+
+/********* Memory allocation wrappers begin here                     *********/
+/**                                                                         **/
+/**                                                                         **/
+
+#ifdef ANSI_DECLARATORS
+VOID *trimalloc(int size)
+#else /* not ANSI_DECLARATORS */
+VOID *trimalloc(size)
+int size;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  VOID *memptr;
+
+  memptr = malloc(size);
+  if (memptr == (VOID *) NULL) {
+    fprintf(stderr, "Error:  Out of memory.\n");
+    exit(1);
+  }
+  return(memptr);
+}
+
+#ifdef ANSI_DECLARATORS
+void trifree(VOID *memptr)
+#else /* not ANSI_DECLARATORS */
+void trifree(memptr)
+VOID *memptr;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  free(memptr);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Memory allocation wrappers end here                       *********/
+
+/********* User interaction routines begin here                      *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  syntax()   Print list of command line switches.                          */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+void syntax()
+{
+#ifdef CDT_ONLY
+#ifdef REDUCED
+  printf("triangle [-pAcjevngBPNEIOXzo_lQVh] input_file\n");
+#else /* not REDUCED */
+  printf("triangle [-pAcjevngBPNEIOXzo_iFlCQVh] input_file\n");
+#endif /* not REDUCED */
+#else /* not CDT_ONLY */
+#ifdef REDUCED
+  printf("triangle [-prq__a__uAcjevngBPNEIOXzo_YS__LlQVh] input_file\n");
+#else /* not REDUCED */
+  printf("triangle [-prq__a__uAcjevngBPNEIOXzo_YS__LiFlsCQVh] input_file\n");
+#endif /* not REDUCED */
+#endif /* not CDT_ONLY */
+
+  printf("    -p  Triangulates a Planar Straight Line Graph (.poly file).\n");
+#ifndef CDT_ONLY
+  printf("    -r  Refines a previously generated mesh.\n");
+  printf(
+    "    -q  Quality mesh generation.  A minimum angle may be specified.\n");
+  printf("    -a  Applies a maximum triangle area constraint.\n");
+  printf("    -u  Applies a user-defined triangle constraint.\n");
+#endif /* not CDT_ONLY */
+  printf(
+    "    -A  Applies attributes to identify triangles in certain regions.\n");
+  printf("    -c  Encloses the convex hull with segments.\n");
+  printf("    -w  Weighted Delaunay triangulation.\n");
+  printf("    -W  Regular triangulation (lower hull of a height field).\n");
+  printf("    -j  Jettison unused vertices from output .node file.\n");
+  printf("    -e  Generates an edge list.\n");
+  printf("    -v  Generates a Voronoi diagram.\n");
+  printf("    -n  Generates a list of triangle neighbors.\n");
+  printf("    -g  Generates an .off file for Geomview.\n");
+  printf("    -B  Suppresses output of boundary information.\n");
+  printf("    -P  Suppresses output of .poly file.\n");
+  printf("    -N  Suppresses output of .node file.\n");
+  printf("    -E  Suppresses output of .ele file.\n");
+  printf("    -I  Suppresses mesh iteration numbers.\n");
+  printf("    -O  Ignores holes in .poly file.\n");
+  printf("    -X  Suppresses use of exact arithmetic.\n");
+  printf("    -z  Numbers all items starting from zero (rather than one).\n");
+  printf("    -o2 Generates second-order subparametric elements.\n");
+#ifndef CDT_ONLY
+  printf("    -Y  Suppresses boundary segment splitting.\n");
+  printf("    -S  Specifies maximum number of added Steiner points.\n");
+  printf("    -L  Uses equatorial circles, not equatorial lenses.\n");
+#endif /* not CDT_ONLY */
+#ifndef REDUCED
+  printf("    -i  Uses incremental method, rather than divide-and-conquer.\n");
+  printf("    -F  Uses Fortune's sweepline algorithm, rather than d-and-c.\n");
+#endif /* not REDUCED */
+  printf("    -l  Uses vertical cuts only, rather than alternating cuts.\n");
+#ifndef REDUCED
+#ifndef CDT_ONLY
+  printf(
+    "    -s  Force segments into mesh by splitting (instead of using CDT).\n");
+  printf("    -L  Uses Ruppert's diametral spheres, not diametral lenses.\n");
+#endif /* not CDT_ONLY */
+  printf("    -C  Check consistency of final mesh.\n");
+#endif /* not REDUCED */
+  printf("    -Q  Quiet:  No terminal output except errors.\n");
+  printf("    -V  Verbose:  Detailed information on what I'm doing.\n");
+  printf("    -h  Help:  Detailed instructions for Triangle.\n");
+  exit(0);
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  info()   Print out complete instructions.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+void info()
+{
+  printf("Triangle\n");
+  printf(
+"A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.\n");
+  printf("Version 1.4\n\n");
+  printf("Copyright 1993, 1995, 1997, 1998, 2002 Jonathan Richard Shewchuk\n");
+  printf("2360 Woolsey #H / Berkeley, California 94705-1927\n");
+  printf("Bugs/comments to jrs at cs.berkeley.edu\n");
+  printf(
+"Created as part of the Archimedes project (tools for parallel FEM).\n");
+  printf(
+"Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n");
+  printf("There is no warranty whatsoever.  Use at your own risk.\n");
+#ifdef SINGLE
+  printf("This executable is compiled for single precision arithmetic.\n\n\n");
+#else /* not SINGLE */
+  printf("This executable is compiled for double precision arithmetic.\n\n\n");
+#endif /* not SINGLE */
+  printf(
+"Triangle generates exact Delaunay triangulations, constrained Delaunay\n");
+  printf(
+"triangulations, Voronoi diagrams, and quality conforming Delaunay\n");
+  printf(
+"triangulations.  The latter can be generated with no small angles, and are\n"
+);
+  printf(
+"thus suitable for finite element analysis.  If no command line switches are\n"
+);
+  printf(
+"specified, your .node input file is read, and the Delaunay triangulation is\n"
+);
+  printf("returned in .node and .ele output files.  The command syntax is:\n");
+  printf("\n");
+  printf("triangle [-prq__a__uAcjevngBPNEIOXzo_YS__LiFlsCQVh] input_file\n");
+  printf("\n");
+  printf(
+"Underscores indicate that numbers may optionally follow certain switches.\n");
+  printf(
+"Do not leave any space between a switch and its numeric parameter.\n");
+  printf(
+"input_file must be a file with extension .node, or extension .poly if the\n");
+  printf(
+"-p switch is used.  If -r is used, you must supply .node and .ele files,\n");
+  printf(
+"and possibly a .poly file and an .area file as well.  The formats of these\n"
+);
+  printf("files are described below.\n\n");
+  printf("Command Line Switches:\n\n");
+  printf(
+"    -p  Reads a Planar Straight Line Graph (.poly file), which can specify\n"
+);
+  printf("        vertices, segments, holes, regional attributes, and area\n");
+  printf(
+"        constraints.  Generates a constrained Delaunay triangulation (CDT)\n"
+);
+  printf(
+"        fitting the input; or, if -s, -q, -a, or -u is used, a conforming\n");
+  printf(
+"        constrained Delaunay triangulation (CCDT).  If -p is not used,\n");
+  printf("        Triangle reads a .node file by default.\n");
+  printf(
+"    -r  Refines a previously generated mesh.  The mesh is read from a .node\n"
+);
+  printf(
+"        file and an .ele file.  If -p is also used, a .poly file is read\n");
+  printf(
+"        and used to constrain segments in the mesh.  If -a is also used\n");
+  printf(
+"        (with no number following), an .area file is read and used to\n");
+  printf(
+"        impose area constraints on the mesh.  Further details on refinement\n"
+);
+  printf("        are given below.\n");
+  printf(
+"    -q  Quality mesh generation by my variant of Jim Ruppert's Delaunay\n");
+  printf(
+"        refinement algorithm.  Adds vertices to the mesh to ensure that no\n"
+);
+  printf(
+"        angles smaller than 20 degrees occur.  An alternative minimum angle\n"
+);
+  printf(
+"        may be specified after the `q'.  If the minimum angle is 20.7\n");
+  printf(
+"        degrees or smaller, the triangulation algorithm is mathematically\n");
+  printf(
+"        guaranteed to terminate (assuming infinite precision arithmetic--\n");
+  printf(
+"        Triangle may fail to terminate if you run out of precision).  In\n");
+  printf(
+"        practice, the algorithm often succeeds for minimum angles up to\n");
+  printf(
+"        33.8 degrees.  For some meshes, however, it may be necessary to\n");
+  printf(
+"        reduce the minimum angle to avoid problems associated with\n");
+  printf(
+"        insufficient floating-point precision.  The specified angle may\n");
+  printf("        include a decimal point.\n");
+  printf(
+"    -a  Imposes a maximum triangle area.  If a number follows the `a', no\n");
+  printf(
+"        triangle is generated whose area is larger than that number.  If no\n"
+);
+  printf(
+"        number is specified, an .area file (if -r is used) or .poly file\n");
+  printf(
+"        (if -r is not used) specifies a set of maximum area constraints.\n");
+  printf(
+"        An .area file contains a separate area constraint for each\n");
+  printf(
+"        triangle, and is useful for refining a finite element mesh based on\n"
+);
+  printf(
+"        a posteriori error estimates.  A .poly file can optionally contain\n"
+);
+  printf(
+"        an area constraint for each segment-bounded region, thereby\n");
+  printf(
+"        controlling triangle densities in a first triangulation of a PSLG.\n"
+);
+  printf(
+"        You can impose both a fixed area constraint and a varying area\n");
+  printf(
+"        constraint by invoking the -a switch twice, once with and once\n");
+  printf(
+"        without a number following.  Each area specified may include a\n");
+  printf("        decimal point.\n");
+  printf(
+"    -u  Imposes a user-defined constraint on triangle size.  There are two\n"
+);
+  printf(
+"        ways to use this feature.  One is to edit the triunsuitable()\n");
+  printf(
+"        procedure in triangle.c to encode any constraint you like, then\n");
+  printf(
+"        recompile Triangle.  The other is to compile triangle.c with the\n");
+  printf(
+"        EXTERNAL_TEST symbol set (compiler switch -DEXTERNAL_TEST), then\n");
+  printf(
+"        link Triangle against a separate object file that implements\n");
+  printf(
+"        triunsuitable().  In either case, the -u switch causes the user-\n");
+  printf("        defined test to be applied to every triangle.\n");
+  printf(
+"    -A  Assigns an additional attribute to each triangle that identifies\n");
+  printf(
+"        what segment-bounded region each triangle belongs to.  Attributes\n");
+  printf(
+"        are assigned to regions by the .poly file.  If a region is not\n");
+  printf(
+"        explicitly marked by the .poly file, triangles in that region are\n");
+  printf(
+"        assigned an attribute of zero.  The -A switch has an effect only\n");
+  printf("        when the -p switch is used and the -r switch is not.\n");
+  printf(
+"    -c  Creates segments on the convex hull of the triangulation.  If you\n");
+  printf(
+"        are triangulating a vertex set, this switch causes a .poly file to\n"
+);
+  printf(
+"        be written, containing all edges in the convex hull.  If you are\n");
+  printf(
+"        triangulating a PSLG, this switch specifies that the whole convex\n");
+  printf(
+"        hull of the PSLG should be triangulated, regardless of what\n");
+  printf(
+"        segments the PSLG has.  If you do not use this switch when\n");
+  printf(
+"        triangulating a PSLG, it is assumed that you have identified the\n");
+  printf(
+"        region to be triangulated by surrounding it with segments of the\n");
+  printf(
+"        input PSLG.  Beware:  if you are not careful, this switch can cause\n"
+);
+  printf(
+"        the introduction of an extremely thin angle between a PSLG segment\n"
+);
+  printf(
+"        and a convex hull segment, which can cause overrefinement (and\n");
+  printf(
+"        possibly failure if Triangle runs out of precision).  If you are\n");
+  printf(
+"        refining a mesh, the -c switch works differently; it generates the\n"
+);
+  printf(
+"        set of boundary edges of the mesh (useful if no .poly file was\n");
+  printf("        read).\n");
+  printf(
+"    -j  Jettisons vertices that are not part of the final triangulation\n");
+  printf(
+"        from the output .node file.  By default, Triangle copies all\n");
+  printf(
+"        vertices in the input .node file to the output .node file, in the\n");
+  printf(
+"        same order, so their indices do not change.  The -j switch prevents\n"
+);
+  printf(
+"        duplicated input vertices from appearing in the output .node file;\n"
+);
+  printf(
+"        hence, if two input vertices have exactly the same coordinates,\n");
+  printf(
+"        only the first appears in the output.  If any vertices are\n");
+  printf(
+"        jettisoned, the vertex numbering in the output .node file differs\n");
+  printf("        from that of the input .node file.\n");
+  printf(
+"    -e  Outputs (to an .edge file) a list of edges of the triangulation.\n");
+  printf(
+"    -v  Outputs the Voronoi diagram associated with the triangulation.\n");
+  printf(
+"        Does not attempt to detect degeneracies, so some Voronoi vertices\n");
+  printf(
+"        may be duplicated.  See the discussion of Voronoi diagrams below.\n");
+  printf(
+"    -n  Outputs (to a .neigh file) a list of triangles neighboring each\n");
+  printf("        triangle.\n");
+  printf(
+"    -g  Outputs the mesh to an Object File Format (.off) file, suitable for\n"
+);
+  printf("        viewing with the Geometry Center's Geomview package.\n");
+  printf(
+"    -B  No boundary markers in the output .node, .poly, and .edge output\n");
+  printf(
+"        files.  See the detailed discussion of boundary markers below.\n");
+  printf(
+"    -P  No output .poly file.  Saves disk space, but you lose the ability\n");
+  printf(
+"        to maintain constraining segments on later refinements of the mesh.\n"
+);
+  printf("    -N  No output .node file.\n");
+  printf("    -E  No output .ele file.\n");
+  printf(
+"    -I  No iteration numbers.  Suppresses the output of .node and .poly\n");
+  printf(
+"        files, so your input files won't be overwritten.  (If your input is\n"
+);
+  printf(
+"        a .poly file only, a .node file is written.)  Cannot be used with\n");
+  printf(
+"        the -r switch, because that would overwrite your input .ele file.\n");
+  printf(
+"        Shouldn't be used with the -q, -a, -u, or -s switch if you are\n");
+  printf(
+"        using a .node file for input, because no .node file is written, so\n"
+);
+  printf("        there is no record of any added Steiner points.\n");
+  printf("    -O  No holes.  Ignores the holes in the .poly file.\n");
+  printf(
+"    -X  No exact arithmetic.  Normally, Triangle uses exact floating-point\n"
+);
+  printf(
+"        arithmetic for certain tests if it thinks the inexact tests are not\n"
+);
+  printf(
+"        accurate enough.  Exact arithmetic ensures the robustness of the\n");
+  printf(
+"        triangulation algorithms, despite floating-point roundoff error.\n");
+  printf(
+"        Disabling exact arithmetic with the -X switch causes a small\n");
+  printf(
+"        improvement in speed and creates the possibility (albeit small)\n");
+  printf(
+"        that Triangle will fail to produce a valid mesh.  Not recommended.\n"
+);
+  printf(
+"    -z  Numbers all items starting from zero (rather than one).  Note that\n"
+);
+  printf(
+"        this switch is normally overrided by the value used to number the\n");
+  printf(
+"        first vertex of the input .node or .poly file.  However, this\n");
+  printf(
+"        switch is useful when calling Triangle from another program.\n");
+  printf(
+"    -o2 Generates second-order subparametric elements with six nodes each.\n"
+);
+  printf(
+"    -Y  No new vertices on the boundary.  This switch is useful when the\n");
+  printf(
+"        mesh boundary must be preserved so that it conforms to some\n");
+  printf(
+"        adjacent mesh.  Be forewarned that you will probably sacrifice some\n"
+);
+  printf(
+"        of the quality of the mesh; Triangle will try, but the resulting\n");
+  printf(
+"        mesh may contain triangles of poor aspect ratio.  Works well if all\n"
+);
+  printf(
+"        the boundary vertices are closely spaced.  Specify this switch\n");
+  printf(
+"        twice (`-YY') to prevent all segment splitting, including internal\n"
+);
+  printf("        boundaries.\n");
+  printf(
+"    -S  Specifies the maximum number of Steiner points (vertices that are\n");
+  printf(
+"        not in the input, but are added to meet the constraints on minimum\n"
+);
+  printf(
+"        angle and maximum area).  The default is to allow an unlimited\n");
+  printf(
+"        number.  If you specify this switch with no number after it,\n");
+  printf(
+"        the limit is set to zero.  Triangle always adds vertices at segment\n"
+);
+  printf(
+"        intersections, even if it needs to use more vertices than the limit\n"
+);
+  printf(
+"        you set.  When Triangle inserts segments by splitting (-s), it\n");
+  printf(
+"        always adds enough vertices to ensure that all the segments of the\n"
+);
+  printf("        PLSG are recovered, ignoring the limit if necessary.\n");
+  printf(
+"    -L  Do not use diametral lenses to determine whether subsegments are\n");
+  printf(
+"        encroached; use diametral circles instead (as in Ruppert's\n");
+  printf(
+"        algorithm).  Use this switch if you want all triangles in the mesh\n"
+);
+  printf(
+"        to be Delaunay, and not just constrained Delaunay; or if you want\n");
+  printf(
+"        to ensure that all Voronoi vertices lie within the triangulation.\n");
+  printf(
+"        (Applications such as some finite volume methods may have this\n");
+  printf(
+"        requirement.)  This switch may increase the number of vertices in\n");
+  printf("        the mesh to meet these constraints.\n");
+  printf(
+"    -i  Uses an incremental rather than divide-and-conquer algorithm to\n");
+  printf(
+"        form a Delaunay triangulation.  Try it if the divide-and-conquer\n");
+  printf("        algorithm fails.\n");
+  printf(
+"    -F  Uses Steven Fortune's sweepline algorithm to form a Delaunay\n");
+  printf(
+"        triangulation.  Warning:  does not use exact arithmetic for all\n");
+  printf("        calculations.  An exact result is not guaranteed.\n");
+  printf(
+"    -l  Uses only vertical cuts in the divide-and-conquer algorithm.  By\n");
+  printf(
+"        default, Triangle uses alternating vertical and horizontal cuts,\n");
+  printf(
+"        which usually improve the speed except with vertex sets that are\n");
+  printf(
+"        small or short and wide.  This switch is primarily of theoretical\n");
+  printf("        interest.\n");
+  printf(
+"    -s  Specifies that segments should be forced into the triangulation by\n"
+);
+  printf(
+"        recursively splitting them at their midpoints, rather than by\n");
+  printf(
+"        generating a constrained Delaunay triangulation.  Segment splitting\n"
+);
+  printf(
+"        is true to Ruppert's original algorithm, but can create needlessly\n"
+);
+  printf(
+"        small triangles.  This switch is primarily of theoretical interest.\n"
+);
+  printf(
+"    -C  Check the consistency of the final mesh.  Uses exact arithmetic for\n"
+);
+  printf(
+"        checking, even if the -X switch is used.  Useful if you suspect\n");
+  printf("        Triangle is buggy.\n");
+  printf(
+"    -Q  Quiet:  Suppresses all explanation of what Triangle is doing,\n");
+  printf("        unless an error occurs.\n");
+  printf(
+"    -V  Verbose:  Gives detailed information about what Triangle is doing.\n"
+);
+  printf(
+"        Add more `V's for increasing amount of detail.  `-V' gives\n");
+  printf(
+"        information on algorithmic progress and more detailed statistics.\n");
+  printf(
+"        `-VV' gives vertex-by-vertex details, and prints so much that\n");
+  printf(
+"        Triangle runs much more slowly.  `-VVVV' gives information only\n");
+  printf("        a debugger could love.\n");
+  printf("    -h  Help:  Displays these instructions.\n");
+  printf("\n");
+  printf("Definitions:\n");
+  printf("\n");
+  printf(
+"  A Delaunay triangulation of a vertex set is a triangulation whose\n");
+  printf(
+"  vertices are the vertex set, wherein no vertex in the vertex set falls in\n"
+);
+  printf(
+"  the interior of the circumcircle (circle that passes through all three\n");
+  printf("  vertices) of any triangle in the triangulation.\n\n");
+  printf(
+"  A Voronoi diagram of a vertex set is a subdivision of the plane into\n");
+  printf(
+"  polygonal regions (some of which may be infinite), where each region is\n");
+  printf(
+"  the set of points in the plane that are closer to some input vertex than\n"
+);
+  printf(
+"  to any other input vertex.  (The Voronoi diagram is the geometric dual of\n"
+);
+  printf("  the Delaunay triangulation.)\n\n");
+  printf(
+"  A Planar Straight Line Graph (PSLG) is a set of vertices and segments.\n");
+  printf(
+"  Segments are simply edges, whose endpoints are vertices in the PSLG.\n");
+  printf(
+"  Segments may intersect each other only at their endpoints.  The file\n");
+  printf("  format for PSLGs (.poly files) is described below.\n\n");
+  printf(
+"  A constrained Delaunay triangulation (CDT) of a PSLG is similar to a\n");
+  printf(
+"  Delaunay triangulation, but each PSLG segment is present as a single edge\n"
+);
+  printf(
+"  in the triangulation.  (A constrained Delaunay triangulation is not truly\n"
+);
+  printf(
+"  a Delaunay triangulation.)  By definition, a CDT does not have any\n");
+  printf("  vertices other than those specified in the input PSLG.\n\n");
+  printf(
+"  A conforming Delaunay triangulation of a PSLG is a true Delaunay\n");
+  printf(
+"  triangulation in which each PSLG segment is represented by a linear\n");
+  printf(
+"  contiguous sequence of edges in the triangulation.  Each input segment\n");
+  printf(
+"  may have been subdivided into shorter subsegments by the insertion of\n");
+  printf(
+"  additional vertices.  These inserted vertices are necessary to maintain\n");
+  printf(
+"  the Delaunay property while ensuring that every segment is represented.\n");
+  printf("\n");
+  printf("File Formats:\n");
+  printf("\n");
+  printf(
+"  All files may contain comments prefixed by the character '#'.  Vertices,\n"
+);
+  printf(
+"  triangles, edges, holes, and maximum area constraints must be numbered\n");
+  printf(
+"  consecutively, starting from either 1 or 0.  Whichever you choose, all\n");
+  printf(
+"  input files must be consistent; if the vertices are numbered from 1, so\n");
+  printf(
+"  must be all other objects.  Triangle automatically detects your choice\n");
+  printf(
+"  while reading the .node (or .poly) file.  (When calling Triangle from\n");
+  printf(
+"  another program, use the -z switch if you wish to number objects from\n");
+  printf("  zero.)  Examples of these file formats are given below.\n\n");
+  printf("  .node files:\n");
+  printf(
+"    First line:  <# of vertices> <dimension (must be 2)> <# of attributes>\n"
+);
+  printf(
+"                                           <# of boundary markers (0 or 1)>\n"
+);
+  printf(
+"    Remaining lines:  <vertex #> <x> <y> [attributes] [boundary marker]\n");
+  printf("\n");
+  printf(
+"    The attributes, which are typically floating-point values of physical\n");
+  printf(
+"    quantities (such as mass or conductivity) associated with the nodes of\n"
+);
+  printf(
+"    a finite element mesh, are copied unchanged to the output mesh.  If -q,\n"
+);
+  printf(
+"    -a, -u, or -s is selected, each new Steiner point added to the mesh\n");
+  printf("    has attributes assigned to it by linear interpolation.\n\n");
+  printf(
+"    If the fourth entry of the first line is `1', the last column of the\n");
+  printf(
+"    remainder of the file is assumed to contain boundary markers.  Boundary\n"
+);
+  printf(
+"    markers are used to identify boundary vertices and vertices resting on\n"
+);
+  printf(
+"    PSLG segments; a complete description appears in a section below.  The\n"
+);
+  printf(
+"    .node file produced by Triangle contains boundary markers in the last\n");
+  printf("    column unless they are suppressed by the -B switch.\n\n");
+  printf("  .ele files:\n");
+  printf(
+"    First line:  <# of triangles> <nodes per triangle> <# of attributes>\n");
+  printf(
+"    Remaining lines:  <triangle #> <node> <node> <node> ... [attributes]\n");
+  printf("\n");
+  printf(
+"    Nodes are indices into the corresponding .node file.  The first three\n");
+  printf(
+"    nodes are the corner vertices, and are listed in counterclockwise order\n"
+);
+  printf(
+"    around each triangle.  (The remaining nodes, if any, depend on the type\n"
+);
+  printf("    of finite element used.)\n\n");
+  printf(
+"    The attributes are just like those of .node files.  Because there is no\n"
+);
+  printf(
+"    simple mapping from input to output triangles, an attempt is made to\n");
+  printf(
+"    interpolate attributes, which may result in a good deal of diffusion of\n"
+);
+  printf(
+"    attributes among nearby triangles as the triangulation is refined.\n");
+  printf(
+"    Attributes do not diffuse across segments, so attributes used to\n");
+  printf("    identify segment-bounded regions remain intact.\n\n");
+  printf(
+"    In .ele files produced by Triangle, each triangular element has three\n");
+  printf(
+"    nodes (vertices) unless the -o2 switch is used, in which case\n");
+  printf(
+"    subparametric quadratic elements with six nodes each are generated.\n");
+  printf(
+"    The first three nodes are the corners in counterclockwise order, and\n");
+  printf(
+"    the fourth, fifth, and sixth nodes lie on the midpoints of the edges\n");
+  printf(
+"    opposite the first, second, and third vertices, respectively.\n");
+  printf("\n");
+  printf("  .poly files:\n");
+  printf(
+"    First line:  <# of vertices> <dimension (must be 2)> <# of attributes>\n"
+);
+  printf(
+"                                           <# of boundary markers (0 or 1)>\n"
+);
+  printf(
+"    Following lines:  <vertex #> <x> <y> [attributes] [boundary marker]\n");
+  printf("    One line:  <# of segments> <# of boundary markers (0 or 1)>\n");
+  printf(
+"    Following lines:  <segment #> <endpoint> <endpoint> [boundary marker]\n");
+  printf("    One line:  <# of holes>\n");
+  printf("    Following lines:  <hole #> <x> <y>\n");
+  printf(
+"    Optional line:  <# of regional attributes and/or area constraints>\n");
+  printf(
+"    Optional following lines:  <region #> <x> <y> <attribute> <max area>\n");
+  printf("\n");
+  printf(
+"    A .poly file represents a PSLG, as well as some additional information.\n"
+);
+  printf(
+"    The first section lists all the vertices, and is identical to the\n");
+  printf(
+"    format of .node files.  <# of vertices> may be set to zero to indicate\n"
+);
+  printf(
+"    that the vertices are listed in a separate .node file; .poly files\n");
+  printf(
+"    produced by Triangle always have this format.  A vertex set represented\n"
+);
+  printf(
+"    this way has the advantage that it may easily be triangulated with or\n");
+  printf(
+"    without segments (depending on whether the .poly or .node file is\n");
+  printf("    read).\n\n");
+  printf(
+"    The second section lists the segments.  Segments are edges whose\n");
+  printf(
+"    presence in the triangulation is enforced (although each segment may be\n"
+);
+  printf(
+"    subdivided into smaller edges).  Each segment is specified by listing\n");
+  printf(
+"    the indices of its two endpoints.  This means that you must include its\n"
+);
+  printf(
+"    endpoints in the vertex list.  Each segment, like each point, may have\n"
+);
+  printf("    a boundary marker.\n\n");
+  printf(
+"    If -q, -a, -u, and -s are not selected, Triangle produces a constrained\n"
+);
+  printf(
+"    Delaunay triangulation (CDT), in which each segment appears as a single\n"
+);
+  printf(
+"    edge in the triangulation.  If -q, -a, -u, or -s is selected, Triangle\n"
+);
+  printf(
+"    produces a conforming constrained Delaunay triangulation (CCDT), in\n");
+  printf(
+"    which segments may be subdivided into smaller edges.  If -L is selected\n"
+);
+  printf(
+"    as well, Triangle produces a conforming Delaunay triangulation, so\n");
+  printf(
+"    every triangle is Delaunay, and not just constrained Delaunay.\n");
+  printf("\n");
+  printf(
+"    The third section lists holes (and concavities, if -c is selected) in\n");
+  printf(
+"    the triangulation.  Holes are specified by identifying a point inside\n");
+  printf(
+"    each hole.  After the triangulation is formed, Triangle creates holes\n");
+  printf(
+"    by eating triangles, spreading out from each hole point until its\n");
+  printf(
+"    progress is blocked by PSLG segments; you must be careful to enclose\n");
+  printf(
+"    each hole in segments, or your whole triangulation might be eaten away.\n"
+);
+  printf(
+"    If the two triangles abutting a segment are eaten, the segment itself\n");
+  printf(
+"    is also eaten.  Do not place a hole directly on a segment; if you do,\n");
+  printf("    Triangle chooses one side of the segment arbitrarily.\n\n");
+  printf(
+"    The optional fourth section lists regional attributes (to be assigned\n");
+  printf(
+"    to all triangles in a region) and regional constraints on the maximum\n");
+  printf(
+"    triangle area.  Triangle reads this section only if the -A switch is\n");
+  printf(
+"    used or the -a switch is used without a number following it, and the -r\n"
+);
+  printf(
+"    switch is not used.  Regional attributes and area constraints are\n");
+  printf(
+"    propagated in the same manner as holes; you specify a point for each\n");
+  printf(
+"    attribute and/or constraint, and the attribute and/or constraint\n");
+  printf(
+"    affects the whole region (bounded by segments) containing the point.\n");
+  printf(
+"    If two values are written on a line after the x and y coordinate, the\n");
+  printf(
+"    first such value is assumed to be a regional attribute (but is only\n");
+  printf(
+"    applied if the -A switch is selected), and the second value is assumed\n"
+);
+  printf(
+"    to be a regional area constraint (but is only applied if the -a switch\n"
+);
+  printf(
+"    is selected).  You may specify just one value after the coordinates,\n");
+  printf(
+"    which can serve as both an attribute and an area constraint, depending\n"
+);
+  printf(
+"    on the choice of switches.  If you are using the -A and -a switches\n");
+  printf(
+"    simultaneously and wish to assign an attribute to some region without\n");
+  printf("    imposing an area constraint, use a negative maximum area.\n\n");
+  printf(
+"    When a triangulation is created from a .poly file, you must either\n");
+  printf(
+"    enclose the entire region to be triangulated in PSLG segments, or\n");
+  printf(
+"    use the -c switch, which encloses the convex hull of the input vertex\n");
+  printf(
+"    set.  If you do not use the -c switch, Triangle eats all triangles that\n"
+);
+  printf(
+"    are not enclosed by segments; if you are not careful, your whole\n");
+  printf(
+"    triangulation may be eaten away.  If you do use the -c switch, you can\n"
+);
+  printf(
+"    still produce concavities by the appropriate placement of holes just\n");
+  printf("    within the convex hull.\n\n");
+  printf(
+"    An ideal PSLG has no intersecting segments, nor any vertices that lie\n");
+  printf(
+"    upon segments (except, of course, the endpoints of each segment.)  You\n"
+);
+  printf(
+"    aren't required to make your .poly files ideal, but you should be aware\n"
+);
+  printf(
+"    of what can go wrong.  Segment intersections are relatively safe--\n");
+  printf(
+"    Triangle calculates the intersection points for you and adds them to\n");
+  printf(
+"    the triangulation--as long as your machine's floating-point precision\n");
+  printf(
+"    doesn't become a problem.  You are tempting the fates if you have three\n"
+);
+  printf(
+"    segments that cross at the same location, and expect Triangle to figure\n"
+);
+  printf(
+"    out where the intersection point is.  Thanks to floating-point roundoff\n"
+);
+  printf(
+"    error, Triangle will probably decide that the three segments intersect\n"
+);
+  printf(
+"    at three different points, and you will find a minuscule triangle in\n");
+  printf(
+"    your output--unless Triangle tries to refine the tiny triangle, uses\n");
+  printf(
+"    up the last bit of machine precision, and fails to terminate at all.\n");
+  printf(
+"    You're better off putting the intersection point in the input files,\n");
+  printf(
+"    and manually breaking up each segment into two.  Similarly, if you\n");
+  printf(
+"    place a vertex at the middle of a segment, and hope that Triangle will\n"
+);
+  printf(
+"    break up the segment at that vertex, you might get lucky.  On the other\n"
+);
+  printf(
+"    hand, Triangle might decide that the vertex doesn't lie precisely on\n");
+  printf(
+"    the segment, and you'll have a needle-sharp triangle in your output--or\n"
+);
+  printf("    a lot of tiny triangles if you're generating a quality mesh.\n");
+  printf("\n");
+  printf(
+"    When Triangle reads a .poly file, it also writes a .poly file, which\n");
+  printf(
+"    includes all edges that are parts of input segments.  If the -c switch\n"
+);
+  printf(
+"    is used, the output .poly file also includes all of the edges on the\n");
+  printf(
+"    convex hull.  Hence, the output .poly file is useful for finding edges\n"
+);
+  printf(
+"    associated with input segments and for setting boundary conditions in\n");
+  printf(
+"    finite element simulations.  Moreover, you will need it if you plan to\n"
+);
+  printf(
+"    refine the output mesh, and don't want segments to be missing in later\n"
+);
+  printf("    triangulations.\n\n");
+  printf("  .area files:\n");
+  printf("    First line:  <# of triangles>\n");
+  printf("    Following lines:  <triangle #> <maximum area>\n\n");
+  printf(
+"    An .area file associates with each triangle a maximum area that is used\n"
+);
+  printf(
+"    for mesh refinement.  As with other file formats, every triangle must\n");
+  printf(
+"    be represented, and they must be numbered consecutively.  A triangle\n");
+  printf(
+"    may be left unconstrained by assigning it a negative maximum area.\n");
+  printf("\n");
+  printf("  .edge files:\n");
+  printf("    First line:  <# of edges> <# of boundary markers (0 or 1)>\n");
+  printf(
+"    Following lines:  <edge #> <endpoint> <endpoint> [boundary marker]\n");
+  printf("\n");
+  printf(
+"    Endpoints are indices into the corresponding .node file.  Triangle can\n"
+);
+  printf(
+"    produce .edge files (use the -e switch), but cannot read them.  The\n");
+  printf(
+"    optional column of boundary markers is suppressed by the -B switch.\n");
+  printf("\n");
+  printf(
+"    In Voronoi diagrams, one also finds a special kind of edge that is an\n");
+  printf(
+"    infinite ray with only one endpoint.  For these edges, a different\n");
+  printf("    format is used:\n\n");
+  printf("        <edge #> <endpoint> -1 <direction x> <direction y>\n\n");
+  printf(
+"    The `direction' is a floating-point vector that indicates the direction\n"
+);
+  printf("    of the infinite ray.\n\n");
+  printf("  .neigh files:\n");
+  printf(
+"    First line:  <# of triangles> <# of neighbors per triangle (always 3)>\n"
+);
+  printf(
+"    Following lines:  <triangle #> <neighbor> <neighbor> <neighbor>\n");
+  printf("\n");
+  printf(
+"    Neighbors are indices into the corresponding .ele file.  An index of -1\n"
+);
+  printf(
+"    indicates no neighbor (because the triangle is on an exterior\n");
+  printf(
+"    boundary).  The first neighbor of triangle i is opposite the first\n");
+  printf("    corner of triangle i, and so on.\n\n");
+  printf(
+"    Triangle can produce .neigh files (use the -n switch), but cannot read\n"
+);
+  printf("    them.\n\n");
+  printf("Boundary Markers:\n\n");
+  printf(
+"  Boundary markers are tags used mainly to identify which output vertices\n");
+  printf(
+"  and edges are associated with which PSLG segment, and to identify which\n");
+  printf(
+"  vertices and edges occur on a boundary of the triangulation.  A common\n");
+  printf(
+"  use is to determine where boundary conditions should be applied to a\n");
+  printf(
+"  finite element mesh.  You can prevent boundary markers from being written\n"
+);
+  printf("  into files produced by Triangle by using the -B switch.\n\n");
+  printf(
+"  The boundary marker associated with each segment in an output .poly file\n"
+);
+  printf("  and each edge in an output .edge file is chosen as follows:\n");
+  printf(
+"    - If an output edge is part or all of a PSLG segment with a nonzero\n");
+  printf(
+"      boundary marker, then the edge is assigned the same marker.\n");
+  printf(
+"    - Otherwise, if the edge occurs on a boundary of the triangulation\n");
+  printf(
+"      (including boundaries of holes), then the edge is assigned the marker\n"
+);
+  printf("      one (1).\n");
+  printf("    - Otherwise, the edge is assigned the marker zero (0).\n");
+  printf(
+"  The boundary marker associated with each vertex in an output .node file\n");
+  printf("  is chosen as follows:\n");
+  printf(
+"    - If a vertex is assigned a nonzero boundary marker in the input file,\n"
+);
+  printf(
+"      then it is assigned the same marker in the output .node file.\n");
+  printf(
+"    - Otherwise, if the vertex lies on a PSLG segment (including the\n");
+  printf(
+"      segment's endpoints) with a nonzero boundary marker, then the vertex\n"
+);
+  printf(
+"      is assigned the same marker.  If the vertex lies on several such\n");
+  printf("      segments, one of the markers is chosen arbitrarily.\n");
+  printf(
+"    - Otherwise, if the vertex occurs on a boundary of the triangulation,\n");
+  printf("      then the vertex is assigned the marker one (1).\n");
+  printf("    - Otherwise, the vertex is assigned the marker zero (0).\n");
+  printf("\n");
+  printf(
+"  If you want Triangle to determine for you which vertices and edges are on\n"
+);
+  printf(
+"  the boundary, assign them the boundary marker zero (or use no markers at\n"
+);
+  printf(
+"  all) in your input files.  In the output files, all boundary vertices,\n");
+  printf("  edges, and segments are assigned the value one.\n\n");
+  printf("Triangulation Iteration Numbers:\n\n");
+  printf(
+"  Because Triangle can read and refine its own triangulations, input\n");
+  printf(
+"  and output files have iteration numbers.  For instance, Triangle might\n");
+  printf(
+"  read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the\n");
+  printf(
+"  triangulation, and output the files mesh.4.node, mesh.4.ele, and\n");
+  printf("  mesh.4.poly.  Files with no iteration number are treated as if\n");
+  printf(
+"  their iteration number is zero; hence, Triangle might read the file\n");
+  printf(
+"  points.node, triangulate it, and produce the files points.1.node and\n");
+  printf("  points.1.ele.\n\n");
+  printf(
+"  Iteration numbers allow you to create a sequence of successively finer\n");
+  printf(
+"  meshes suitable for multigrid methods.  They also allow you to produce a\n"
+);
+  printf(
+"  sequence of meshes using error estimate-driven mesh refinement.\n");
+  printf("\n");
+  printf(
+"  If you're not using refinement or quality meshing, and you don't like\n");
+  printf(
+"  iteration numbers, use the -I switch to disable them.  This switch also\n");
+  printf(
+"  disables output of .node and .poly files to prevent your input files from\n"
+);
+  printf(
+"  being overwritten.  (If the input is a .poly file that contains its own\n");
+  printf("  points, a .node file is written.)\n\n");
+  printf("Examples of How to Use Triangle:\n\n");
+  printf(
+"  `triangle dots' reads vertices from dots.node, and writes their Delaunay\n"
+);
+  printf(
+"  triangulation to dots.1.node and dots.1.ele.  (dots.1.node is identical\n");
+  printf(
+"  to dots.node.)  `triangle -I dots' writes the triangulation to dots.ele\n");
+  printf(
+"  instead.  (No additional .node file is needed, so none is written.)\n");
+  printf("\n");
+  printf(
+"  `triangle -pe object.1' reads a PSLG from object.1.poly (and possibly\n");
+  printf(
+"  object.1.node, if the vertices are omitted from object.1.poly) and writes\n"
+);
+  printf(
+"  its constrained Delaunay triangulation to object.2.node and object.2.ele.\n"
+);
+  printf(
+"  The segments are copied to object.2.poly, and all edges are written to\n");
+  printf("  object.2.edge.\n\n");
+  printf(
+"  `triangle -pq31.5a.1 object' reads a PSLG from object.poly (and possibly\n"
+);
+  printf(
+"  object.node), generates a mesh whose angles are all 31.5 degrees or\n");
+  printf(
+"  greater and whose triangles all have areas of 0.1 or less, and writes the\n"
+);
+  printf(
+"  mesh to object.1.node and object.1.ele.  Each segment may be broken up\n");
+  printf("  into multiple subsegments; these are written to object.1.poly.\n");
+  printf("\n");
+  printf(
+"  Here is a sample file `box.poly' describing a square with a square hole:\n"
+);
+  printf("\n");
+  printf(
+"    # A box with eight vertices in 2D, no attributes, one boundary marker.\n"
+);
+  printf("    8 2 0 1\n");
+  printf("     # Outer box has these vertices:\n");
+  printf("     1   0 0   0\n");
+  printf("     2   0 3   0\n");
+  printf("     3   3 0   0\n");
+  printf("     4   3 3   33     # A special marker for this vertex.\n");
+  printf("     # Inner square has these vertices:\n");
+  printf("     5   1 1   0\n");
+  printf("     6   1 2   0\n");
+  printf("     7   2 1   0\n");
+  printf("     8   2 2   0\n");
+  printf("    # Five segments with boundary markers.\n");
+  printf("    5 1\n");
+  printf("     1   1 2   5      # Left side of outer box.\n");
+  printf("     # Square hole has these segments:\n");
+  printf("     2   5 7   0\n");
+  printf("     3   7 8   0\n");
+  printf("     4   8 6   10\n");
+  printf("     5   6 5   0\n");
+  printf("    # One hole in the middle of the inner square.\n");
+  printf("    1\n");
+  printf("     1   1.5 1.5\n");
+  printf("\n");
+  printf(
+"  Note that some segments are missing from the outer square, so one must\n");
+  printf(
+"  use the `-c' switch.  After `triangle -pqc box.poly', here is the output\n"
+);
+  printf(
+"  file `box.1.node', with twelve vertices.  The last four vertices were\n");
+  printf(
+"  added to meet the angle constraint.  Vertices 1, 2, and 9 have markers\n");
+  printf(
+"  from segment 1.  Vertices 6 and 8 have markers from segment 4.  All the\n");
+  printf(
+"  other vertices but 4 have been marked to indicate that they lie on a\n");
+  printf("  boundary.\n\n");
+  printf("    12  2  0  1\n");
+  printf("       1    0   0      5\n");
+  printf("       2    0   3      5\n");
+  printf("       3    3   0      1\n");
+  printf("       4    3   3     33\n");
+  printf("       5    1   1      1\n");
+  printf("       6    1   2     10\n");
+  printf("       7    2   1      1\n");
+  printf("       8    2   2     10\n");
+  printf("       9    0   1.5    5\n");
+  printf("      10    1.5   0    1\n");
+  printf("      11    3   1.5    1\n");
+  printf("      12    1.5   3    1\n");
+  printf("    # Generated by triangle -pqc box.poly\n");
+  printf("\n");
+  printf("  Here is the output file `box.1.ele', with twelve triangles.\n");
+  printf("\n");
+  printf("    12  3  0\n");
+  printf("       1     5   6   9\n");
+  printf("       2    10   3   7\n");
+  printf("       3     6   8  12\n");
+  printf("       4     9   1   5\n");
+  printf("       5     6   2   9\n");
+  printf("       6     7   3  11\n");
+  printf("       7    11   4   8\n");
+  printf("       8     7   5  10\n");
+  printf("       9    12   2   6\n");
+  printf("      10     8   7  11\n");
+  printf("      11     5   1  10\n");
+  printf("      12     8   4  12\n");
+  printf("    # Generated by triangle -pqc box.poly\n\n");
+  printf(
+"  Here is the output file `box.1.poly'.  Note that segments have been added\n"
+);
+  printf(
+"  to represent the convex hull, and some segments have been split by newly\n"
+);
+  printf(
+"  added vertices.  Note also that <# of vertices> is set to zero to\n");
+  printf("  indicate that the vertices should be read from the .node file.\n");
+  printf("\n");
+  printf("    0  2  0  1\n");
+  printf("    12  1\n");
+  printf("       1     1   9     5\n");
+  printf("       2     5   7     1\n");
+  printf("       3     8   7     1\n");
+  printf("       4     6   8    10\n");
+  printf("       5     5   6     1\n");
+  printf("       6     3  10     1\n");
+  printf("       7     4  11     1\n");
+  printf("       8     2  12     1\n");
+  printf("       9     9   2     5\n");
+  printf("      10    10   1     1\n");
+  printf("      11    11   3     1\n");
+  printf("      12    12   4     1\n");
+  printf("    1\n");
+  printf("       1   1.5 1.5\n");
+  printf("    # Generated by triangle -pqc box.poly\n");
+  printf("\n");
+  printf("Refinement and Area Constraints:\n");
+  printf("\n");
+  printf(
+"  The -r switch causes a mesh (.node and .ele files) to be read and\n");
+  printf(
+"  refined.  If the -p switch is also used, a .poly file is read and used to\n"
+);
+  printf(
+"  specify edges that are constrained and cannot be eliminated (although\n");
+  printf(
+"  they can be divided into smaller edges) by the refinement process.\n");
+  printf("\n");
+  printf(
+"  When you refine a mesh, you generally want to impose tighter quality\n");
+  printf(
+"  constraints.  One way to accomplish this is to use -q with a larger\n");
+  printf(
+"  angle, or -a followed by a smaller area than you used to generate the\n");
+  printf(
+"  mesh you are refining.  Another way to do this is to create an .area\n");
+  printf(
+"  file, which specifies a maximum area for each triangle, and use the -a\n");
+  printf(
+"  switch (without a number following).  Each triangle's area constraint is\n"
+);
+  printf(
+"  applied to that triangle.  Area constraints tend to diffuse as the mesh\n");
+  printf(
+"  is refined, so if there are large variations in area constraint between\n");
+  printf("  adjacent triangles, you may not get the results you want.\n\n");
+  printf(
+"  If you are refining a mesh composed of linear (three-node) elements, the\n"
+);
+  printf(
+"  output mesh contains all the nodes present in the input mesh, in the same\n"
+);
+  printf(
+"  order, with new nodes added at the end of the .node file.  However, the\n");
+  printf(
+"  refinement is not hierarchical: there is no guarantee that each output\n");
+  printf(
+"  element is contained in a single input element.  Often, output elements\n");
+  printf(
+"  overlap two input elements, and some input edges are not present in the\n");
+  printf(
+"  output mesh.  Hence, a sequence of refined meshes forms a hierarchy of\n");
+  printf(
+"  nodes, but not a hierarchy of elements.  If you refine a mesh of higher-\n"
+);
+  printf(
+"  order elements, the hierarchical property applies only to the nodes at\n");
+  printf(
+"  the corners of an element; other nodes may not be present in the refined\n"
+);
+  printf("  mesh.\n\n");
+  printf(
+"  Maximum area constraints in .poly files operate differently from those in\n"
+);
+  printf(
+"  .area files.  A maximum area in a .poly file applies to the whole\n");
+  printf(
+"  (segment-bounded) region in which a point falls, whereas a maximum area\n");
+  printf(
+"  in an .area file applies to only one triangle.  Area constraints in .poly\n"
+);
+  printf(
+"  files are used only when a mesh is first generated, whereas area\n");
+  printf(
+"  constraints in .area files are used only to refine an existing mesh, and\n"
+);
+  printf(
+"  are typically based on a posteriori error estimates resulting from a\n");
+  printf("  finite element simulation on that mesh.\n\n");
+  printf(
+"  `triangle -rq25 object.1' reads object.1.node and object.1.ele, then\n");
+  printf(
+"  refines the triangulation to enforce a 25 degree minimum angle, and then\n"
+);
+  printf(
+"  writes the refined triangulation to object.2.node and object.2.ele.\n");
+  printf("\n");
+  printf(
+"  `triangle -rpaa6.2 z.3' reads z.3.node, z.3.ele, z.3.poly, and z.3.area.\n"
+);
+  printf(
+"  After reconstructing the mesh and its subsegments, Triangle refines the\n");
+  printf(
+"  mesh so that no triangle has area greater than 6.2, and furthermore the\n");
+  printf(
+"  triangles satisfy the maximum area constraints in z.3.area.  No angle\n");
+  printf(
+"  bound is imposed at all.  The output is written to z.4.node, z.4.ele, and\n"
+);
+  printf("  z.4.poly.\n\n");
+  printf(
+"  The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1\n");
+  printf(
+"  x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,\n");
+  printf("  suitable for multigrid.\n\n");
+  printf("Convex Hulls and Mesh Boundaries:\n\n");
+  printf(
+"  If the input is a vertex set (rather than a PSLG), Triangle produces its\n"
+);
+  printf(
+"  convex hull as a by-product in the output .poly file if you use the -c\n");
+  printf(
+"  switch.  There are faster algorithms for finding a two-dimensional convex\n"
+);
+  printf(
+"  hull than triangulation, of course, but this one comes for free.\n");
+  printf("\n");
+  printf(
+"  If the input is an unconstrained mesh (you are using the -r switch but\n");
+  printf(
+"  not the -p switch), Triangle produces a list of its boundary edges\n");
+  printf(
+"  (including hole boundaries) as a by-product when you use the -c switch.\n");
+  printf(
+"  If you also use the -p switch, the output .poly file contains all the\n");
+  printf("  segments from the input .poly file as well.\n\n");
+  printf("Voronoi Diagrams:\n\n");
+  printf(
+"  The -v switch produces a Voronoi diagram, in files suffixed .v.node and\n");
+  printf(
+"  .v.edge.  For example, `triangle -v points' reads points.node, produces\n");
+  printf(
+"  its Delaunay triangulation in points.1.node and points.1.ele, and\n");
+  printf(
+"  produces its Voronoi diagram in points.1.v.node and points.1.v.edge.  The\n"
+);
+  printf(
+"  .v.node file contains a list of all Voronoi vertices, and the .v.edge\n");
+  printf(
+"  file contains a list of all Voronoi edges, some of which may be infinite\n"
+);
+  printf(
+"  rays.  (The choice of filenames makes it easy to run the set of Voronoi\n");
+  printf("  vertices through Triangle, if so desired.)\n\n");
+  printf(
+"  This implementation does not use exact arithmetic to compute the Voronoi\n"
+);
+  printf(
+"  vertices, and does not check whether neighboring vertices are identical.\n"
+);
+  printf(
+"  Be forewarned that if the Delaunay triangulation is degenerate or\n");
+  printf(
+"  near-degenerate, the Voronoi diagram may have duplicate vertices,\n");
+  printf(
+"  crossing edges, or infinite rays whose direction vector is zero.\n");
+  printf("\n");
+  printf(
+"  The result is a valid Voronoi diagram only if Triangle's output is a true\n"
+);
+  printf(
+"  Delaunay triangulation.  The Voronoi output is usually meaningless (and\n");
+  printf(
+"  may contain crossing edges and other pathology) if the output is a CDT or\n"
+);
+  printf(
+"  CCDT, or if it has holes or concavities.  If the triangulation is convex\n"
+);
+  printf(
+"  and has no holes, this can be fixed by using the -L switch to ensure a\n");
+  printf("  conforming Delaunay triangulation is constructed.\n\n");
+  printf("Mesh Topology:\n\n");
+  printf(
+"  You may wish to know which triangles are adjacent to a certain Delaunay\n");
+  printf(
+"  edge in an .edge file, which Voronoi regions are adjacent to a certain\n");
+  printf(
+"  Voronoi edge in a .v.edge file, or which Voronoi regions are adjacent to\n"
+);
+  printf(
+"  each other.  All of this information can be found by cross-referencing\n");
+  printf(
+"  output files with the recollection that the Delaunay triangulation and\n");
+  printf("  the Voronoi diagram are planar duals.\n\n");
+  printf(
+"  Specifically, edge i of an .edge file is the dual of Voronoi edge i of\n");
+  printf(
+"  the corresponding .v.edge file, and is rotated 90 degrees counterclock-\n");
+  printf(
+"  wise from the Voronoi edge.  Triangle j of an .ele file is the dual of\n");
+  printf(
+"  vertex j of the corresponding .v.node file.  Voronoi region k is the dual\n"
+);
+  printf("  of vertex k of the corresponding .node file.\n\n");
+  printf(
+"  Hence, to find the triangles adjacent to a Delaunay edge, look at the\n");
+  printf(
+"  vertices of the corresponding Voronoi edge.  If the endpoints of a\n");
+  printf(
+"  Voronoi edge are Voronoi vertices 2 and 6 respectively, then triangles 2\n"
+);
+  printf(
+"  and 6 adjoin the left and right sides of the corresponding Delaunay edge,\n"
+);
+  printf(
+"  respectively.  To find the Voronoi regions adjacent to a Voronoi edge,\n");
+  printf(
+"  look at the endpoints of the corresponding Delaunay edge.  If the\n");
+  printf(
+"  endpoints of a Delaunay edge are input vertices 7 and 12, then Voronoi\n");
+  printf(
+"  regions 7 and 12 adjoin the right and left sides of the corresponding\n");
+  printf(
+"  Voronoi edge, respectively.  To find which Voronoi regions are adjacent\n");
+  printf("  to each other, just read the list of Delaunay edges.\n\n");
+  printf(
+"  Triangle does not write a list of Voronoi regions, but one can be\n");
+  printf(
+"  reconstructed straightforwardly.  For instance, to find all the edges of\n"
+);
+  printf(
+"  Voronoi region 1, search the output .edge file for every edge that has\n");
+  printf(
+"  input vertex 1 as an endpoint.  The corresponding dual edges in the\n");
+  printf("  output .v.edge file form the boundary of Voronoi region 1.\n\n");
+  printf("Quadratic Elements:\n\n");
+  printf(
+"  Triangle generates meshes with subparametric quadratic elements if the\n");
+  printf(
+"  -o2 switch is specified.  Quadratic elements have six nodes per element,\n"
+);
+  printf(
+"  rather than three.  `Subparametric' means that the edges of the triangles\n"
+);
+  printf(
+"  are always straight, so that subparametric quadratic elements are\n");
+  printf(
+"  geometrically identical to linear elements, even though they can be used\n"
+);
+  printf(
+"  with quadratic interpolating functions.  The three extra nodes of an\n");
+  printf(
+"  element fall at the midpoints of the three edges, with the fourth, fifth,\n"
+);
+  printf(
+"  and sixth nodes appearing opposite the first, second, and third corners\n");
+  printf("  respectively.\n\n");
+  printf("Statistics:\n\n");
+  printf(
+"  After generating a mesh, Triangle prints a count of the number of\n");
+  printf(
+"  vertices, triangles, edges, exterior boundary edges (including hole\n");
+  printf(
+"  boundaries), interior boundary edges, and segments in the output mesh.\n");
+  printf(
+"  If you've forgotten the statistics for an existing mesh, run Triangle on\n"
+);
+  printf(
+"  that mesh with the -rNEP switches to read the mesh and print the\n");
+  printf(
+"  statistics without writing any files.  Use -rpNEP if you've got a .poly\n");
+  printf("  file for the mesh.\n\n");
+  printf(
+"  The -V switch produces extended statistics, including a rough estimate\n");
+  printf(
+"  of memory use, the number of calls to geometric predicates, and\n");
+  printf("  histograms of triangle aspect ratios and angles in the mesh.\n\n");
+  printf("Exact Arithmetic:\n\n");
+  printf(
+"  Triangle uses adaptive exact arithmetic to perform what computational\n");
+  printf(
+"  geometers call the `orientation' and `incircle' tests.  If the floating-\n"
+);
+  printf(
+"  point arithmetic of your machine conforms to the IEEE 754 standard (as\n");
+  printf(
+"  most workstations do), and does not use extended precision internal\n");
+  printf(
+"  floating-point registers, then your output is guaranteed to be an\n");
+  printf(
+"  absolutely true Delaunay or constrained Delaunay triangulation, roundoff\n"
+);
+  printf(
+"  error notwithstanding.  The word `adaptive' implies that these arithmetic\n"
+);
+  printf(
+"  routines compute the result only to the precision necessary to guarantee\n"
+);
+  printf(
+"  correctness, so they are usually nearly as fast as their approximate\n");
+  printf("  counterparts.\n\n");
+  printf(
+"  Pentiums have extended precision floating-point registers.  These must be\n"
+);
+  printf(
+"  reconfigured so their precision is reduced to memory precision.  Triangle\n"
+);
+  printf(
+"  does this if it is compiled correctly.  See the makefile for details.\n");
+  printf("\n");
+  printf(
+"  The exact tests can be disabled with the -X switch.  On most inputs, this\n"
+);
+  printf(
+"  switch reduces the computation time by about eight percent--it's not\n");
+  printf(
+"  worth the risk.  There are rare difficult inputs (having many collinear\n");
+  printf(
+"  and cocircular vertices), however, for which the difference in speed\n");
+  printf(
+"  could be a factor of two.  Be forewarned that these are precisely the\n");
+  printf(
+"  inputs most likely to cause errors if you use the -X switch.  Hence, the\n"
+);
+  printf("  -X switch is not recommended.\n\n");
+  printf(
+"  Unfortunately, the exact tests don't solve every numerical problem.\n");
+  printf(
+"  Exact arithmetic is not used to compute the positions of new vertices,\n");
+  printf(
+"  because the bit complexity of vertex coordinates would grow without\n");
+  printf(
+"  bound.  Hence, segment intersections aren't computed exactly; in very\n");
+  printf(
+"  unusual cases, roundoff error in computing an intersection point might\n");
+  printf(
+"  actually lead to an inverted triangle and an invalid triangulation.\n");
+  printf(
+"  (This is one reason to compute your own intersection points in your .poly\n"
+);
+  printf(
+"  files.)  Similarly, exact arithmetic is not used to compute the vertices\n"
+);
+  printf("  of the Voronoi diagram.\n\n");
+  printf(
+"  Another pair of problems not solved by the exact arithmetic routines is\n");
+  printf(
+"  underflow and overflow.  If Triangle is compiled for double precision\n");
+  printf(
+"  arithmetic, I believe that Triangle's geometric predicates work correctly\n"
+);
+  printf(
+"  if the exponent of every input coordinate falls in the range [-148, 201].\n"
+);
+  printf(
+"  Underflow can silently prevent the orientation and incircle tests from\n");
+  printf(
+"  being performed exactly, while overflow typically causes a floating\n");
+  printf("  exception.\n\n");
+  printf("Calling Triangle from Another Program:\n\n");
+  printf("  Read the file triangle.h for details.\n\n");
+  printf("Troubleshooting:\n\n");
+  printf("  Please read this section before mailing me bugs.\n\n");
+  printf("  `My output mesh has no triangles!'\n\n");
+  printf(
+"    If you're using a PSLG, you've probably failed to specify a proper set\n"
+);
+  printf(
+"    of bounding segments, or forgotten to use the -c switch.  Or you may\n");
+  printf(
+"    have placed a hole badly, thereby eating all your triangles.  To test\n");
+  printf("    these possibilities, try again with the -c and -O switches.\n");
+  printf(
+"    Alternatively, all your input vertices may be collinear, in which case\n"
+);
+  printf("    you can hardly expect to triangulate them.\n\n");
+  printf("  `Triangle doesn't terminate, or just crashes.'\n\n");
+  printf(
+"    Bad things can happen when triangles get so small that the distance\n");
+  printf(
+"    between their vertices isn't much larger than the precision of your\n");
+  printf(
+"    machine's arithmetic.  If you've compiled Triangle for single-precision\n"
+);
+  printf(
+"    arithmetic, you might do better by recompiling it for double-precision.\n"
+);
+  printf(
+"    Then again, you might just have to settle for more lenient constraints\n"
+);
+  printf(
+"    on the minimum angle and the maximum area than you had planned.\n");
+  printf("\n");
+  printf(
+"    You can minimize precision problems by ensuring that the origin lies\n");
+  printf(
+"    inside your vertex set, or even inside the densest part of your\n");
+  printf(
+"    mesh.  If you're triangulating an object whose x coordinates all fall\n");
+  printf(
+"    between 6247133 and 6247134, you're not leaving much floating-point\n");
+  printf("    precision for Triangle to work with.\n\n");
+  printf(
+"    Precision problems can occur covertly if the input PSLG contains two\n");
+  printf(
+"    segments that meet (or intersect) at an extremely small angle, or if\n");
+  printf(
+"    such an angle is introduced by the -c switch.  If you don't realize\n");
+  printf(
+"    that a tiny angle is being formed, you might never discover why\n");
+  printf(
+"    Triangle is crashing.  To check for this possibility, use the -S switch\n"
+);
+  printf(
+"    (with an appropriate limit on the number of Steiner points, found by\n");
+  printf(
+"    trial-and-error) to stop Triangle early, and view the output .poly file\n"
+);
+  printf(
+"    with Show Me (described below).  Look carefully for regions where dense\n"
+);
+  printf(
+"    clusters of vertices are forming and for small angles between segments.\n"
+);
+  printf(
+"    Zoom in closely, as such segments might look like a single segment from\n"
+);
+  printf("    a distance.\n\n");
+  printf(
+"    If some of the input values are too large, Triangle may suffer a\n");
+  printf(
+"    floating exception due to overflow when attempting to perform an\n");
+  printf(
+"    orientation or incircle test.  (Read the section on exact arithmetic\n");
+  printf(
+"    above.)  Again, I recommend compiling Triangle for double (rather\n");
+  printf("    than single) precision arithmetic.\n\n");
+  printf(
+"    Unexpected problems can arise if you use quality meshing (-q, -a, or\n");
+  printf(
+"    -u) with an input that is not segment-bounded--that is, if your input\n");
+  printf(
+"    is a vertex set, or you're using the -c switch.  If the convex hull of\n"
+);
+  printf(
+"    your input vertices has collinear vertices on its boundary, an input\n");
+  printf(
+"    vertex that you think lies on the convex hull might actually lie just\n");
+  printf(
+"    inside the convex hull.  If so, an extremely thin triangle is formed by\n"
+);
+  printf(
+"    the vertex and the convex hull edge beside it.  When Triangle tries to\n"
+);
+  printf(
+"    refine the mesh to enforce angle and area constraints, extremely tiny\n");
+  printf(
+"    triangles may be formed, or Triangle may fail because of insufficient\n");
+  printf("    floating-point precision.\n\n");
+  printf(
+"  `The numbering of the output vertices doesn't match the input vertices.'\n"
+);
+  printf("\n");
+  printf(
+"    You may have had duplicate input vertices, or you may have eaten some\n");
+  printf(
+"    of your input vertices with a hole, or by placing them outside the area\n"
+);
+  printf(
+"    enclosed by segments.  In any case, you can solve the problem by not\n");
+  printf("    using the -j switch.\n\n");
+  printf(
+"  `Triangle executes without incident, but when I look at the resulting\n");
+  printf(
+"  mesh, it has overlapping triangles or other geometric inconsistencies.'\n");
+  printf("\n");
+  printf(
+"    If you select the -X switch, Triangle occasionally makes mistakes due\n");
+  printf(
+"    to floating-point roundoff error.  Although these errors are rare,\n");
+  printf(
+"    don't use the -X switch.  If you still have problems, please report the\n"
+);
+  printf("    bug.\n\n");
+  printf(
+"  Strange things can happen if you've taken liberties with your PSLG.  Do\n");
+  printf(
+"  you have a vertex lying in the middle of a segment?  Triangle sometimes\n");
+  printf(
+"  copes poorly with that sort of thing.  Do you want to lay out a collinear\n"
+);
+  printf(
+"  row of evenly spaced, segment-connected vertices?  Have you simply\n");
+  printf(
+"  defined one long segment connecting the leftmost vertex to the rightmost\n"
+);
+  printf(
+"  vertex, and a bunch of vertices lying along it?  This method occasionally\n"
+);
+  printf(
+"  works, especially with horizontal and vertical lines, but often it\n");
+  printf(
+"  doesn't, and you'll have to connect each adjacent pair of vertices with a\n"
+);
+  printf("  separate segment.  If you don't like it, tough.\n\n");
+  printf(
+"  Furthermore, if you have segments that intersect other than at their\n");
+  printf(
+"  endpoints, try not to let the intersections fall extremely close to PSLG\n"
+);
+  printf("  vertices or each other.\n\n");
+  printf(
+"  If you have problems refining a triangulation not produced by Triangle:\n");
+  printf(
+"  Are you sure the triangulation is geometrically valid?  Is it formatted\n");
+  printf(
+"  correctly for Triangle?  Are the triangles all listed so the first three\n"
+);
+  printf(
+"  vertices are their corners in counterclockwise order?  Are all of the\n");
+  printf(
+"  triangles constrained Delaunay?  Triangle's Delaunay refinement algorithm\n"
+);
+  printf("  assumes that it starts with a CDT.\n\n");
+  printf("Show Me:\n\n");
+  printf(
+"  Triangle comes with a separate program named `Show Me', whose primary\n");
+  printf(
+"  purpose is to draw meshes on your screen or in PostScript.  Its secondary\n"
+);
+  printf(
+"  purpose is to check the validity of your input files, and do so more\n");
+  printf(
+"  thoroughly than Triangle does.  Unlike Triangle, Show Me requires that\n");
+  printf("  you have the X Windows system.\n\n");
+  printf("Triangle on the Web:\n\n");
+  printf(
+"  To see an illustrated, updated version of these instructions, check out\n");
+  printf("\n");
+  printf("    http://www.cs.cmu.edu/~quake/triangle.html\n");
+  printf("\n");
+  printf("A Brief Plea:\n");
+  printf("\n");
+  printf(
+"  If you use Triangle, and especially if you use it to accomplish real\n");
+  printf(
+"  work, I would like very much to hear from you.  A short letter or email\n");
+  printf(
+"  (to jrs at cs.berkeley.edu) describing how you use Triangle will mean a lot\n"
+);
+  printf(
+"  to me.  The more people I know are using this program, the more easily I\n"
+);
+  printf(
+"  can justify spending time on improvements, which in turn will benefit\n");
+  printf(
+"  you.  Also, I can put you on a list to receive email whenever a new\n");
+  printf("  version of Triangle is available.\n\n");
+  printf(
+"  If you use a mesh generated by Triangle in a publication, please include\n"
+);
+  printf("  an acknowledgment as well.\n\n");
+  printf("Research credit:\n\n");
+  printf(
+"  Of course, I can take credit for only a fraction of the ideas that made\n");
+  printf(
+"  this mesh generator possible.  Triangle owes its existence to the efforts\n"
+);
+  printf(
+"  of many fine computational geometers and other researchers, including\n");
+  printf(
+"  Marshall Bern, L. Paul Chew, Boris Delaunay, Rex A. Dwyer, David\n");
+  printf(
+"  Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E. Knuth, C. L.\n");
+  printf(
+"  Lawson, Der-Tsai Lee, Ernst P. Mucke, Douglas M. Priest, Jim Ruppert,\n");
+  printf(
+"  Isaac Saias, Bruce J. Schachter, Micha Sharir, Daniel D. Sleator, Jorge\n");
+  printf(
+"  Stolfi, Robert E. Tarjan, Christopher J. Van Wyk, and Binhai Zhu.  See\n");
+  printf(
+"  the comments at the beginning of the source code for references.\n");
+  exit(0);
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  internalerror()   Ask the user to send me the defective product.  Exit.  */
+/*                                                                           */
+/*****************************************************************************/
+
+void internalerror()
+{
+  fflush(stdout);
+  fprintf(stderr, "  Please report this bug to jrs at cs.berkeley.edu\n");
+  fprintf(stderr, "  Include the message above, your input data set, and the exact\n");
+  fprintf(stderr, "    command line you used to run Triangle.\n");
+  exit(1);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  parsecommandline()   Read the command line, identify switches, and set   */
+/*                       up options and file names.                          */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void parsecommandline(int argc, char **argv, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void parsecommandline(argc, argv, b)
+int argc;
+char **argv;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+#ifdef TRILIBRARY
+#define STARTINDEX 0
+#else /* not TRILIBRARY */
+#define STARTINDEX 1
+  int increment;
+  int meshnumber;
+#endif /* not TRILIBRARY */
+  int i, j, k;
+  char workstring[FILENAMESIZE];
+
+  b->poly = b->refine = b->quality = 0;
+  b->vararea = b->fixedarea = b->usertest = 0;
+  b->regionattrib = b->convex = b->weighted = b->jettison = 0;
+  b->firstnumber = 1;
+  b->edgesout = b->voronoi = b->neighbors = b->geomview = 0;
+  b->nobound = b->nopolywritten = b->nonodewritten = b->noelewritten = 0;
+  b->noiterationnum = 0;
+  b->noholes = b->noexact = 0;
+  b->incremental = b->sweepline = 0;
+  b->dwyer = 1;
+  b->splitseg = 0;
+  b->docheck = 0;
+  b->nobisect = 0;
+  b->nolenses = 0;
+  b->steiner = -1;
+  b->order = 1;
+  b->minangle = 0.0;
+  b->maxarea = -1.0;
+  b->quiet = b->verbose = 0;
+#ifndef TRILIBRARY
+  b->innodefilename[0] = '\0';
+#endif /* not TRILIBRARY */
+
+  for (i = STARTINDEX; i < argc; i++) {
+#ifndef TRILIBRARY
+    if (argv[i][0] == '-') {
+#endif /* not TRILIBRARY */
+      for (j = STARTINDEX; argv[i][j] != '\0'; j++) {
+        if (argv[i][j] == 'p') {
+          b->poly = 1;
+	}
+#ifndef CDT_ONLY
+        if (argv[i][j] == 'r') {
+          b->refine = 1;
+	}
+        if (argv[i][j] == 'q') {
+          b->quality = 1;
+          if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
+              (argv[i][j + 1] == '.')) {
+            k = 0;
+            while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
+                   (argv[i][j + 1] == '.')) {
+              j++;
+              workstring[k] = argv[i][j];
+              k++;
+            }
+            workstring[k] = '\0';
+            b->minangle = (REAL) strtod(workstring, (char **) NULL);
+	  } else {
+            b->minangle = 20.0;
+	  }
+	}
+        if (argv[i][j] == 'a') {
+          b->quality = 1;
+          if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
+              (argv[i][j + 1] == '.')) {
+            b->fixedarea = 1;
+            k = 0;
+            while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
+                   (argv[i][j + 1] == '.')) {
+              j++;
+              workstring[k] = argv[i][j];
+              k++;
+            }
+            workstring[k] = '\0';
+            b->maxarea = (REAL) strtod(workstring, (char **) NULL);
+            if (b->maxarea <= 0.0) {
+              fprintf(stderr, "Error:  Maximum area must be greater than zero.\n");
+              exit(1);
+	    }
+	  } else {
+            b->vararea = 1;
+	  }
+	}
+        if (argv[i][j] == 'u') {
+          b->quality = 1;
+          b->usertest = 1;
+        }
+#endif /* not CDT_ONLY */
+        if (argv[i][j] == 'A') {
+          b->regionattrib = 1;
+        }
+        if (argv[i][j] == 'c') {
+          b->convex = 1;
+        }
+        if (argv[i][j] == 'w') {
+          b->weighted = 1;
+        }
+        if (argv[i][j] == 'W') {
+          b->weighted = 2;
+        }
+        if (argv[i][j] == 'j') {
+          b->jettison = 1;
+        }
+        if (argv[i][j] == 'z') {
+          b->firstnumber = 0;
+        }
+        if (argv[i][j] == 'e') {
+          b->edgesout = 1;
+	}
+        if (argv[i][j] == 'v') {
+          b->voronoi = 1;
+	}
+        if (argv[i][j] == 'n') {
+          b->neighbors = 1;
+	}
+        if (argv[i][j] == 'g') {
+          b->geomview = 1;
+	}
+        if (argv[i][j] == 'B') {
+          b->nobound = 1;
+	}
+        if (argv[i][j] == 'P') {
+          b->nopolywritten = 1;
+	}
+        if (argv[i][j] == 'N') {
+          b->nonodewritten = 1;
+	}
+        if (argv[i][j] == 'E') {
+          b->noelewritten = 1;
+	}
+#ifndef TRILIBRARY
+        if (argv[i][j] == 'I') {
+          b->noiterationnum = 1;
+	}
+#endif /* not TRILIBRARY */
+        if (argv[i][j] == 'O') {
+          b->noholes = 1;
+	}
+        if (argv[i][j] == 'X') {
+          b->noexact = 1;
+	}
+        if (argv[i][j] == 'o') {
+          if (argv[i][j + 1] == '2') {
+            j++;
+            b->order = 2;
+          }
+	}
+#ifndef CDT_ONLY
+        if (argv[i][j] == 'Y') {
+          b->nobisect++;
+	}
+        if (argv[i][j] == 'S') {
+          b->steiner = 0;
+          while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) {
+            j++;
+            b->steiner = b->steiner * 10 + (int) (argv[i][j] - '0');
+          }
+        }
+#endif /* not CDT_ONLY */
+#ifndef REDUCED
+        if (argv[i][j] == 'i') {
+          b->incremental = 1;
+        }
+        if (argv[i][j] == 'F') {
+          b->sweepline = 1;
+        }
+#endif /* not REDUCED */
+        if (argv[i][j] == 'l') {
+          b->dwyer = 0;
+        }
+#ifndef REDUCED
+#ifndef CDT_ONLY
+        if (argv[i][j] == 's') {
+          b->splitseg = 1;
+        }
+        if (argv[i][j] == 'L') {
+          b->nolenses = 1;
+        }
+#endif /* not CDT_ONLY */
+        if (argv[i][j] == 'C') {
+          b->docheck = 1;
+        }
+#endif /* not REDUCED */
+        if (argv[i][j] == 'Q') {
+          b->quiet = 1;
+        }
+        if (argv[i][j] == 'V') {
+          b->verbose++;
+        }
+#ifndef TRILIBRARY
+        if ((argv[i][j] == 'h') || (argv[i][j] == 'H') ||
+            (argv[i][j] == '?')) {
+          info();
+	}
+#endif /* not TRILIBRARY */
+      }
+#ifndef TRILIBRARY
+    } else {
+      strncpy(b->innodefilename, argv[i], FILENAMESIZE - 1);
+      b->innodefilename[FILENAMESIZE - 1] = '\0';
+    }
+#endif /* not TRILIBRARY */
+  }
+#ifndef TRILIBRARY
+  if (b->innodefilename[0] == '\0') {
+    syntax();
+  }
+  if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".node")) {
+    b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
+  }
+  if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".poly")) {
+    b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
+    b->poly = 1;
+  }
+#ifndef CDT_ONLY
+  if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 4], ".ele")) {
+    b->innodefilename[strlen(b->innodefilename) - 4] = '\0';
+    b->refine = 1;
+  }
+  if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".area")) {
+    b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
+    b->refine = 1;
+    b->quality = 1;
+    b->vararea = 1;
+  }
+#endif /* not CDT_ONLY */
+#endif /* not TRILIBRARY */
+  b->usesegments = b->poly || b->refine || b->quality || b->convex;
+  b->goodangle = cos(b->minangle * PI / 180.0);
+  b->goodangle *= b->goodangle;
+  if (b->refine && b->noiterationnum) {
+    fprintf(stderr, 
+      "Error:  You cannot use the -I switch when refining a triangulation.\n");
+    exit(1);
+  }
+  /* Be careful not to allocate space for element area constraints that */
+  /*   will never be assigned any value (other than the default -1.0).  */
+  if (!b->refine && !b->poly) {
+    b->vararea = 0;
+  }
+  /* Be careful not to add an extra attribute to each element unless the */
+  /*   input supports it (PSLG in, but not refining a preexisting mesh). */
+  if (b->refine || !b->poly) {
+    b->regionattrib = 0;
+  }
+  /* Regular/weighted triangulations are incompatible with PSLGs */
+  /*   and meshing.                                              */
+  if (b->weighted && (b->poly || b->quality)) {
+    b->weighted = 0;
+    if (!b->quiet) {
+      fprintf(stderr, "Warning:  weighted triangulations (-w, -W) are incompatible\n");
+      fprintf(stderr, "  with PSLGs (-p) and meshing (-q, -a, -u).  Weights ignored.\n"
+             );
+    }
+  }
+  if (b->jettison && b->nonodewritten && !b->quiet) {
+    fprintf(stderr, "Warning:  -j and -N switches are somewhat incompatible.\n");
+    fprintf(stderr, "  If any vertices are jettisoned, you will need the output\n");
+    fprintf(stderr, "  .node file to reconstruct the new node indices.");
+  }
+
+#ifndef TRILIBRARY
+  strcpy(b->inpolyfilename, b->innodefilename);
+  strcpy(b->inelefilename, b->innodefilename);
+  strcpy(b->areafilename, b->innodefilename);
+  increment = 0;
+  strcpy(workstring, b->innodefilename);
+  j = 1;
+  while (workstring[j] != '\0') {
+    if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) {
+      increment = j + 1;
+    }
+    j++;
+  }
+  meshnumber = 0;
+  if (increment > 0) {
+    j = increment;
+    do {
+      if ((workstring[j] >= '0') && (workstring[j] <= '9')) {
+        meshnumber = meshnumber * 10 + (int) (workstring[j] - '0');
+      } else {
+        increment = 0;
+      }
+      j++;
+    } while (workstring[j] != '\0');
+  }
+  if (b->noiterationnum) {
+    strcpy(b->outnodefilename, b->innodefilename);
+    strcpy(b->outelefilename, b->innodefilename);
+    strcpy(b->edgefilename, b->innodefilename);
+    strcpy(b->vnodefilename, b->innodefilename);
+    strcpy(b->vedgefilename, b->innodefilename);
+    strcpy(b->neighborfilename, b->innodefilename);
+    strcpy(b->offfilename, b->innodefilename);
+    strcat(b->outnodefilename, ".node");
+    strcat(b->outelefilename, ".ele");
+    strcat(b->edgefilename, ".edge");
+    strcat(b->vnodefilename, ".v.node");
+    strcat(b->vedgefilename, ".v.edge");
+    strcat(b->neighborfilename, ".neigh");
+    strcat(b->offfilename, ".off");
+  } else if (increment == 0) {
+    strcpy(b->outnodefilename, b->innodefilename);
+    strcpy(b->outpolyfilename, b->innodefilename);
+    strcpy(b->outelefilename, b->innodefilename);
+    strcpy(b->edgefilename, b->innodefilename);
+    strcpy(b->vnodefilename, b->innodefilename);
+    strcpy(b->vedgefilename, b->innodefilename);
+    strcpy(b->neighborfilename, b->innodefilename);
+    strcpy(b->offfilename, b->innodefilename);
+    strcat(b->outnodefilename, ".1.node");
+    strcat(b->outpolyfilename, ".1.poly");
+    strcat(b->outelefilename, ".1.ele");
+    strcat(b->edgefilename, ".1.edge");
+    strcat(b->vnodefilename, ".1.v.node");
+    strcat(b->vedgefilename, ".1.v.edge");
+    strcat(b->neighborfilename, ".1.neigh");
+    strcat(b->offfilename, ".1.off");
+  } else {
+    workstring[increment] = '%';
+    workstring[increment + 1] = 'd';
+    workstring[increment + 2] = '\0';
+    sprintf(b->outnodefilename, workstring, meshnumber + 1);
+    strcpy(b->outpolyfilename, b->outnodefilename);
+    strcpy(b->outelefilename, b->outnodefilename);
+    strcpy(b->edgefilename, b->outnodefilename);
+    strcpy(b->vnodefilename, b->outnodefilename);
+    strcpy(b->vedgefilename, b->outnodefilename);
+    strcpy(b->neighborfilename, b->outnodefilename);
+    strcpy(b->offfilename, b->outnodefilename);
+    strcat(b->outnodefilename, ".node");
+    strcat(b->outpolyfilename, ".poly");
+    strcat(b->outelefilename, ".ele");
+    strcat(b->edgefilename, ".edge");
+    strcat(b->vnodefilename, ".v.node");
+    strcat(b->vedgefilename, ".v.edge");
+    strcat(b->neighborfilename, ".neigh");
+    strcat(b->offfilename, ".off");
+  }
+  strcat(b->innodefilename, ".node");
+  strcat(b->inpolyfilename, ".poly");
+  strcat(b->inelefilename, ".ele");
+  strcat(b->areafilename, ".area");
+#endif /* not TRILIBRARY */
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* User interaction routines begin here                      *********/
+
+/********* Debugging routines begin here                             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  printtriangle()   Print out the details of an oriented triangle.         */
+/*                                                                           */
+/*  I originally wrote this procedure to simplify debugging; it can be       */
+/*  called directly from the debugger, and presents information about an     */
+/*  oriented triangle in digestible form.  It's also used when the           */
+/*  highest level of verbosity (`-VVV') is specified.                        */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void printtriangle(struct mesh *m, struct behavior *b, struct otri *t)
+#else /* not ANSI_DECLARATORS */
+void printtriangle(m, b, t)
+struct mesh *m;
+struct behavior *b;
+struct otri *t;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri printtri;
+  struct osub printsh;
+  vertex printvertex;
+
+  fprintf(stderr, "triangle x%lx with orientation %d:\n", (unsigned long) t->tri,
+         t->orient);
+  decode(t->tri[0], printtri);
+  if (printtri.tri == m->dummytri) {
+    fprintf(stderr, "    [0] = Outer space\n");
+  } else {
+    fprintf(stderr, "    [0] = x%lx  %d\n", (unsigned long) printtri.tri,
+           printtri.orient);
+  }
+  decode(t->tri[1], printtri);
+  if (printtri.tri == m->dummytri) {
+    fprintf(stderr, "    [1] = Outer space\n");
+  } else {
+    fprintf(stderr, "    [1] = x%lx  %d\n", (unsigned long) printtri.tri,
+           printtri.orient);
+  }
+  decode(t->tri[2], printtri);
+  if (printtri.tri == m->dummytri) {
+    fprintf(stderr, "    [2] = Outer space\n");
+  } else {
+    fprintf(stderr, "    [2] = x%lx  %d\n", (unsigned long) printtri.tri,
+           printtri.orient);
+  }
+
+  org(*t, printvertex);
+  if (printvertex == (vertex) NULL)
+    fprintf(stderr, "    Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
+  else
+    fprintf(stderr, "    Origin[%d] = x%lx  (%.12g, %.12g)\n",
+           (t->orient + 1) % 3 + 3, (unsigned long) printvertex,
+           printvertex[0], printvertex[1]);
+  dest(*t, printvertex);
+  if (printvertex == (vertex) NULL)
+    fprintf(stderr, "    Dest  [%d] = NULL\n", (t->orient + 2) % 3 + 3);
+  else
+    fprintf(stderr, "    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
+           (t->orient + 2) % 3 + 3, (unsigned long) printvertex,
+           printvertex[0], printvertex[1]);
+  apex(*t, printvertex);
+  if (printvertex == (vertex) NULL)
+    fprintf(stderr, "    Apex  [%d] = NULL\n", t->orient + 3);
+  else
+    fprintf(stderr, "    Apex  [%d] = x%lx  (%.12g, %.12g)\n",
+           t->orient + 3, (unsigned long) printvertex,
+           printvertex[0], printvertex[1]);
+
+  if (b->usesegments) {
+    sdecode(t->tri[6], printsh);
+    if (printsh.ss != m->dummysub) {
+      fprintf(stderr, "    [6] = x%lx  %d\n", (unsigned long) printsh.ss,
+             printsh.ssorient);
+    }
+    sdecode(t->tri[7], printsh);
+    if (printsh.ss != m->dummysub) {
+      fprintf(stderr, "    [7] = x%lx  %d\n", (unsigned long) printsh.ss,
+             printsh.ssorient);
+    }
+    sdecode(t->tri[8], printsh);
+    if (printsh.ss != m->dummysub) {
+      fprintf(stderr, "    [8] = x%lx  %d\n", (unsigned long) printsh.ss,
+             printsh.ssorient);
+    }
+  }
+
+  if (b->vararea) {
+    fprintf(stderr, "    Area constraint:  %.4g\n", areabound(*t));
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  printsubseg()   Print out the details of an oriented subsegment.         */
+/*                                                                           */
+/*  I originally wrote this procedure to simplify debugging; it can be       */
+/*  called directly from the debugger, and presents information about an     */
+/*  oriented subsegment in digestible form.  It's also used when the highest */
+/*  level of verbosity (`-VVV') is specified.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void printsubseg(struct mesh *m, struct behavior *b, struct osub *s)
+#else /* not ANSI_DECLARATORS */
+void printsubseg(m, b, s)
+struct mesh *m;
+struct behavior *b;
+struct osub *s;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct osub printsh;
+  struct otri printtri;
+  vertex printvertex;
+
+  fprintf(stderr, "subsegment x%lx with orientation %d and mark %d:\n",
+         (unsigned long) s->ss, s->ssorient, mark(*s));
+  sdecode(s->ss[0], printsh);
+  if (printsh.ss == m->dummysub) {
+    fprintf(stderr, "    [0] = No subsegment\n");
+  } else {
+    fprintf(stderr, "    [0] = x%lx  %d\n", (unsigned long) printsh.ss,
+           printsh.ssorient);
+  }
+  sdecode(s->ss[1], printsh);
+  if (printsh.ss == m->dummysub) {
+    fprintf(stderr, "    [1] = No subsegment\n");
+  } else {
+    fprintf(stderr, "    [1] = x%lx  %d\n", (unsigned long) printsh.ss,
+           printsh.ssorient);
+  }
+
+  sorg(*s, printvertex);
+  if (printvertex == (vertex) NULL)
+    fprintf(stderr, "    Origin[%d] = NULL\n", 2 + s->ssorient);
+  else
+    fprintf(stderr, "    Origin[%d] = x%lx  (%.12g, %.12g)\n",
+           2 + s->ssorient, (unsigned long) printvertex,
+           printvertex[0], printvertex[1]);
+  sdest(*s, printvertex);
+  if (printvertex == (vertex) NULL)
+    fprintf(stderr, "    Dest  [%d] = NULL\n", 3 - s->ssorient);
+  else
+    fprintf(stderr, "    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
+           3 - s->ssorient, (unsigned long) printvertex,
+           printvertex[0], printvertex[1]);
+
+  decode(s->ss[4], printtri);
+  if (printtri.tri == m->dummytri) {
+    fprintf(stderr, "    [4] = Outer space\n");
+  } else {
+    fprintf(stderr, "    [4] = x%lx  %d\n", (unsigned long) printtri.tri,
+           printtri.orient);
+  }
+  decode(s->ss[5], printtri);
+  if (printtri.tri == m->dummytri) {
+    fprintf(stderr, "    [5] = Outer space\n");
+  } else {
+    fprintf(stderr, "    [5] = x%lx  %d\n", (unsigned long) printtri.tri,
+           printtri.orient);
+  }
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Debugging routines end here                               *********/
+
+/********* Memory management routines begin here                     *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  poolrestart()   Deallocate all items in a pool.                          */
+/*                                                                           */
+/*  The pool is returned to its starting state, except that no memory is     */
+/*  freed to the operating system.  Rather, the previously allocated blocks  */
+/*  are ready to be reused.                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void poolrestart(struct memorypool *pool)
+#else /* not ANSI_DECLARATORS */
+void poolrestart(pool)
+struct memorypool *pool;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  unsigned long alignptr;
+
+  pool->items = 0;
+  pool->maxitems = 0;
+
+  /* Set the currently active block. */
+  pool->nowblock = pool->firstblock;
+  /* Find the first item in the pool.  Increment by the size of (VOID *). */
+  alignptr = (unsigned long) (pool->nowblock + 1);
+  /* Align the item on an `alignbytes'-byte boundary. */
+  pool->nextitem = (VOID *)
+    (alignptr + (unsigned long) pool->alignbytes -
+     (alignptr % (unsigned long) pool->alignbytes));
+  /* There are lots of unallocated items left in this block. */
+  pool->unallocateditems = pool->itemsperblock;
+  /* The stack of deallocated items is empty. */
+  pool->deaditemstack = (VOID *) NULL;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  poolinit()   Initialize a pool of memory for allocation of items.        */
+/*                                                                           */
+/*  This routine initializes the machinery for allocating items.  A `pool'   */
+/*  is created whose records have size at least `bytecount'.  Items will be  */
+/*  allocated in `itemcount'-item blocks.  Each item is assumed to be a      */
+/*  collection of words, and either pointers or floating-point values are    */
+/*  assumed to be the "primary" word type.  (The "primary" word type is used */
+/*  to determine alignment of items.)  If `alignment' isn't zero, all items  */
+/*  will be `alignment'-byte aligned in memory.  `alignment' must be either  */
+/*  a multiple or a factor of the primary word size; powers of two are safe. */
+/*  `alignment' is normally used to create a few unused bits at the bottom   */
+/*  of each item's pointer, in which information may be stored.              */
+/*                                                                           */
+/*  Don't change this routine unless you understand it.                      */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void poolinit(struct memorypool *pool, int bytecount, int itemcount,
+              enum wordtype wtype, int alignment)
+#else /* not ANSI_DECLARATORS */
+void poolinit(pool, bytecount, itemcount, wtype, alignment)
+struct memorypool *pool;
+int bytecount;
+int itemcount;
+enum wordtype wtype;
+int alignment;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  int wordsize;
+
+  /* Initialize values in the pool. */
+  pool->itemwordtype = wtype;
+  wordsize = (pool->itemwordtype == POINTER) ? sizeof(VOID *) : sizeof(REAL);
+  /* Find the proper alignment, which must be at least as large as:   */
+  /*   - The parameter `alignment'.                                   */
+  /*   - The primary word type, to avoid unaligned accesses.          */
+  /*   - sizeof(VOID *), so the stack of dead items can be maintained */
+  /*       without unaligned accesses.                                */
+  if (alignment > wordsize) {
+    pool->alignbytes = alignment;
+  } else {
+    pool->alignbytes = wordsize;
+  }
+  if (sizeof(VOID *) > pool->alignbytes) {
+    pool->alignbytes = sizeof(VOID *);
+  }
+  pool->itemwords = ((bytecount + pool->alignbytes - 1) / pool->alignbytes)
+                  * (pool->alignbytes / wordsize);
+  pool->itembytes = pool->itemwords * wordsize;
+  pool->itemsperblock = itemcount;
+
+  /* Allocate a block of items.  Space for `itemsperblock' items and one    */
+  /*   pointer (to point to the next block) are allocated, as well as space */
+  /*   to ensure alignment of the items.                                    */
+  pool->firstblock = (VOID **) trimalloc(pool->itemsperblock * pool->itembytes
+                                         + sizeof(VOID *) + pool->alignbytes);
+  /* Set the next block pointer to NULL. */
+  *(pool->firstblock) = (VOID *) NULL;
+  poolrestart(pool);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  pooldeinit()   Free to the operating system all memory taken by a pool.  */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void pooldeinit(struct memorypool *pool)
+#else /* not ANSI_DECLARATORS */
+void pooldeinit(pool)
+struct memorypool *pool;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  while (pool->firstblock != (VOID **) NULL) {
+    pool->nowblock = (VOID **) *(pool->firstblock);
+    trifree((VOID *) pool->firstblock);
+    pool->firstblock = pool->nowblock;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  poolalloc()   Allocate space for an item.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+VOID *poolalloc(struct memorypool *pool)
+#else /* not ANSI_DECLARATORS */
+VOID *poolalloc(pool)
+struct memorypool *pool;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  VOID *newitem;
+  VOID **newblock;
+  unsigned long alignptr;
+
+  /* First check the linked list of dead items.  If the list is not   */
+  /*   empty, allocate an item from the list rather than a fresh one. */
+  if (pool->deaditemstack != (VOID *) NULL) {
+    newitem = pool->deaditemstack;               /* Take first item in list. */
+    pool->deaditemstack = * (VOID **) pool->deaditemstack;
+  } else {
+    /* Check if there are any free items left in the current block. */
+    if (pool->unallocateditems == 0) {
+      /* Check if another block must be allocated. */
+      if (*(pool->nowblock) == (VOID *) NULL) {
+        /* Allocate a new block of items, pointed to by the previous block. */
+        newblock = (VOID **) trimalloc(pool->itemsperblock * pool->itembytes +
+                                       sizeof(VOID *) + pool->alignbytes);
+        *(pool->nowblock) = (VOID *) newblock;
+        /* The next block pointer is NULL. */
+        *newblock = (VOID *) NULL;
+      }
+      /* Move to the new block. */
+      pool->nowblock = (VOID **) *(pool->nowblock);
+      /* Find the first item in the block.    */
+      /*   Increment by the size of (VOID *). */
+      alignptr = (unsigned long) (pool->nowblock + 1);
+      /* Align the item on an `alignbytes'-byte boundary. */
+      pool->nextitem = (VOID *)
+        (alignptr + (unsigned long) pool->alignbytes -
+         (alignptr % (unsigned long) pool->alignbytes));
+      /* There are lots of unallocated items left in this block. */
+      pool->unallocateditems = pool->itemsperblock;
+    }
+    /* Allocate a new item. */
+    newitem = pool->nextitem;
+    /* Advance `nextitem' pointer to next free item in block. */
+    if (pool->itemwordtype == POINTER) {
+      pool->nextitem = (VOID *) ((VOID **) pool->nextitem + pool->itemwords);
+    } else {
+      pool->nextitem = (VOID *) ((REAL *) pool->nextitem + pool->itemwords);
+    }
+    pool->unallocateditems--;
+    pool->maxitems++;
+  }
+  pool->items++;
+  return newitem;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  pooldealloc()   Deallocate space for an item.                            */
+/*                                                                           */
+/*  The deallocated space is stored in a queue for later reuse.              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void pooldealloc(struct memorypool *pool, VOID *dyingitem)
+#else /* not ANSI_DECLARATORS */
+void pooldealloc(pool, dyingitem)
+struct memorypool *pool;
+VOID *dyingitem;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  /* Push freshly killed item onto stack. */
+  *((VOID **) dyingitem) = pool->deaditemstack;
+  pool->deaditemstack = dyingitem;
+  pool->items--;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  traversalinit()   Prepare to traverse the entire list of items.          */
+/*                                                                           */
+/*  This routine is used in conjunction with traverse().                     */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void traversalinit(struct memorypool *pool)
+#else /* not ANSI_DECLARATORS */
+void traversalinit(pool)
+struct memorypool *pool;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  unsigned long alignptr;
+
+  /* Begin the traversal in the first block. */
+  pool->pathblock = pool->firstblock;
+  /* Find the first item in the block.  Increment by the size of (VOID *). */
+  alignptr = (unsigned long) (pool->pathblock + 1);
+  /* Align with item on an `alignbytes'-byte boundary. */
+  pool->pathitem = (VOID *)
+    (alignptr + (unsigned long) pool->alignbytes -
+     (alignptr % (unsigned long) pool->alignbytes));
+  /* Set the number of items left in the current block. */
+  pool->pathitemsleft = pool->itemsperblock;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  traverse()   Find the next item in the list.                             */
+/*                                                                           */
+/*  This routine is used in conjunction with traversalinit().  Be forewarned */
+/*  that this routine successively returns all items in the list, including  */
+/*  deallocated ones on the deaditemqueue.  It's up to you to figure out     */
+/*  which ones are actually dead.  Why?  I don't want to allocate extra      */
+/*  space just to demarcate dead items.  It can usually be done more         */
+/*  space-efficiently by a routine that knows something about the structure  */
+/*  of the item.                                                             */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+VOID *traverse(struct memorypool *pool)
+#else /* not ANSI_DECLARATORS */
+VOID *traverse(pool)
+struct memorypool *pool;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  VOID *newitem;
+  unsigned long alignptr;
+
+  /* Stop upon exhausting the list of items. */
+  if (pool->pathitem == pool->nextitem) {
+    return (VOID *) NULL;
+  }
+  /* Check whether any untraversed items remain in the current block. */
+  if (pool->pathitemsleft == 0) {
+    /* Find the next block. */
+    pool->pathblock = (VOID **) *(pool->pathblock);
+    /* Find the first item in the block.  Increment by the size of (VOID *). */
+    alignptr = (unsigned long) (pool->pathblock + 1);
+    /* Align with item on an `alignbytes'-byte boundary. */
+    pool->pathitem = (VOID *)
+      (alignptr + (unsigned long) pool->alignbytes -
+       (alignptr % (unsigned long) pool->alignbytes));
+    /* Set the number of items left in the current block. */
+    pool->pathitemsleft = pool->itemsperblock;
+  }
+  newitem = pool->pathitem;
+  /* Find the next item in the block. */
+  if (pool->itemwordtype == POINTER) {
+    pool->pathitem = (VOID *) ((VOID **) pool->pathitem + pool->itemwords);
+  } else {
+    pool->pathitem = (VOID *) ((REAL *) pool->pathitem + pool->itemwords);
+  }
+  pool->pathitemsleft--;
+  return newitem;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  dummyinit()   Initialize the triangle that fills "outer space" and the   */
+/*                omnipresent subsegment.                                    */
+/*                                                                           */
+/*  The triangle that fills "outer space," called `dummytri', is pointed to  */
+/*  by every triangle and subsegment on a boundary (be it outer or inner) of */
+/*  the triangulation.  Also, `dummytri' points to one of the triangles on   */
+/*  the convex hull (until the holes and concavities are carved), making it  */
+/*  possible to find a starting triangle for point location.                 */
+/*                                                                           */
+/*  The omnipresent subsegment, `dummysub', is pointed to by every triangle  */
+/*  or subsegment that doesn't have a full complement of real subsegments    */
+/*  to point to.                                                             */
+/*                                                                           */
+/*  `dummytri' and `dummysub' are generally required to fulfill only a few   */
+/*  invariants:  their vertices must remain NULL and `dummytri' must always  */
+/*  be bonded (at offset zero) to some triangle on the convex hull of the    */
+/*  mesh, via a boundary edge.  Otherwise, the connections of `dummytri' and */
+/*  `dummysub' may change willy-nilly.  This makes it possible to avoid      */
+/*  writing a good deal of special-case code (in the edge flip, for example) */
+/*  for dealing with the boundary of the mesh, places where no subsegment is */
+/*  present, and so forth.  Other entities are frequently bonded to          */
+/*  `dummytri' and `dummysub' as if they were real mesh entities, with no    */
+/*  harm done.                                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void dummyinit(struct mesh *m, struct behavior *b, int trianglewords,
+               int subsegwords)
+#else /* not ANSI_DECLARATORS */
+void dummyinit(m, b, trianglewords, subsegwords)
+struct mesh *m;
+struct behavior *b;
+int trianglewords;
+int subsegwords;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  unsigned long alignptr;
+
+  /* Set up `dummytri', the `triangle' that occupies "outer space." */
+  m->dummytribase = (triangle *) trimalloc(trianglewords * sizeof(triangle) +
+                                           m->triangles.alignbytes);
+  /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
+  alignptr = (unsigned long) m->dummytribase;
+  m->dummytri = (triangle *)
+    (alignptr + (unsigned long) m->triangles.alignbytes -
+     (alignptr % (unsigned long) m->triangles.alignbytes));
+  /* Initialize the three adjoining triangles to be "outer space."  These  */
+  /*   will eventually be changed by various bonding operations, but their */
+  /*   values don't really matter, as long as they can legally be          */
+  /*   dereferenced.                                                       */
+  m->dummytri[0] = (triangle) m->dummytri;
+  m->dummytri[1] = (triangle) m->dummytri;
+  m->dummytri[2] = (triangle) m->dummytri;
+  /* Three NULL vertices. */
+  m->dummytri[3] = (triangle) NULL;
+  m->dummytri[4] = (triangle) NULL;
+  m->dummytri[5] = (triangle) NULL;
+
+  if (b->usesegments) {
+    /* Set up `dummysub', the omnipresent subsegment pointed to by any */
+    /*   triangle side or subsegment end that isn't attached to a real */
+    /*   subsegment.                                                   */
+    m->dummysubbase = (subseg *) trimalloc(subsegwords * sizeof(subseg) +
+                                           m->subsegs.alignbytes);
+    /* Align `dummysub' on a `subsegs.alignbytes'-byte boundary. */
+    alignptr = (unsigned long) m->dummysubbase;
+    m->dummysub = (subseg *)
+      (alignptr + (unsigned long) m->subsegs.alignbytes -
+       (alignptr % (unsigned long) m->subsegs.alignbytes));
+    /* Initialize the two adjoining subsegments to be the omnipresent      */
+    /*   subsegment.  These will eventually be changed by various bonding  */
+    /*   operations, but their values don't really matter, as long as they */
+    /*   can legally be dereferenced.                                      */
+    m->dummysub[0] = (subseg) m->dummysub;
+    m->dummysub[1] = (subseg) m->dummysub;
+    /* Two NULL vertices. */
+    m->dummysub[2] = (subseg) NULL;
+    m->dummysub[3] = (subseg) NULL;
+    /* Initialize the two adjoining triangles to be "outer space." */
+    m->dummysub[4] = (subseg) m->dummytri;
+    m->dummysub[5] = (subseg) m->dummytri;
+    /* Set the boundary marker to zero. */
+    * (int *) (m->dummysub + 6) = 0;
+
+    /* Initialize the three adjoining subsegments of `dummytri' to be */
+    /*   the omnipresent subsegment.                                  */
+    m->dummytri[6] = (triangle) m->dummysub;
+    m->dummytri[7] = (triangle) m->dummysub;
+    m->dummytri[8] = (triangle) m->dummysub;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  initializevertexpool()   Calculate the size of the vertex data structure */
+/*                           and initialize its memory pool.                 */
+/*                                                                           */
+/*  This routine also computes the `vertexmarkindex' and `vertex2triindex'   */
+/*  indices used to find values within each vertex.                          */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void initializevertexpool(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void initializevertexpool(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  int vertexsize;
+
+  /* The index within each vertex at which the boundary marker is found,    */
+  /*   followed by the vertex type.  Ensure the vertex marker is aligned to */
+  /*   a sizeof(int)-byte address.                                          */
+  m->vertexmarkindex = ((m->mesh_dim + m->nextras) * sizeof(REAL) +
+                        sizeof(int) - 1) /
+                       sizeof(int);
+  vertexsize = (m->vertexmarkindex + 2) * sizeof(int);
+  if (b->poly) {
+    /* The index within each vertex at which a triangle pointer is found.  */
+    /*   Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
+    m->vertex2triindex = (vertexsize + sizeof(triangle) - 1) /
+                         sizeof(triangle);
+    vertexsize = (m->vertex2triindex + 1) * sizeof(triangle);
+  }
+  /* Initialize the pool of vertices. */
+  poolinit(&m->vertices, vertexsize, VERTEXPERBLOCK,
+           (sizeof(REAL) >= sizeof(triangle)) ? FLOATINGPOINT : POINTER, 0);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  initializetrisubpools()   Calculate the sizes of the triangle and        */
+/*                            subsegment data structures and initialize      */
+/*                            their memory pools.                            */
+/*                                                                           */
+/*  This routine also computes the `highorderindex', `elemattribindex', and  */
+/*  `areaboundindex' indices used to find values within each triangle.       */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void initializetrisubpools(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void initializetrisubpools(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  int trisize;
+
+  /* The index within each triangle at which the extra nodes (above three)  */
+  /*   associated with high order elements are found.  There are three      */
+  /*   pointers to other triangles, three pointers to corners, and possibly */
+  /*   three pointers to subsegments before the extra nodes.                */
+  m->highorderindex = 6 + (b->usesegments * 3);
+  /* The number of bytes occupied by a triangle. */
+  trisize = ((b->order + 1) * (b->order + 2) / 2 + (m->highorderindex - 3)) *
+            sizeof(triangle);
+  /* The index within each triangle at which its attributes are found, */
+  /*   where the index is measured in REALs.                           */
+  m->elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);
+  /* The index within each triangle at which the maximum area constraint  */
+  /*   is found, where the index is measured in REALs.  Note that if the  */
+  /*   `regionattrib' flag is set, an additional attribute will be added. */
+  m->areaboundindex = m->elemattribindex + m->eextras + b->regionattrib;
+  /* If triangle attributes or an area bound are needed, increase the number */
+  /*   of bytes occupied by a triangle.                                      */
+  if (b->vararea) {
+    trisize = (m->areaboundindex + 1) * sizeof(REAL);
+  } else if (m->eextras + b->regionattrib > 0) {
+    trisize = m->areaboundindex * sizeof(REAL);
+  }
+  /* If a Voronoi diagram or triangle neighbor graph is requested, make    */
+  /*   sure there's room to store an integer index in each triangle.  This */
+  /*   integer index can occupy the same space as the subsegment pointers  */
+  /*   or attributes or area constraint or extra nodes.                    */
+  if ((b->voronoi || b->neighbors) &&
+      (trisize < 6 * sizeof(triangle) + sizeof(int))) {
+    trisize = 6 * sizeof(triangle) + sizeof(int);
+  }
+  /* Having determined the memory size of a triangle, initialize the pool. */
+  poolinit(&m->triangles, trisize, TRIPERBLOCK, POINTER, 4);
+
+  if (b->usesegments) {
+    /* Initialize the pool of subsegments.  Take into account all six */
+    /*   pointers and one boundary marker.                            */
+    poolinit(&m->subsegs, 6 * sizeof(triangle) + sizeof(int), SUBSEGPERBLOCK,
+             POINTER, 4);
+
+    /* Initialize the "outer space" triangle and omnipresent subsegment. */
+    dummyinit(m, b, m->triangles.itemwords, m->subsegs.itemwords);
+  } else {
+    /* Initialize the "outer space" triangle. */
+    dummyinit(m, b, m->triangles.itemwords, 0);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangledealloc()   Deallocate space for a triangle, marking it dead.    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void triangledealloc(struct mesh *m, triangle *dyingtriangle)
+#else /* not ANSI_DECLARATORS */
+void triangledealloc(m, dyingtriangle)
+struct mesh *m;
+triangle *dyingtriangle;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  /* Mark the triangle as dead.  This makes it possible to detect dead */
+  /*   triangles when traversing the list of all triangles.            */
+  killtri(dyingtriangle);
+  pooldealloc(&m->triangles, (VOID *) dyingtriangle);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangletraverse()   Traverse the triangles, skipping dead ones.         */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+triangle *triangletraverse(struct mesh *m)
+#else /* not ANSI_DECLARATORS */
+triangle *triangletraverse(m)
+struct mesh *m;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  triangle *newtriangle;
+
+  do {
+    newtriangle = (triangle *) traverse(&m->triangles);
+    if (newtriangle == (triangle *) NULL) {
+      return (triangle *) NULL;
+    }
+  } while (deadtri(newtriangle));                         /* Skip dead ones. */
+  return newtriangle;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  subsegdealloc()   Deallocate space for a subsegment, marking it dead.    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void subsegdealloc(struct mesh *m, subseg *dyingsubseg)
+#else /* not ANSI_DECLARATORS */
+void subsegdealloc(m, dyingsubseg)
+struct mesh *m;
+subseg *dyingsubseg;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  /* Mark the subsegment as dead.  This makes it possible to detect dead */
+  /*   subsegments when traversing the list of all subsegments.          */
+  killsubseg(dyingsubseg);
+  pooldealloc(&m->subsegs, (VOID *) dyingsubseg);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  subsegtraverse()   Traverse the subsegments, skipping dead ones.         */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+subseg *subsegtraverse(struct mesh *m)
+#else /* not ANSI_DECLARATORS */
+subseg *subsegtraverse(m)
+struct mesh *m;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  subseg *newsubseg;
+
+  do {
+    newsubseg = (subseg *) traverse(&m->subsegs);
+    if (newsubseg == (subseg *) NULL) {
+      return (subseg *) NULL;
+    }
+  } while (deadsubseg(newsubseg));                        /* Skip dead ones. */
+  return newsubseg;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  vertexdealloc()   Deallocate space for a vertex, marking it dead.        */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void vertexdealloc(struct mesh *m, vertex dyingvertex)
+#else /* not ANSI_DECLARATORS */
+void vertexdealloc(m, dyingvertex)
+struct mesh *m;
+vertex dyingvertex;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  /* Mark the vertex as dead.  This makes it possible to detect dead */
+  /*   vertices when traversing the list of all vertices.            */
+  setvertextype(dyingvertex, DEADVERTEX);
+  pooldealloc(&m->vertices, (VOID *) dyingvertex);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  vertextraverse()   Traverse the vertices, skipping dead ones.            */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+vertex vertextraverse(struct mesh *m)
+#else /* not ANSI_DECLARATORS */
+vertex vertextraverse(m)
+struct mesh *m;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  vertex newvertex;
+
+  do {
+    newvertex = (vertex) traverse(&m->vertices);
+    if (newvertex == (vertex) NULL) {
+      return (vertex) NULL;
+    }
+  } while (vertextype(newvertex) == DEADVERTEX);          /* Skip dead ones. */
+  return newvertex;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  badsubsegdealloc()   Deallocate space for a bad subsegment, marking it   */
+/*                       dead.                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void badsubsegdealloc(struct mesh *m, struct badsubseg *dyingseg)
+#else /* not ANSI_DECLARATORS */
+void badsubsegdealloc(m, dyingseg)
+struct mesh *m;
+struct badsubseg *dyingseg;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  /* Set subsegment's origin to NULL.  This makes it possible to detect dead */
+  /*   subsegments when traversing the list of all encroached subsegments.   */
+  dyingseg->subsegorg = (vertex) NULL;
+  pooldealloc(&m->badsubsegs, (VOID *) dyingseg);
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  badsubsegtraverse()   Traverse the bad subsegments, skipping dead ones.  */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+struct badsubseg *badsubsegtraverse(struct mesh *m)
+#else /* not ANSI_DECLARATORS */
+struct badsubseg *badsubsegtraverse(m)
+struct mesh *m;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct badsubseg *newseg;
+
+  do {
+    newseg = (struct badsubseg *) traverse(&m->badsubsegs);
+    if (newseg == (struct badsubseg *) NULL) {
+      return (struct badsubseg *) NULL;
+    }
+  } while (newseg->subsegorg == (vertex) NULL);           /* Skip dead ones. */
+  return newseg;
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  getvertex()   Get a specific vertex, by number, from the list.           */
+/*                                                                           */
+/*  The first vertex is number 'firstnumber'.                                */
+/*                                                                           */
+/*  Note that this takes O(n) time (with a small constant, if VERTEXPERBLOCK */
+/*  is large).  I don't care to take the trouble to make it work in constant */
+/*  time.                                                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+vertex getvertex(struct mesh *m, struct behavior *b, int number)
+#else /* not ANSI_DECLARATORS */
+vertex getvertex(m, b, number)
+struct mesh *m;
+struct behavior *b;
+int number;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  VOID **getblock;
+  vertex foundvertex;
+  unsigned long alignptr;
+  int current;
+
+  getblock = m->vertices.firstblock;
+  current = b->firstnumber;
+  /* Find the right block. */
+  while (current + m->vertices.itemsperblock <= number) {
+    getblock = (VOID **) *getblock;
+    current += m->vertices.itemsperblock;
+  }
+  /* Now find the right vertex. */
+  alignptr = (unsigned long) (getblock + 1);
+  foundvertex = (vertex) (alignptr + (unsigned long) m->vertices.alignbytes -
+                          (alignptr % (unsigned long) m->vertices.alignbytes));
+  while (current < number) {
+    foundvertex += m->vertices.itemwords;
+    current++;
+  }
+  return foundvertex;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangledeinit()   Free all remaining allocated memory.                  */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void triangledeinit(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void triangledeinit(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  pooldeinit(&m->triangles);
+  trifree((VOID *) m->dummytribase);
+  if (b->usesegments) {
+    pooldeinit(&m->subsegs);
+    trifree((VOID *) m->dummysubbase);
+  }
+  pooldeinit(&m->vertices);
+#ifndef CDT_ONLY
+  if (b->quality) {
+    pooldeinit(&m->badsubsegs);
+    if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) {
+      pooldeinit(&m->badtriangles);
+      pooldeinit(&m->flipstackers);
+    }
+  }
+#endif /* not CDT_ONLY */
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Memory management routines end here                       *********/
+
+/********* Constructors begin here                                   *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  maketriangle()   Create a new triangle with orientation zero.            */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void maketriangle(struct mesh *m, struct behavior *b, struct otri *newotri)
+#else /* not ANSI_DECLARATORS */
+void maketriangle(m, b, newotri)
+struct mesh *m;
+struct behavior *b;
+struct otri *newotri;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  int i;
+
+  newotri->tri = (triangle *) poolalloc(&m->triangles);
+  /* Initialize the three adjoining triangles to be "outer space". */
+  newotri->tri[0] = (triangle) m->dummytri;
+  newotri->tri[1] = (triangle) m->dummytri;
+  newotri->tri[2] = (triangle) m->dummytri;
+  /* Three NULL vertices. */
+  newotri->tri[3] = (triangle) NULL;
+  newotri->tri[4] = (triangle) NULL;
+  newotri->tri[5] = (triangle) NULL;
+  if (b->usesegments) {
+    /* Initialize the three adjoining subsegments to be the omnipresent */
+    /*   subsegment.                                                    */
+    newotri->tri[6] = (triangle) m->dummysub;
+    newotri->tri[7] = (triangle) m->dummysub;
+    newotri->tri[8] = (triangle) m->dummysub;
+  }
+  for (i = 0; i < m->eextras; i++) {
+    setelemattribute(*newotri, i, 0.0);
+  }
+  if (b->vararea) {
+    setareabound(*newotri, -1.0);
+  }
+
+  newotri->orient = 0;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  makesubseg()   Create a new subsegment with orientation zero.            */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void makesubseg(struct mesh *m, struct osub *newsubseg)
+#else /* not ANSI_DECLARATORS */
+void makesubseg(m, newsubseg)
+struct mesh *m;
+struct osub *newsubseg;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  newsubseg->ss = (subseg *) poolalloc(&m->subsegs);
+  /* Initialize the two adjoining subsegments to be the omnipresent */
+  /*   subsegment.                                                  */
+  newsubseg->ss[0] = (subseg) m->dummysub;
+  newsubseg->ss[1] = (subseg) m->dummysub;
+  /* Two NULL vertices. */
+  newsubseg->ss[2] = (subseg) NULL;
+  newsubseg->ss[3] = (subseg) NULL;
+  /* Initialize the two adjoining triangles to be "outer space." */
+  newsubseg->ss[4] = (subseg) m->dummytri;
+  newsubseg->ss[5] = (subseg) m->dummytri;
+  /* Set the boundary marker to zero. */
+  setmark(*newsubseg, 0);
+
+  newsubseg->ssorient = 0;
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Constructors end here                                     *********/
+
+/********* Geometric primitives begin here                           *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/* The adaptive exact arithmetic geometric predicates implemented herein are */
+/*   described in detail in my paper, "Adaptive Precision Floating-Point     */
+/*   Arithmetic and Fast Robust Geometric Predicates."  See the header for a */
+/*   full citation.                                                          */
+
+/* Which of the following two methods of finding the absolute values is      */
+/*   fastest is compiler-dependent.  A few compilers can inline and optimize */
+/*   the fabs() call; but most will incur the overhead of a function call,   */
+/*   which is disastrously slow.  A faster way on IEEE machines might be to  */
+/*   mask the appropriate bit, but that's difficult to do in C without       */
+/*   forcing the value to be stored to memory (rather than be kept in the    */
+/*   register to which the optimizer assigned it).                           */
+
+#define Absolute(a)  ((a) >= 0.0 ? (a) : -(a))
+/* #define Absolute(a)  fabs(a) */
+
+/* Many of the operations are broken up into two pieces, a main part that    */
+/*   performs an approximate operation, and a "tail" that computes the       */
+/*   roundoff error of that operation.                                       */
+/*                                                                           */
+/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),    */
+/*   Split(), and Two_Product() are all implemented as described in the      */
+/*   reference.  Each of these macros requires certain variables to be       */
+/*   defined in the calling routine.  The variables `bvirt', `c', `abig',    */
+/*   `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because   */
+/*   they store the result of an operation that may incur roundoff error.    */
+/*   The input parameter `x' (or the highest numbered `x_' parameter) must   */
+/*   also be declared `INEXACT'.                                             */
+
+#define Fast_Two_Sum_Tail(a, b, x, y) \
+  bvirt = x - a; \
+  y = b - bvirt
+
+#define Fast_Two_Sum(a, b, x, y) \
+  x = (REAL) (a + b); \
+  Fast_Two_Sum_Tail(a, b, x, y)
+
+#define Two_Sum_Tail(a, b, x, y) \
+  bvirt = (REAL) (x - a); \
+  avirt = x - bvirt; \
+  bround = b - bvirt; \
+  around = a - avirt; \
+  y = around + bround
+
+#define Two_Sum(a, b, x, y) \
+  x = (REAL) (a + b); \
+  Two_Sum_Tail(a, b, x, y)
+
+#define Two_Diff_Tail(a, b, x, y) \
+  bvirt = (REAL) (a - x); \
+  avirt = x + bvirt; \
+  bround = bvirt - b; \
+  around = a - avirt; \
+  y = around + bround
+
+#define Two_Diff(a, b, x, y) \
+  x = (REAL) (a - b); \
+  Two_Diff_Tail(a, b, x, y)
+
+#define Split(a, ahi, alo) \
+  c = (REAL) (splitter * a); \
+  abig = (REAL) (c - a); \
+  ahi = c - abig; \
+  alo = a - ahi
+
+#define Two_Product_Tail(a, b, x, y) \
+  Split(a, ahi, alo); \
+  Split(b, bhi, blo); \
+  err1 = x - (ahi * bhi); \
+  err2 = err1 - (alo * bhi); \
+  err3 = err2 - (ahi * blo); \
+  y = (alo * blo) - err3
+
+#define Two_Product(a, b, x, y) \
+  x = (REAL) (a * b); \
+  Two_Product_Tail(a, b, x, y)
+
+/* Two_Product_Presplit() is Two_Product() where one of the inputs has       */
+/*   already been split.  Avoids redundant splitting.                        */
+
+#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
+  x = (REAL) (a * b); \
+  Split(a, ahi, alo); \
+  err1 = x - (ahi * bhi); \
+  err2 = err1 - (alo * bhi); \
+  err3 = err2 - (ahi * blo); \
+  y = (alo * blo) - err3
+
+/* Square() can be done more quickly than Two_Product().                     */
+
+#define Square_Tail(a, x, y) \
+  Split(a, ahi, alo); \
+  err1 = x - (ahi * ahi); \
+  err3 = err1 - ((ahi + ahi) * alo); \
+  y = (alo * alo) - err3
+
+#define Square(a, x, y) \
+  x = (REAL) (a * a); \
+  Square_Tail(a, x, y)
+
+/* Macros for summing expansions of various fixed lengths.  These are all    */
+/*   unrolled versions of Expansion_Sum().                                   */
+
+#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
+  Two_Sum(a0, b , _i, x0); \
+  Two_Sum(a1, _i, x2, x1)
+
+#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
+  Two_Diff(a0, b , _i, x0); \
+  Two_Sum( a1, _i, x2, x1)
+
+#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
+  Two_One_Sum(a1, a0, b0, _j, _0, x0); \
+  Two_One_Sum(_j, _0, b1, x3, x2, x1)
+
+#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
+  Two_One_Diff(a1, a0, b0, _j, _0, x0); \
+  Two_One_Diff(_j, _0, b1, x3, x2, x1)
+
+/* Macro for multiplying a two-component expansion by a single component.    */
+
+#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
+  Split(b, bhi, blo); \
+  Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
+  Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
+  Two_Sum(_i, _0, _k, x1); \
+  Fast_Two_Sum(_j, _k, x3, x2)
+
+/*****************************************************************************/
+/*                                                                           */
+/*  exactinit()   Initialize the variables used for exact arithmetic.        */
+/*                                                                           */
+/*  `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in   */
+/*  floating-point arithmetic.  `epsilon' bounds the relative roundoff       */
+/*  error.  It is used for floating-point error analysis.                    */
+/*                                                                           */
+/*  `splitter' is used to split floating-point numbers into two half-        */
+/*  length significands for exact multiplication.                            */
+/*                                                                           */
+/*  I imagine that a highly optimizing compiler might be too smart for its   */
+/*  own good, and somehow cause this routine to fail, if it pretends that    */
+/*  floating-point arithmetic is too much like real arithmetic.              */
+/*                                                                           */
+/*  Don't change this routine unless you fully understand it.                */
+/*                                                                           */
+/*****************************************************************************/
+
+void exactinit()
+{
+  REAL half;
+  REAL check, lastcheck;
+  int every_other;
+#ifdef LINUX
+  int cword;
+#endif /* LINUX */
+
+#ifdef CPU86
+#ifdef SINGLE
+  _control87(_PC_24, _MCW_PC); /* Set FPU control word for single precision. */
+#else /* not SINGLE */
+  _control87(_PC_53, _MCW_PC); /* Set FPU control word for double precision. */
+#endif /* not SINGLE */
+#endif /* CPU86 */
+#ifdef LINUX
+#ifdef SINGLE
+  /*  cword = 4223; */
+  cword = 4210;                 /* set FPU control word for single precision */
+#else /* not SINGLE */
+  /*  cword = 4735; */
+  cword = 4722;                 /* set FPU control word for double precision */
+#endif /* not SINGLE */
+  _FPU_SETCW(cword);
+#endif /* LINUX */
+
+  every_other = 1;
+  half = 0.5;
+  epsilon = 1.0;
+  splitter = 1.0;
+  check = 1.0;
+  /* Repeatedly divide `epsilon' by two until it is too small to add to      */
+  /*   one without causing roundoff.  (Also check if the sum is equal to     */
+  /*   the previous sum, for machines that round up instead of using exact   */
+  /*   rounding.  Not that these routines will work on such machines.)       */
+  do {
+    lastcheck = check;
+    epsilon *= half;
+    if (every_other) {
+      splitter *= 2.0;
+    }
+    every_other = !every_other;
+    check = 1.0 + epsilon;
+  } while ((check != 1.0) && (check != lastcheck));
+  splitter += 1.0;
+  /* Error bounds for orientation and incircle tests. */
+  resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
+  ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
+  ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
+  ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
+  iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
+  iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
+  iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
+  o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
+  o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
+  o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  fast_expansion_sum_zeroelim()   Sum two expansions, eliminating zero     */
+/*                                  components from the output expansion.    */
+/*                                                                           */
+/*  Sets h = e + f.  See my Robust Predicates paper for details.             */
+/*                                                                           */
+/*  If round-to-even is used (as with IEEE 754), maintains the strongly      */
+/*  nonoverlapping property.  (That is, if e is strongly nonoverlapping, h   */
+/*  will be also.)  Does NOT maintain the nonoverlapping or nonadjacent      */
+/*  properties.                                                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+int fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h)
+#else /* not ANSI_DECLARATORS */
+int fast_expansion_sum_zeroelim(elen, e, flen, f, h)  /* h cannot be e or f. */
+int elen;
+REAL *e;
+int flen;
+REAL *f;
+REAL *h;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL Q;
+  INEXACT REAL Qnew;
+  INEXACT REAL hh;
+  INEXACT REAL bvirt;
+  REAL avirt, bround, around;
+  int eindex, findex, hindex;
+  REAL enow, fnow;
+
+  enow = e[0];
+  fnow = f[0];
+  eindex = findex = 0;
+  if ((fnow > enow) == (fnow > -enow)) {
+    Q = enow;
+    enow = e[++eindex];
+  } else {
+    Q = fnow;
+    fnow = f[++findex];
+  }
+  hindex = 0;
+  if ((eindex < elen) && (findex < flen)) {
+    if ((fnow > enow) == (fnow > -enow)) {
+      Fast_Two_Sum(enow, Q, Qnew, hh);
+      enow = e[++eindex];
+    } else {
+      Fast_Two_Sum(fnow, Q, Qnew, hh);
+      fnow = f[++findex];
+    }
+    Q = Qnew;
+    if (hh != 0.0) {
+      h[hindex++] = hh;
+    }
+    while ((eindex < elen) && (findex < flen)) {
+      if ((fnow > enow) == (fnow > -enow)) {
+        Two_Sum(Q, enow, Qnew, hh);
+        enow = e[++eindex];
+      } else {
+        Two_Sum(Q, fnow, Qnew, hh);
+        fnow = f[++findex];
+      }
+      Q = Qnew;
+      if (hh != 0.0) {
+        h[hindex++] = hh;
+      }
+    }
+  }
+  while (eindex < elen) {
+    Two_Sum(Q, enow, Qnew, hh);
+    enow = e[++eindex];
+    Q = Qnew;
+    if (hh != 0.0) {
+      h[hindex++] = hh;
+    }
+  }
+  while (findex < flen) {
+    Two_Sum(Q, fnow, Qnew, hh);
+    fnow = f[++findex];
+    Q = Qnew;
+    if (hh != 0.0) {
+      h[hindex++] = hh;
+    }
+  }
+  if ((Q != 0.0) || (hindex == 0)) {
+    h[hindex++] = Q;
+  }
+  return hindex;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  scale_expansion_zeroelim()   Multiply an expansion by a scalar,          */
+/*                               eliminating zero components from the        */
+/*                               output expansion.                           */
+/*                                                                           */
+/*  Sets h = be.  See my Robust Predicates paper for details.                */
+/*                                                                           */
+/*  Maintains the nonoverlapping property.  If round-to-even is used (as     */
+/*  with IEEE 754), maintains the strongly nonoverlapping and nonadjacent    */
+/*  properties as well.  (That is, if e has one of these properties, so      */
+/*  will h.)                                                                 */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+int scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h)
+#else /* not ANSI_DECLARATORS */
+int scale_expansion_zeroelim(elen, e, b, h)   /* e and h cannot be the same. */
+int elen;
+REAL *e;
+REAL b;
+REAL *h;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  INEXACT REAL Q, sum;
+  REAL hh;
+  INEXACT REAL product1;
+  REAL product0;
+  int eindex, hindex;
+  REAL enow;
+  INEXACT REAL bvirt;
+  REAL avirt, bround, around;
+  INEXACT REAL c;
+  INEXACT REAL abig;
+  REAL ahi, alo, bhi, blo;
+  REAL err1, err2, err3;
+
+  Split(b, bhi, blo);
+  Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
+  hindex = 0;
+  if (hh != 0) {
+    h[hindex++] = hh;
+  }
+  for (eindex = 1; eindex < elen; eindex++) {
+    enow = e[eindex];
+    Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
+    Two_Sum(Q, product0, sum, hh);
+    if (hh != 0) {
+      h[hindex++] = hh;
+    }
+    Fast_Two_Sum(product1, sum, Q, hh);
+    if (hh != 0) {
+      h[hindex++] = hh;
+    }
+  }
+  if ((Q != 0.0) || (hindex == 0)) {
+    h[hindex++] = Q;
+  }
+  return hindex;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  estimate()   Produce a one-word estimate of an expansion's value.        */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+REAL estimate(int elen, REAL *e)
+#else /* not ANSI_DECLARATORS */
+REAL estimate(elen, e)
+int elen;
+REAL *e;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL Q;
+  int eindex;
+
+  Q = e[0];
+  for (eindex = 1; eindex < elen; eindex++) {
+    Q += e[eindex];
+  }
+  return Q;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  counterclockwise()   Return a positive value if the points pa, pb, and   */
+/*                       pc occur in counterclockwise order; a negative      */
+/*                       value if they occur in clockwise order; and zero    */
+/*                       if they are collinear.  The result is also a rough  */
+/*                       approximation of twice the signed area of the       */
+/*                       triangle defined by the three points.               */
+/*                                                                           */
+/*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
+/*  result returned is the determinant of a matrix.  This determinant is     */
+/*  computed adaptively, in the sense that exact arithmetic is used only to  */
+/*  the degree it is needed to ensure that the returned value has the        */
+/*  correct sign.  Hence, this function is usually quite fast, but will run  */
+/*  more slowly when the input points are collinear or nearly so.            */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+REAL counterclockwiseadapt(vertex pa, vertex pb, vertex pc, REAL detsum)
+#else /* not ANSI_DECLARATORS */
+REAL counterclockwiseadapt(pa, pb, pc, detsum)
+vertex pa;
+vertex pb;
+vertex pc;
+REAL detsum;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  INEXACT REAL acx, acy, bcx, bcy;
+  REAL acxtail, acytail, bcxtail, bcytail;
+  INEXACT REAL detleft, detright;
+  REAL detlefttail, detrighttail;
+  REAL det, errbound;
+  REAL B[4], C1[8], C2[12], D[16];
+  INEXACT REAL B3;
+  int C1length, C2length, Dlength;
+  REAL u[4];
+  INEXACT REAL u3;
+  INEXACT REAL s1, t1;
+  REAL s0, t0;
+
+  INEXACT REAL bvirt;
+  REAL avirt, bround, around;
+  INEXACT REAL c;
+  INEXACT REAL abig;
+  REAL ahi, alo, bhi, blo;
+  REAL err1, err2, err3;
+  INEXACT REAL _i, _j;
+  REAL _0;
+
+  acx = (REAL) (pa[0] - pc[0]);
+  bcx = (REAL) (pb[0] - pc[0]);
+  acy = (REAL) (pa[1] - pc[1]);
+  bcy = (REAL) (pb[1] - pc[1]);
+
+  Two_Product(acx, bcy, detleft, detlefttail);
+  Two_Product(acy, bcx, detright, detrighttail);
+
+  Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
+               B3, B[2], B[1], B[0]);
+  B[3] = B3;
+
+  det = estimate(4, B);
+  errbound = ccwerrboundB * detsum;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
+  Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
+  Two_Diff_Tail(pa[1], pc[1], acy, acytail);
+  Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
+
+  if ((acxtail == 0.0) && (acytail == 0.0)
+      && (bcxtail == 0.0) && (bcytail == 0.0)) {
+    return det;
+  }
+
+  errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
+  det += (acx * bcytail + bcy * acxtail)
+       - (acy * bcxtail + bcx * acytail);
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Product(acxtail, bcy, s1, s0);
+  Two_Product(acytail, bcx, t1, t0);
+  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
+  u[3] = u3;
+  C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
+
+  Two_Product(acx, bcytail, s1, s0);
+  Two_Product(acy, bcxtail, t1, t0);
+  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
+  u[3] = u3;
+  C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
+
+  Two_Product(acxtail, bcytail, s1, s0);
+  Two_Product(acytail, bcxtail, t1, t0);
+  Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
+  u[3] = u3;
+  Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
+
+  return(D[Dlength - 1]);
+}
+
+#ifdef ANSI_DECLARATORS
+REAL counterclockwise(struct mesh *m, struct behavior *b,
+                      vertex pa, vertex pb, vertex pc)
+#else /* not ANSI_DECLARATORS */
+REAL counterclockwise(m, b, pa, pb, pc)
+struct mesh *m;
+struct behavior *b;
+vertex pa;
+vertex pb;
+vertex pc;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL detleft, detright, det;
+  REAL detsum, errbound;
+
+  m->counterclockcount++;
+
+  detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
+  detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
+  det = detleft - detright;
+
+  if (b->noexact) {
+    return det;
+  }
+
+  if (detleft > 0.0) {
+    if (detright <= 0.0) {
+      return det;
+    } else {
+      detsum = detleft + detright;
+    }
+  } else if (detleft < 0.0) {
+    if (detright >= 0.0) {
+      return det;
+    } else {
+      detsum = -detleft - detright;
+    }
+  } else {
+    return det;
+  }
+
+  errbound = ccwerrboundA * detsum;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  return counterclockwiseadapt(pa, pb, pc, detsum);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  incircle()   Return a positive value if the point pd lies inside the     */
+/*               circle passing through pa, pb, and pc; a negative value if  */
+/*               it lies outside; and zero if the four points are cocircular.*/
+/*               The points pa, pb, and pc must be in counterclockwise       */
+/*               order, or the sign of the result will be reversed.          */
+/*                                                                           */
+/*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
+/*  result returned is the determinant of a matrix.  This determinant is     */
+/*  computed adaptively, in the sense that exact arithmetic is used only to  */
+/*  the degree it is needed to ensure that the returned value has the        */
+/*  correct sign.  Hence, this function is usually quite fast, but will run  */
+/*  more slowly when the input points are cocircular or nearly so.           */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+REAL incircleadapt(vertex pa, vertex pb, vertex pc, vertex pd, REAL permanent)
+#else /* not ANSI_DECLARATORS */
+REAL incircleadapt(pa, pb, pc, pd, permanent)
+vertex pa;
+vertex pb;
+vertex pc;
+vertex pd;
+REAL permanent;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;
+  REAL det, errbound;
+
+  INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
+  REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
+  REAL bc[4], ca[4], ab[4];
+  INEXACT REAL bc3, ca3, ab3;
+  REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
+  int axbclen, axxbclen, aybclen, ayybclen, alen;
+  REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
+  int bxcalen, bxxcalen, bycalen, byycalen, blen;
+  REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
+  int cxablen, cxxablen, cyablen, cyyablen, clen;
+  REAL abdet[64];
+  int ablen;
+  REAL fin1[1152], fin2[1152];
+  REAL *finnow, *finother, *finswap;
+  int finlength;
+
+  REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
+  INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
+  REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
+  REAL aa[4], bb[4], cc[4];
+  INEXACT REAL aa3, bb3, cc3;
+  INEXACT REAL ti1, tj1;
+  REAL ti0, tj0;
+  REAL u[4], v[4];
+  INEXACT REAL u3, v3;
+  REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
+  REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
+  int temp8len, temp16alen, temp16blen, temp16clen;
+  int temp32alen, temp32blen, temp48len, temp64len;
+  REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
+  int axtbblen, axtcclen, aytbblen, aytcclen;
+  REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
+  int bxtaalen, bxtcclen, bytaalen, bytcclen;
+  REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
+  int cxtaalen, cxtbblen, cytaalen, cytbblen;
+  REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
+  int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
+  REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
+  int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
+  REAL axtbctt[8], aytbctt[8], bxtcatt[8];
+  REAL bytcatt[8], cxtabtt[8], cytabtt[8];
+  int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
+  REAL abt[8], bct[8], cat[8];
+  int abtlen, bctlen, catlen;
+  REAL abtt[4], bctt[4], catt[4];
+  int abttlen, bcttlen, cattlen;
+  INEXACT REAL abtt3, bctt3, catt3;
+  REAL negate;
+
+  INEXACT REAL bvirt;
+  REAL avirt, bround, around;
+  INEXACT REAL c;
+  INEXACT REAL abig;
+  REAL ahi, alo, bhi, blo;
+  REAL err1, err2, err3;
+  INEXACT REAL _i, _j;
+  REAL _0;
+
+  adx = (REAL) (pa[0] - pd[0]);
+  bdx = (REAL) (pb[0] - pd[0]);
+  cdx = (REAL) (pc[0] - pd[0]);
+  ady = (REAL) (pa[1] - pd[1]);
+  bdy = (REAL) (pb[1] - pd[1]);
+  cdy = (REAL) (pc[1] - pd[1]);
+
+  Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
+  Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
+  Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
+  bc[3] = bc3;
+  axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
+  axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
+  aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
+  ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
+  alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
+
+  Two_Product(cdx, ady, cdxady1, cdxady0);
+  Two_Product(adx, cdy, adxcdy1, adxcdy0);
+  Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
+  ca[3] = ca3;
+  bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
+  bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
+  bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
+  byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
+  blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
+
+  Two_Product(adx, bdy, adxbdy1, adxbdy0);
+  Two_Product(bdx, ady, bdxady1, bdxady0);
+  Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
+  ab[3] = ab3;
+  cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
+  cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
+  cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
+  cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
+  clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
+
+  ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
+  finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
+
+  det = estimate(finlength, fin1);
+  errbound = iccerrboundB * permanent;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
+  Two_Diff_Tail(pa[1], pd[1], ady, adytail);
+  Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
+  Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
+  Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
+  Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
+  if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
+      && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
+    return det;
+  }
+
+  errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
+  det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
+                                     - (bdy * cdxtail + cdx * bdytail))
+          + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
+       + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
+                                     - (cdy * adxtail + adx * cdytail))
+          + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
+       + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
+                                     - (ady * bdxtail + bdx * adytail))
+          + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  finnow = fin1;
+  finother = fin2;
+
+  if ((bdxtail != 0.0) || (bdytail != 0.0)
+      || (cdxtail != 0.0) || (cdytail != 0.0)) {
+    Square(adx, adxadx1, adxadx0);
+    Square(ady, adyady1, adyady0);
+    Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
+    aa[3] = aa3;
+  }
+  if ((cdxtail != 0.0) || (cdytail != 0.0)
+      || (adxtail != 0.0) || (adytail != 0.0)) {
+    Square(bdx, bdxbdx1, bdxbdx0);
+    Square(bdy, bdybdy1, bdybdy0);
+    Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
+    bb[3] = bb3;
+  }
+  if ((adxtail != 0.0) || (adytail != 0.0)
+      || (bdxtail != 0.0) || (bdytail != 0.0)) {
+    Square(cdx, cdxcdx1, cdxcdx0);
+    Square(cdy, cdycdy1, cdycdy0);
+    Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
+    cc[3] = cc3;
+  }
+
+  if (adxtail != 0.0) {
+    axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
+    temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,
+                                          temp16a);
+
+    axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
+    temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
+
+    axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
+    temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (adytail != 0.0) {
+    aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
+    temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,
+                                          temp16a);
+
+    aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
+    temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
+
+    aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
+    temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (bdxtail != 0.0) {
+    bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
+    temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,
+                                          temp16a);
+
+    bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
+    temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
+
+    bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
+    temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (bdytail != 0.0) {
+    bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
+    temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,
+                                          temp16a);
+
+    bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
+    temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
+
+    bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
+    temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (cdxtail != 0.0) {
+    cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
+    temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,
+                                          temp16a);
+
+    cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
+    temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
+
+    cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
+    temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (cdytail != 0.0) {
+    cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
+    temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,
+                                          temp16a);
+
+    cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
+    temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
+
+    cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
+    temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
+
+    temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                            temp16blen, temp16b, temp32a);
+    temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
+                                            temp32alen, temp32a, temp48);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                            temp48, finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+
+  if ((adxtail != 0.0) || (adytail != 0.0)) {
+    if ((bdxtail != 0.0) || (bdytail != 0.0)
+        || (cdxtail != 0.0) || (cdytail != 0.0)) {
+      Two_Product(bdxtail, cdy, ti1, ti0);
+      Two_Product(bdx, cdytail, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      negate = -bdy;
+      Two_Product(cdxtail, negate, ti1, ti0);
+      negate = -bdytail;
+      Two_Product(cdx, negate, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
+      v[3] = v3;
+      bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
+
+      Two_Product(bdxtail, cdytail, ti1, ti0);
+      Two_Product(cdxtail, bdytail, tj1, tj0);
+      Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
+      bctt[3] = bctt3;
+      bcttlen = 4;
+    } else {
+      bct[0] = 0.0;
+      bctlen = 1;
+      bctt[0] = 0.0;
+      bcttlen = 1;
+    }
+
+    if (adxtail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
+      axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
+      temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (bdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+      if (cdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+
+      temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,
+                                            temp32a);
+      axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
+      temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+    if (adytail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
+      aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
+      temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+
+
+      temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,
+                                            temp32a);
+      aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
+      temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+  }
+  if ((bdxtail != 0.0) || (bdytail != 0.0)) {
+    if ((cdxtail != 0.0) || (cdytail != 0.0)
+        || (adxtail != 0.0) || (adytail != 0.0)) {
+      Two_Product(cdxtail, ady, ti1, ti0);
+      Two_Product(cdx, adytail, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      negate = -cdy;
+      Two_Product(adxtail, negate, ti1, ti0);
+      negate = -cdytail;
+      Two_Product(adx, negate, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
+      v[3] = v3;
+      catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
+
+      Two_Product(cdxtail, adytail, ti1, ti0);
+      Two_Product(adxtail, cdytail, tj1, tj0);
+      Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
+      catt[3] = catt3;
+      cattlen = 4;
+    } else {
+      cat[0] = 0.0;
+      catlen = 1;
+      catt[0] = 0.0;
+      cattlen = 1;
+    }
+
+    if (bdxtail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
+      bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
+      temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (cdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+      if (adytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+
+      temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,
+                                            temp32a);
+      bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
+      temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+    if (bdytail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
+      bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
+      temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+
+
+      temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,
+                                            temp32a);
+      bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
+      temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+  }
+  if ((cdxtail != 0.0) || (cdytail != 0.0)) {
+    if ((adxtail != 0.0) || (adytail != 0.0)
+        || (bdxtail != 0.0) || (bdytail != 0.0)) {
+      Two_Product(adxtail, bdy, ti1, ti0);
+      Two_Product(adx, bdytail, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      negate = -ady;
+      Two_Product(bdxtail, negate, ti1, ti0);
+      negate = -adytail;
+      Two_Product(bdx, negate, tj1, tj0);
+      Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
+      v[3] = v3;
+      abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
+
+      Two_Product(adxtail, bdytail, ti1, ti0);
+      Two_Product(bdxtail, adytail, tj1, tj0);
+      Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
+      abtt[3] = abtt3;
+      abttlen = 4;
+    } else {
+      abt[0] = 0.0;
+      abtlen = 1;
+      abtt[0] = 0.0;
+      abttlen = 1;
+    }
+
+    if (cdxtail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
+      cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
+      temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (adytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+      if (bdytail != 0.0) {
+        temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
+        temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
+                                              temp16a);
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
+                                                temp16a, finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+
+      temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,
+                                            temp32a);
+      cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
+      temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+    if (cdytail != 0.0) {
+      temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
+      cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
+      temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,
+                                            temp32a);
+      temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp32alen, temp32a, temp48);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
+                                              temp48, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+
+
+      temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,
+                                            temp32a);
+      cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
+      temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,
+                                            temp16a);
+      temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,
+                                            temp16b);
+      temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
+                                              temp16blen, temp16b, temp32b);
+      temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
+                                              temp32blen, temp32b, temp64);
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
+                                              temp64, finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+    }
+  }
+
+  return finnow[finlength - 1];
+}
+
+#ifdef ANSI_DECLARATORS
+REAL incircle(struct mesh *m, struct behavior *b,
+              vertex pa, vertex pb, vertex pc, vertex pd)
+#else /* not ANSI_DECLARATORS */
+REAL incircle(m, b, pa, pb, pc, pd)
+struct mesh *m;
+struct behavior *b;
+vertex pa;
+vertex pb;
+vertex pc;
+vertex pd;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL adx, bdx, cdx, ady, bdy, cdy;
+  REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
+  REAL alift, blift, clift;
+  REAL det;
+  REAL permanent, errbound;
+
+  m->incirclecount++;
+
+  adx = pa[0] - pd[0];
+  bdx = pb[0] - pd[0];
+  cdx = pc[0] - pd[0];
+  ady = pa[1] - pd[1];
+  bdy = pb[1] - pd[1];
+  cdy = pc[1] - pd[1];
+
+  bdxcdy = bdx * cdy;
+  cdxbdy = cdx * bdy;
+  alift = adx * adx + ady * ady;
+
+  cdxady = cdx * ady;
+  adxcdy = adx * cdy;
+  blift = bdx * bdx + bdy * bdy;
+
+  adxbdy = adx * bdy;
+  bdxady = bdx * ady;
+  clift = cdx * cdx + cdy * cdy;
+
+  det = alift * (bdxcdy - cdxbdy)
+      + blift * (cdxady - adxcdy)
+      + clift * (adxbdy - bdxady);
+
+  if (b->noexact) {
+    return det;
+  }
+
+  permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
+            + (Absolute(cdxady) + Absolute(adxcdy)) * blift
+            + (Absolute(adxbdy) + Absolute(bdxady)) * clift;
+  errbound = iccerrboundA * permanent;
+  if ((det > errbound) || (-det > errbound)) {
+    return det;
+  }
+
+  return incircleadapt(pa, pb, pc, pd, permanent);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  orient3d()   Return a positive value if the point pd lies below the      */
+/*               plane passing through pa, pb, and pc; "below" is defined so */
+/*               that pa, pb, and pc appear in counterclockwise order when   */
+/*               viewed from above the plane.  Returns a negative value if   */
+/*               pd lies above the plane.  Returns zero if the points are    */
+/*               coplanar.  The result is also a rough approximation of six  */
+/*               times the signed volume of the tetrahedron defined by the   */
+/*               four points.                                                */
+/*                                                                           */
+/*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
+/*  result returned is the determinant of a matrix.  This determinant is     */
+/*  computed adaptively, in the sense that exact arithmetic is used only to  */
+/*  the degree it is needed to ensure that the returned value has the        */
+/*  correct sign.  Hence, this function is usually quite fast, but will run  */
+/*  more slowly when the input points are coplanar or nearly so.             */
+/*                                                                           */
+/*  See my Robust Predicates paper for details.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+REAL orient3dadapt(vertex pa, vertex pb, vertex pc, vertex pd,
+                   REAL aheight, REAL bheight, REAL cheight, REAL dheight,
+                   REAL permanent)
+#else /* not ANSI_DECLARATORS */
+REAL orient3dadapt(pa, pb, pc, pd,
+                   aheight, bheight, cheight, dheight, permanent)
+vertex pa;
+vertex pb;
+vertex pc;
+vertex pd;
+REAL aheight;
+REAL bheight;
+REAL cheight;
+REAL dheight;
+REAL permanent;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  INEXACT REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
+  REAL det, errbound;
+
+  INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
+  REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
+  REAL bc[4], ca[4], ab[4];
+  INEXACT REAL bc3, ca3, ab3;
+  REAL adet[8], bdet[8], cdet[8];
+  int alen, blen, clen;
+  REAL abdet[16];
+  int ablen;
+  REAL *finnow, *finother, *finswap;
+  REAL fin1[192], fin2[192];
+  int finlength;
+
+  REAL adxtail, bdxtail, cdxtail;
+  REAL adytail, bdytail, cdytail;
+  REAL adheighttail, bdheighttail, cdheighttail;
+  INEXACT REAL at_blarge, at_clarge;
+  INEXACT REAL bt_clarge, bt_alarge;
+  INEXACT REAL ct_alarge, ct_blarge;
+  REAL at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];
+  int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;
+  INEXACT REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1;
+  INEXACT REAL adxt_cdy1, adxt_bdy1, bdxt_ady1;
+  REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0;
+  REAL adxt_cdy0, adxt_bdy0, bdxt_ady0;
+  INEXACT REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1;
+  INEXACT REAL adyt_cdx1, adyt_bdx1, bdyt_adx1;
+  REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0;
+  REAL adyt_cdx0, adyt_bdx0, bdyt_adx0;
+  REAL bct[8], cat[8], abt[8];
+  int bctlen, catlen, abtlen;
+  INEXACT REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;
+  INEXACT REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;
+  REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;
+  REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;
+  REAL u[4], v[12], w[16];
+  INEXACT REAL u3;
+  int vlength, wlength;
+  REAL negate;
+
+  INEXACT REAL bvirt;
+  REAL avirt, bround, around;
+  INEXACT REAL c;
+  INEXACT REAL abig;
+  REAL ahi, alo, bhi, blo;
+  REAL err1, err2, err3;
+  INEXACT REAL _i, _j, _k;
+  REAL _0;
+
+  adx = (REAL) (pa[0] - pd[0]);
+  bdx = (REAL) (pb[0] - pd[0]);
+  cdx = (REAL) (pc[0] - pd[0]);
+  ady = (REAL) (pa[1] - pd[1]);
+  bdy = (REAL) (pb[1] - pd[1]);
+  cdy = (REAL) (pc[1] - pd[1]);
+  adheight = (REAL) (aheight - dheight);
+  bdheight = (REAL) (bheight - dheight);
+  cdheight = (REAL) (cheight - dheight);
+
+  Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
+  Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
+  Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
+  bc[3] = bc3;
+  alen = scale_expansion_zeroelim(4, bc, adheight, adet);
+
+  Two_Product(cdx, ady, cdxady1, cdxady0);
+  Two_Product(adx, cdy, adxcdy1, adxcdy0);
+  Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
+  ca[3] = ca3;
+  blen = scale_expansion_zeroelim(4, ca, bdheight, bdet);
+
+  Two_Product(adx, bdy, adxbdy1, adxbdy0);
+  Two_Product(bdx, ady, bdxady1, bdxady0);
+  Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
+  ab[3] = ab3;
+  clen = scale_expansion_zeroelim(4, ab, cdheight, cdet);
+
+  ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
+  finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
+
+  det = estimate(finlength, fin1);
+  errbound = o3derrboundB * permanent;
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
+  Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
+  Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
+  Two_Diff_Tail(pa[1], pd[1], ady, adytail);
+  Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
+  Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
+  Two_Diff_Tail(aheight, dheight, adheight, adheighttail);
+  Two_Diff_Tail(bheight, dheight, bdheight, bdheighttail);
+  Two_Diff_Tail(cheight, dheight, cdheight, cdheighttail);
+
+  if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) &&
+      (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) &&
+      (adheighttail == 0.0) &&
+      (bdheighttail == 0.0) &&
+      (cdheighttail == 0.0)) {
+    return det;
+  }
+
+  errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);
+  det += (adheight * ((bdx * cdytail + cdy * bdxtail) -
+                      (bdy * cdxtail + cdx * bdytail)) +
+          adheighttail * (bdx * cdy - bdy * cdx)) +
+         (bdheight * ((cdx * adytail + ady * cdxtail) -
+                      (cdy * adxtail + adx * cdytail)) +
+          bdheighttail * (cdx * ady - cdy * adx)) +
+         (cdheight * ((adx * bdytail + bdy * adxtail) -
+                      (ady * bdxtail + bdx * adytail)) +
+          cdheighttail * (adx * bdy - ady * bdx));
+  if ((det >= errbound) || (-det >= errbound)) {
+    return det;
+  }
+
+  finnow = fin1;
+  finother = fin2;
+
+  if (adxtail == 0.0) {
+    if (adytail == 0.0) {
+      at_b[0] = 0.0;
+      at_blen = 1;
+      at_c[0] = 0.0;
+      at_clen = 1;
+    } else {
+      negate = -adytail;
+      Two_Product(negate, bdx, at_blarge, at_b[0]);
+      at_b[1] = at_blarge;
+      at_blen = 2;
+      Two_Product(adytail, cdx, at_clarge, at_c[0]);
+      at_c[1] = at_clarge;
+      at_clen = 2;
+    }
+  } else {
+    if (adytail == 0.0) {
+      Two_Product(adxtail, bdy, at_blarge, at_b[0]);
+      at_b[1] = at_blarge;
+      at_blen = 2;
+      negate = -adxtail;
+      Two_Product(negate, cdy, at_clarge, at_c[0]);
+      at_c[1] = at_clarge;
+      at_clen = 2;
+    } else {
+      Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);
+      Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);
+      Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0,
+                   at_blarge, at_b[2], at_b[1], at_b[0]);
+      at_b[3] = at_blarge;
+      at_blen = 4;
+      Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);
+      Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);
+      Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0,
+                   at_clarge, at_c[2], at_c[1], at_c[0]);
+      at_c[3] = at_clarge;
+      at_clen = 4;
+    }
+  }
+  if (bdxtail == 0.0) {
+    if (bdytail == 0.0) {
+      bt_c[0] = 0.0;
+      bt_clen = 1;
+      bt_a[0] = 0.0;
+      bt_alen = 1;
+    } else {
+      negate = -bdytail;
+      Two_Product(negate, cdx, bt_clarge, bt_c[0]);
+      bt_c[1] = bt_clarge;
+      bt_clen = 2;
+      Two_Product(bdytail, adx, bt_alarge, bt_a[0]);
+      bt_a[1] = bt_alarge;
+      bt_alen = 2;
+    }
+  } else {
+    if (bdytail == 0.0) {
+      Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);
+      bt_c[1] = bt_clarge;
+      bt_clen = 2;
+      negate = -bdxtail;
+      Two_Product(negate, ady, bt_alarge, bt_a[0]);
+      bt_a[1] = bt_alarge;
+      bt_alen = 2;
+    } else {
+      Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);
+      Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);
+      Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0,
+                   bt_clarge, bt_c[2], bt_c[1], bt_c[0]);
+      bt_c[3] = bt_clarge;
+      bt_clen = 4;
+      Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);
+      Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);
+      Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0,
+                  bt_alarge, bt_a[2], bt_a[1], bt_a[0]);
+      bt_a[3] = bt_alarge;
+      bt_alen = 4;
+    }
+  }
+  if (cdxtail == 0.0) {
+    if (cdytail == 0.0) {
+      ct_a[0] = 0.0;
+      ct_alen = 1;
+      ct_b[0] = 0.0;
+      ct_blen = 1;
+    } else {
+      negate = -cdytail;
+      Two_Product(negate, adx, ct_alarge, ct_a[0]);
+      ct_a[1] = ct_alarge;
+      ct_alen = 2;
+      Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);
+      ct_b[1] = ct_blarge;
+      ct_blen = 2;
+    }
+  } else {
+    if (cdytail == 0.0) {
+      Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);
+      ct_a[1] = ct_alarge;
+      ct_alen = 2;
+      negate = -cdxtail;
+      Two_Product(negate, bdy, ct_blarge, ct_b[0]);
+      ct_b[1] = ct_blarge;
+      ct_blen = 2;
+    } else {
+      Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);
+      Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);
+      Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0,
+                   ct_alarge, ct_a[2], ct_a[1], ct_a[0]);
+      ct_a[3] = ct_alarge;
+      ct_alen = 4;
+      Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);
+      Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);
+      Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0,
+                   ct_blarge, ct_b[2], ct_b[1], ct_b[0]);
+      ct_b[3] = ct_blarge;
+      ct_blen = 4;
+    }
+  }
+
+  bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);
+  wlength = scale_expansion_zeroelim(bctlen, bct, adheight, w);
+  finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                          finother);
+  finswap = finnow; finnow = finother; finother = finswap;
+
+  catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);
+  wlength = scale_expansion_zeroelim(catlen, cat, bdheight, w);
+  finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                          finother);
+  finswap = finnow; finnow = finother; finother = finswap;
+
+  abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);
+  wlength = scale_expansion_zeroelim(abtlen, abt, cdheight, w);
+  finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                          finother);
+  finswap = finnow; finnow = finother; finother = finswap;
+
+  if (adheighttail != 0.0) {
+    vlength = scale_expansion_zeroelim(4, bc, adheighttail, v);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (bdheighttail != 0.0) {
+    vlength = scale_expansion_zeroelim(4, ca, bdheighttail, v);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (cdheighttail != 0.0) {
+    vlength = scale_expansion_zeroelim(4, ab, cdheighttail, v);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+
+  if (adxtail != 0.0) {
+    if (bdytail != 0.0) {
+      Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);
+      Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (cdheighttail != 0.0) {
+        Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+    if (cdytail != 0.0) {
+      negate = -adxtail;
+      Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);
+      Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (bdheighttail != 0.0) {
+        Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+  }
+  if (bdxtail != 0.0) {
+    if (cdytail != 0.0) {
+      Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);
+      Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (adheighttail != 0.0) {
+        Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+    if (adytail != 0.0) {
+      negate = -bdxtail;
+      Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);
+      Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (cdheighttail != 0.0) {
+        Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+  }
+  if (cdxtail != 0.0) {
+    if (adytail != 0.0) {
+      Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);
+      Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (bdheighttail != 0.0) {
+        Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+    if (bdytail != 0.0) {
+      negate = -cdxtail;
+      Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);
+      Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheight, u3, u[2], u[1], u[0]);
+      u[3] = u3;
+      finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                              finother);
+      finswap = finnow; finnow = finother; finother = finswap;
+      if (adheighttail != 0.0) {
+        Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheighttail,
+                        u3, u[2], u[1], u[0]);
+        u[3] = u3;
+        finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
+                                                finother);
+        finswap = finnow; finnow = finother; finother = finswap;
+      }
+    }
+  }
+
+  if (adheighttail != 0.0) {
+    wlength = scale_expansion_zeroelim(bctlen, bct, adheighttail, w);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (bdheighttail != 0.0) {
+    wlength = scale_expansion_zeroelim(catlen, cat, bdheighttail, w);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+  if (cdheighttail != 0.0) {
+    wlength = scale_expansion_zeroelim(abtlen, abt, cdheighttail, w);
+    finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
+                                            finother);
+    finswap = finnow; finnow = finother; finother = finswap;
+  }
+
+  return finnow[finlength - 1];
+}
+
+#ifdef ANSI_DECLARATORS
+REAL orient3d(struct mesh *m, struct behavior *b,
+              vertex pa, vertex pb, vertex pc, vertex pd,
+              REAL aheight, REAL bheight, REAL cheight, REAL dheight)
+#else /* not ANSI_DECLARATORS */
+REAL orient3d(m, b, pa, pb, pc, pd, aheight, bheight, cheight, dheight)
+struct mesh *m;
+struct behavior *b;
+vertex pa;
+vertex pb;
+vertex pc;
+vertex pd;
+REAL aheight;
+REAL bheight;
+REAL cheight;
+REAL dheight;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
+  REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
+  REAL det;
+  REAL permanent, errbound;
+
+  m->orient3dcount++;
+
+  adx = pa[0] - pd[0];
+  bdx = pb[0] - pd[0];
+  cdx = pc[0] - pd[0];
+  ady = pa[1] - pd[1];
+  bdy = pb[1] - pd[1];
+  cdy = pc[1] - pd[1];
+  adheight = aheight - dheight;
+  bdheight = bheight - dheight;
+  cdheight = cheight - dheight;
+
+  bdxcdy = bdx * cdy;
+  cdxbdy = cdx * bdy;
+
+  cdxady = cdx * ady;
+  adxcdy = adx * cdy;
+
+  adxbdy = adx * bdy;
+  bdxady = bdx * ady;
+
+  det = adheight * (bdxcdy - cdxbdy) 
+      + bdheight * (cdxady - adxcdy)
+      + cdheight * (adxbdy - bdxady);
+
+  if (b->noexact) {
+    return det;
+  }
+
+  permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adheight)
+            + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdheight)
+            + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdheight);
+  errbound = o3derrboundA * permanent;
+  if ((det > errbound) || (-det > errbound)) {
+    return det;
+  }
+
+  return orient3dadapt(pa, pb, pc, pd, aheight, bheight, cheight, dheight,
+                       permanent);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  nonregular()   Return a positive value if the point pd is incompatible   */
+/*                 with the circle or plane passing through pa, pb, and pc   */
+/*                 (meaning that pd is inside the circle or below the        */
+/*                 plane); a negative value if it is compatible; and zero if */
+/*                 the four points are cocircular/coplanar.  The points pa,  */
+/*                 pb, and pc must be in counterclockwise order, or the sign */
+/*                 of the result will be reversed.                           */
+/*                                                                           */
+/*  If the -w switch is used, the points are lifted onto the parabolic       */
+/*  lifting map, then they are dropped according to their weights, then the  */
+/*  3D orientation test is applied.  If the -W switch is used, the points'   */
+/*  heights are already provided, so the 3D orientation test is applied      */
+/*  directly.  If neither switch is used, the incircle test is applied.      */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+REAL nonregular(struct mesh *m, struct behavior *b,
+                vertex pa, vertex pb, vertex pc, vertex pd)
+#else /* not ANSI_DECLARATORS */
+REAL nonregular(m, b, pa, pb, pc, pd)
+struct mesh *m;
+struct behavior *b;
+vertex pa;
+vertex pb;
+vertex pc;
+vertex pd;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  if (b->weighted == 0) {
+    return incircle(m, b, pa, pb, pc, pd);
+  } else if (b->weighted == 1) {
+    return orient3d(m, b, pa, pb, pc, pd,
+                    pa[0] * pa[0] + pa[1] * pa[1] - pa[2],
+                    pb[0] * pb[0] + pb[1] * pb[1] - pb[2],
+                    pc[0] * pc[0] + pc[1] * pc[1] - pc[2],
+                    pd[0] * pd[0] + pd[1] * pd[1] - pd[2]);
+  } else {
+    return orient3d(m, b, pa, pb, pc, pd, pa[2], pb[2], pc[2], pd[2]);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  findcircumcenter()   Find the circumcenter of a triangle.                */
+/*                                                                           */
+/*  The result is returned both in terms of x-y coordinates and xi-eta       */
+/*  (barycentric) coordinates.  The xi-eta coordinate system is defined in   */
+/*  terms of the triangle:  the origin of the triangle is the origin of the  */
+/*  coordinate system; the destination of the triangle is one unit along the */
+/*  xi axis; and the apex of the triangle is one unit along the eta axis.    */
+/*  This procedure also returns the square of the length of the triangle's   */
+/*  shortest edge.                                                           */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void findcircumcenter(struct mesh *m, struct behavior *b,
+                      vertex torg, vertex tdest, vertex tapex,
+                      vertex circumcenter, REAL *xi, REAL *eta, REAL *minedge)
+#else /* not ANSI_DECLARATORS */
+void findcircumcenter(m, b, torg, tdest, tapex, circumcenter, xi, eta, minedge)
+struct mesh *m;
+struct behavior *b;
+vertex torg;
+vertex tdest;
+vertex tapex;
+vertex circumcenter;
+REAL *xi;
+REAL *eta;
+REAL *minedge;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL xdo, ydo, xao, yao;
+  REAL dodist, aodist, dadist;
+  REAL denominator;
+  REAL dx, dy;
+
+  m->circumcentercount++;
+
+  /* Compute the circumcenter of the triangle. */
+  xdo = tdest[0] - torg[0];
+  ydo = tdest[1] - torg[1];
+  xao = tapex[0] - torg[0];
+  yao = tapex[1] - torg[1];
+  dodist = xdo * xdo + ydo * ydo;
+  aodist = xao * xao + yao * yao;
+  dadist = (tdest[0] - tapex[0]) * (tdest[0] - tapex[0]) +
+           (tdest[1] - tapex[1]) * (tdest[1] - tapex[1]);
+  if (b->noexact) {
+    denominator = 0.5 / (xdo * yao - xao * ydo);
+  } else {
+    /* Use the counterclockwise() routine to ensure a positive (and */
+    /*   reasonably accurate) result, avoiding any possibility of   */
+    /*   division by zero.                                          */
+    denominator = 0.5 / counterclockwise(m, b, tdest, tapex, torg);
+    /* Don't count the above as an orientation test. */
+    m->counterclockcount--;
+  }
+  circumcenter[0] = torg[0] - (ydo * aodist - yao * dodist) * denominator;  
+  circumcenter[1] = torg[1] + (xdo * aodist - xao * dodist) * denominator;  
+
+  /* To interpolate vertex attributes for the new vertex inserted at */
+  /*   the circumcenter, define a coordinate system with a xi-axis,  */
+  /*   directed from the triangle's origin to its destination, and   */
+  /*   an eta-axis, directed from its origin to its apex.            */
+  /*   Calculate the xi and eta coordinates of the circumcenter.     */
+  dx = circumcenter[0] - torg[0];
+  dy = circumcenter[1] - torg[1];
+  *xi = (dx * yao - xao * dy) * (2.0 * denominator);
+  *eta = (xdo * dy - dx * ydo) * (2.0 * denominator);
+
+  /* Find the length of the triangle's shortest edge.  This serves as */
+  /*   a conservative estimate of the insertion radius of the         */
+  /*   circumcenter's parent.  The estimate is used to ensure that    */
+  /*   the algorithm terminates even if very small angles appear in   */
+  /*   the input PSLG.                                                */
+  *minedge = ((dodist < aodist) && (dodist < dadist)) ? dodist :
+             (aodist < dadist) ? aodist : dadist;
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Geometric primitives end here                             *********/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangleinit()   Initialize some variables.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void triangleinit(struct mesh *m)
+#else /* not ANSI_DECLARATORS */
+void triangleinit(m)
+struct mesh *m;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  m->vertices.maxitems = m->triangles.maxitems = m->subsegs.maxitems =
+    m->viri.maxitems = m->badsubsegs.maxitems = m->badtriangles.maxitems =
+    m->flipstackers.maxitems = m->splaynodes.maxitems = 0l;
+  m->vertices.itembytes = m->triangles.itembytes = m->subsegs.itembytes =
+    m->viri.itembytes = m->badsubsegs.itembytes = m->badtriangles.itembytes =
+    m->flipstackers.itembytes = m->splaynodes.itembytes = 0;
+  m->recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */
+  m->undeads = 0;                       /* No eliminated input vertices yet. */
+  m->samples = 1;         /* Point location should take at least one sample. */
+  m->checksegments = 0;   /* There are no segments in the triangulation yet. */
+  m->checkquality = 0;     /* The quality triangulation stage has not begun. */
+  m->incirclecount = m->counterclockcount = m->orient3dcount = 0;
+  m->hyperbolacount = m->circletopcount = m->circumcentercount = 0;
+  randomseed = 1;
+
+  exactinit();                     /* Initialize exact arithmetic constants. */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  randomnation()   Generate a random number between 0 and `choices' - 1.   */
+/*                                                                           */
+/*  This is a simple linear congruential random number generator.  Hence, it */
+/*  is a bad random number generator, but good enough for most randomized    */
+/*  geometric algorithms.                                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+unsigned long randomnation(unsigned int choices)
+#else /* not ANSI_DECLARATORS */
+unsigned long randomnation(choices)
+unsigned int choices;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  randomseed = (randomseed * 1366l + 150889l) % 714025l;
+  return randomseed / (714025l / choices + 1);
+}
+
+/********* Mesh quality testing routines begin here                  *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  checkmesh()   Test the mesh for topological consistency.                 */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+void checkmesh(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void checkmesh(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri triangleloop;
+  struct otri oppotri, oppooppotri;
+  vertex triorg, tridest, triapex;
+  vertex oppoorg, oppodest;
+  int horrors;
+  int saveexact;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  /* Temporarily turn on exact arithmetic if it's off. */
+  saveexact = b->noexact;
+  b->noexact = 0;
+  if (!b->quiet) {
+    fprintf(stderr, "  Checking consistency of mesh...\n");
+  }
+  horrors = 0;
+  /* Run through the list of triangles, checking each one. */
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  while (triangleloop.tri != (triangle *) NULL) {
+    /* Check all three edges of the triangle. */
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      org(triangleloop, triorg);
+      dest(triangleloop, tridest);
+      if (triangleloop.orient == 0) {       /* Only test for inversion once. */
+        /* Test if the triangle is flat or inverted. */
+        apex(triangleloop, triapex);
+        if (counterclockwise(m, b, triorg, tridest, triapex) <= 0.0) {
+          fprintf(stderr, "  !! !! Inverted ");
+          printtriangle(m, b, &triangleloop);
+          horrors++;
+        }
+      }
+      /* Find the neighboring triangle on this edge. */
+      sym(triangleloop, oppotri);
+      if (oppotri.tri != m->dummytri) {
+        /* Check that the triangle's neighbor knows it's a neighbor. */
+        sym(oppotri, oppooppotri);
+        if ((triangleloop.tri != oppooppotri.tri)
+            || (triangleloop.orient != oppooppotri.orient)) {
+          fprintf(stderr, "  !! !! Asymmetric triangle-triangle bond:\n");
+          if (triangleloop.tri == oppooppotri.tri) {
+            fprintf(stderr, "   (Right triangle, wrong orientation)\n");
+          }
+          fprintf(stderr, "    First ");
+          printtriangle(m, b, &triangleloop);
+          fprintf(stderr, "    Second (nonreciprocating) ");
+          printtriangle(m, b, &oppotri);
+          horrors++;
+        }
+        /* Check that both triangles agree on the identities */
+        /*   of their shared vertices.                       */
+        org(oppotri, oppoorg);
+        dest(oppotri, oppodest);
+        if ((triorg != oppodest) || (tridest != oppoorg)) {
+          fprintf(stderr, "  !! !! Mismatched edge coordinates between two triangles:\n"
+                 );
+          fprintf(stderr, "    First mismatched ");
+          printtriangle(m, b, &triangleloop);
+          fprintf(stderr, "    Second mismatched ");
+          printtriangle(m, b, &oppotri);
+          horrors++;
+        }
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+  if (horrors == 0) {
+    if (!b->quiet) {
+      fprintf(stderr, "  In my studied opinion, the mesh appears to be consistent.\n");
+    }
+  } else if (horrors == 1) {
+    fprintf(stderr, "  !! !! !! !! Precisely one festering wound discovered.\n");
+  } else {
+    fprintf(stderr, "  !! !! !! !! %d abominations witnessed.\n", horrors);
+  }
+  /* Restore the status of exact arithmetic. */
+  b->noexact = saveexact;
+}
+
+#endif /* not REDUCED */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  checkdelaunay()   Ensure that the mesh is (constrained) Delaunay.        */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+void checkdelaunay(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void checkdelaunay(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri triangleloop;
+  struct otri oppotri;
+  struct osub opposubseg;
+  vertex triorg, tridest, triapex;
+  vertex oppoapex;
+  int shouldbedelaunay;
+  int horrors;
+  int saveexact;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  /* Temporarily turn on exact arithmetic if it's off. */
+  saveexact = b->noexact;
+  b->noexact = 0;
+  if (!b->quiet) {
+    fprintf(stderr, "  Checking Delaunay property of mesh...\n");
+  }
+  horrors = 0;
+  /* Run through the list of triangles, checking each one. */
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  while (triangleloop.tri != (triangle *) NULL) {
+    /* Check all three edges of the triangle. */
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      org(triangleloop, triorg);
+      dest(triangleloop, tridest);
+      apex(triangleloop, triapex);
+      sym(triangleloop, oppotri);
+      apex(oppotri, oppoapex);
+      /* Only test that the edge is locally Delaunay if there is an   */
+      /*   adjoining triangle whose pointer is larger (to ensure that */
+      /*   each pair isn't tested twice).                             */
+      shouldbedelaunay = (oppotri.tri != m->dummytri) &&
+            !deadtri(oppotri.tri) && (triangleloop.tri < oppotri.tri) &&
+            (triorg != m->infvertex1) && (triorg != m->infvertex2) &&
+            (triorg != m->infvertex3) &&
+            (tridest != m->infvertex1) && (tridest != m->infvertex2) &&
+            (tridest != m->infvertex3) &&
+            (triapex != m->infvertex1) && (triapex != m->infvertex2) &&
+            (triapex != m->infvertex3) &&
+            (oppoapex != m->infvertex1) && (oppoapex != m->infvertex2) &&
+            (oppoapex != m->infvertex3);
+      if (m->checksegments && shouldbedelaunay) {
+        /* If a subsegment separates the triangles, then the edge is */
+        /*   constrained, so no local Delaunay test should be done.  */
+        tspivot(triangleloop, opposubseg);
+        if (opposubseg.ss != m->dummysub){
+          shouldbedelaunay = 0;
+        }
+      }
+      if (shouldbedelaunay) {
+        if (nonregular(m, b, triorg, tridest, triapex, oppoapex) > 0.0) {
+          if (!b->weighted) {
+            fprintf(stderr, "  !! !! Non-Delaunay pair of triangles:\n");
+            fprintf(stderr, "    First non-Delaunay ");
+            printtriangle(m, b, &triangleloop);
+            fprintf(stderr, "    Second non-Delaunay ");
+          } else {
+            fprintf(stderr, "  !! !! Non-regular pair of triangles:\n");
+            fprintf(stderr, "    First non-regular ");
+            printtriangle(m, b, &triangleloop);
+            fprintf(stderr, "    Second non-regular ");
+          }
+          printtriangle(m, b, &oppotri);
+          horrors++;
+        }
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+  if (horrors == 0) {
+    if (!b->quiet) {
+      fprintf(stderr, 
+  "  By virtue of my perceptive intelligence, I declare the mesh Delaunay.\n");
+    }
+  } else if (horrors == 1) {
+    fprintf(stderr, 
+         "  !! !! !! !! Precisely one terrifying transgression identified.\n");
+  } else {
+    fprintf(stderr, "  !! !! !! !! %d obscenities viewed with horror.\n", horrors);
+  }
+  /* Restore the status of exact arithmetic. */
+  b->noexact = saveexact;
+}
+
+#endif /* not REDUCED */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  enqueuebadtriang()   Add a bad triangle data structure to the end of a   */
+/*                       queue.                                              */
+/*                                                                           */
+/*  The queue is actually a set of 64 queues.  I use multiple queues to give */
+/*  priority to smaller angles.  I originally implemented a heap, but the    */
+/*  queues are faster by a larger margin than I'd suspected.                 */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void enqueuebadtriang(struct mesh *m, struct behavior *b,
+                      struct badtriang *badtri)
+#else /* not ANSI_DECLARATORS */
+void enqueuebadtriang(m, b, badtri)
+struct mesh *m;
+struct behavior *b;
+struct badtriang *badtri;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  int queuenumber;
+  int i;
+
+  if (b->verbose > 2) {
+    fprintf(stderr, "  Queueing bad triangle:\n");
+    fprintf(stderr, "    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+           badtri->triangorg[0], badtri->triangorg[1],
+           badtri->triangdest[0], badtri->triangdest[1],
+           badtri->triangapex[0], badtri->triangapex[1]);
+  }
+  /* Determine the appropriate queue to put the bad triangle into. */
+  if (badtri->key > 0.6) {
+    queuenumber = (int) (160.0 * (badtri->key - 0.6));
+    if (queuenumber > 63) {
+      queuenumber = 63;
+    }
+  } else {
+    /* It's not a bad angle; put the triangle in the lowest-priority queue. */
+    queuenumber = 0;
+  }
+
+  /* Are we inserting into an empty queue? */
+  if (m->queuefront[queuenumber] == (struct badtriang *) NULL) {
+    /* Yes, we are inserting into an empty queue.     */
+    /*   Will this become the highest-priority queue? */
+    if (queuenumber > m->firstnonemptyq) {
+      /* Yes, this is the highest-priority queue. */
+      m->nextnonemptyq[queuenumber] = m->firstnonemptyq;
+      m->firstnonemptyq = queuenumber;
+    } else {
+      /* No, this is not the highest-priority queue. */
+      /*   Find the queue with next higher priority. */
+      i = queuenumber + 1;
+      while (m->queuefront[i] == (struct badtriang *) NULL) {
+        i++;
+      }
+      /* Mark the newly nonempty queue as following a higher-priority queue. */
+      m->nextnonemptyq[queuenumber] = m->nextnonemptyq[i];
+      m->nextnonemptyq[i] = queuenumber;
+    }
+    /* Put the bad triangle at the beginning of the (empty) queue. */
+    m->queuefront[queuenumber] = badtri;
+  } else {
+    /* Add the bad triangle to the end of an already nonempty queue. */
+    m->queuetail[queuenumber]->nexttriang = badtri;
+  }
+  /* Maintain a pointer to the last triangle of the queue. */
+  m->queuetail[queuenumber] = badtri;
+  /* Newly enqueued bad triangle has no successor in the queue. */
+  badtri->nexttriang = (struct badtriang *) NULL;
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  enqueuebadtri()   Add a bad triangle to the end of a queue.              */
+/*                                                                           */
+/*  Allocates a badtriang data structure for the triangle, then passes it to */
+/*  enqueuebadtriang().                                                      */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void enqueuebadtri(struct mesh *m, struct behavior *b, struct otri *enqtri,
+                   REAL angle, vertex enqapex, vertex enqorg, vertex enqdest)
+#else /* not ANSI_DECLARATORS */
+void enqueuebadtri(m, b, enqtri, angle, enqapex, enqorg, enqdest)
+struct mesh *m;
+struct behavior *b;
+struct otri *enqtri;
+REAL angle;
+vertex enqapex;
+vertex enqorg;
+vertex enqdest;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct badtriang *newbad;
+
+  /* Allocate space for the bad triangle. */
+  newbad = (struct badtriang *) poolalloc(&m->badtriangles);
+  newbad->poortri = encode(*enqtri);
+  newbad->key = angle;
+  newbad->triangapex = enqapex;
+  newbad->triangorg = enqorg;
+  newbad->triangdest = enqdest;
+  enqueuebadtriang(m, b, newbad);
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  dequeuebadtriang()   Remove a triangle from the front of the queue.      */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+struct badtriang *dequeuebadtriang(struct mesh *m)
+#else /* not ANSI_DECLARATORS */
+struct badtriang *dequeuebadtriang(m)
+struct mesh *m;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct badtriang *result;
+
+  /* If no queues are nonempty, return NULL. */
+  if (m->firstnonemptyq < 0) {
+    return (struct badtriang *) NULL;
+  }
+  /* Find the first triangle of the highest-priority queue. */
+  result = m->queuefront[m->firstnonemptyq];
+  /* Remove the triangle from the queue. */
+  m->queuefront[m->firstnonemptyq] = result->nexttriang;
+  /* If this queue is now empty, note the new highest-priority */
+  /*   nonempty queue.                                         */
+  if (result == m->queuetail[m->firstnonemptyq]) {
+    m->firstnonemptyq = m->nextnonemptyq[m->firstnonemptyq];
+  }
+  return result;
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  under60degrees()   Return 1 if the two incident input segments are       */
+/*                     separated by an angle less than 60 degrees;           */
+/*                     0 otherwise.                                          */
+/*                                                                           */
+/*  The two input segments MUST have the same origin.                        */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+int under60degrees(struct osub *sub1, struct osub *sub2) {
+  vertex segmentapex, v1, v2;
+  REAL dotprod;
+
+  sorg(*sub1, segmentapex);
+  sdest(*sub1, v1);
+  sdest(*sub2, v2);
+  dotprod = (v2[0] - segmentapex[0]) * (v1[0] - segmentapex[0]) +
+            (v2[1] - segmentapex[1]) * (v1[1] - segmentapex[1]);
+  return (dotprod > 0.0) &&
+         (4.0 * dotprod * dotprod >
+          ((v1[0] - segmentapex[0]) * (v1[0] - segmentapex[0]) +
+           (v1[1] - segmentapex[1]) * (v1[1] - segmentapex[1])) *
+          ((v2[0] - segmentapex[0]) * (v2[0] - segmentapex[0]) +
+           (v2[1] - segmentapex[1]) * (v2[1] - segmentapex[1])));
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  clockwiseseg()   Find the next segment clockwise from `thissub' having   */
+/*                   the same origin and return it as `nextsub' if the       */
+/*                   intervening region is inside the domain.                */
+/*                                                                           */
+/*  Returns 1 if the next segment is separated from `thissub' by less than   */
+/*  60 degrees, and the intervening region is inside the domain.             */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+int clockwiseseg(struct mesh *m, struct osub *thissub, struct osub *nextsub) {
+  struct otri neighbortri;
+  triangle ptr;           /* Temporary variable used by sym() and stpivot(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  stpivot(*thissub, neighbortri);
+  if (neighbortri.tri == m->dummytri) {
+    return 0;
+  } else {
+    lnextself(neighbortri);
+    tspivot(neighbortri, *nextsub);
+    while (nextsub->ss == m->dummysub) {
+      symself(neighbortri);
+      lnextself(neighbortri);
+      tspivot(neighbortri, *nextsub);
+    }
+    ssymself(*nextsub);
+    return under60degrees(thissub, nextsub);
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  counterclockwiseseg()   Find the next segment counterclockwise from      */
+/*                          `thissub' having the same origin and return it   */
+/*                          as `nextsub' if the intervening region is inside */
+/*                          the domain.                                      */
+/*                                                                           */
+/*  Returns 1 if the next segment is separated from `thissub' by less than   */
+/*  60 degrees, and the intervening region is inside the domain.             */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+int counterclockwiseseg(struct mesh *m, struct osub *thissub,
+                        struct osub *nextsub) {
+  struct otri neighbortri;
+  struct osub subsym;
+  triangle ptr;           /* Temporary variable used by sym() and stpivot(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  ssym(*thissub, subsym);
+  stpivot(subsym, neighbortri);
+  if (neighbortri.tri == m->dummytri) {
+    return 0;
+  } else {
+    lprevself(neighbortri);
+    tspivot(neighbortri, *nextsub);
+    while (nextsub->ss == m->dummysub) {
+      symself(neighbortri);
+      lprevself(neighbortri);
+      tspivot(neighbortri, *nextsub);
+    }
+    return under60degrees(thissub, nextsub);
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+#ifndef CDT_ONLY
+
+/*****************************************************************************/
+/*                                                                           */
+/*  splitpermitted()   Return 1 if `testsubseg' is part of a subsegment      */
+/*                     cluster that is eligible for splitting.               */
+/*                                                                           */
+/*  The term "subsegment cluster" is formally defined in my paper "Mesh      */
+/*  Generation for Domains with Small Angles."  The algorithm that uses this */
+/*  procedure is also described there.                                       */
+/*                                                                           */
+/*  A subsegment cluster is eligible for splitting if (1) it includes a      */
+/*  subsegment whose length is not a power of two, (2) its subsegments are   */
+/*  not all the same length, or (3) no new edge that will be created by      */
+/*  splitting all the subsegments in the cluster has a length shorter than   */
+/*  the insertion radius of the encroaching vertex, whose square is given    */
+/*  as the parameter `iradius'.  Note that the shortest edges created by     */
+/*  splitting a cluster are those whose endpoints are both subsegment        */
+/*  midpoints introduced when the cluster is split.                          */
+/*                                                                           */
+/*  `testsubseg' is also eligible for splitting (and a 1 will be returned)   */
+/*  if it is part of two subsegment clusters; one at its origin and one at   */
+/*  its destination.                                                         */
+/*                                                                           */
+/*****************************************************************************/
+
+int splitpermitted(struct mesh *m, struct osub *testsubseg, REAL iradius) {
+  struct osub cwsubseg, ccwsubseg, cwsubseg2, ccwsubseg2;
+  struct osub testsym;
+  struct osub startsubseg, nowsubseg;
+  vertex suborg, dest1, dest2;
+  REAL nearestpoweroffour, seglength, prevseglength, edgelength;
+  int cwsmall, ccwsmall, cwsmall2, ccwsmall2;
+  int orgcluster, destcluster;
+  int toosmall;
+
+  /* Find the square of the subsegment's length, and the nearest power of */
+  /*   four (which is the square of the nearest power of two to the       */
+  /*   subsegment's length).                                              */
+  sorg(*testsubseg, suborg);
+  sdest(*testsubseg, dest1);
+  seglength = (dest1[0] - suborg[0]) * (dest1[0] - suborg[0]) +
+              (dest1[1] - suborg[1]) * (dest1[1] - suborg[1]);
+  nearestpoweroffour = 1.0;
+  while (seglength > 2.0 * nearestpoweroffour) {
+    nearestpoweroffour *= 4.0;
+  }
+  while (seglength < 0.5 * nearestpoweroffour) {
+    nearestpoweroffour *= 0.25;
+  }
+  /* If the segment's length is not a power of two, the segment */
+  /*   is eligible for splitting.                               */
+  if ((nearestpoweroffour > 1.001 * seglength) ||
+      (nearestpoweroffour < 0.999 * seglength)) {
+    return 1;
+  }
+
+  /* Is `testsubseg' part of a subsegment cluster at its origin? */
+  cwsmall = clockwiseseg(m, testsubseg, &cwsubseg);
+  ccwsmall = cwsmall ? 0 : counterclockwiseseg(m, testsubseg, &ccwsubseg);
+  orgcluster = cwsmall || ccwsmall;
+
+  /* Is `testsubseg' part of a subsegment cluster at its destination? */
+  ssym(*testsubseg, testsym);
+  cwsmall2 = clockwiseseg(m, &testsym, &cwsubseg2);
+  ccwsmall2 = cwsmall2 ? 0 : counterclockwiseseg(m, &testsym, &ccwsubseg2);
+  destcluster = cwsmall2 || ccwsmall2;
+
+  if (orgcluster == destcluster) {
+    /* `testsubseg' is part of two clusters or none, */
+    /*   and thus should be split.                   */
+    return 1;
+  } else if (orgcluster) {
+    /* `testsubseg' is part of a cluster at its origin. */
+    subsegcopy(*testsubseg, startsubseg);
+  } else {
+    /* `testsubseg' is part of a cluster at its destination; switch to */
+    /*   the symmetric case, so we can use the same code to handle it. */
+    subsegcopy(testsym, startsubseg);
+    subsegcopy(cwsubseg2, cwsubseg);
+    subsegcopy(ccwsubseg2, ccwsubseg);
+    cwsmall = cwsmall2;
+    ccwsmall = ccwsmall2;
+  }
+
+  toosmall = 0;
+  if (cwsmall) {
+    /* Check the subsegment(s) clockwise from `testsubseg'. */
+    subsegcopy(startsubseg, nowsubseg);
+    sorg(nowsubseg, suborg);
+    sdest(nowsubseg, dest1);
+    prevseglength = nearestpoweroffour;
+    do {
+      /* Is the next subsegment shorter than `startsubseg'? */
+      sdest(cwsubseg, dest2);
+      seglength = (dest2[0] - suborg[0]) * (dest2[0] - suborg[0]) +
+                  (dest2[1] - suborg[1]) * (dest2[1] - suborg[1]);
+      if (nearestpoweroffour > 1.001 * seglength) {
+        /* It's shorter; it's safe to split `startsubseg'. */
+        return 1;
+      }
+      /* If the current and previous subsegments are split to a length  */
+      /*   half that of `startsubseg' (which is a likely consequence if */
+      /*   `startsubseg' is split), what will be (the square of) the    */
+      /*   length of the free edge between the splitting vertices?      */
+      edgelength = 0.5 * nearestpoweroffour *
+                   (1 - (((dest1[0] - suborg[0]) * (dest2[0] - suborg[0]) +
+                          (dest1[1] - suborg[1]) * (dest2[1] - suborg[1])) /
+                         sqrt(prevseglength * seglength)));
+      if (edgelength < iradius) {
+        /* If this cluster is split, the new edge dest1-dest2 will be     */
+        /*   smaller than the insertion radius of the encroaching vertex. */
+        /*   Hence, we'd prefer to avoid splitting it if possible.        */
+        toosmall = 1;
+      }
+      if (cwsubseg.ss == startsubseg.ss) {
+        /* We've gone all the way around the vertex.  Split the cluster */
+        /*   if no edges will be too short.                             */
+        return !toosmall;
+      }
+
+      /* Find the next subsegment clockwise around the vertex. */
+      subsegcopy(cwsubseg, nowsubseg);
+      dest1 = dest2;
+      prevseglength = seglength;
+      cwsmall = clockwiseseg(m, &nowsubseg, &cwsubseg);
+    } while (cwsmall);
+
+    /* Prepare to start searching counterclockwise from */
+    /*   the starting subsegment.                       */
+    ccwsmall = counterclockwiseseg(m, &startsubseg, &ccwsubseg);
+  }
+
+  if (ccwsmall) {
+    /* Check the subsegment(s) counterclockwise from `testsubseg'. */
+    subsegcopy(startsubseg, nowsubseg);
+    sorg(nowsubseg, suborg);
+    sdest(nowsubseg, dest1);
+    prevseglength = nearestpoweroffour;
+    do {
+      /* Is the next subsegment shorter than `startsubseg'? */
+      sdest(ccwsubseg, dest2);
+      seglength = (dest2[0] - suborg[0]) * (dest2[0] - suborg[0]) +
+                  (dest2[1] - suborg[1]) * (dest2[1] - suborg[1]);
+      if (nearestpoweroffour > 1.001 * seglength) {
+        /* It's shorter; it's safe to split `startsubseg'. */
+        return 1;
+      }
+      /*   half that of `startsubseg' (which is a likely consequence if */
+      /*   `startsubseg' is split), what will be (the square of) the    */
+      /*   length of the free edge between the splitting vertices?      */
+      edgelength = 0.5 * nearestpoweroffour *
+                   (1 - (((dest1[0] - suborg[0]) * (dest2[0] - suborg[0]) +
+                          (dest1[1] - suborg[1]) * (dest2[1] - suborg[1])) /
+                         sqrt(prevseglength * seglength)));
+      if (edgelength < iradius) {
+        /* If this cluster is split, the new edge dest1-dest2 will be     */
+        /*   smaller than the insertion radius of the encroaching vertex. */
+        /*   Hence, we'd prefer to avoid splitting it if possible.        */
+        toosmall = 1;
+      }
+      if (ccwsubseg.ss == startsubseg.ss) {
+        /* We've gone all the way around the vertex.  Split the cluster */
+        /*   if no edges will be too short.                             */
+        return !toosmall;
+      }
+
+      /* Find the next subsegment counterclockwise around the vertex. */
+      subsegcopy(ccwsubseg, nowsubseg);
+      dest1 = dest2;
+      prevseglength = seglength;
+      ccwsmall = counterclockwiseseg(m, &nowsubseg, &ccwsubseg);
+    } while (ccwsmall);
+  }
+
+  /* We've found every subsegment in the cluster.  Split the cluster */
+  /*   if no edges will be too short.                                */
+  return !toosmall;
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  checkseg4encroach()   Check a subsegment to see if it is encroached; add */
+/*                        it to the list if it is.                           */
+/*                                                                           */
+/*  A subsegment is encroached if there is a vertex in its diametral circle  */
+/*  (that is, the subsegment faces an angle greater than 90 degrees).  This  */
+/*  definition is due to Ruppert.                                            */
+/*                                                                           */
+/*  Returns a nonzero value if the subsegment is encroached.                 */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+int checkseg4encroach(struct mesh *m, struct behavior *b,
+                      struct osub *testsubseg, REAL iradius)
+#else /* not ANSI_DECLARATORS */
+int checkseg4encroach(m, b, testsubseg, iradius)
+struct mesh *m;
+struct behavior *b;
+struct osub *testsubseg;
+REAL iradius;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri neighbortri;
+  struct osub testsym;
+  struct badsubseg *encroachedseg;
+  REAL dotproduct;
+  int encroached;
+  int sides;
+  int enq;
+  vertex eorg, edest, eapex;
+  triangle ptr;                     /* Temporary variable used by stpivot(). */
+
+  encroached = 0;
+  sides = 0;
+
+  sorg(*testsubseg, eorg);
+  sdest(*testsubseg, edest);
+  /* Check one neighbor of the subsegment. */
+  stpivot(*testsubseg, neighbortri);
+  /* Does the neighbor exist, or is this a boundary edge? */
+  if (neighbortri.tri != m->dummytri) {
+    sides++;
+    /* Find a vertex opposite this subsegment. */
+    apex(neighbortri, eapex);
+    /* Check whether the apex is in the diametral lens of the subsegment */
+    /*   (or the diametral circle, if `nolenses' is set).  A dot product */
+    /*   of two sides of the triangle is used to check whether the angle */
+    /*   at the apex is greater than 120 degrees (for lenses; 90 degrees */
+    /*   for diametral circles).                                         */
+    dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
+                 (eorg[1] - eapex[1]) * (edest[1] - eapex[1]);
+    if (dotproduct < 0.0) {
+      if (b->nolenses ||
+          (dotproduct * dotproduct >=
+           0.25 * ((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) +
+                   (eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) *
+                  ((edest[0] - eapex[0]) * (edest[0] - eapex[0]) +
+                   (edest[1] - eapex[1]) * (edest[1] - eapex[1])))) {
+        encroached = 1;
+      }
+    }
+  }
+  /* Check the other neighbor of the subsegment. */
+  ssym(*testsubseg, testsym);
+  stpivot(testsym, neighbortri);
+  /* Does the neighbor exist, or is this a boundary edge? */
+  if (neighbortri.tri != m->dummytri) {
+    sides++;
+    /* Find the other vertex opposite this subsegment. */
+    apex(neighbortri, eapex);
+    /* Check whether the apex is in the diametral lens of the subsegment */
+    /*   (or the diametral circle, if `nolenses' is set).                */
+    dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
+                 (eorg[1] - eapex[1]) * (edest[1] - eapex[1]);
+    if (dotproduct < 0.0) {
+      if (b->nolenses ||
+          (dotproduct * dotproduct >=
+           0.25 * ((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) +
+                   (eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) *
+                  ((edest[0] - eapex[0]) * (edest[0] - eapex[0]) +
+                   (edest[1] - eapex[1]) * (edest[1] - eapex[1])))) {
+        encroached += 2;
+      }
+    }
+  }
+
+  if (encroached && (!b->nobisect || ((b->nobisect == 1) && (sides == 2)))) {
+    /* Decide whether `testsubseg' should be split. */
+    if (iradius > 0.0) {
+      /* The encroaching vertex is a triangle circumcenter, which will be   */
+      /*   rejected.  Hence, `testsubseg' probably should be split, unless  */
+      /*   it is part of a subsegment cluster which, according to the rules */
+      /*   described in my paper "Mesh Generation for Domains with Small    */
+      /*   Angles," should not be split.                                    */
+      enq = splitpermitted(m, testsubseg, iradius);
+    } else {
+      /* The encroaching vertex is an input vertex or was inserted in a */
+      /*   subsegment, so the encroached subsegment must be split.      */
+      enq = 1;
+    }
+    if (enq) {
+      if (b->verbose > 2) {
+        fprintf(stderr, 
+          "  Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
+          eorg[0], eorg[1], edest[0], edest[1]);
+      }
+      /* Add the subsegment to the list of encroached subsegments. */
+      /*   Be sure to get the orientation right.                   */
+      encroachedseg = (struct badsubseg *) poolalloc(&m->badsubsegs);
+      if (encroached == 1) {
+        encroachedseg->encsubseg = sencode(*testsubseg);
+        encroachedseg->subsegorg = eorg;
+        encroachedseg->subsegdest = edest;
+      } else {
+        encroachedseg->encsubseg = sencode(testsym);
+        encroachedseg->subsegorg = edest;
+        encroachedseg->subsegdest = eorg;
+      }
+    }
+  }
+
+  return encroached;
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  testtriangle()   Test a face for quality measures.                       */
+/*                                                                           */
+/*  Tests a triangle to see if it satisfies the minimum angle condition and  */
+/*  the maximum area condition.  Triangles that aren't up to spec are added  */
+/*  to the bad triangle queue.                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void testtriangle(struct mesh *m, struct behavior *b, struct otri *testtri)
+#else /* not ANSI_DECLARATORS */
+void testtriangle(m, b, testtri)
+struct mesh *m;
+struct behavior *b;
+struct otri *testtri;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri sametesttri;
+  struct osub subseg1, subseg2;
+  vertex torg, tdest, tapex;
+  vertex anglevertex;
+  REAL dxod, dyod, dxda, dyda, dxao, dyao;
+  REAL dxod2, dyod2, dxda2, dyda2, dxao2, dyao2;
+  REAL apexlen, orglen, destlen;
+  REAL angle;
+  REAL area;
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  org(*testtri, torg);
+  dest(*testtri, tdest);
+  apex(*testtri, tapex);
+  dxod = torg[0] - tdest[0];
+  dyod = torg[1] - tdest[1];
+  dxda = tdest[0] - tapex[0];
+  dyda = tdest[1] - tapex[1];
+  dxao = tapex[0] - torg[0];
+  dyao = tapex[1] - torg[1];
+  dxod2 = dxod * dxod;
+  dyod2 = dyod * dyod;
+  dxda2 = dxda * dxda;
+  dyda2 = dyda * dyda;
+  dxao2 = dxao * dxao;
+  dyao2 = dyao * dyao;
+  /* Find the lengths of the triangle's three edges. */
+  apexlen = dxod2 + dyod2;
+  orglen = dxda2 + dyda2;
+  destlen = dxao2 + dyao2;
+  if ((apexlen < orglen) && (apexlen < destlen)) {
+    /* The edge opposite the apex is shortest. */
+    /* Find the square of the cosine of the angle at the apex. */
+    angle = dxda * dxao + dyda * dyao;
+    angle = angle * angle / (orglen * destlen);
+    anglevertex = tapex;
+    lnext(*testtri, sametesttri);
+    tspivot(sametesttri, subseg1);
+    lnextself(sametesttri);
+    tspivot(sametesttri, subseg2);
+  } else if (orglen < destlen) {
+    /* The edge opposite the origin is shortest. */
+    /* Find the square of the cosine of the angle at the origin. */
+    angle = dxod * dxao + dyod * dyao;
+    angle = angle * angle / (apexlen * destlen);
+    anglevertex = torg;
+    tspivot(*testtri, subseg1);
+    lprev(*testtri, sametesttri);
+    tspivot(sametesttri, subseg2);
+  } else {
+    /* The edge opposite the destination is shortest. */
+    /* Find the square of the cosine of the angle at the destination. */
+    angle = dxod * dxda + dyod * dyda;
+    angle = angle * angle / (apexlen * orglen);
+    anglevertex = tdest;
+    tspivot(*testtri, subseg1);
+    lnext(*testtri, sametesttri);
+    tspivot(sametesttri, subseg2);
+  }
+
+  /* Check if both edges that form the angle are segments. */
+  if ((subseg1.ss != m->dummysub) && (subseg2.ss != m->dummysub)) {
+    /* The angle is a segment intersection.  Don't add this bad triangle to */
+    /*   the list; there's nothing that can be done about a small angle     */
+    /*   between two segments.                                              */
+    angle = 0.0;
+  }
+
+  /* Check whether the angle is smaller than permitted. */
+  if (angle > b->goodangle) {
+    /* Add this triangle to the list of bad triangles. */
+    enqueuebadtri(m, b, testtri, angle, tapex, torg, tdest);
+    return;
+  }
+
+  if (b->vararea || b->fixedarea || b->usertest) {
+    /* Check whether the area is larger than permitted. */
+    area = 0.5 * (dxod * dyda - dyod * dxda);
+    if (b->fixedarea && (area > b->maxarea)) {
+      /* Add this triangle to the list of bad triangles. */
+      enqueuebadtri(m, b, testtri, angle, tapex, torg, tdest);
+      return;
+    }
+
+    /* Nonpositive area constraints are treated as unconstrained. */
+    if ((b->vararea) && (area > areabound(*testtri)) &&
+        (areabound(*testtri) > 0.0)) {
+      /* Add this triangle to the list of bad triangles. */
+      enqueuebadtri(m, b, testtri, angle, tapex, torg, tdest);
+      return;
+    }
+
+    if (b->usertest) {
+      /* Check whether the user thinks this triangle is too large. */
+      if (triunsuitable(torg, tdest, tapex, area)) {
+        enqueuebadtri(m, b, testtri, angle, tapex, torg, tdest);
+        return;
+      }
+    }
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Mesh quality testing routines end here                    *********/
+
+/********* Point location routines begin here                        *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  makevertexmap()   Construct a mapping from vertices to triangles to      */
+/*                    improve the speed of point location for segment        */
+/*                    insertion.                                             */
+/*                                                                           */
+/*  Traverses all the triangles, and provides each corner of each triangle   */
+/*  with a pointer to that triangle.  Of course, pointers will be            */
+/*  overwritten by other pointers because (almost) each vertex is a corner   */
+/*  of several triangles, but in the end every vertex will point to some     */
+/*  triangle that contains it.                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void makevertexmap(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void makevertexmap(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri triangleloop;
+  vertex triorg;
+
+  if (b->verbose) {
+    fprintf(stderr, "    Constructing mapping from vertices to triangles.\n");
+  }
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  while (triangleloop.tri != (triangle *) NULL) {
+    /* Check all three vertices of the triangle. */
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      org(triangleloop, triorg);
+      setvertex2tri(triorg, encode(triangleloop));
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  preciselocate()   Find a triangle or edge containing a given point.      */
+/*                                                                           */
+/*  Begins its search from `searchtri'.  It is important that `searchtri'    */
+/*  be a handle with the property that `searchpoint' is strictly to the left */
+/*  of the edge denoted by `searchtri', or is collinear with that edge and   */
+/*  does not intersect that edge.  (In particular, `searchpoint' should not  */
+/*  be the origin or destination of that edge.)                              */
+/*                                                                           */
+/*  These conditions are imposed because preciselocate() is normally used in */
+/*  one of two situations:                                                   */
+/*                                                                           */
+/*  (1)  To try to find the location to insert a new point.  Normally, we    */
+/*       know an edge that the point is strictly to the left of.  In the     */
+/*       incremental Delaunay algorithm, that edge is a bounding box edge.   */
+/*       In Ruppert's Delaunay refinement algorithm for quality meshing,     */
+/*       that edge is the shortest edge of the triangle whose circumcenter   */
+/*       is being inserted.                                                  */
+/*                                                                           */
+/*  (2)  To try to find an existing point.  In this case, any edge on the    */
+/*       convex hull is a good starting edge.  You must screen out the       */
+/*       possibility that the vertex sought is an endpoint of the starting   */
+/*       edge before you call preciselocate().                               */
+/*                                                                           */
+/*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
+/*                                                                           */
+/*  This implementation differs from that given by Guibas and Stolfi.  It    */
+/*  walks from triangle to triangle, crossing an edge only if `searchpoint'  */
+/*  is on the other side of the line containing that edge.  After entering   */
+/*  a triangle, there are two edges by which one can leave that triangle.    */
+/*  If both edges are valid (`searchpoint' is on the other side of both      */
+/*  edges), one of the two is chosen by drawing a line perpendicular to      */
+/*  the entry edge (whose endpoints are `forg' and `fdest') passing through  */
+/*  `fapex'.  Depending on which side of this perpendicular `searchpoint'    */
+/*  falls on, an exit edge is chosen.                                        */
+/*                                                                           */
+/*  This implementation is empirically faster than the Guibas and Stolfi     */
+/*  point location routine (which I originally used), which tends to spiral  */
+/*  in toward its target.                                                    */
+/*                                                                           */
+/*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
+/*  is a handle whose origin is the existing vertex.                         */
+/*                                                                           */
+/*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
+/*  handle whose primary edge is the edge on which the point lies.           */
+/*                                                                           */
+/*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
+/*  `searchtri' is a handle on the triangle that contains the point.         */
+/*                                                                           */
+/*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
+/*  handle whose primary edge the point is to the right of.  This might      */
+/*  occur when the circumcenter of a triangle falls just slightly outside    */
+/*  the mesh due to floating-point roundoff error.  It also occurs when      */
+/*  seeking a hole or region point that a foolish user has placed outside    */
+/*  the mesh.                                                                */
+/*                                                                           */
+/*  If `stopatsubsegment' is nonzero, the search will stop if it tries to    */
+/*  walk through a subsegment, and will return OUTSIDE.                      */
+/*                                                                           */
+/*  WARNING:  This routine is designed for convex triangulations, and will   */
+/*  not generally work after the holes and concavities have been carved.     */
+/*  However, it can still be used to find the circumcenter of a triangle, as */
+/*  long as the search is begun from the triangle in question.               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+enum locateresult preciselocate(struct mesh *m, struct behavior *b,
+                                vertex searchpoint, struct otri *searchtri,
+                                int stopatsubsegment)
+#else /* not ANSI_DECLARATORS */
+enum locateresult preciselocate(m, b, searchpoint, searchtri, stopatsubsegment)
+struct mesh *m;
+struct behavior *b;
+vertex searchpoint;
+struct otri *searchtri;
+int stopatsubsegment;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri backtracktri;
+  struct osub checkedge;
+  vertex forg, fdest, fapex;
+  REAL orgorient, destorient;
+  int moveleft;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (b->verbose > 2) {
+    fprintf(stderr, "  Searching for point (%.12g, %.12g).\n",
+           searchpoint[0], searchpoint[1]);
+  }
+  /* Where are we? */
+  org(*searchtri, forg);
+  dest(*searchtri, fdest);
+  apex(*searchtri, fapex);
+  while (1) {
+    if (b->verbose > 2) {
+      fprintf(stderr, "    At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+             forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
+    }
+    /* Check whether the apex is the point we seek. */
+    if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
+      lprevself(*searchtri);
+      return ONVERTEX;
+    }
+    /* Does the point lie on the other side of the line defined by the */
+    /*   triangle edge opposite the triangle's destination?            */
+    destorient = counterclockwise(m, b, forg, fapex, searchpoint);
+    /* Does the point lie on the other side of the line defined by the */
+    /*   triangle edge opposite the triangle's origin?                 */
+    orgorient = counterclockwise(m, b, fapex, fdest, searchpoint);
+    if (destorient > 0.0) {
+      if (orgorient > 0.0) {
+        /* Move left if the inner product of (fapex - searchpoint) and  */
+        /*   (fdest - forg) is positive.  This is equivalent to drawing */
+        /*   a line perpendicular to the line (forg, fdest) and passing */
+        /*   through `fapex', and determining which side of this line   */
+        /*   `searchpoint' falls on.                                    */
+        moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
+                   (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
+      } else {
+        moveleft = 1;
+      }
+    } else {
+      if (orgorient > 0.0) {
+        moveleft = 0;
+      } else {
+        /* The point we seek must be on the boundary of or inside this */
+        /*   triangle.                                                 */
+        if (destorient == 0.0) {
+          lprevself(*searchtri);
+          return ONEDGE;
+        }
+        if (orgorient == 0.0) {
+          lnextself(*searchtri);
+          return ONEDGE;
+        }
+        return INTRIANGLE;
+      }
+    }
+
+    /* Move to another triangle.  Leave a trace `backtracktri' in case */
+    /*   floating-point roundoff or some such bogey causes us to walk  */
+    /*   off a boundary of the triangulation.                          */
+    if (moveleft) {
+      lprev(*searchtri, backtracktri);
+      fdest = fapex;
+    } else {
+      lnext(*searchtri, backtracktri);
+      forg = fapex;
+    }
+    sym(backtracktri, *searchtri);
+
+    if (m->checksegments && stopatsubsegment) {
+      /* Check for walking through a subsegment. */
+      tspivot(backtracktri, checkedge);
+      if (checkedge.ss != m->dummysub) {
+        /* Go back to the last triangle. */
+        otricopy(backtracktri, *searchtri);
+        return OUTSIDE;
+      }
+    }
+    /* Check for walking right out of the triangulation. */
+    if (searchtri->tri == m->dummytri) {
+      /* Go back to the last triangle. */
+      otricopy(backtracktri, *searchtri);
+      return OUTSIDE;
+    }
+
+    apex(*searchtri, fapex);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  locate()   Find a triangle or edge containing a given point.             */
+/*                                                                           */
+/*  Searching begins from one of:  the input `searchtri', a recently         */
+/*  encountered triangle `recenttri', or from a triangle chosen from a       */
+/*  random sample.  The choice is made by determining which triangle's       */
+/*  origin is closest to the point we are searching for.  Normally,          */
+/*  `searchtri' should be a handle on the convex hull of the triangulation.  */
+/*                                                                           */
+/*  Details on the random sampling method can be found in the Mucke, Saias,  */
+/*  and Zhu paper cited in the header of this code.                          */
+/*                                                                           */
+/*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
+/*                                                                           */
+/*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
+/*  is a handle whose origin is the existing vertex.                         */
+/*                                                                           */
+/*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
+/*  handle whose primary edge is the edge on which the point lies.           */
+/*                                                                           */
+/*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
+/*  `searchtri' is a handle on the triangle that contains the point.         */
+/*                                                                           */
+/*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
+/*  handle whose primary edge the point is to the right of.  This might      */
+/*  occur when the circumcenter of a triangle falls just slightly outside    */
+/*  the mesh due to floating-point roundoff error.  It also occurs when      */
+/*  seeking a hole or region point that a foolish user has placed outside    */
+/*  the mesh.                                                                */
+/*                                                                           */
+/*  WARNING:  This routine is designed for convex triangulations, and will   */
+/*  not generally work after the holes and concavities have been carved.     */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+enum locateresult locate(struct mesh *m, struct behavior *b,
+                         vertex searchpoint, struct otri *searchtri)
+#else /* not ANSI_DECLARATORS */
+enum locateresult locate(m, b, searchpoint, searchtri)
+struct mesh *m;
+struct behavior *b;
+vertex searchpoint;
+struct otri *searchtri;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  VOID **sampleblock;
+  triangle *firsttri;
+  struct otri sampletri;
+  vertex torg, tdest;
+  unsigned long alignptr;
+  REAL searchdist, dist;
+  REAL ahead;
+  long sampleblocks, samplesperblock, samplenum;
+  long triblocks;
+  long i, j;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (b->verbose > 2) {
+    fprintf(stderr, "  Randomly sampling for a triangle near point (%.12g, %.12g).\n",
+           searchpoint[0], searchpoint[1]);
+  }
+  /* Record the distance from the suggested starting triangle to the */
+  /*   point we seek.                                                */
+  org(*searchtri, torg);
+  searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
+               (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
+  if (b->verbose > 2) {
+    fprintf(stderr, "    Boundary triangle has origin (%.12g, %.12g).\n",
+           torg[0], torg[1]);
+  }
+
+  /* If a recently encountered triangle has been recorded and has not been */
+  /*   deallocated, test it as a good starting point.                      */
+  if (m->recenttri.tri != (triangle *) NULL) {
+    if (!deadtri(m->recenttri.tri)) {
+      org(m->recenttri, torg);
+      if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
+        otricopy(m->recenttri, *searchtri);
+        return ONVERTEX;
+      }
+      dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
+             (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
+      if (dist < searchdist) {
+        otricopy(m->recenttri, *searchtri);
+        searchdist = dist;
+        if (b->verbose > 2) {
+          fprintf(stderr, "    Choosing recent triangle with origin (%.12g, %.12g).\n",
+                 torg[0], torg[1]);
+        }
+      }
+    }
+  }
+
+  /* The number of random samples taken is proportional to the cube root of */
+  /*   the number of triangles in the mesh.  The next bit of code assumes   */
+  /*   that the number of triangles increases monotonically.                */
+  while (SAMPLEFACTOR * m->samples * m->samples * m->samples <
+         m->triangles.items) {
+    m->samples++;
+  }
+  triblocks = (m->triangles.maxitems + TRIPERBLOCK - 1) / TRIPERBLOCK;
+  samplesperblock = (m->samples + triblocks - 1) / triblocks;
+  sampleblocks = m->samples / samplesperblock;
+  sampleblock = m->triangles.firstblock;
+  sampletri.orient = 0;
+  for (i = 0; i < sampleblocks; i++) {
+    alignptr = (unsigned long) (sampleblock + 1);
+    firsttri = (triangle *) (alignptr + (unsigned long) m->triangles.alignbytes
+                      - (alignptr % (unsigned long) m->triangles.alignbytes));
+    for (j = 0; j < samplesperblock; j++) {
+      if (i == triblocks - 1) {
+        samplenum = randomnation((int)
+                                 (m->triangles.maxitems - (i * TRIPERBLOCK)));
+      } else {
+        samplenum = randomnation(TRIPERBLOCK);
+      }
+      sampletri.tri = (triangle *)
+                      (firsttri + (samplenum * m->triangles.itemwords));
+      if (!deadtri(sampletri.tri)) {
+        org(sampletri, torg);
+        dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
+               (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
+        if (dist < searchdist) {
+          otricopy(sampletri, *searchtri);
+          searchdist = dist;
+          if (b->verbose > 2) {
+            fprintf(stderr, "    Choosing triangle with origin (%.12g, %.12g).\n",
+                   torg[0], torg[1]);
+          }
+        }
+      }
+    }
+    sampleblock = (VOID **) *sampleblock;
+  }
+
+  /* Where are we? */
+  org(*searchtri, torg);
+  dest(*searchtri, tdest);
+  /* Check the starting triangle's vertices. */
+  if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
+    return ONVERTEX;
+  }
+  if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
+    lnextself(*searchtri);
+    return ONVERTEX;
+  }
+  /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
+  ahead = counterclockwise(m, b, torg, tdest, searchpoint);
+  if (ahead < 0.0) {
+    /* Turn around so that `searchpoint' is to the left of the */
+    /*   edge specified by `searchtri'.                        */
+    symself(*searchtri);
+  } else if (ahead == 0.0) {
+    /* Check if `searchpoint' is between `torg' and `tdest'. */
+    if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0])) &&
+        ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
+      return ONEDGE;
+    }
+  }
+  return preciselocate(m, b, searchpoint, searchtri, 0);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Point location routines end here                          *********/
+
+/********* Mesh transformation routines begin here                   *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  insertsubseg()   Create a new subsegment and insert it between two       */
+/*                   triangles.                                              */
+/*                                                                           */
+/*  The new subsegment is inserted at the edge described by the handle       */
+/*  `tri'.  Its vertices are properly initialized.  The marker `subsegmark'  */
+/*  is applied to the subsegment and, if appropriate, its vertices.          */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void insertsubseg(struct mesh *m, struct behavior *b, struct otri *tri,
+                  int subsegmark)
+#else /* not ANSI_DECLARATORS */
+void insertsubseg(m, b, tri, subsegmark)
+struct mesh *m;
+struct behavior *b;
+struct otri *tri;             /* Edge at which to insert the new subsegment. */
+int subsegmark;                            /* Marker for the new subsegment. */
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri oppotri;
+  struct osub newsubseg;
+  vertex triorg, tridest;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  org(*tri, triorg);
+  dest(*tri, tridest);
+  /* Mark vertices if possible. */
+  if (vertexmark(triorg) == 0) {
+    setvertexmark(triorg, subsegmark);
+  }
+  if (vertexmark(tridest) == 0) {
+    setvertexmark(tridest, subsegmark);
+  }
+  /* Check if there's already a subsegment here. */
+  tspivot(*tri, newsubseg);
+  if (newsubseg.ss == m->dummysub) {
+    /* Make new subsegment and initialize its vertices. */
+    makesubseg(m, &newsubseg);
+    setsorg(newsubseg, tridest);
+    setsdest(newsubseg, triorg);
+    /* Bond new subsegment to the two triangles it is sandwiched between. */
+    /*   Note that the facing triangle `oppotri' might be equal to        */
+    /*   `dummytri' (outer space), but the new subsegment is bonded to it */
+    /*   all the same.                                                    */
+    tsbond(*tri, newsubseg);
+    sym(*tri, oppotri);
+    ssymself(newsubseg);
+    tsbond(oppotri, newsubseg);
+    setmark(newsubseg, subsegmark);
+    if (b->verbose > 2) {
+      fprintf(stderr, "  Inserting new ");
+      printsubseg(m, b, &newsubseg);
+    }
+  } else {
+    if (mark(newsubseg) == 0) {
+      setmark(newsubseg, subsegmark);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  Terminology                                                              */
+/*                                                                           */
+/*  A "local transformation" replaces a small set of triangles with another  */
+/*  set of triangles.  This may or may not involve inserting or deleting a   */
+/*  vertex.                                                                  */
+/*                                                                           */
+/*  The term "casing" is used to describe the set of triangles that are      */
+/*  attached to the triangles being transformed, but are not transformed     */
+/*  themselves.  Think of the casing as a fixed hollow structure inside      */
+/*  which all the action happens.  A "casing" is only defined relative to    */
+/*  a single transformation; each occurrence of a transformation will        */
+/*  involve a different casing.                                              */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  flip()   Transform two triangles to two different triangles by flipping  */
+/*           an edge counterclockwise within a quadrilateral.                */
+/*                                                                           */
+/*  Imagine the original triangles, abc and bad, oriented so that the        */
+/*  shared edge ab lies in a horizontal plane, with the vertex b on the left */
+/*  and the vertex a on the right.  The vertex c lies below the edge, and    */
+/*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  */
+/*  ab of triangle abc, and is directed left, from vertex a to vertex b.     */
+/*                                                                           */
+/*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
+/*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
+/*  they are reused for dca and cdb, respectively.  Hence, any handles that  */
+/*  may have held the original triangles are still valid, although not       */
+/*  directed as they were before.                                            */
+/*                                                                           */
+/*  Upon completion of this routine, the `flipedge' handle holds the edge    */
+/*  dc of triangle dca, and is directed down, from vertex d to vertex c.     */
+/*  (Hence, the two triangles have rotated counterclockwise.)                */
+/*                                                                           */
+/*  WARNING:  This transformation is geometrically valid only if the         */
+/*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
+/*  valid only if there is not a subsegment between the triangles abc and    */
+/*  bad.  This routine does not check either of these preconditions, and     */
+/*  it is the responsibility of the calling routine to ensure that they are  */
+/*  met.  If they are not, the streets shall be filled with wailing and      */
+/*  gnashing of teeth.                                                       */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void flip(struct mesh *m, struct behavior *b, struct otri *flipedge)
+#else /* not ANSI_DECLARATORS */
+void flip(m, b, flipedge)
+struct mesh *m;
+struct behavior *b;
+struct otri *flipedge;                    /* Handle for the triangle abc. */
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri botleft, botright;
+  struct otri topleft, topright;
+  struct otri top;
+  struct otri botlcasing, botrcasing;
+  struct otri toplcasing, toprcasing;
+  struct osub botlsubseg, botrsubseg;
+  struct osub toplsubseg, toprsubseg;
+  vertex leftvertex, rightvertex, botvertex;
+  vertex farvertex;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  /* Identify the vertices of the quadrilateral. */
+  org(*flipedge, rightvertex);
+  dest(*flipedge, leftvertex);
+  apex(*flipedge, botvertex);
+  sym(*flipedge, top);
+#ifdef SELF_CHECK
+  if (top.tri == m->dummytri) {
+    fprintf(stderr, "Internal error in flip():  Attempt to flip on boundary.\n");
+    lnextself(*flipedge);
+    return;
+  }
+  if (m->checksegments) {
+    tspivot(*flipedge, toplsubseg);
+    if (toplsubseg.ss != m->dummysub) {
+      fprintf(stderr, "Internal error in flip():  Attempt to flip a segment.\n");
+      lnextself(*flipedge);
+      return;
+    }
+  }
+#endif /* SELF_CHECK */
+  apex(top, farvertex);
+
+  /* Identify the casing of the quadrilateral. */
+  lprev(top, topleft);
+  sym(topleft, toplcasing);
+  lnext(top, topright);
+  sym(topright, toprcasing);
+  lnext(*flipedge, botleft);
+  sym(botleft, botlcasing);
+  lprev(*flipedge, botright);
+  sym(botright, botrcasing);
+  /* Rotate the quadrilateral one-quarter turn counterclockwise. */
+  bond(topleft, botlcasing);
+  bond(botleft, botrcasing);
+  bond(botright, toprcasing);
+  bond(topright, toplcasing);
+
+  if (m->checksegments) {
+    /* Check for subsegments and rebond them to the quadrilateral. */
+    tspivot(topleft, toplsubseg);
+    tspivot(botleft, botlsubseg);
+    tspivot(botright, botrsubseg);
+    tspivot(topright, toprsubseg);
+    if (toplsubseg.ss == m->dummysub) {
+      tsdissolve(topright);
+    } else {
+      tsbond(topright, toplsubseg);
+    }
+    if (botlsubseg.ss == m->dummysub) {
+      tsdissolve(topleft);
+    } else {
+      tsbond(topleft, botlsubseg);
+    }
+    if (botrsubseg.ss == m->dummysub) {
+      tsdissolve(botleft);
+    } else {
+      tsbond(botleft, botrsubseg);
+    }
+    if (toprsubseg.ss == m->dummysub) {
+      tsdissolve(botright);
+    } else {
+      tsbond(botright, toprsubseg);
+    }
+  }
+
+  /* New vertex assignments for the rotated quadrilateral. */
+  setorg(*flipedge, farvertex);
+  setdest(*flipedge, botvertex);
+  setapex(*flipedge, rightvertex);
+  setorg(top, botvertex);
+  setdest(top, farvertex);
+  setapex(top, leftvertex);
+  if (b->verbose > 2) {
+    fprintf(stderr, "  Edge flip results in left ");
+    printtriangle(m, b, &top);
+    fprintf(stderr, "  and right ");
+    printtriangle(m, b, flipedge);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  unflip()   Transform two triangles to two different triangles by         */
+/*             flipping an edge clockwise within a quadrilateral.  Reverses  */
+/*             the flip() operation so that the data structures representing */
+/*             the triangles are back where they were before the flip().     */
+/*                                                                           */
+/*  Imagine the original triangles, abc and bad, oriented so that the        */
+/*  shared edge ab lies in a horizontal plane, with the vertex b on the left */
+/*  and the vertex a on the right.  The vertex c lies below the edge, and    */
+/*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  */
+/*  ab of triangle abc, and is directed left, from vertex a to vertex b.     */
+/*                                                                           */
+/*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
+/*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
+/*  they are reused for cdb and dca, respectively.  Hence, any handles that  */
+/*  may have held the original triangles are still valid, although not       */
+/*  directed as they were before.                                            */
+/*                                                                           */
+/*  Upon completion of this routine, the `flipedge' handle holds the edge    */
+/*  cd of triangle cdb, and is directed up, from vertex c to vertex d.       */
+/*  (Hence, the two triangles have rotated clockwise.)                       */
+/*                                                                           */
+/*  WARNING:  This transformation is geometrically valid only if the         */
+/*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
+/*  valid only if there is not a subsegment between the triangles abc and    */
+/*  bad.  This routine does not check either of these preconditions, and     */
+/*  it is the responsibility of the calling routine to ensure that they are  */
+/*  met.  If they are not, the streets shall be filled with wailing and      */
+/*  gnashing of teeth.                                                       */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void unflip(struct mesh *m, struct behavior *b, struct otri *flipedge)
+#else /* not ANSI_DECLARATORS */
+void unflip(m, b, flipedge)
+struct mesh *m;
+struct behavior *b;
+struct otri *flipedge;                    /* Handle for the triangle abc. */
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri botleft, botright;
+  struct otri topleft, topright;
+  struct otri top;
+  struct otri botlcasing, botrcasing;
+  struct otri toplcasing, toprcasing;
+  struct osub botlsubseg, botrsubseg;
+  struct osub toplsubseg, toprsubseg;
+  vertex leftvertex, rightvertex, botvertex;
+  vertex farvertex;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  /* Identify the vertices of the quadrilateral. */
+  org(*flipedge, rightvertex);
+  dest(*flipedge, leftvertex);
+  apex(*flipedge, botvertex);
+  sym(*flipedge, top);
+#ifdef SELF_CHECK
+  if (top.tri == m->dummytri) {
+    fprintf(stderr, "Internal error in unflip():  Attempt to flip on boundary.\n");
+    lnextself(*flipedge);
+    return;
+  }
+  if (m->checksegments) {
+    tspivot(*flipedge, toplsubseg);
+    if (toplsubseg.ss != m->dummysub) {
+      fprintf(stderr, "Internal error in unflip():  Attempt to flip a subsegment.\n");
+      lnextself(*flipedge);
+      return;
+    }
+  }
+#endif /* SELF_CHECK */
+  apex(top, farvertex);
+
+  /* Identify the casing of the quadrilateral. */
+  lprev(top, topleft);
+  sym(topleft, toplcasing);
+  lnext(top, topright);
+  sym(topright, toprcasing);
+  lnext(*flipedge, botleft);
+  sym(botleft, botlcasing);
+  lprev(*flipedge, botright);
+  sym(botright, botrcasing);
+  /* Rotate the quadrilateral one-quarter turn clockwise. */
+  bond(topleft, toprcasing);
+  bond(botleft, toplcasing);
+  bond(botright, botlcasing);
+  bond(topright, botrcasing);
+
+  if (m->checksegments) {
+    /* Check for subsegments and rebond them to the quadrilateral. */
+    tspivot(topleft, toplsubseg);
+    tspivot(botleft, botlsubseg);
+    tspivot(botright, botrsubseg);
+    tspivot(topright, toprsubseg);
+    if (toplsubseg.ss == m->dummysub) {
+      tsdissolve(botleft);
+    } else {
+      tsbond(botleft, toplsubseg);
+    }
+    if (botlsubseg.ss == m->dummysub) {
+      tsdissolve(botright);
+    } else {
+      tsbond(botright, botlsubseg);
+    }
+    if (botrsubseg.ss == m->dummysub) {
+      tsdissolve(topright);
+    } else {
+      tsbond(topright, botrsubseg);
+    }
+    if (toprsubseg.ss == m->dummysub) {
+      tsdissolve(topleft);
+    } else {
+      tsbond(topleft, toprsubseg);
+    }
+  }
+
+  /* New vertex assignments for the rotated quadrilateral. */
+  setorg(*flipedge, botvertex);
+  setdest(*flipedge, farvertex);
+  setapex(*flipedge, leftvertex);
+  setorg(top, farvertex);
+  setdest(top, botvertex);
+  setapex(top, rightvertex);
+  if (b->verbose > 2) {
+    fprintf(stderr, "  Edge unflip results in left ");
+    printtriangle(m, b, flipedge);
+    fprintf(stderr, "  and right ");
+    printtriangle(m, b, &top);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  insertvertex()   Insert a vertex into a Delaunay triangulation,          */
+/*                   performing flips as necessary to maintain the Delaunay  */
+/*                   property.                                               */
+/*                                                                           */
+/*  The point `insertvertex' is located.  If `searchtri.tri' is not NULL,    */
+/*  the search for the containing triangle begins from `searchtri'.  If      */
+/*  `searchtri.tri' is NULL, a full point location procedure is called.      */
+/*  If `insertvertex' is found inside a triangle, the triangle is split into */
+/*  three; if `insertvertex' lies on an edge, the edge is split in two,      */
+/*  thereby splitting the two adjacent triangles into four.  Edge flips are  */
+/*  used to restore the Delaunay property.  If `insertvertex' lies on an     */
+/*  existing vertex, no action is taken, and the value DUPLICATEVERTEX is    */
+/*  returned.  On return, `searchtri' is set to a handle whose origin is the */
+/*  existing vertex.                                                         */
+/*                                                                           */
+/*  Normally, the parameter `splitseg' is set to NULL, implying that no      */
+/*  subsegment should be split.  In this case, if `insertvertex' is found to */
+/*  lie on a segment, no action is taken, and the value VIOLATINGVERTEX is   */
+/*  returned.  On return, `searchtri' is set to a handle whose primary edge  */
+/*  is the violated subsegment.                                              */
+/*                                                                           */
+/*  If the calling routine wishes to split a subsegment by inserting a       */
+/*  vertex in it, the parameter `splitseg' should be that subsegment.  In    */
+/*  this case, `searchtri' MUST be the triangle handle reached by pivoting   */
+/*  from that subsegment; no point location is done.                         */
+/*                                                                           */
+/*  `segmentflaws' and `triflaws' are flags that indicate whether or not     */
+/*  there should be checks for the creation of encroached subsegments or bad */
+/*  quality triangles.  If a newly inserted vertex encroaches upon           */
+/*  subsegments, these subsegments are added to the list of subsegments to   */
+/*  be split if `segmentflaws' is set.  If bad triangles are created, these  */
+/*  are added to the queue if `triflaws' is set.                             */
+/*                                                                           */
+/*  If a duplicate vertex or violated segment does not prevent the vertex    */
+/*  from being inserted, the return value will be ENCROACHINGVERTEX if the   */
+/*  vertex encroaches upon a subsegment (and checking is enabled), or        */
+/*  SUCCESSFULVERTEX otherwise.  In either case, `searchtri' is set to a     */
+/*  handle whose origin is the newly inserted vertex.                        */
+/*                                                                           */
+/*  insertvertex() does not use flip() for reasons of speed; some            */
+/*  information can be reused from edge flip to edge flip, like the          */
+/*  locations of subsegments.                                                */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+enum insertvertexresult insertvertex(struct mesh *m, struct behavior *b,
+                                     vertex newvertex, struct otri *searchtri,
+                                     struct osub *splitseg,
+                                     int segmentflaws, int triflaws,
+                                     REAL iradius)
+#else /* not ANSI_DECLARATORS */
+enum insertvertexresult insertvertex(m, b, newvertex, searchtri, splitseg,
+                                     segmentflaws, triflaws, iradius)
+struct mesh *m;
+struct behavior *b;
+vertex newvertex;
+struct otri *searchtri;
+struct osub *splitseg;
+int segmentflaws;
+int triflaws;
+REAL iradius;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri horiz;
+  struct otri top;
+  struct otri botleft, botright;
+  struct otri topleft, topright;
+  struct otri newbotleft, newbotright;
+  struct otri newtopright;
+  struct otri botlcasing, botrcasing;
+  struct otri toplcasing, toprcasing;
+  struct otri testtri;
+  struct osub botlsubseg, botrsubseg;
+  struct osub toplsubseg, toprsubseg;
+  struct osub brokensubseg;
+  struct osub checksubseg;
+  struct osub rightsubseg;
+  struct osub newsubseg;
+  struct badsubseg *encroached;
+  struct flipstacker *newflip;
+  vertex first;
+  vertex leftvertex, rightvertex, botvertex, topvertex, farvertex;
+  REAL attrib;
+  REAL area;
+  enum insertvertexresult success;
+  enum locateresult intersect;
+  int doflip;
+  int mirrorflag;
+  int enq;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;         /* Temporary variable used by spivot() and tspivot(). */
+
+  if (b->verbose > 1) {
+    fprintf(stderr, "  Inserting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
+  }
+
+  if (splitseg == (struct osub *) NULL) {
+    /* Find the location of the vertex to be inserted.  Check if a good */
+    /*   starting triangle has already been provided by the caller.     */
+    if (searchtri->tri == m->dummytri) {
+      /* Find a boundary triangle. */
+      horiz.tri = m->dummytri;
+      horiz.orient = 0;
+      symself(horiz);
+      /* Search for a triangle containing `newvertex'. */
+      intersect = locate(m, b, newvertex, &horiz);
+    } else {
+      /* Start searching from the triangle provided by the caller. */
+      otricopy(*searchtri, horiz);
+      intersect = preciselocate(m, b, newvertex, &horiz, 1);
+    }
+  } else {
+    /* The calling routine provides the subsegment in which */
+    /*   the vertex is inserted.                             */
+    otricopy(*searchtri, horiz);
+    intersect = ONEDGE;
+  }
+  if (intersect == ONVERTEX) {
+    /* There's already a vertex there.  Return in `searchtri' a triangle */
+    /*   whose origin is the existing vertex.                            */
+    otricopy(horiz, *searchtri);
+    otricopy(horiz, m->recenttri);
+    return DUPLICATEVERTEX;
+  }
+  if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
+    /* The vertex falls on an edge or boundary. */
+    if (m->checksegments && (splitseg == (struct osub *) NULL)) {
+      /* Check whether the vertex falls on a subsegment. */
+      tspivot(horiz, brokensubseg);
+      if (brokensubseg.ss != m->dummysub) {
+        /* The vertex falls on a subsegment, and hence will not be inserted. */
+        if (segmentflaws) {
+          if (b->nobisect == 2) {
+            enq = 0;
+#ifndef CDT_ONLY
+          } else if (iradius > 0.0) {
+            enq = splitpermitted(m, &brokensubseg, iradius);
+#endif /* not CDT_ONLY */
+          } else {
+            enq = 1;
+          }
+          if (enq && (b->nobisect == 1)) {
+            /* This subsegment may be split only if it is an */
+            /*   internal boundary.                          */
+            sym(horiz, testtri);
+            enq = testtri.tri != m->dummytri;
+          }
+          if (enq) {
+            /* Add the subsegment to the list of encroached subsegments. */
+            encroached = (struct badsubseg *) poolalloc(&m->badsubsegs);
+            encroached->encsubseg = sencode(brokensubseg);
+            sorg(brokensubseg, encroached->subsegorg);
+            sdest(brokensubseg, encroached->subsegdest);
+            if (b->verbose > 2) {
+              fprintf(stderr, 
+          "  Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
+                     encroached->subsegorg[0], encroached->subsegorg[1],
+                     encroached->subsegdest[0], encroached->subsegdest[1]);
+            }
+          }
+        }
+        /* Return a handle whose primary edge contains the vertex, */
+        /*   which has not been inserted.                          */
+        otricopy(horiz, *searchtri);
+        otricopy(horiz, m->recenttri);
+        return VIOLATINGVERTEX;
+      }
+    }
+
+    /* Insert the vertex on an edge, dividing one triangle into two (if */
+    /*   the edge lies on a boundary) or two triangles into four.       */
+    lprev(horiz, botright);
+    sym(botright, botrcasing);
+    sym(horiz, topright);
+    /* Is there a second triangle?  (Or does this edge lie on a boundary?) */
+    mirrorflag = topright.tri != m->dummytri;
+    if (mirrorflag) {
+      lnextself(topright);
+      sym(topright, toprcasing);
+      maketriangle(m, b, &newtopright);
+    } else {
+      /* Splitting a boundary edge increases the number of boundary edges. */
+      m->hullsize++;
+    }
+    maketriangle(m, b, &newbotright);
+
+    /* Set the vertices of changed and new triangles. */
+    org(horiz, rightvertex);
+    dest(horiz, leftvertex);
+    apex(horiz, botvertex);
+    setorg(newbotright, botvertex);
+    setdest(newbotright, rightvertex);
+    setapex(newbotright, newvertex);
+    setorg(horiz, newvertex);
+    for (i = 0; i < m->eextras; i++) {
+      /* Set the element attributes of a new triangle. */
+      setelemattribute(newbotright, i, elemattribute(botright, i));
+    }
+    if (b->vararea) {
+      /* Set the area constraint of a new triangle. */
+      setareabound(newbotright, areabound(botright));
+    }
+    if (mirrorflag) {
+      dest(topright, topvertex);
+      setorg(newtopright, rightvertex);
+      setdest(newtopright, topvertex);
+      setapex(newtopright, newvertex);
+      setorg(topright, newvertex);
+      for (i = 0; i < m->eextras; i++) {
+        /* Set the element attributes of another new triangle. */
+        setelemattribute(newtopright, i, elemattribute(topright, i));
+      }
+      if (b->vararea) {
+        /* Set the area constraint of another new triangle. */
+        setareabound(newtopright, areabound(topright));
+      }
+    }
+
+    /* There may be subsegments that need to be bonded */
+    /*   to the new triangle(s).                       */
+    if (m->checksegments) {
+      tspivot(botright, botrsubseg);
+      if (botrsubseg.ss != m->dummysub) {
+        tsdissolve(botright);
+        tsbond(newbotright, botrsubseg);
+      }
+      if (mirrorflag) {
+        tspivot(topright, toprsubseg);
+        if (toprsubseg.ss != m->dummysub) {
+          tsdissolve(topright);
+          tsbond(newtopright, toprsubseg);
+        }
+      }
+    }
+
+    /* Bond the new triangle(s) to the surrounding triangles. */
+    bond(newbotright, botrcasing);
+    lprevself(newbotright);
+    bond(newbotright, botright);
+    lprevself(newbotright);
+    if (mirrorflag) {
+      bond(newtopright, toprcasing);
+      lnextself(newtopright);
+      bond(newtopright, topright);
+      lnextself(newtopright);
+      bond(newtopright, newbotright);
+    }
+
+    if (splitseg != (struct osub *) NULL) {
+      /* Split the subsegment into two. */
+      setsdest(*splitseg, newvertex);
+      ssymself(*splitseg);
+      spivot(*splitseg, rightsubseg);
+      insertsubseg(m, b, &newbotright, mark(*splitseg));
+      tspivot(newbotright, newsubseg);
+      sbond(*splitseg, newsubseg);
+      ssymself(newsubseg);
+      sbond(newsubseg, rightsubseg);
+      ssymself(*splitseg);
+      /* Transfer the subsegment's boundary marker to the vertex */
+      /*   if required.                                          */
+      if (vertexmark(newvertex) == 0) {
+        setvertexmark(newvertex, mark(*splitseg));
+      }
+    }
+
+    if (m->checkquality) {
+      poolrestart(&m->flipstackers);
+      m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
+      m->lastflip->flippedtri = encode(horiz);
+      m->lastflip->prevflip = (struct flipstacker *) &insertvertex;
+    }
+
+#ifdef SELF_CHECK
+    if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) {
+      fprintf(stderr, "Internal error in insertvertex():\n");
+      fprintf(stderr, 
+            "  Clockwise triangle prior to edge vertex insertion (bottom).\n");
+    }
+    if (mirrorflag) {
+      if (counterclockwise(m, b, leftvertex, rightvertex, topvertex) < 0.0) {
+        fprintf(stderr, "Internal error in insertvertex():\n");
+        fprintf(stderr, "  Clockwise triangle prior to edge vertex insertion (top).\n");
+      }
+      if (counterclockwise(m, b, rightvertex, topvertex, newvertex) < 0.0) {
+        fprintf(stderr, "Internal error in insertvertex():\n");
+        fprintf(stderr, 
+            "  Clockwise triangle after edge vertex insertion (top right).\n");
+      }
+      if (counterclockwise(m, b, topvertex, leftvertex, newvertex) < 0.0) {
+        fprintf(stderr, "Internal error in insertvertex():\n");
+        fprintf(stderr, 
+            "  Clockwise triangle after edge vertex insertion (top left).\n");
+      }
+    }
+    if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) {
+      fprintf(stderr, "Internal error in insertvertex():\n");
+      fprintf(stderr, 
+          "  Clockwise triangle after edge vertex insertion (bottom left).\n");
+    }
+    if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) {
+      fprintf(stderr, "Internal error in insertvertex():\n");
+      fprintf(stderr, 
+        "  Clockwise triangle after edge vertex insertion (bottom right).\n");
+    }
+#endif /* SELF_CHECK */
+    if (b->verbose > 2) {
+      fprintf(stderr, "  Updating bottom left ");
+      printtriangle(m, b, &botright);
+      if (mirrorflag) {
+        fprintf(stderr, "  Updating top left ");
+        printtriangle(m, b, &topright);
+        fprintf(stderr, "  Creating top right ");
+        printtriangle(m, b, &newtopright);
+      }
+      fprintf(stderr, "  Creating bottom right ");
+      printtriangle(m, b, &newbotright);
+    }
+
+    /* Position `horiz' on the first edge to check for */
+    /*   the Delaunay property.                        */
+    lnextself(horiz);
+  } else {
+    /* Insert the vertex in a triangle, splitting it into three. */
+    lnext(horiz, botleft);
+    lprev(horiz, botright);
+    sym(botleft, botlcasing);
+    sym(botright, botrcasing);
+    maketriangle(m, b, &newbotleft);
+    maketriangle(m, b, &newbotright);
+
+    /* Set the vertices of changed and new triangles. */
+    org(horiz, rightvertex);
+    dest(horiz, leftvertex);
+    apex(horiz, botvertex);
+    setorg(newbotleft, leftvertex);
+    setdest(newbotleft, botvertex);
+    setapex(newbotleft, newvertex);
+    setorg(newbotright, botvertex);
+    setdest(newbotright, rightvertex);
+    setapex(newbotright, newvertex);
+    setapex(horiz, newvertex);
+    for (i = 0; i < m->eextras; i++) {
+      /* Set the element attributes of the new triangles. */
+      attrib = elemattribute(horiz, i);
+      setelemattribute(newbotleft, i, attrib);
+      setelemattribute(newbotright, i, attrib);
+    }
+    if (b->vararea) {
+      /* Set the area constraint of the new triangles. */
+      area = areabound(horiz);
+      setareabound(newbotleft, area);
+      setareabound(newbotright, area);
+    }
+
+    /* There may be subsegments that need to be bonded */
+    /*   to the new triangles.                         */
+    if (m->checksegments) {
+      tspivot(botleft, botlsubseg);
+      if (botlsubseg.ss != m->dummysub) {
+        tsdissolve(botleft);
+        tsbond(newbotleft, botlsubseg);
+      }
+      tspivot(botright, botrsubseg);
+      if (botrsubseg.ss != m->dummysub) {
+        tsdissolve(botright);
+        tsbond(newbotright, botrsubseg);
+      }
+    }
+
+    /* Bond the new triangles to the surrounding triangles. */
+    bond(newbotleft, botlcasing);
+    bond(newbotright, botrcasing);
+    lnextself(newbotleft);
+    lprevself(newbotright);
+    bond(newbotleft, newbotright);
+    lnextself(newbotleft);
+    bond(botleft, newbotleft);
+    lprevself(newbotright);
+    bond(botright, newbotright);
+
+    if (m->checkquality) {
+      poolrestart(&m->flipstackers);
+      m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
+      m->lastflip->flippedtri = encode(horiz);
+      m->lastflip->prevflip = (struct flipstacker *) NULL;
+    }
+
+#ifdef SELF_CHECK
+    if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) {
+      fprintf(stderr, "Internal error in insertvertex():\n");
+      fprintf(stderr, "  Clockwise triangle prior to vertex insertion.\n");
+    }
+    if (counterclockwise(m, b, rightvertex, leftvertex, newvertex) < 0.0) {
+      fprintf(stderr, "Internal error in insertvertex():\n");
+      fprintf(stderr, "  Clockwise triangle after vertex insertion (top).\n");
+    }
+    if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) {
+      fprintf(stderr, "Internal error in insertvertex():\n");
+      fprintf(stderr, "  Clockwise triangle after vertex insertion (left).\n");
+    }
+    if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) {
+      fprintf(stderr, "Internal error in insertvertex():\n");
+      fprintf(stderr, "  Clockwise triangle after vertex insertion (right).\n");
+    }
+#endif /* SELF_CHECK */
+    if (b->verbose > 2) {
+      fprintf(stderr, "  Updating top ");
+      printtriangle(m, b, &horiz);
+      fprintf(stderr, "  Creating left ");
+      printtriangle(m, b, &newbotleft);
+      fprintf(stderr, "  Creating right ");
+      printtriangle(m, b, &newbotright);
+    }
+  }
+
+  /* The insertion is successful by default, unless an encroached */
+  /*   subsegment is found.                                       */
+  success = SUCCESSFULVERTEX;
+  /* Circle around the newly inserted vertex, checking each edge opposite */
+  /*   it for the Delaunay property.  Non-Delaunay edges are flipped.     */
+  /*   `horiz' is always the edge being checked.  `first' marks where to  */
+  /*   stop circling.                                                     */
+  org(horiz, first);
+  rightvertex = first;
+  dest(horiz, leftvertex);
+  /* Circle until finished. */
+  while (1) {
+    /* By default, the edge will be flipped. */
+    doflip = 1;
+
+    if (m->checksegments) {
+      /* Check for a subsegment, which cannot be flipped. */
+      tspivot(horiz, checksubseg);
+      if (checksubseg.ss != m->dummysub) {
+        /* The edge is a subsegment and cannot be flipped. */
+        doflip = 0;
+#ifndef CDT_ONLY
+        if (segmentflaws) {
+          /* Does the new vertex encroach upon this subsegment? */
+          if (checkseg4encroach(m, b, &checksubseg, iradius)) {
+            success = ENCROACHINGVERTEX;
+          }
+        }
+#endif /* not CDT_ONLY */
+      }
+    }
+
+    if (doflip) {
+      /* Check if the edge is a boundary edge. */
+      sym(horiz, top);
+      if (top.tri == m->dummytri) {
+        /* The edge is a boundary edge and cannot be flipped. */
+        doflip = 0;
+      } else {
+        /* Find the vertex on the other side of the edge. */
+        apex(top, farvertex);
+        /* In the incremental Delaunay triangulation algorithm, any of      */
+        /*   `leftvertex', `rightvertex', and `farvertex' could be vertices */
+        /*   of the triangular bounding box.  These vertices must be        */
+        /*   treated as if they are infinitely distant, even though their   */
+        /*   "coordinates" are not.                                         */
+        if ((leftvertex == m->infvertex1) || (leftvertex == m->infvertex2) ||
+            (leftvertex == m->infvertex3)) {
+          /* `leftvertex' is infinitely distant.  Check the convexity of  */
+          /*   the boundary of the triangulation.  'farvertex' might be   */
+          /*   infinite as well, but trust me, this same condition should */
+          /*   be applied.                                                */
+          doflip = counterclockwise(m, b, newvertex, rightvertex, farvertex)
+                   > 0.0;
+        } else if ((rightvertex == m->infvertex1) ||
+                   (rightvertex == m->infvertex2) ||
+                   (rightvertex == m->infvertex3)) {
+          /* `rightvertex' is infinitely distant.  Check the convexity of */
+          /*   the boundary of the triangulation.  'farvertex' might be   */
+          /*   infinite as well, but trust me, this same condition should */
+          /*   be applied.                                                */
+          doflip = counterclockwise(m, b, farvertex, leftvertex, newvertex)
+                   > 0.0;
+        } else if ((farvertex == m->infvertex1) ||
+                   (farvertex == m->infvertex2) ||
+                   (farvertex == m->infvertex3)) {
+          /* `farvertex' is infinitely distant and cannot be inside */
+          /*   the circumcircle of the triangle `horiz'.            */
+          doflip = 0;
+        } else {
+          /* Test whether the edge is locally Delaunay. */
+          doflip = incircle(m, b, leftvertex, newvertex, rightvertex,
+                            farvertex) > 0.0;
+        }
+        if (doflip) {
+          /* We made it!  Flip the edge `horiz' by rotating its containing */
+          /*   quadrilateral (the two triangles adjacent to `horiz').      */
+          /* Identify the casing of the quadrilateral. */
+          lprev(top, topleft);
+          sym(topleft, toplcasing);
+          lnext(top, topright);
+          sym(topright, toprcasing);
+          lnext(horiz, botleft);
+          sym(botleft, botlcasing);
+          lprev(horiz, botright);
+          sym(botright, botrcasing);
+          /* Rotate the quadrilateral one-quarter turn counterclockwise. */
+          bond(topleft, botlcasing);
+          bond(botleft, botrcasing);
+          bond(botright, toprcasing);
+          bond(topright, toplcasing);
+          if (m->checksegments) {
+            /* Check for subsegments and rebond them to the quadrilateral. */
+            tspivot(topleft, toplsubseg);
+            tspivot(botleft, botlsubseg);
+            tspivot(botright, botrsubseg);
+            tspivot(topright, toprsubseg);
+            if (toplsubseg.ss == m->dummysub) {
+              tsdissolve(topright);
+            } else {
+              tsbond(topright, toplsubseg);
+            }
+            if (botlsubseg.ss == m->dummysub) {
+              tsdissolve(topleft);
+            } else {
+              tsbond(topleft, botlsubseg);
+            }
+            if (botrsubseg.ss == m->dummysub) {
+              tsdissolve(botleft);
+            } else {
+              tsbond(botleft, botrsubseg);
+            }
+            if (toprsubseg.ss == m->dummysub) {
+              tsdissolve(botright);
+            } else {
+              tsbond(botright, toprsubseg);
+            }
+          }
+          /* New vertex assignments for the rotated quadrilateral. */
+          setorg(horiz, farvertex);
+          setdest(horiz, newvertex);
+          setapex(horiz, rightvertex);
+          setorg(top, newvertex);
+          setdest(top, farvertex);
+          setapex(top, leftvertex);
+          for (i = 0; i < m->eextras; i++) {
+            /* Take the average of the two triangles' attributes. */
+            attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
+            setelemattribute(top, i, attrib);
+            setelemattribute(horiz, i, attrib);
+          }
+          if (b->vararea) {
+            if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
+              area = -1.0;
+            } else {
+              /* Take the average of the two triangles' area constraints.    */
+              /*   This prevents small area constraints from migrating a     */
+              /*   long, long way from their original location due to flips. */
+              area = 0.5 * (areabound(top) + areabound(horiz));
+            }
+            setareabound(top, area);
+            setareabound(horiz, area);
+          }
+
+          if (m->checkquality) {
+            newflip = (struct flipstacker *) poolalloc(&m->flipstackers);
+            newflip->flippedtri = encode(horiz);
+            newflip->prevflip = m->lastflip;
+            m->lastflip = newflip;
+          }
+
+#ifdef SELF_CHECK
+          if (newvertex != (vertex) NULL) {
+            if (counterclockwise(m, b, leftvertex, newvertex, rightvertex) <
+                0.0) {
+              fprintf(stderr, "Internal error in insertvertex():\n");
+              fprintf(stderr, "  Clockwise triangle prior to edge flip (bottom).\n");
+            }
+            /* The following test has been removed because constrainededge() */
+            /*   sometimes generates inverted triangles that insertvertex()  */
+            /*   removes.                                                    */
+/*
+            if (counterclockwise(m, b, rightvertex, farvertex, leftvertex) <
+                0.0) {
+              fprintf(stderr, "Internal error in insertvertex():\n");
+              fprintf(stderr, "  Clockwise triangle prior to edge flip (top).\n");
+            }
+*/
+            if (counterclockwise(m, b, farvertex, leftvertex, newvertex) <
+                0.0) {
+              fprintf(stderr, "Internal error in insertvertex():\n");
+              fprintf(stderr, "  Clockwise triangle after edge flip (left).\n");
+            }
+            if (counterclockwise(m, b, newvertex, rightvertex, farvertex) <
+                0.0) {
+              fprintf(stderr, "Internal error in insertvertex():\n");
+              fprintf(stderr, "  Clockwise triangle after edge flip (right).\n");
+            }
+          }
+#endif /* SELF_CHECK */
+          if (b->verbose > 2) {
+            fprintf(stderr, "  Edge flip results in left ");
+            lnextself(topleft);
+            printtriangle(m, b, &topleft);
+            fprintf(stderr, "  and right ");
+            printtriangle(m, b, &horiz);
+          }
+          /* On the next iterations, consider the two edges that were  */
+          /*   exposed (this is, are now visible to the newly inserted */
+          /*   vertex) by the edge flip.                               */
+          lprevself(horiz);
+          leftvertex = farvertex;
+        }
+      }
+    }
+    if (!doflip) {
+      /* The handle `horiz' is accepted as locally Delaunay. */
+#ifndef CDT_ONLY
+      if (triflaws) {
+        /* Check the triangle `horiz' for quality. */
+        testtriangle(m, b, &horiz);
+      }
+#endif /* not CDT_ONLY */
+      /* Look for the next edge around the newly inserted vertex. */
+      lnextself(horiz);
+      sym(horiz, testtri);
+      /* Check for finishing a complete revolution about the new vertex, or */
+      /*   falling outside  of the triangulation.  The latter will happen   */
+      /*   when a vertex is inserted at a boundary.                         */
+      if ((leftvertex == first) || (testtri.tri == m->dummytri)) {
+        /* We're done.  Return a triangle whose origin is the new vertex. */
+        lnext(horiz, *searchtri);
+        lnext(horiz, m->recenttri);
+        return success;
+      }
+      /* Finish finding the next edge around the newly inserted vertex. */
+      lnext(testtri, horiz);
+      rightvertex = leftvertex;
+      dest(horiz, leftvertex);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  triangulatepolygon()   Find the Delaunay triangulation of a polygon that */
+/*                         has a certain "nice" shape.  This includes the    */
+/*                         polygons that result from deletion of a vertex or */
+/*                         insertion of a segment.                           */
+/*                                                                           */
+/*  This is a conceptually difficult routine.  The starting assumption is    */
+/*  that we have a polygon with n sides.  n - 1 of these sides are currently */
+/*  represented as edges in the mesh.  One side, called the "base", need not */
+/*  be.                                                                      */
+/*                                                                           */
+/*  Inside the polygon is a structure I call a "fan", consisting of n - 1    */
+/*  triangles that share a common origin.  For each of these triangles, the  */
+/*  edge opposite the origin is one of the sides of the polygon.  The        */
+/*  primary edge of each triangle is the edge directed from the origin to    */
+/*  the destination; note that this is not the same edge that is a side of   */
+/*  the polygon.  `firstedge' is the primary edge of the first triangle.     */
+/*  From there, the triangles follow in counterclockwise order about the     */
+/*  polygon, until `lastedge', the primary edge of the last triangle.        */
+/*  `firstedge' and `lastedge' are probably connected to other triangles     */
+/*  beyond the extremes of the fan, but their identity is not important, as  */
+/*  long as the fan remains connected to them.                               */
+/*                                                                           */
+/*  Imagine the polygon oriented so that its base is at the bottom.  This    */
+/*  puts `firstedge' on the far right, and `lastedge' on the far left.       */
+/*  The right vertex of the base is the destination of `firstedge', and the  */
+/*  left vertex of the base is the apex of `lastedge'.                       */
+/*                                                                           */
+/*  The challenge now is to find the right sequence of edge flips to         */
+/*  transform the fan into a Delaunay triangulation of the polygon.  Each    */
+/*  edge flip effectively removes one triangle from the fan, committing it   */
+/*  to the polygon.  The resulting polygon has one fewer edge.  If `doflip'  */
+/*  is set, the final flip will be performed, resulting in a fan of one      */
+/*  (useless?) triangle.  If `doflip' is not set, the final flip is not      */
+/*  performed, resulting in a fan of two triangles, and an unfinished        */
+/*  triangular polygon that is not yet filled out with a single triangle.    */
+/*  On completion of the routine, `lastedge' is the last remaining triangle, */
+/*  or the leftmost of the last two.                                         */
+/*                                                                           */
+/*  Although the flips are performed in the order described above, the       */
+/*  decisions about what flips to perform are made in precisely the reverse  */
+/*  order.  The recursive triangulatepolygon() procedure makes a decision,   */
+/*  uses up to two recursive calls to triangulate the "subproblems"          */
+/*  (polygons with fewer edges), and then performs an edge flip.             */
+/*                                                                           */
+/*  The "decision" it makes is which vertex of the polygon should be         */
+/*  connected to the base.  This decision is made by testing every possible  */
+/*  vertex.  Once the best vertex is found, the two edges that connect this  */
+/*  vertex to the base become the bases for two smaller polygons.  These     */
+/*  are triangulated recursively.  Unfortunately, this approach can take     */
+/*  O(n^2) time not only in the worst case, but in many common cases.  It's  */
+/*  rarely a big deal for vertex deletion, where n is rarely larger than     */
+/*  ten, but it could be a big deal for segment insertion, especially if     */
+/*  there's a lot of long segments that each cut many triangles.  I ought to */
+/*  code a faster algorithm some day.                                        */
+/*                                                                           */
+/*  The `edgecount' parameter is the number of sides of the polygon,         */
+/*  including its base.  `triflaws' is a flag that determines whether the    */
+/*  new triangles should be tested for quality, and enqueued if they are     */
+/*  bad.                                                                     */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void triangulatepolygon(struct mesh *m, struct behavior *b,
+                        struct otri *firstedge, struct otri *lastedge,
+                        int edgecount, int doflip, int triflaws)
+#else /* not ANSI_DECLARATORS */
+void triangulatepolygon(m, b, firstedge, lastedge, edgecount, doflip, triflaws)
+struct mesh *m;
+struct behavior *b;
+struct otri *firstedge;
+struct otri *lastedge;
+int edgecount;
+int doflip;
+int triflaws;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri testtri;
+  struct otri besttri;
+  struct otri tempedge;
+  vertex leftbasevertex, rightbasevertex;
+  vertex testvertex;
+  vertex bestvertex;
+  int bestnumber;
+  int i;
+  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
+
+  /* Identify the base vertices. */
+  apex(*lastedge, leftbasevertex);
+  dest(*firstedge, rightbasevertex);
+  if (b->verbose > 2) {
+    fprintf(stderr, "  Triangulating interior polygon at edge\n");
+    fprintf(stderr, "    (%.12g, %.12g) (%.12g, %.12g)\n", leftbasevertex[0],
+           leftbasevertex[1], rightbasevertex[0], rightbasevertex[1]);
+  }
+  /* Find the best vertex to connect the base to. */
+  onext(*firstedge, besttri);
+  dest(besttri, bestvertex);
+  otricopy(besttri, testtri);
+  bestnumber = 1;
+  for (i = 2; i <= edgecount - 2; i++) {
+    onextself(testtri);
+    dest(testtri, testvertex);
+    /* Is this a better vertex? */
+    if (incircle(m, b, leftbasevertex, rightbasevertex, bestvertex,
+                 testvertex) > 0.0) {
+      otricopy(testtri, besttri);
+      bestvertex = testvertex;
+      bestnumber = i;
+    }
+  }
+  if (b->verbose > 2) {
+    fprintf(stderr, "    Connecting edge to (%.12g, %.12g)\n", bestvertex[0],
+           bestvertex[1]);
+  }
+  if (bestnumber > 1) {
+    /* Recursively triangulate the smaller polygon on the right. */
+    oprev(besttri, tempedge);
+    triangulatepolygon(m, b, firstedge, &tempedge, bestnumber + 1, 1,
+                       triflaws);
+  }
+  if (bestnumber < edgecount - 2) {
+    /* Recursively triangulate the smaller polygon on the left. */
+    sym(besttri, tempedge);
+    triangulatepolygon(m, b, &besttri, lastedge, edgecount - bestnumber, 1,
+                       triflaws);
+    /* Find `besttri' again; it may have been lost to edge flips. */
+    sym(tempedge, besttri);
+  }
+  if (doflip) {
+    /* Do one final edge flip. */
+    flip(m, b, &besttri);
+#ifndef CDT_ONLY
+    if (triflaws) {
+      /* Check the quality of the newly committed triangle. */
+      sym(besttri, testtri);
+      testtriangle(m, b, &testtri);
+    }
+#endif /* not CDT_ONLY */
+  }
+  /* Return the base triangle. */
+  otricopy(besttri, *lastedge);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  deletevertex()   Delete a vertex from a Delaunay triangulation, ensuring */
+/*                   that the triangulation remains Delaunay.                */
+/*                                                                           */
+/*  The origin of `deltri' is deleted.  The union of the triangles adjacent  */
+/*  to this vertex is a polygon, for which the Delaunay triangulation is     */
+/*  found.  Two triangles are removed from the mesh.                         */
+/*                                                                           */
+/*  Only interior vertices that do not lie on segments or boundaries may be  */
+/*  deleted.                                                                 */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void deletevertex(struct mesh *m, struct behavior *b, struct otri *deltri)
+#else /* not ANSI_DECLARATORS */
+void deletevertex(m, b, deltri)
+struct mesh *m;
+struct behavior *b;
+struct otri *deltri;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri countingtri;
+  struct otri firstedge, lastedge;
+  struct otri deltriright;
+  struct otri lefttri, righttri;
+  struct otri leftcasing, rightcasing;
+  struct osub leftsubseg, rightsubseg;
+  vertex delvertex;
+  vertex neworg;
+  int edgecount;
+  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  org(*deltri, delvertex);
+  if (b->verbose > 1) {
+    fprintf(stderr, "  Deleting (%.12g, %.12g).\n", delvertex[0], delvertex[1]);
+  }
+  vertexdealloc(m, delvertex);
+
+  /* Count the degree of the vertex being deleted. */
+  onext(*deltri, countingtri);
+  edgecount = 1;
+  while (!otriequal(*deltri, countingtri)) {
+#ifdef SELF_CHECK
+    if (countingtri.tri == m->dummytri) {
+      fprintf(stderr, "Internal error in deletevertex():\n");
+      fprintf(stderr, "  Attempt to delete boundary vertex.\n");
+      internalerror();
+    }
+#endif /* SELF_CHECK */
+    edgecount++;
+    onextself(countingtri);
+  }
+
+#ifdef SELF_CHECK
+  if (edgecount < 3) {
+    fprintf(stderr, "Internal error in deletevertex():\n  Vertex has degree %d.\n",
+           edgecount);
+    internalerror();
+  }
+#endif /* SELF_CHECK */
+  if (edgecount > 3) {
+    /* Triangulate the polygon defined by the union of all triangles */
+    /*   adjacent to the vertex being deleted.  Check the quality of */
+    /*   the resulting triangles.                                    */
+    onext(*deltri, firstedge);
+    oprev(*deltri, lastedge);
+    triangulatepolygon(m, b, &firstedge, &lastedge, edgecount, 0,
+                       !b->nobisect);
+  }
+  /* Splice out two triangles. */
+  lprev(*deltri, deltriright);
+  dnext(*deltri, lefttri);
+  sym(lefttri, leftcasing);
+  oprev(deltriright, righttri);
+  sym(righttri, rightcasing);
+  bond(*deltri, leftcasing);
+  bond(deltriright, rightcasing);
+  tspivot(lefttri, leftsubseg);
+  if (leftsubseg.ss != m->dummysub) {
+    tsbond(*deltri, leftsubseg);
+  }
+  tspivot(righttri, rightsubseg);
+  if (rightsubseg.ss != m->dummysub) {
+    tsbond(deltriright, rightsubseg);
+  }
+
+  /* Set the new origin of `deltri' and check its quality. */
+  org(lefttri, neworg);
+  setorg(*deltri, neworg);
+  if (!b->nobisect) {
+    testtriangle(m, b, deltri);
+  }
+
+  /* Delete the two spliced-out triangles. */
+  triangledealloc(m, lefttri.tri);
+  triangledealloc(m, righttri.tri);
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  undovertex()   Undo the most recent vertex insertion.                    */
+/*                                                                           */
+/*  Walks through the list of transformations (flips and a vertex insertion) */
+/*  in the reverse of the order in which they were done, and undoes them.    */
+/*  The inserted vertex is removed from the triangulation and deallocated.   */
+/*  Two triangles (possibly just one) are also deallocated.                  */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void undovertex(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void undovertex(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri fliptri;
+  struct otri botleft, botright, topright;
+  struct otri botlcasing, botrcasing, toprcasing;
+  struct otri gluetri;
+  struct osub botlsubseg, botrsubseg, toprsubseg;
+  vertex botvertex, rightvertex;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  /* Walk through the list of transformations (flips and a vertex insertion) */
+  /*   in the reverse of the order in which they were done, and undo them.   */
+  while (m->lastflip != (struct flipstacker *) NULL) {
+    /* Find a triangle involved in the last unreversed transformation. */
+    decode(m->lastflip->flippedtri, fliptri);
+
+    /* We are reversing one of three transformations:  a trisection of one */
+    /*   triangle into three (by inserting a vertex in the triangle), a    */
+    /*   bisection of two triangles into four (by inserting a vertex in an */
+    /*   edge), or an edge flip.                                           */
+    if (m->lastflip->prevflip == (struct flipstacker *) NULL) {
+      /* Restore a triangle that was split into three triangles, */
+      /*   so it is again one triangle.                          */
+      dprev(fliptri, botleft);
+      lnextself(botleft);
+      onext(fliptri, botright);
+      lprevself(botright);
+      sym(botleft, botlcasing);
+      sym(botright, botrcasing);
+      dest(botleft, botvertex);
+
+      setapex(fliptri, botvertex);
+      lnextself(fliptri);
+      bond(fliptri, botlcasing);
+      tspivot(botleft, botlsubseg);
+      tsbond(fliptri, botlsubseg);
+      lnextself(fliptri);
+      bond(fliptri, botrcasing);
+      tspivot(botright, botrsubseg);
+      tsbond(fliptri, botrsubseg);
+
+      /* Delete the two spliced-out triangles. */
+      triangledealloc(m, botleft.tri);
+      triangledealloc(m, botright.tri);
+    } else if (m->lastflip->prevflip == (struct flipstacker *) &insertvertex) {
+      /* Restore two triangles that were split into four triangles, */
+      /*   so they are again two triangles.                         */
+      lprev(fliptri, gluetri);
+      sym(gluetri, botright);
+      lnextself(botright);
+      sym(botright, botrcasing);
+      dest(botright, rightvertex);
+
+      setorg(fliptri, rightvertex);
+      bond(gluetri, botrcasing);
+      tspivot(botright, botrsubseg);
+      tsbond(gluetri, botrsubseg);
+
+      /* Delete the spliced-out triangle. */
+      triangledealloc(m, botright.tri);
+
+      sym(fliptri, gluetri);
+      if (gluetri.tri != m->dummytri) {
+        lnextself(gluetri);
+        dnext(gluetri, topright);
+        sym(topright, toprcasing);
+
+        setorg(gluetri, rightvertex);
+        bond(gluetri, toprcasing);
+        tspivot(topright, toprsubseg);
+        tsbond(gluetri, toprsubseg);
+
+        /* Delete the spliced-out triangle. */
+        triangledealloc(m, topright.tri);
+      }
+
+      /* This is the end of the list, sneakily encoded. */
+      m->lastflip->prevflip = (struct flipstacker *) NULL;
+    } else {
+      /* Undo an edge flip. */
+      unflip(m, b, &fliptri);
+    }
+
+    /* Go on and process the next transformation. */
+    m->lastflip = m->lastflip->prevflip;
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Mesh transformation routines end here                     *********/
+
+/********* Divide-and-conquer Delaunay triangulation begins here     *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  The divide-and-conquer bounding box                                      */
+/*                                                                           */
+/*  I originally implemented the divide-and-conquer and incremental Delaunay */
+/*  triangulations using the edge-based data structure presented by Guibas   */
+/*  and Stolfi.  Switching to a triangle-based data structure doubled the    */
+/*  speed.  However, I had to think of a few extra tricks to maintain the    */
+/*  elegance of the original algorithms.                                     */
+/*                                                                           */
+/*  The "bounding box" used by my variant of the divide-and-conquer          */
+/*  algorithm uses one triangle for each edge of the convex hull of the      */
+/*  triangulation.  These bounding triangles all share a common apical       */
+/*  vertex, which is represented by NULL and which represents nothing.       */
+/*  The bounding triangles are linked in a circular fan about this NULL      */
+/*  vertex, and the edges on the convex hull of the triangulation appear     */
+/*  opposite the NULL vertex.  You might find it easiest to imagine that     */
+/*  the NULL vertex is a point in 3D space behind the center of the          */
+/*  triangulation, and that the bounding triangles form a sort of cone.      */
+/*                                                                           */
+/*  This bounding box makes it easy to represent degenerate cases.  For      */
+/*  instance, the triangulation of two vertices is a single edge.  This edge */
+/*  is represented by two bounding box triangles, one on each "side" of the  */
+/*  edge.  These triangles are also linked together in a fan about the NULL  */
+/*  vertex.                                                                  */
+/*                                                                           */
+/*  The bounding box also makes it easy to traverse the convex hull, as the  */
+/*  divide-and-conquer algorithm needs to do.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  vertexsort()   Sort an array of vertices by x-coordinate, using the      */
+/*                 y-coordinate as a secondary key.                          */
+/*                                                                           */
+/*  Uses quicksort.  Randomized O(n log n) time.  No, I did not make any of  */
+/*  the usual quicksort mistakes.                                            */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void vertexsort(vertex *sortarray, int arraysize)
+#else /* not ANSI_DECLARATORS */
+void vertexsort(sortarray, arraysize)
+vertex *sortarray;
+int arraysize;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  int left, right;
+  int pivot;
+  REAL pivotx, pivoty;
+  vertex temp;
+
+  if (arraysize == 2) {
+    /* Recursive base case. */
+    if ((sortarray[0][0] > sortarray[1][0]) ||
+        ((sortarray[0][0] == sortarray[1][0]) &&
+         (sortarray[0][1] > sortarray[1][1]))) {
+      temp = sortarray[1];
+      sortarray[1] = sortarray[0];
+      sortarray[0] = temp;
+    }
+    return;
+  }
+  /* Choose a random pivot to split the array. */
+  pivot = (int) randomnation(arraysize);
+  pivotx = sortarray[pivot][0];
+  pivoty = sortarray[pivot][1];
+  /* Split the array. */
+  left = -1;
+  right = arraysize;
+  while (left < right) {
+    /* Search for a vertex whose x-coordinate is too large for the left. */
+    do {
+      left++;
+    } while ((left <= right) && ((sortarray[left][0] < pivotx) ||
+                                 ((sortarray[left][0] == pivotx) &&
+                                  (sortarray[left][1] < pivoty))));
+    /* Search for a vertex whose x-coordinate is too small for the right. */
+    do {
+      right--;
+    } while ((left <= right) && ((sortarray[right][0] > pivotx) ||
+                                 ((sortarray[right][0] == pivotx) &&
+                                  (sortarray[right][1] > pivoty))));
+    if (left < right) {
+      /* Swap the left and right vertices. */
+      temp = sortarray[left];
+      sortarray[left] = sortarray[right];
+      sortarray[right] = temp;
+    }
+  }
+  if (left > 1) {
+    /* Recursively sort the left subset. */
+    vertexsort(sortarray, left);
+  }
+  if (right < arraysize - 2) {
+    /* Recursively sort the right subset. */
+    vertexsort(&sortarray[right + 1], arraysize - right - 1);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  vertexmedian()   An order statistic algorithm, almost.  Shuffles an      */
+/*                   array of vertices so that the first `median' vertices   */
+/*                   occur lexicographically before the remaining vertices.  */
+/*                                                                           */
+/*  Uses the x-coordinate as the primary key if axis == 0; the y-coordinate  */
+/*  if axis == 1.  Very similar to the vertexsort() procedure, but runs in   */
+/*  randomized linear time.                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void vertexmedian(vertex *sortarray, int arraysize, int median, int axis)
+#else /* not ANSI_DECLARATORS */
+void vertexmedian(sortarray, arraysize, median, axis)
+vertex *sortarray;
+int arraysize;
+int median;
+int axis;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  int left, right;
+  int pivot;
+  REAL pivot1, pivot2;
+  vertex temp;
+
+  if (arraysize == 2) {
+    /* Recursive base case. */
+    if ((sortarray[0][axis] > sortarray[1][axis]) ||
+        ((sortarray[0][axis] == sortarray[1][axis]) &&
+         (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
+      temp = sortarray[1];
+      sortarray[1] = sortarray[0];
+      sortarray[0] = temp;
+    }
+    return;
+  }
+  /* Choose a random pivot to split the array. */
+  pivot = (int) randomnation(arraysize);
+  pivot1 = sortarray[pivot][axis];
+  pivot2 = sortarray[pivot][1 - axis];
+  /* Split the array. */
+  left = -1;
+  right = arraysize;
+  while (left < right) {
+    /* Search for a vertex whose x-coordinate is too large for the left. */
+    do {
+      left++;
+    } while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
+                                 ((sortarray[left][axis] == pivot1) &&
+                                  (sortarray[left][1 - axis] < pivot2))));
+    /* Search for a vertex whose x-coordinate is too small for the right. */
+    do {
+      right--;
+    } while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
+                                 ((sortarray[right][axis] == pivot1) &&
+                                  (sortarray[right][1 - axis] > pivot2))));
+    if (left < right) {
+      /* Swap the left and right vertices. */
+      temp = sortarray[left];
+      sortarray[left] = sortarray[right];
+      sortarray[right] = temp;
+    }
+  }
+  /* Unlike in vertexsort(), at most one of the following */
+  /*   conditionals is true.                             */
+  if (left > median) {
+    /* Recursively shuffle the left subset. */
+    vertexmedian(sortarray, left, median, axis);
+  }
+  if (right < median - 1) {
+    /* Recursively shuffle the right subset. */
+    vertexmedian(&sortarray[right + 1], arraysize - right - 1,
+                 median - right - 1, axis);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  alternateaxes()   Sorts the vertices as appropriate for the divide-and-  */
+/*                    conquer algorithm with alternating cuts.               */
+/*                                                                           */
+/*  Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1.   */
+/*  For the base case, subsets containing only two or three vertices are     */
+/*  always sorted by x-coordinate.                                           */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void alternateaxes(vertex *sortarray, int arraysize, int axis)
+#else /* not ANSI_DECLARATORS */
+void alternateaxes(sortarray, arraysize, axis)
+vertex *sortarray;
+int arraysize;
+int axis;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  int divider;
+
+  divider = arraysize >> 1;
+  if (arraysize <= 3) {
+    /* Recursive base case:  subsets of two or three vertices will be    */
+    /*   handled specially, and should always be sorted by x-coordinate. */
+    axis = 0;
+  }
+  /* Partition with a horizontal or vertical cut. */
+  vertexmedian(sortarray, arraysize, divider, axis);
+  /* Recursively partition the subsets with a cross cut. */
+  if (arraysize - divider >= 2) {
+    if (divider >= 2) {
+      alternateaxes(sortarray, divider, 1 - axis);
+    }
+    alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  mergehulls()   Merge two adjacent Delaunay triangulations into a         */
+/*                 single Delaunay triangulation.                            */
+/*                                                                           */
+/*  This is similar to the algorithm given by Guibas and Stolfi, but uses    */
+/*  a triangle-based, rather than edge-based, data structure.                */
+/*                                                                           */
+/*  The algorithm walks up the gap between the two triangulations, knitting  */
+/*  them together.  As they are merged, some of their bounding triangles     */
+/*  are converted into real triangles of the triangulation.  The procedure   */
+/*  pulls each hull's bounding triangles apart, then knits them together     */
+/*  like the teeth of two gears.  The Delaunay property determines, at each  */
+/*  step, whether the next "tooth" is a bounding triangle of the left hull   */
+/*  or the right.  When a bounding triangle becomes real, its apex is        */
+/*  changed from NULL to a real vertex.                                      */
+/*                                                                           */
+/*  Only two new triangles need to be allocated.  These become new bounding  */
+/*  triangles at the top and bottom of the seam.  They are used to connect   */
+/*  the remaining bounding triangles (those that have not been converted     */
+/*  into real triangles) into a single fan.                                  */
+/*                                                                           */
+/*  On entry, `farleft' and `innerleft' are bounding triangles of the left   */
+/*  triangulation.  The origin of `farleft' is the leftmost vertex, and      */
+/*  the destination of `innerleft' is the rightmost vertex of the            */
+/*  triangulation.  Similarly, `innerright' and `farright' are bounding      */
+/*  triangles of the right triangulation.  The origin of `innerright' and    */
+/*  destination of `farright' are the leftmost and rightmost vertices.       */
+/*                                                                           */
+/*  On completion, the origin of `farleft' is the leftmost vertex of the     */
+/*  merged triangulation, and the destination of `farright' is the rightmost */
+/*  vertex.                                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void mergehulls(struct mesh *m, struct behavior *b, struct otri *farleft,
+                struct otri *innerleft, struct otri *innerright,
+                struct otri *farright, int axis)
+#else /* not ANSI_DECLARATORS */
+void mergehulls(m, b, farleft, innerleft, innerright, farright, axis)
+struct mesh *m;
+struct behavior *b;
+struct otri *farleft;
+struct otri *innerleft;
+struct otri *innerright;
+struct otri *farright;
+int axis;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri leftcand, rightcand;
+  struct otri baseedge;
+  struct otri nextedge;
+  struct otri sidecasing, topcasing, outercasing;
+  struct otri checkedge;
+  vertex innerleftdest;
+  vertex innerrightorg;
+  vertex innerleftapex, innerrightapex;
+  vertex farleftpt, farrightpt;
+  vertex farleftapex, farrightapex;
+  vertex lowerleft, lowerright;
+  vertex upperleft, upperright;
+  vertex nextapex;
+  vertex checkvertex;
+  int changemade;
+  int badedge;
+  int leftfinished, rightfinished;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  dest(*innerleft, innerleftdest);
+  apex(*innerleft, innerleftapex);
+  org(*innerright, innerrightorg);
+  apex(*innerright, innerrightapex);
+  /* Special treatment for horizontal cuts. */
+  if (b->dwyer && (axis == 1)) {
+    org(*farleft, farleftpt);
+    apex(*farleft, farleftapex);
+    dest(*farright, farrightpt);
+    apex(*farright, farrightapex);
+    /* The pointers to the extremal vertices are shifted to point to the */
+    /*   topmost and bottommost vertex of each hull, rather than the     */
+    /*   leftmost and rightmost vertices.                                */
+    while (farleftapex[1] < farleftpt[1]) {
+      lnextself(*farleft);
+      symself(*farleft);
+      farleftpt = farleftapex;
+      apex(*farleft, farleftapex);
+    }
+    sym(*innerleft, checkedge);
+    apex(checkedge, checkvertex);
+    while (checkvertex[1] > innerleftdest[1]) {
+      lnext(checkedge, *innerleft);
+      innerleftapex = innerleftdest;
+      innerleftdest = checkvertex;
+      sym(*innerleft, checkedge);
+      apex(checkedge, checkvertex);
+    }
+    while (innerrightapex[1] < innerrightorg[1]) {
+      lnextself(*innerright);
+      symself(*innerright);
+      innerrightorg = innerrightapex;
+      apex(*innerright, innerrightapex);
+    }
+    sym(*farright, checkedge);
+    apex(checkedge, checkvertex);
+    while (checkvertex[1] > farrightpt[1]) {
+      lnext(checkedge, *farright);
+      farrightapex = farrightpt;
+      farrightpt = checkvertex;
+      sym(*farright, checkedge);
+      apex(checkedge, checkvertex);
+    }
+  }
+  /* Find a line tangent to and below both hulls. */
+  do {
+    changemade = 0;
+    /* Make innerleftdest the "bottommost" vertex of the left hull. */
+    if (counterclockwise(m, b, innerleftdest, innerleftapex, innerrightorg) >
+        0.0) {
+      lprevself(*innerleft);
+      symself(*innerleft);
+      innerleftdest = innerleftapex;
+      apex(*innerleft, innerleftapex);
+      changemade = 1;
+    }
+    /* Make innerrightorg the "bottommost" vertex of the right hull. */
+    if (counterclockwise(m, b, innerrightapex, innerrightorg, innerleftdest) >
+        0.0) {
+      lnextself(*innerright);
+      symself(*innerright);
+      innerrightorg = innerrightapex;
+      apex(*innerright, innerrightapex);
+      changemade = 1;
+    }
+  } while (changemade);
+  /* Find the two candidates to be the next "gear tooth." */
+  sym(*innerleft, leftcand);
+  sym(*innerright, rightcand);
+  /* Create the bottom new bounding triangle. */
+  maketriangle(m, b, &baseedge);
+  /* Connect it to the bounding boxes of the left and right triangulations. */
+  bond(baseedge, *innerleft);
+  lnextself(baseedge);
+  bond(baseedge, *innerright);
+  lnextself(baseedge);
+  setorg(baseedge, innerrightorg);
+  setdest(baseedge, innerleftdest);
+  /* Apex is intentionally left NULL. */
+  if (b->verbose > 2) {
+    fprintf(stderr, "  Creating base bounding ");
+    printtriangle(m, b, &baseedge);
+  }
+  /* Fix the extreme triangles if necessary. */
+  org(*farleft, farleftpt);
+  if (innerleftdest == farleftpt) {
+    lnext(baseedge, *farleft);
+  }
+  dest(*farright, farrightpt);
+  if (innerrightorg == farrightpt) {
+    lprev(baseedge, *farright);
+  }
+  /* The vertices of the current knitting edge. */
+  lowerleft = innerleftdest;
+  lowerright = innerrightorg;
+  /* The candidate vertices for knitting. */
+  apex(leftcand, upperleft);
+  apex(rightcand, upperright);
+  /* Walk up the gap between the two triangulations, knitting them together. */
+  while (1) {
+    /* Have we reached the top?  (This isn't quite the right question,       */
+    /*   because even though the left triangulation might seem finished now, */
+    /*   moving up on the right triangulation might reveal a new vertex of   */
+    /*   the left triangulation.  And vice-versa.)                           */
+    leftfinished = counterclockwise(m, b, upperleft, lowerleft, lowerright) <=
+                   0.0;
+    rightfinished = counterclockwise(m, b, upperright, lowerleft, lowerright)
+                 <= 0.0;
+    if (leftfinished && rightfinished) {
+      /* Create the top new bounding triangle. */
+      maketriangle(m, b, &nextedge);
+      setorg(nextedge, lowerleft);
+      setdest(nextedge, lowerright);
+      /* Apex is intentionally left NULL. */
+      /* Connect it to the bounding boxes of the two triangulations. */
+      bond(nextedge, baseedge);
+      lnextself(nextedge);
+      bond(nextedge, rightcand);
+      lnextself(nextedge);
+      bond(nextedge, leftcand);
+      if (b->verbose > 2) {
+        fprintf(stderr, "  Creating top bounding ");
+        printtriangle(m, b, &nextedge);
+      }
+      /* Special treatment for horizontal cuts. */
+      if (b->dwyer && (axis == 1)) {
+        org(*farleft, farleftpt);
+        apex(*farleft, farleftapex);
+        dest(*farright, farrightpt);
+        apex(*farright, farrightapex);
+        sym(*farleft, checkedge);
+        apex(checkedge, checkvertex);
+        /* The pointers to the extremal vertices are restored to the  */
+        /*   leftmost and rightmost vertices (rather than topmost and */
+        /*   bottommost).                                             */
+        while (checkvertex[0] < farleftpt[0]) {
+          lprev(checkedge, *farleft);
+          farleftapex = farleftpt;
+          farleftpt = checkvertex;
+          sym(*farleft, checkedge);
+          apex(checkedge, checkvertex);
+        }
+        while (farrightapex[0] > farrightpt[0]) {
+          lprevself(*farright);
+          symself(*farright);
+          farrightpt = farrightapex;
+          apex(*farright, farrightapex);
+        }
+      }
+      return;
+    }
+    /* Consider eliminating edges from the left triangulation. */
+    if (!leftfinished) {
+      /* What vertex would be exposed if an edge were deleted? */
+      lprev(leftcand, nextedge);
+      symself(nextedge);
+      apex(nextedge, nextapex);
+      /* If nextapex is NULL, then no vertex would be exposed; the */
+      /*   triangulation would have been eaten right through.      */
+      if (nextapex != (vertex) NULL) {
+        /* Check whether the edge is Delaunay. */
+        badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) >
+                  0.0;
+        while (badedge) {
+          /* Eliminate the edge with an edge flip.  As a result, the    */
+          /*   left triangulation will have one more boundary triangle. */
+          lnextself(nextedge);
+          sym(nextedge, topcasing);
+          lnextself(nextedge);
+          sym(nextedge, sidecasing);
+          bond(nextedge, topcasing);
+          bond(leftcand, sidecasing);
+          lnextself(leftcand);
+          sym(leftcand, outercasing);
+          lprevself(nextedge);
+          bond(nextedge, outercasing);
+          /* Correct the vertices to reflect the edge flip. */
+          setorg(leftcand, lowerleft);
+          setdest(leftcand, NULL);
+          setapex(leftcand, nextapex);
+          setorg(nextedge, NULL);
+          setdest(nextedge, upperleft);
+          setapex(nextedge, nextapex);
+          /* Consider the newly exposed vertex. */
+          upperleft = nextapex;
+          /* What vertex would be exposed if another edge were deleted? */
+          otricopy(sidecasing, nextedge);
+          apex(nextedge, nextapex);
+          if (nextapex != (vertex) NULL) {
+            /* Check whether the edge is Delaunay. */
+            badedge = incircle(m, b, lowerleft, lowerright, upperleft,
+                               nextapex) > 0.0;
+          } else {
+            /* Avoid eating right through the triangulation. */
+            badedge = 0;
+          }
+        }
+      }
+    }
+    /* Consider eliminating edges from the right triangulation. */
+    if (!rightfinished) {
+      /* What vertex would be exposed if an edge were deleted? */
+      lnext(rightcand, nextedge);
+      symself(nextedge);
+      apex(nextedge, nextapex);
+      /* If nextapex is NULL, then no vertex would be exposed; the */
+      /*   triangulation would have been eaten right through.      */
+      if (nextapex != (vertex) NULL) {
+        /* Check whether the edge is Delaunay. */
+        badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) >
+                  0.0;
+        while (badedge) {
+          /* Eliminate the edge with an edge flip.  As a result, the     */
+          /*   right triangulation will have one more boundary triangle. */
+          lprevself(nextedge);
+          sym(nextedge, topcasing);
+          lprevself(nextedge);
+          sym(nextedge, sidecasing);
+          bond(nextedge, topcasing);
+          bond(rightcand, sidecasing);
+          lprevself(rightcand);
+          sym(rightcand, outercasing);
+          lnextself(nextedge);
+          bond(nextedge, outercasing);
+          /* Correct the vertices to reflect the edge flip. */
+          setorg(rightcand, NULL);
+          setdest(rightcand, lowerright);
+          setapex(rightcand, nextapex);
+          setorg(nextedge, upperright);
+          setdest(nextedge, NULL);
+          setapex(nextedge, nextapex);
+          /* Consider the newly exposed vertex. */
+          upperright = nextapex;
+          /* What vertex would be exposed if another edge were deleted? */
+          otricopy(sidecasing, nextedge);
+          apex(nextedge, nextapex);
+          if (nextapex != (vertex) NULL) {
+            /* Check whether the edge is Delaunay. */
+            badedge = incircle(m, b, lowerleft, lowerright, upperright,
+                               nextapex) > 0.0;
+          } else {
+            /* Avoid eating right through the triangulation. */
+            badedge = 0;
+          }
+        }
+      }
+    }
+    if (leftfinished || (!rightfinished &&
+           (incircle(m, b, upperleft, lowerleft, lowerright, upperright) >
+            0.0))) {
+      /* Knit the triangulations, adding an edge from `lowerleft' */
+      /*   to `upperright'.                                       */
+      bond(baseedge, rightcand);
+      lprev(rightcand, baseedge);
+      setdest(baseedge, lowerleft);
+      lowerright = upperright;
+      sym(baseedge, rightcand);
+      apex(rightcand, upperright);
+    } else {
+      /* Knit the triangulations, adding an edge from `upperleft' */
+      /*   to `lowerright'.                                       */
+      bond(baseedge, leftcand);
+      lnext(leftcand, baseedge);
+      setorg(baseedge, lowerright);
+      lowerleft = upperleft;
+      sym(baseedge, leftcand);
+      apex(leftcand, upperleft);
+    }
+    if (b->verbose > 2) {
+      fprintf(stderr, "  Connecting ");
+      printtriangle(m, b, &baseedge);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  divconqrecurse()   Recursively form a Delaunay triangulation by the      */
+/*                     divide-and-conquer method.                            */
+/*                                                                           */
+/*  Recursively breaks down the problem into smaller pieces, which are       */
+/*  knitted together by mergehulls().  The base cases (problems of two or    */
+/*  three vertices) are handled specially here.                              */
+/*                                                                           */
+/*  On completion, `farleft' and `farright' are bounding triangles such that */
+/*  the origin of `farleft' is the leftmost vertex (breaking ties by         */
+/*  choosing the highest leftmost vertex), and the destination of            */
+/*  `farright' is the rightmost vertex (breaking ties by choosing the        */
+/*  lowest rightmost vertex).                                                */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void divconqrecurse(struct mesh *m, struct behavior *b, vertex *sortarray,
+                    int vertices, int axis,
+                    struct otri *farleft, struct otri *farright)
+#else /* not ANSI_DECLARATORS */
+void divconqrecurse(m, b, sortarray, vertices, axis, farleft, farright)
+struct mesh *m;
+struct behavior *b;
+vertex *sortarray;
+int vertices;
+int axis;
+struct otri *farleft;
+struct otri *farright;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri midtri, tri1, tri2, tri3;
+  struct otri innerleft, innerright;
+  REAL area;
+  int divider;
+
+  if (b->verbose > 2) {
+    fprintf(stderr, "  Triangulating %d vertices.\n", vertices);
+  }
+  if (vertices == 2) {
+    /* The triangulation of two vertices is an edge.  An edge is */
+    /*   represented by two bounding triangles.                  */
+    maketriangle(m, b, farleft);
+    setorg(*farleft, sortarray[0]);
+    setdest(*farleft, sortarray[1]);
+    /* The apex is intentionally left NULL. */
+    maketriangle(m, b, farright);
+    setorg(*farright, sortarray[1]);
+    setdest(*farright, sortarray[0]);
+    /* The apex is intentionally left NULL. */
+    bond(*farleft, *farright);
+    lprevself(*farleft);
+    lnextself(*farright);
+    bond(*farleft, *farright);
+    lprevself(*farleft);
+    lnextself(*farright);
+    bond(*farleft, *farright);
+    if (b->verbose > 2) {
+      fprintf(stderr, "  Creating ");
+      printtriangle(m, b, farleft);
+      fprintf(stderr, "  Creating ");
+      printtriangle(m, b, farright);
+    }
+    /* Ensure that the origin of `farleft' is sortarray[0]. */
+    lprev(*farright, *farleft);
+    return;
+  } else if (vertices == 3) {
+    /* The triangulation of three vertices is either a triangle (with */
+    /*   three bounding triangles) or two edges (with four bounding   */
+    /*   triangles).  In either case, four triangles are created.     */
+    maketriangle(m, b, &midtri);
+    maketriangle(m, b, &tri1);
+    maketriangle(m, b, &tri2);
+    maketriangle(m, b, &tri3);
+    area = counterclockwise(m, b, sortarray[0], sortarray[1], sortarray[2]);
+    if (area == 0.0) {
+      /* Three collinear vertices; the triangulation is two edges. */
+      setorg(midtri, sortarray[0]);
+      setdest(midtri, sortarray[1]);
+      setorg(tri1, sortarray[1]);
+      setdest(tri1, sortarray[0]);
+      setorg(tri2, sortarray[2]);
+      setdest(tri2, sortarray[1]);
+      setorg(tri3, sortarray[1]);
+      setdest(tri3, sortarray[2]);
+      /* All apices are intentionally left NULL. */
+      bond(midtri, tri1);
+      bond(tri2, tri3);
+      lnextself(midtri);
+      lprevself(tri1);
+      lnextself(tri2);
+      lprevself(tri3);
+      bond(midtri, tri3);
+      bond(tri1, tri2);
+      lnextself(midtri);
+      lprevself(tri1);
+      lnextself(tri2);
+      lprevself(tri3);
+      bond(midtri, tri1);
+      bond(tri2, tri3);
+      /* Ensure that the origin of `farleft' is sortarray[0]. */
+      otricopy(tri1, *farleft);
+      /* Ensure that the destination of `farright' is sortarray[2]. */
+      otricopy(tri2, *farright);
+    } else {
+      /* The three vertices are not collinear; the triangulation is one */
+      /*   triangle, namely `midtri'.                                   */
+      setorg(midtri, sortarray[0]);
+      setdest(tri1, sortarray[0]);
+      setorg(tri3, sortarray[0]);
+      /* Apices of tri1, tri2, and tri3 are left NULL. */
+      if (area > 0.0) {
+        /* The vertices are in counterclockwise order. */
+        setdest(midtri, sortarray[1]);
+        setorg(tri1, sortarray[1]);
+        setdest(tri2, sortarray[1]);
+        setapex(midtri, sortarray[2]);
+        setorg(tri2, sortarray[2]);
+        setdest(tri3, sortarray[2]);
+      } else {
+        /* The vertices are in clockwise order. */
+        setdest(midtri, sortarray[2]);
+        setorg(tri1, sortarray[2]);
+        setdest(tri2, sortarray[2]);
+        setapex(midtri, sortarray[1]);
+        setorg(tri2, sortarray[1]);
+        setdest(tri3, sortarray[1]);
+      }
+      /* The topology does not depend on how the vertices are ordered. */
+      bond(midtri, tri1);
+      lnextself(midtri);
+      bond(midtri, tri2);
+      lnextself(midtri);
+      bond(midtri, tri3);
+      lprevself(tri1);
+      lnextself(tri2);
+      bond(tri1, tri2);
+      lprevself(tri1);
+      lprevself(tri3);
+      bond(tri1, tri3);
+      lnextself(tri2);
+      lprevself(tri3);
+      bond(tri2, tri3);
+      /* Ensure that the origin of `farleft' is sortarray[0]. */
+      otricopy(tri1, *farleft);
+      /* Ensure that the destination of `farright' is sortarray[2]. */
+      if (area > 0.0) {
+        otricopy(tri2, *farright);
+      } else {
+        lnext(*farleft, *farright);
+      }
+    }
+    if (b->verbose > 2) {
+      fprintf(stderr, "  Creating ");
+      printtriangle(m, b, &midtri);
+      fprintf(stderr, "  Creating ");
+      printtriangle(m, b, &tri1);
+      fprintf(stderr, "  Creating ");
+      printtriangle(m, b, &tri2);
+      fprintf(stderr, "  Creating ");
+      printtriangle(m, b, &tri3);
+    }
+    return;
+  } else {
+    /* Split the vertices in half. */
+    divider = vertices >> 1;
+    /* Recursively triangulate each half. */
+    divconqrecurse(m, b, sortarray, divider, 1 - axis, farleft, &innerleft);
+    divconqrecurse(m, b, &sortarray[divider], vertices - divider, 1 - axis,
+                   &innerright, farright);
+    if (b->verbose > 1) {
+      fprintf(stderr, "  Joining triangulations with %d and %d vertices.\n", divider,
+             vertices - divider);
+    }
+    /* Merge the two triangulations into one. */
+    mergehulls(m, b, farleft, &innerleft, &innerright, farright, axis);
+  }
+}
+
+#ifdef ANSI_DECLARATORS
+long removeghosts(struct mesh *m, struct behavior *b, struct otri *startghost)
+#else /* not ANSI_DECLARATORS */
+long removeghosts(m, b, startghost)
+struct mesh *m;
+struct behavior *b;
+struct otri *startghost;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri searchedge;
+  struct otri dissolveedge;
+  struct otri deadtriangle;
+  vertex markorg;
+  long hullsize;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (b->verbose) {
+    fprintf(stderr, "  Removing ghost triangles.\n");
+  }
+  /* Find an edge on the convex hull to start point location from. */
+  lprev(*startghost, searchedge);
+  symself(searchedge);
+  m->dummytri[0] = encode(searchedge);
+  /* Remove the bounding box and count the convex hull edges. */
+  otricopy(*startghost, dissolveedge);
+  hullsize = 0;
+  do {
+    hullsize++;
+    lnext(dissolveedge, deadtriangle);
+    lprevself(dissolveedge);
+    symself(dissolveedge);
+    /* If no PSLG is involved, set the boundary markers of all the vertices */
+    /*   on the convex hull.  If a PSLG is used, this step is done later.   */
+    if (!b->poly) {
+      /* Watch out for the case where all the input vertices are collinear. */
+      if (dissolveedge.tri != m->dummytri) {
+        org(dissolveedge, markorg);
+        if (vertexmark(markorg) == 0) {
+          setvertexmark(markorg, 1);
+        }
+      }
+    }
+    /* Remove a bounding triangle from a convex hull triangle. */
+    dissolve(dissolveedge);
+    /* Find the next bounding triangle. */
+    sym(deadtriangle, dissolveedge);
+    /* Delete the bounding triangle. */
+    triangledealloc(m, deadtriangle.tri);
+  } while (!otriequal(dissolveedge, *startghost));
+  return hullsize;
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  divconqdelaunay()   Form a Delaunay triangulation by the divide-and-     */
+/*                      conquer method.                                      */
+/*                                                                           */
+/*  Sorts the vertices, calls a recursive procedure to triangulate them, and */
+/*  removes the bounding box, setting boundary markers as appropriate.       */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+long divconqdelaunay(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+long divconqdelaunay(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  vertex *sortarray;
+  struct otri hullleft, hullright;
+  int divider;
+  int i, j;
+
+  if (b->verbose) {
+    fprintf(stderr, "  Sorting vertices.\n");
+  }
+
+  /* Allocate an array of pointers to vertices for sorting. */
+  sortarray = (vertex *) trimalloc(m->invertices * sizeof(vertex));
+  traversalinit(&m->vertices);
+  for (i = 0; i < m->invertices; i++) {
+    sortarray[i] = vertextraverse(m);
+  }
+  /* Sort the vertices. */
+  vertexsort(sortarray, m->invertices);
+  /* Discard duplicate vertices, which can really mess up the algorithm. */
+  i = 0;
+  for (j = 1; j < m->invertices; j++) {
+    if ((sortarray[i][0] == sortarray[j][0])
+        && (sortarray[i][1] == sortarray[j][1])) {
+      if (!b->quiet) {
+        fprintf(stderr, 
+"Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
+               sortarray[j][0], sortarray[j][1]);
+      }
+      setvertextype(sortarray[j], UNDEADVERTEX);
+      m->undeads++;
+    } else {
+      i++;
+      sortarray[i] = sortarray[j];
+    }
+  }
+  i++;
+  if (b->dwyer) {
+    /* Re-sort the array of vertices to accommodate alternating cuts. */
+    divider = i >> 1;
+    if (i - divider >= 2) {
+      if (divider >= 2) {
+        alternateaxes(sortarray, divider, 1);
+      }
+      alternateaxes(&sortarray[divider], i - divider, 1);
+    }
+  }
+
+  if (b->verbose) {
+    fprintf(stderr, "  Forming triangulation.\n");
+  }
+
+  /* Form the Delaunay triangulation. */
+  divconqrecurse(m, b, sortarray, i, 0, &hullleft, &hullright);
+  trifree((VOID *) sortarray);
+
+  return removeghosts(m, b, &hullleft);
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Divide-and-conquer Delaunay triangulation ends here       *********/
+
+/********* Incremental Delaunay triangulation begins here            *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  boundingbox()   Form an "infinite" bounding triangle to insert vertices  */
+/*                  into.                                                    */
+/*                                                                           */
+/*  The vertices at "infinity" are assigned finite coordinates, which are    */
+/*  used by the point location routines, but (mostly) ignored by the         */
+/*  Delaunay edge flip routines.                                             */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+void boundingbox(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void boundingbox(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri inftri;          /* Handle for the triangular bounding box. */
+  REAL width;
+
+  if (b->verbose) {
+    fprintf(stderr, "  Creating triangular bounding box.\n");
+  }
+  /* Find the width (or height, whichever is larger) of the triangulation. */
+  width = m->xmax - m->xmin;
+  if (m->ymax - m->ymin > width) {
+    width = m->ymax - m->ymin;
+  }
+  if (width == 0.0) {
+    width = 1.0;
+  }
+  /* Create the vertices of the bounding box. */
+  m->infvertex1 = (vertex) trimalloc(m->vertices.itembytes);
+  m->infvertex2 = (vertex) trimalloc(m->vertices.itembytes);
+  m->infvertex3 = (vertex) trimalloc(m->vertices.itembytes);
+  m->infvertex1[0] = m->xmin - 50.0 * width;
+  m->infvertex1[1] = m->ymin - 40.0 * width;
+  m->infvertex2[0] = m->xmax + 50.0 * width;
+  m->infvertex2[1] = m->ymin - 40.0 * width;
+  m->infvertex3[0] = 0.5 * (m->xmin + m->xmax);
+  m->infvertex3[1] = m->ymax + 60.0 * width;
+
+  /* Create the bounding box. */
+  maketriangle(m, b, &inftri);
+  setorg(inftri, m->infvertex1);
+  setdest(inftri, m->infvertex2);
+  setapex(inftri, m->infvertex3);
+  /* Link dummytri to the bounding box so we can always find an */
+  /*   edge to begin searching (point location) from.           */
+  m->dummytri[0] = (triangle) inftri.tri;
+  if (b->verbose > 2) {
+    fprintf(stderr, "  Creating ");
+    printtriangle(m, b, &inftri);
+  }
+}
+
+#endif /* not REDUCED */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  removebox()   Remove the "infinite" bounding triangle, setting boundary  */
+/*                markers as appropriate.                                    */
+/*                                                                           */
+/*  The triangular bounding box has three boundary triangles (one for each   */
+/*  side of the bounding box), and a bunch of triangles fanning out from     */
+/*  the three bounding box vertices (one triangle for each edge of the       */
+/*  convex hull of the inner mesh).  This routine removes these triangles.   */
+/*                                                                           */
+/*  Returns the number of edges on the convex hull of the triangulation.     */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+long removebox(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+long removebox(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri deadtriangle;
+  struct otri searchedge;
+  struct otri checkedge;
+  struct otri nextedge, finaledge, dissolveedge;
+  vertex markorg;
+  long hullsize;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (b->verbose) {
+    fprintf(stderr, "  Removing triangular bounding box.\n");
+  }
+  /* Find a boundary triangle. */
+  nextedge.tri = m->dummytri;
+  nextedge.orient = 0;
+  symself(nextedge);
+  /* Mark a place to stop. */
+  lprev(nextedge, finaledge);
+  lnextself(nextedge);
+  symself(nextedge);
+  /* Find a triangle (on the boundary of the vertex set) that isn't */
+  /*   a bounding box triangle.                                     */
+  lprev(nextedge, searchedge);
+  symself(searchedge);
+  /* Check whether nextedge is another boundary triangle */
+  /*   adjacent to the first one.                        */
+  lnext(nextedge, checkedge);
+  symself(checkedge);
+  if (checkedge.tri == m->dummytri) {
+    /* Go on to the next triangle.  There are only three boundary   */
+    /*   triangles, and this next triangle cannot be the third one, */
+    /*   so it's safe to stop here.                                 */
+    lprevself(searchedge);
+    symself(searchedge);
+  }
+  /* Find a new boundary edge to search from, as the current search */
+  /*   edge lies on a bounding box triangle and will be deleted.    */
+  m->dummytri[0] = encode(searchedge);
+  hullsize = -2l;
+  while (!otriequal(nextedge, finaledge)) {
+    hullsize++;
+    lprev(nextedge, dissolveedge);
+    symself(dissolveedge);
+    /* If not using a PSLG, the vertices should be marked now. */
+    /*   (If using a PSLG, markhull() will do the job.)        */
+    if (!b->poly) {
+      /* Be careful!  One must check for the case where all the input     */
+      /*   vertices are collinear, and thus all the triangles are part of */
+      /*   the bounding box.  Otherwise, the setvertexmark() call below   */
+      /*   will cause a bad pointer reference.                            */
+      if (dissolveedge.tri != m->dummytri) {
+        org(dissolveedge, markorg);
+        if (vertexmark(markorg) == 0) {
+          setvertexmark(markorg, 1);
+        }
+      }
+    }
+    /* Disconnect the bounding box triangle from the mesh triangle. */
+    dissolve(dissolveedge);
+    lnext(nextedge, deadtriangle);
+    sym(deadtriangle, nextedge);
+    /* Get rid of the bounding box triangle. */
+    triangledealloc(m, deadtriangle.tri);
+    /* Do we need to turn the corner? */
+    if (nextedge.tri == m->dummytri) {
+      /* Turn the corner. */
+      otricopy(dissolveedge, nextedge);
+    }
+  }
+  triangledealloc(m, finaledge.tri);
+
+  trifree((VOID *) m->infvertex1);  /* Deallocate the bounding box vertices. */
+  trifree((VOID *) m->infvertex2);
+  trifree((VOID *) m->infvertex3);
+
+  return hullsize;
+}
+
+#endif /* not REDUCED */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  incrementaldelaunay()   Form a Delaunay triangulation by incrementally   */
+/*                          inserting vertices.                              */
+/*                                                                           */
+/*  Returns the number of edges on the convex hull of the triangulation.     */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+long incrementaldelaunay(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+long incrementaldelaunay(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri starttri;
+  vertex vertexloop;
+
+  /* Create a triangular bounding box. */
+  boundingbox(m, b);
+  if (b->verbose) {
+    fprintf(stderr, "  Incrementally inserting vertices.\n");
+  }
+  traversalinit(&m->vertices);
+  vertexloop = vertextraverse(m);
+  while (vertexloop != (vertex) NULL) {
+    starttri.tri = m->dummytri;
+    if (insertvertex(m, b, vertexloop, &starttri, (struct osub *) NULL, 0, 0,
+                     0.0) == DUPLICATEVERTEX) {
+      if (!b->quiet) {
+        fprintf(stderr, 
+"Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
+               vertexloop[0], vertexloop[1]);
+      }
+      setvertextype(vertexloop, UNDEADVERTEX);
+      m->undeads++;
+    }
+    vertexloop = vertextraverse(m);
+  }
+  /* Remove the bounding box. */
+  return removebox(m, b);
+}
+
+#endif /* not REDUCED */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Incremental Delaunay triangulation ends here              *********/
+
+/********* Sweepline Delaunay triangulation begins here              *********/
+/**                                                                         **/
+/**                                                                         **/
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+void eventheapinsert(struct event **heap, int heapsize, struct event *newevent)
+#else /* not ANSI_DECLARATORS */
+void eventheapinsert(heap, heapsize, newevent)
+struct event **heap;
+int heapsize;
+struct event *newevent;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL eventx, eventy;
+  int eventnum;
+  int parent;
+  int notdone;
+
+  eventx = newevent->xkey;
+  eventy = newevent->ykey;
+  eventnum = heapsize;
+  notdone = eventnum > 0;
+  while (notdone) {
+    parent = (eventnum - 1) >> 1;
+    if ((heap[parent]->ykey < eventy) ||
+        ((heap[parent]->ykey == eventy)
+         && (heap[parent]->xkey <= eventx))) {
+      notdone = 0;
+    } else {
+      heap[eventnum] = heap[parent];
+      heap[eventnum]->heapposition = eventnum;
+
+      eventnum = parent;
+      notdone = eventnum > 0;
+    }
+  }
+  heap[eventnum] = newevent;
+  newevent->heapposition = eventnum;
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+void eventheapify(struct event **heap, int heapsize, int eventnum)
+#else /* not ANSI_DECLARATORS */
+void eventheapify(heap, heapsize, eventnum)
+struct event **heap;
+int heapsize;
+int eventnum;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct event *thisevent;
+  REAL eventx, eventy;
+  int leftchild, rightchild;
+  int smallest;
+  int notdone;
+
+  thisevent = heap[eventnum];
+  eventx = thisevent->xkey;
+  eventy = thisevent->ykey;
+  leftchild = 2 * eventnum + 1;
+  notdone = leftchild < heapsize;
+  while (notdone) {
+    if ((heap[leftchild]->ykey < eventy) ||
+        ((heap[leftchild]->ykey == eventy)
+         && (heap[leftchild]->xkey < eventx))) {
+      smallest = leftchild;
+    } else {
+      smallest = eventnum;
+    }
+    rightchild = leftchild + 1;
+    if (rightchild < heapsize) {
+      if ((heap[rightchild]->ykey < heap[smallest]->ykey) ||
+          ((heap[rightchild]->ykey == heap[smallest]->ykey)
+           && (heap[rightchild]->xkey < heap[smallest]->xkey))) {
+        smallest = rightchild;
+      }
+    }
+    if (smallest == eventnum) {
+      notdone = 0;
+    } else {
+      heap[eventnum] = heap[smallest];
+      heap[eventnum]->heapposition = eventnum;
+      heap[smallest] = thisevent;
+      thisevent->heapposition = smallest;
+
+      eventnum = smallest;
+      leftchild = 2 * eventnum + 1;
+      notdone = leftchild < heapsize;
+    }
+  }
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+void eventheapdelete(struct event **heap, int heapsize, int eventnum)
+#else /* not ANSI_DECLARATORS */
+void eventheapdelete(heap, heapsize, eventnum)
+struct event **heap;
+int heapsize;
+int eventnum;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct event *moveevent;
+  REAL eventx, eventy;
+  int parent;
+  int notdone;
+
+  moveevent = heap[heapsize - 1];
+  if (eventnum > 0) {
+    eventx = moveevent->xkey;
+    eventy = moveevent->ykey;
+    do {
+      parent = (eventnum - 1) >> 1;
+      if ((heap[parent]->ykey < eventy) ||
+          ((heap[parent]->ykey == eventy)
+           && (heap[parent]->xkey <= eventx))) {
+        notdone = 0;
+      } else {
+        heap[eventnum] = heap[parent];
+        heap[eventnum]->heapposition = eventnum;
+
+        eventnum = parent;
+        notdone = eventnum > 0;
+      }
+    } while (notdone);
+  }
+  heap[eventnum] = moveevent;
+  moveevent->heapposition = eventnum;
+  eventheapify(heap, heapsize - 1, eventnum);
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+void createeventheap(struct mesh *m, struct event ***eventheap,
+                     struct event **events, struct event **freeevents)
+#else /* not ANSI_DECLARATORS */
+void createeventheap(m, eventheap, events, freeevents)
+struct mesh *m;
+struct event ***eventheap;
+struct event **events;
+struct event **freeevents;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  vertex thisvertex;
+  int maxevents;
+  int i;
+
+  maxevents = (3 * m->invertices) / 2;
+  *eventheap = (struct event **) trimalloc(maxevents * sizeof(struct event *));
+  *events = (struct event *) trimalloc(maxevents * sizeof(struct event));
+  traversalinit(&m->vertices);
+  for (i = 0; i < m->invertices; i++) {
+    thisvertex = vertextraverse(m);
+    (*events)[i].eventptr = (VOID *) thisvertex;
+    (*events)[i].xkey = thisvertex[0];
+    (*events)[i].ykey = thisvertex[1];
+    eventheapinsert(*eventheap, i, *events + i);
+  }
+  *freeevents = (struct event *) NULL;
+  for (i = maxevents - 1; i >= m->invertices; i--) {
+    (*events)[i].eventptr = (VOID *) *freeevents;
+    *freeevents = *events + i;
+  }
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+int rightofhyperbola(struct mesh *m, struct otri *fronttri, vertex newsite)
+#else /* not ANSI_DECLARATORS */
+int rightofhyperbola(m, fronttri, newsite)
+struct mesh *m;
+struct otri *fronttri;
+vertex newsite;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  vertex leftvertex, rightvertex;
+  REAL dxa, dya, dxb, dyb;
+
+  m->hyperbolacount++;
+
+  dest(*fronttri, leftvertex);
+  apex(*fronttri, rightvertex);
+  if ((leftvertex[1] < rightvertex[1]) ||
+      ((leftvertex[1] == rightvertex[1]) &&
+       (leftvertex[0] < rightvertex[0]))) {
+    if (newsite[0] >= rightvertex[0]) {
+      return 1;
+    }
+  } else {
+    if (newsite[0] <= leftvertex[0]) {
+      return 0;
+    }
+  }
+  dxa = leftvertex[0] - newsite[0];
+  dya = leftvertex[1] - newsite[1];
+  dxb = rightvertex[0] - newsite[0];
+  dyb = rightvertex[1] - newsite[1];
+  return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+REAL circletop(struct mesh *m, vertex pa, vertex pb, vertex pc, REAL ccwabc)
+#else /* not ANSI_DECLARATORS */
+REAL circletop(m, pa, pb, pc, ccwabc)
+struct mesh *m;
+vertex pa;
+vertex pb;
+vertex pc;
+REAL ccwabc;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL xac, yac, xbc, ybc, xab, yab;
+  REAL aclen2, bclen2, ablen2;
+
+  m->circletopcount++;
+
+  xac = pa[0] - pc[0];
+  yac = pa[1] - pc[1];
+  xbc = pb[0] - pc[0];
+  ybc = pb[1] - pc[1];
+  xab = pa[0] - pb[0];
+  yab = pa[1] - pb[1];
+  aclen2 = xac * xac + yac * yac;
+  bclen2 = xbc * xbc + ybc * ybc;
+  ablen2 = xab * xab + yab * yab;
+  return pc[1] + (xac * bclen2 - xbc * aclen2 + sqrt(aclen2 * bclen2 * ablen2))
+               / (2.0 * ccwabc);
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+void check4deadevent(struct otri *checktri, struct event **freeevents,
+                     struct event **eventheap, int *heapsize)
+#else /* not ANSI_DECLARATORS */
+void check4deadevent(checktri, freeevents, eventheap, heapsize)
+struct otri *checktri;
+struct event **freeevents;
+struct event **eventheap;
+int *heapsize;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct event *deadevent;
+  vertex eventvertex;
+  int eventnum;
+
+  org(*checktri, eventvertex);
+  if (eventvertex != (vertex) NULL) {
+    deadevent = (struct event *) eventvertex;
+    eventnum = deadevent->heapposition;
+    deadevent->eventptr = (VOID *) *freeevents;
+    *freeevents = deadevent;
+    eventheapdelete(eventheap, *heapsize, eventnum);
+    (*heapsize)--;
+    setorg(*checktri, NULL);
+  }
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+struct splaynode *splay(struct mesh *m, struct splaynode *splaytree,
+                        vertex searchpoint, struct otri *searchtri)
+#else /* not ANSI_DECLARATORS */
+struct splaynode *splay(m, splaytree, searchpoint, searchtri)
+struct mesh *m;
+struct splaynode *splaytree;
+vertex searchpoint;
+struct otri *searchtri;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct splaynode *child, *grandchild;
+  struct splaynode *lefttree, *righttree;
+  struct splaynode *leftright;
+  vertex checkvertex;
+  int rightofroot, rightofchild;
+
+  if (splaytree == (struct splaynode *) NULL) {
+    return (struct splaynode *) NULL;
+  }
+  dest(splaytree->keyedge, checkvertex);
+  if (checkvertex == splaytree->keydest) {
+    rightofroot = rightofhyperbola(m, &splaytree->keyedge, searchpoint);
+    if (rightofroot) {
+      otricopy(splaytree->keyedge, *searchtri);
+      child = splaytree->rchild;
+    } else {
+      child = splaytree->lchild;
+    }
+    if (child == (struct splaynode *) NULL) {
+      return splaytree;
+    }
+    dest(child->keyedge, checkvertex);
+    if (checkvertex != child->keydest) {
+      child = splay(m, child, searchpoint, searchtri);
+      if (child == (struct splaynode *) NULL) {
+        if (rightofroot) {
+          splaytree->rchild = (struct splaynode *) NULL;
+        } else {
+          splaytree->lchild = (struct splaynode *) NULL;
+        }
+        return splaytree;
+      }
+    }
+    rightofchild = rightofhyperbola(m, &child->keyedge, searchpoint);
+    if (rightofchild) {
+      otricopy(child->keyedge, *searchtri);
+      grandchild = splay(m, child->rchild, searchpoint, searchtri);
+      child->rchild = grandchild;
+    } else {
+      grandchild = splay(m, child->lchild, searchpoint, searchtri);
+      child->lchild = grandchild;
+    }
+    if (grandchild == (struct splaynode *) NULL) {
+      if (rightofroot) {
+        splaytree->rchild = child->lchild;
+        child->lchild = splaytree;
+      } else {
+        splaytree->lchild = child->rchild;
+        child->rchild = splaytree;
+      }
+      return child;
+    }
+    if (rightofchild) {
+      if (rightofroot) {
+        splaytree->rchild = child->lchild;
+        child->lchild = splaytree;
+      } else {
+        splaytree->lchild = grandchild->rchild;
+        grandchild->rchild = splaytree;
+      }
+      child->rchild = grandchild->lchild;
+      grandchild->lchild = child;
+    } else {
+      if (rightofroot) {
+        splaytree->rchild = grandchild->lchild;
+        grandchild->lchild = splaytree;
+      } else {
+        splaytree->lchild = child->rchild;
+        child->rchild = splaytree;
+      }
+      child->lchild = grandchild->rchild;
+      grandchild->rchild = child;
+    }
+    return grandchild;
+  } else {
+    lefttree = splay(m, splaytree->lchild, searchpoint, searchtri);
+    righttree = splay(m, splaytree->rchild, searchpoint, searchtri);
+
+    pooldealloc(&m->splaynodes, (VOID *) splaytree);
+    if (lefttree == (struct splaynode *) NULL) {
+      return righttree;
+    } else if (righttree == (struct splaynode *) NULL) {
+      return lefttree;
+    } else if (lefttree->rchild == (struct splaynode *) NULL) {
+      lefttree->rchild = righttree->lchild;
+      righttree->lchild = lefttree;
+      return righttree;
+    } else if (righttree->lchild == (struct splaynode *) NULL) {
+      righttree->lchild = lefttree->rchild;
+      lefttree->rchild = righttree;
+      return lefttree;
+    } else {
+/*      fprintf(stderr, "Holy Toledo!!!\n"); */
+      leftright = lefttree->rchild;
+      while (leftright->rchild != (struct splaynode *) NULL) {
+        leftright = leftright->rchild;
+      }
+      leftright->rchild = righttree;
+      return lefttree;
+    }
+  }
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+struct splaynode *splayinsert(struct mesh *m, struct splaynode *splayroot,
+                              struct otri *newkey, vertex searchpoint)
+#else /* not ANSI_DECLARATORS */
+struct splaynode *splayinsert(m, splayroot, newkey, searchpoint)
+struct mesh *m;
+struct splaynode *splayroot;
+struct otri *newkey;
+vertex searchpoint;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct splaynode *newsplaynode;
+
+  newsplaynode = (struct splaynode *) poolalloc(&m->splaynodes);
+  otricopy(*newkey, newsplaynode->keyedge);
+  dest(*newkey, newsplaynode->keydest);
+  if (splayroot == (struct splaynode *) NULL) {
+    newsplaynode->lchild = (struct splaynode *) NULL;
+    newsplaynode->rchild = (struct splaynode *) NULL;
+  } else if (rightofhyperbola(m, &splayroot->keyedge, searchpoint)) {
+    newsplaynode->lchild = splayroot;
+    newsplaynode->rchild = splayroot->rchild;
+    splayroot->rchild = (struct splaynode *) NULL;
+  } else {
+    newsplaynode->lchild = splayroot->lchild;
+    newsplaynode->rchild = splayroot;
+    splayroot->lchild = (struct splaynode *) NULL;
+  }
+  return newsplaynode;
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+struct splaynode *circletopinsert(struct mesh *m, struct behavior *b,
+                                  struct splaynode *splayroot,
+                                  struct otri *newkey,
+                                  vertex pa, vertex pb, vertex pc, REAL topy)
+#else /* not ANSI_DECLARATORS */
+struct splaynode *circletopinsert(m, b, splayroot, newkey, pa, pb, pc, topy)
+struct mesh *m;
+struct behavior *b;
+struct splaynode *splayroot;
+struct otri *newkey;
+vertex pa;
+vertex pb;
+vertex pc;
+REAL topy;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL ccwabc;
+  REAL xac, yac, xbc, ybc;
+  REAL aclen2, bclen2;
+  REAL searchpoint[2];
+  struct otri dummytri;
+
+  ccwabc = counterclockwise(m, b, pa, pb, pc);
+  xac = pa[0] - pc[0];
+  yac = pa[1] - pc[1];
+  xbc = pb[0] - pc[0];
+  ybc = pb[1] - pc[1];
+  aclen2 = xac * xac + yac * yac;
+  bclen2 = xbc * xbc + ybc * ybc;
+  searchpoint[0] = pc[0] - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);
+  searchpoint[1] = topy;
+  return splayinsert(m, splay(m, splayroot, (vertex) searchpoint, &dummytri),
+                     newkey, (vertex) searchpoint);
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+struct splaynode *frontlocate(struct mesh *m, struct splaynode *splayroot,
+                              struct otri *bottommost, vertex searchvertex,
+                              struct otri *searchtri, int *farright)
+#else /* not ANSI_DECLARATORS */
+struct splaynode *frontlocate(m, splayroot, bottommost, searchvertex,
+                              searchtri, farright)
+struct mesh *m;
+struct splaynode *splayroot;
+struct otri *bottommost;
+vertex searchvertex;
+struct otri *searchtri;
+int *farright;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  int farrightflag;
+  triangle ptr;                       /* Temporary variable used by onext(). */
+
+  otricopy(*bottommost, *searchtri);
+  splayroot = splay(m, splayroot, searchvertex, searchtri);
+
+  farrightflag = 0;
+  while (!farrightflag && rightofhyperbola(m, searchtri, searchvertex)) {
+    onextself(*searchtri);
+    farrightflag = otriequal(*searchtri, *bottommost);
+  }
+  *farright = farrightflag;
+  return splayroot;
+}
+
+#endif /* not REDUCED */
+
+#ifndef REDUCED
+
+#ifdef ANSI_DECLARATORS
+long sweeplinedelaunay(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+long sweeplinedelaunay(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct event **eventheap;
+  struct event *events;
+  struct event *freeevents;
+  struct event *nextevent;
+  struct event *newevent;
+  struct splaynode *splayroot;
+  struct otri bottommost;
+  struct otri searchtri;
+  struct otri fliptri;
+  struct otri lefttri, righttri, farlefttri, farrighttri;
+  struct otri inserttri;
+  vertex firstvertex, secondvertex;
+  vertex nextvertex, lastvertex;
+  vertex connectvertex;
+  vertex leftvertex, midvertex, rightvertex;
+  REAL lefttest, righttest;
+  int heapsize;
+  int check4events, farrightflag;
+  triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
+
+  poolinit(&m->splaynodes, sizeof(struct splaynode), SPLAYNODEPERBLOCK,
+           POINTER, 0);
+  splayroot = (struct splaynode *) NULL;
+
+  if (b->verbose) {
+    fprintf(stderr, "  Placing vertices in event heap.\n");
+  }
+  createeventheap(m, &eventheap, &events, &freeevents);
+  heapsize = m->invertices;
+
+  if (b->verbose) {
+    fprintf(stderr, "  Forming triangulation.\n");
+  }
+  maketriangle(m, b, &lefttri);
+  maketriangle(m, b, &righttri);
+  bond(lefttri, righttri);
+  lnextself(lefttri);
+  lprevself(righttri);
+  bond(lefttri, righttri);
+  lnextself(lefttri);
+  lprevself(righttri);
+  bond(lefttri, righttri);
+  firstvertex = (vertex) eventheap[0]->eventptr;
+  eventheap[0]->eventptr = (VOID *) freeevents;
+  freeevents = eventheap[0];
+  eventheapdelete(eventheap, heapsize, 0);
+  heapsize--;
+  do {
+    if (heapsize == 0) {
+      fprintf(stderr, "Error:  Input vertices are all identical.\n");
+      exit(1);
+    }
+    secondvertex = (vertex) eventheap[0]->eventptr;
+    eventheap[0]->eventptr = (VOID *) freeevents;
+    freeevents = eventheap[0];
+    eventheapdelete(eventheap, heapsize, 0);
+    heapsize--;
+    if ((firstvertex[0] == secondvertex[0]) &&
+        (firstvertex[1] == secondvertex[1])) {
+      if (!b->quiet) {
+        fprintf(stderr, 
+"Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
+               secondvertex[0], secondvertex[1]);
+      }
+      setvertextype(secondvertex, UNDEADVERTEX);
+      m->undeads++;
+    }
+  } while ((firstvertex[0] == secondvertex[0]) &&
+           (firstvertex[1] == secondvertex[1]));
+  setorg(lefttri, firstvertex);
+  setdest(lefttri, secondvertex);
+  setorg(righttri, secondvertex);
+  setdest(righttri, firstvertex);
+  lprev(lefttri, bottommost);
+  lastvertex = secondvertex;
+  while (heapsize > 0) {
+    nextevent = eventheap[0];
+    eventheapdelete(eventheap, heapsize, 0);
+    heapsize--;
+    check4events = 1;
+    if (nextevent->xkey < m->xmin) {
+      decode(nextevent->eventptr, fliptri);
+      oprev(fliptri, farlefttri);
+      check4deadevent(&farlefttri, &freeevents, eventheap, &heapsize);
+      onext(fliptri, farrighttri);
+      check4deadevent(&farrighttri, &freeevents, eventheap, &heapsize);
+
+      if (otriequal(farlefttri, bottommost)) {
+        lprev(fliptri, bottommost);
+      }
+      flip(m, b, &fliptri);
+      setapex(fliptri, NULL);
+      lprev(fliptri, lefttri);
+      lnext(fliptri, righttri);
+      sym(lefttri, farlefttri);
+
+      if (randomnation(SAMPLERATE) == 0) {
+        symself(fliptri);
+        dest(fliptri, leftvertex);
+        apex(fliptri, midvertex);
+        org(fliptri, rightvertex);
+        splayroot = circletopinsert(m, b, splayroot, &lefttri, leftvertex,
+                                    midvertex, rightvertex, nextevent->ykey);
+      }
+    } else {
+      nextvertex = (vertex) nextevent->eventptr;
+      if ((nextvertex[0] == lastvertex[0]) &&
+          (nextvertex[1] == lastvertex[1])) {
+        if (!b->quiet) {
+          fprintf(stderr, 
+"Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
+                 nextvertex[0], nextvertex[1]);
+        }
+        setvertextype(nextvertex, UNDEADVERTEX);
+        m->undeads++;
+        check4events = 0;
+      } else {
+        lastvertex = nextvertex;
+
+        splayroot = frontlocate(m, splayroot, &bottommost, nextvertex,
+                                &searchtri, &farrightflag);
+/*
+        otricopy(bottommost, searchtri);
+        farrightflag = 0;
+        while (!farrightflag && rightofhyperbola(m, &searchtri, nextvertex)) {
+          onextself(searchtri);
+          farrightflag = otriequal(searchtri, bottommost);
+        }
+*/
+
+        check4deadevent(&searchtri, &freeevents, eventheap, &heapsize);
+
+        otricopy(searchtri, farrighttri);
+        sym(searchtri, farlefttri);
+        maketriangle(m, b, &lefttri);
+        maketriangle(m, b, &righttri);
+        dest(farrighttri, connectvertex);
+        setorg(lefttri, connectvertex);
+        setdest(lefttri, nextvertex);
+        setorg(righttri, nextvertex);
+        setdest(righttri, connectvertex);
+        bond(lefttri, righttri);
+        lnextself(lefttri);
+        lprevself(righttri);
+        bond(lefttri, righttri);
+        lnextself(lefttri);
+        lprevself(righttri);
+        bond(lefttri, farlefttri);
+        bond(righttri, farrighttri);
+        if (!farrightflag && otriequal(farrighttri, bottommost)) {
+          otricopy(lefttri, bottommost);
+        }
+
+        if (randomnation(SAMPLERATE) == 0) {
+          splayroot = splayinsert(m, splayroot, &lefttri, nextvertex);
+        } else if (randomnation(SAMPLERATE) == 0) {
+          lnext(righttri, inserttri);
+          splayroot = splayinsert(m, splayroot, &inserttri, nextvertex);
+        }
+      }
+    }
+    nextevent->eventptr = (VOID *) freeevents;
+    freeevents = nextevent;
+
+    if (check4events) {
+      apex(farlefttri, leftvertex);
+      dest(lefttri, midvertex);
+      apex(lefttri, rightvertex);
+      lefttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex);
+      if (lefttest > 0.0) {
+        newevent = freeevents;
+        freeevents = (struct event *) freeevents->eventptr;
+        newevent->xkey = m->xminextreme;
+        newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex,
+                                   lefttest);
+        newevent->eventptr = (VOID *) encode(lefttri);
+        eventheapinsert(eventheap, heapsize, newevent);
+        heapsize++;
+        setorg(lefttri, newevent);
+      }
+      apex(righttri, leftvertex);
+      org(righttri, midvertex);
+      apex(farrighttri, rightvertex);
+      righttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex);
+      if (righttest > 0.0) {
+        newevent = freeevents;
+        freeevents = (struct event *) freeevents->eventptr;
+        newevent->xkey = m->xminextreme;
+        newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex,
+                                   righttest);
+        newevent->eventptr = (VOID *) encode(farrighttri);
+        eventheapinsert(eventheap, heapsize, newevent);
+        heapsize++;
+        setorg(farrighttri, newevent);
+      }
+    }
+  }
+
+  pooldeinit(&m->splaynodes);
+  lprevself(bottommost);
+  return removeghosts(m, b, &bottommost);
+}
+
+#endif /* not REDUCED */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Sweepline Delaunay triangulation ends here                *********/
+
+/********* General mesh construction routines begin here             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  delaunay()   Form a Delaunay triangulation.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+long delaunay(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+long delaunay(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  long hulledges;
+
+  m->eextras = 0;
+  initializetrisubpools(m, b);
+
+#ifdef REDUCED
+  if (!b->quiet) {
+    fprintf(stderr, 
+      "Constructing Delaunay triangulation by divide-and-conquer method.\n");
+  }
+  hulledges = divconqdelaunay(m, b);
+#else /* not REDUCED */
+  if (!b->quiet) {
+    fprintf(stderr, "Constructing Delaunay triangulation ");
+    if (b->incremental) {
+      fprintf(stderr, "by incremental method.\n");
+    } else if (b->sweepline) {
+      fprintf(stderr, "by sweepline method.\n");
+    } else {
+      fprintf(stderr, "by divide-and-conquer method.\n");
+    }
+  }
+  if (b->incremental) {
+    hulledges = incrementaldelaunay(m, b);
+  } else if (b->sweepline) {
+    hulledges = sweeplinedelaunay(m, b);
+  } else {
+    hulledges = divconqdelaunay(m, b);
+  }
+#endif /* not REDUCED */
+
+  if (m->triangles.items == 0) {
+    /* The input vertices were all collinear, so there are no triangles. */
+    return 0l;
+  } else {
+    return hulledges;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  reconstruct()   Reconstruct a triangulation from its .ele (and possibly  */
+/*                  .poly) file.  Used when the -r switch is used.           */
+/*                                                                           */
+/*  Reads an .ele file and reconstructs the original mesh.  If the -p switch */
+/*  is used, this procedure will also read a .poly file and reconstruct the  */
+/*  subsegments of the original mesh.  If the -a switch is used, this        */
+/*  procedure will also read an .area file and set a maximum area constraint */
+/*  on each triangle.                                                        */
+/*                                                                           */
+/*  Vertices that are not corners of triangles, such as nodes on edges of    */
+/*  subparametric elements, are discarded.                                   */
+/*                                                                           */
+/*  This routine finds the adjacencies between triangles (and subsegments)   */
+/*  by forming one stack of triangles for each vertex.  Each triangle is on  */
+/*  three different stacks simultaneously.  Each triangle's subsegment       */
+/*  pointers are used to link the items in each stack.  This memory-saving   */
+/*  feature makes the code harder to read.  The most important thing to keep */
+/*  in mind is that each triangle is removed from a stack precisely when     */
+/*  the corresponding pointer is adjusted to refer to a subsegment rather    */
+/*  than the next triangle of the stack.                                     */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+int reconstruct(struct mesh *m, struct behavior *b, int *trianglelist,
+                REAL *triangleattriblist, REAL *trianglearealist,
+                int elements, int corners, int attribs,
+                int *segmentlist,int *segmentmarkerlist, int numberofsegments)
+#else /* not ANSI_DECLARATORS */
+int reconstruct(m, b, trianglelist, triangleattriblist, trianglearealist,
+                elements, corners, attribs, segmentlist, segmentmarkerlist,
+                numberofsegments)
+struct mesh *m;
+struct behavior *b;
+int *trianglelist;
+REAL *triangleattriblist;
+REAL *trianglearealist;
+int elements;
+int corners;
+int attribs;
+int *segmentlist;
+int *segmentmarkerlist;
+int numberofsegments;
+#endif /* not ANSI_DECLARATORS */
+
+#else /* not TRILIBRARY */
+
+#ifdef ANSI_DECLARATORS
+long reconstruct(struct mesh *m, struct behavior *b, char *elefilename,
+                 char *areafilename, char *polyfilename, FILE *polyfile)
+#else /* not ANSI_DECLARATORS */
+long reconstruct(m, b, elefilename, areafilename, polyfilename, polyfile)
+struct mesh *m;
+struct behavior *b;
+char *elefilename;
+char *areafilename;
+char *polyfilename;
+FILE *polyfile;
+#endif /* not ANSI_DECLARATORS */
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  int vertexindex;
+  int attribindex;
+#else /* not TRILIBRARY */
+  FILE *elefile;
+  FILE *areafile;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  int areaelements;
+#endif /* not TRILIBRARY */
+  struct otri triangleloop;
+  struct otri triangleleft;
+  struct otri checktri;
+  struct otri checkleft;
+  struct otri checkneighbor;
+  struct osub subsegloop;
+  triangle *vertexarray;
+  triangle *prevlink;
+  triangle nexttri;
+  vertex tdest, tapex;
+  vertex checkdest, checkapex;
+  vertex shorg;
+  vertex killvertex;
+  REAL area;
+  int corner[3];
+  int end[2];
+  int killvertexindex;
+  int incorners;
+  int segmentmarkers;
+  int boundmarker;
+  int aroundvertex;
+  long hullsize;
+  int notfound;
+  long elementnumber, segmentnumber;
+  int i, j;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+#ifdef TRILIBRARY
+  m->inelements = elements;
+  incorners = corners;
+  if (incorners < 3) {
+    fprintf(stderr, "Error:  Triangles must have at least 3 vertices.\n");
+    exit(1);
+  }
+  m->eextras = attribs;
+#else /* not TRILIBRARY */
+  /* Read the triangles from an .ele file. */
+  if (!b->quiet) {
+    fprintf(stderr, "Opening %s.\n", elefilename);
+  }
+  elefile = fopen(elefilename, "r");
+  if (elefile == (FILE *) NULL) {
+    fprintf(stderr, "  Error:  Cannot access file %s.\n", elefilename);
+    exit(1);
+  }
+  /* Read number of triangles, number of vertices per triangle, and */
+  /*   number of triangle attributes from .ele file.                */
+  stringptr = readline(inputline, elefile, elefilename);
+  m->inelements = (int) strtol(stringptr, &stringptr, 0);
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    incorners = 3;
+  } else {
+    incorners = (int) strtol(stringptr, &stringptr, 0);
+    if (incorners < 3) {
+      fprintf(stderr, "Error:  Triangles in %s must have at least 3 vertices.\n",
+             elefilename);
+      exit(1);
+    }
+  }
+  stringptr = findfield(stringptr);
+  if (*stringptr == '\0') {
+    m->eextras = 0;
+  } else {
+    m->eextras = (int) strtol(stringptr, &stringptr, 0);
+  }
+#endif /* not TRILIBRARY */
+
+  initializetrisubpools(m, b);
+
+  /* Create the triangles. */
+  for (elementnumber = 1; elementnumber <= m->inelements; elementnumber++) {
+    maketriangle(m, b, &triangleloop);
+    /* Mark the triangle as living. */
+    triangleloop.tri[3] = (triangle) triangleloop.tri;
+  }
+
+  if (b->poly) {
+#ifdef TRILIBRARY
+    m->insegments = numberofsegments;
+    segmentmarkers = segmentmarkerlist != (int *) NULL;
+#else /* not TRILIBRARY */
+    /* Read number of segments and number of segment */
+    /*   boundary markers from .poly file.           */
+    stringptr = readline(inputline, polyfile, b->inpolyfilename);
+    m->insegments = (int) strtol(stringptr, &stringptr, 0);
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      segmentmarkers = 0;
+    } else {
+      segmentmarkers = (int) strtol(stringptr, &stringptr, 0);
+    }
+#endif /* not TRILIBRARY */
+
+    /* Create the subsegments. */
+    for (segmentnumber = 1; segmentnumber <= m->insegments; segmentnumber++) {
+      makesubseg(m, &subsegloop);
+      /* Mark the subsegment as living. */
+      subsegloop.ss[2] = (subseg) subsegloop.ss;
+    }
+  }
+
+#ifdef TRILIBRARY
+  vertexindex = 0;
+  attribindex = 0;
+#else /* not TRILIBRARY */
+  if (b->vararea) {
+    /* Open an .area file, check for consistency with the .ele file. */
+    if (!b->quiet) {
+      fprintf(stderr, "Opening %s.\n", areafilename);
+    }
+    areafile = fopen(areafilename, "r");
+    if (areafile == (FILE *) NULL) {
+      fprintf(stderr, "  Error:  Cannot access file %s.\n", areafilename);
+      exit(1);
+    }
+    stringptr = readline(inputline, areafile, areafilename);
+    areaelements = (int) strtol(stringptr, &stringptr, 0);
+    if (areaelements != m->inelements) {
+      fprintf(stderr, "Error:  %s and %s disagree on number of triangles.\n",
+             elefilename, areafilename);
+      exit(1);
+    }
+  }
+#endif /* not TRILIBRARY */
+
+  if (!b->quiet) {
+    fprintf(stderr, "Reconstructing mesh.\n");
+  }
+  /* Allocate a temporary array that maps each vertex to some adjacent */
+  /*   triangle.  I took care to allocate all the permanent memory for */
+  /*   triangles and subsegments first.                                */
+  vertexarray = (triangle *) trimalloc(m->vertices.items * sizeof(triangle));
+  /* Each vertex is initially unrepresented. */
+  for (i = 0; i < m->vertices.items; i++) {
+    vertexarray[i] = (triangle) m->dummytri;
+  }
+
+  if (b->verbose) {
+    fprintf(stderr, "  Assembling triangles.\n");
+  }
+  /* Read the triangles from the .ele file, and link */
+  /*   together those that share an edge.            */
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  elementnumber = b->firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+#ifdef TRILIBRARY
+    /* Copy the triangle's three corners. */
+    for (j = 0; j < 3; j++) {
+      corner[j] = trianglelist[vertexindex++];
+      if ((corner[j] < b->firstnumber) ||
+          (corner[j] >= b->firstnumber + m->invertices)) {
+        fprintf(stderr, "Error:  Triangle %ld has an invalid vertex index.\n",
+               elementnumber);
+        exit(1);
+      }
+    }
+#else /* not TRILIBRARY */
+    /* Read triangle number and the triangle's three corners. */
+    stringptr = readline(inputline, elefile, elefilename);
+    for (j = 0; j < 3; j++) {
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        fprintf(stderr, "Error:  Triangle %ld is missing vertex %d in %s.\n",
+               elementnumber, j + 1, elefilename);
+        exit(1);
+      } else {
+        corner[j] = (int) strtol(stringptr, &stringptr, 0);
+        if ((corner[j] < b->firstnumber) ||
+            (corner[j] >= b->firstnumber + m->invertices)) {
+          fprintf(stderr, "Error:  Triangle %ld has an invalid vertex index.\n",
+                 elementnumber);
+          exit(1);
+        }
+      }
+    }
+#endif /* not TRILIBRARY */
+
+    /* Find out about (and throw away) extra nodes. */
+    for (j = 3; j < incorners; j++) {
+#ifdef TRILIBRARY
+      killvertexindex = trianglelist[vertexindex++];
+#else /* not TRILIBRARY */
+      stringptr = findfield(stringptr);
+      if (*stringptr != '\0') {
+        killvertexindex = (int) strtol(stringptr, &stringptr, 0);
+#endif /* not TRILIBRARY */
+        if ((killvertexindex >= b->firstnumber) &&
+            (killvertexindex < b->firstnumber + m->invertices)) {
+          /* Delete the non-corner vertex if it's not already deleted. */
+          killvertex = getvertex(m, b, killvertexindex);
+          if (vertextype(killvertex) != DEADVERTEX) {
+            vertexdealloc(m, killvertex);
+          }
+        }
+#ifndef TRILIBRARY
+      }
+#endif /* not TRILIBRARY */
+    }
+
+    /* Read the triangle's attributes. */
+    for (j = 0; j < m->eextras; j++) {
+#ifdef TRILIBRARY
+      setelemattribute(triangleloop, j, triangleattriblist[attribindex++]);
+#else /* not TRILIBRARY */
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        setelemattribute(triangleloop, j, 0);
+      } else {
+        setelemattribute(triangleloop, j,
+                         (REAL) strtod(stringptr, &stringptr));
+      }
+#endif /* not TRILIBRARY */
+    }
+
+    if (b->vararea) {
+#ifdef TRILIBRARY
+      area = trianglearealist[elementnumber - b->firstnumber];
+#else /* not TRILIBRARY */
+      /* Read an area constraint from the .area file. */
+      stringptr = readline(inputline, areafile, areafilename);
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        area = -1.0;                      /* No constraint on this triangle. */
+      } else {
+        area = (REAL) strtod(stringptr, &stringptr);
+      }
+#endif /* not TRILIBRARY */
+      setareabound(triangleloop, area);
+    }
+
+    /* Set the triangle's vertices. */
+    triangleloop.orient = 0;
+    setorg(triangleloop, getvertex(m, b, corner[0]));
+    setdest(triangleloop, getvertex(m, b, corner[1]));
+    setapex(triangleloop, getvertex(m, b, corner[2]));
+    /* Try linking the triangle to others that share these vertices. */
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      /* Take the number for the origin of triangleloop. */
+      aroundvertex = corner[triangleloop.orient];
+      /* Look for other triangles having this vertex. */
+      nexttri = vertexarray[aroundvertex - b->firstnumber];
+      /* Link the current triangle to the next one in the stack. */
+      triangleloop.tri[6 + triangleloop.orient] = nexttri;
+      /* Push the current triangle onto the stack. */
+      vertexarray[aroundvertex - b->firstnumber] = encode(triangleloop);
+      decode(nexttri, checktri);
+      if (checktri.tri != m->dummytri) {
+        dest(triangleloop, tdest);
+        apex(triangleloop, tapex);
+        /* Look for other triangles that share an edge. */
+        do {
+          dest(checktri, checkdest);
+          apex(checktri, checkapex);
+          if (tapex == checkdest) {
+            /* The two triangles share an edge; bond them together. */
+            lprev(triangleloop, triangleleft);
+            bond(triangleleft, checktri);
+          }
+          if (tdest == checkapex) {
+            /* The two triangles share an edge; bond them together. */
+            lprev(checktri, checkleft);
+            bond(triangleloop, checkleft);
+          }
+          /* Find the next triangle in the stack. */
+          nexttri = checktri.tri[6 + checktri.orient];
+          decode(nexttri, checktri);
+        } while (checktri.tri != m->dummytri);
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+    elementnumber++;
+  }
+
+#ifdef TRILIBRARY
+  vertexindex = 0;
+#else /* not TRILIBRARY */
+  fclose(elefile);
+  if (b->vararea) {
+    fclose(areafile);
+  }
+#endif /* not TRILIBRARY */
+
+  hullsize = 0;                      /* Prepare to count the boundary edges. */
+  if (b->poly) {
+    if (b->verbose) {
+      fprintf(stderr, "  Marking segments in triangulation.\n");
+    }
+    /* Read the segments from the .poly file, and link them */
+    /*   to their neighboring triangles.                    */
+    boundmarker = 0;
+    traversalinit(&m->subsegs);
+    subsegloop.ss = subsegtraverse(m);
+    segmentnumber = b->firstnumber;
+    while (subsegloop.ss != (subseg *) NULL) {
+#ifdef TRILIBRARY
+      end[0] = segmentlist[vertexindex++];
+      end[1] = segmentlist[vertexindex++];
+      if (segmentmarkers) {
+        boundmarker = segmentmarkerlist[segmentnumber - b->firstnumber];
+      }
+#else /* not TRILIBRARY */
+      /* Read the endpoints of each segment, and possibly a boundary marker. */
+      stringptr = readline(inputline, polyfile, b->inpolyfilename);
+      /* Skip the first (segment number) field. */
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        fprintf(stderr, "Error:  Segment %ld has no endpoints in %s.\n", segmentnumber,
+               polyfilename);
+        exit(1);
+      } else {
+        end[0] = (int) strtol(stringptr, &stringptr, 0);
+      }
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        fprintf(stderr, "Error:  Segment %ld is missing its second endpoint in %s.\n",
+               segmentnumber, polyfilename);
+        exit(1);
+      } else {
+        end[1] = (int) strtol(stringptr, &stringptr, 0);
+      }
+      if (segmentmarkers) {
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          boundmarker = 0;
+        } else {
+          boundmarker = (int) strtol(stringptr, &stringptr, 0);
+        }
+      }
+#endif /* not TRILIBRARY */
+      for (j = 0; j < 2; j++) {
+        if ((end[j] < b->firstnumber) ||
+            (end[j] >= b->firstnumber + m->invertices)) {
+          fprintf(stderr, "Error:  Segment %ld has an invalid vertex index.\n", 
+                 segmentnumber);
+          exit(1);
+        }
+      }
+
+      /* set the subsegment's vertices. */
+      subsegloop.ssorient = 0;
+      setsorg(subsegloop, getvertex(m, b, end[0]));
+      setsdest(subsegloop, getvertex(m, b, end[1]));
+      setmark(subsegloop, boundmarker);
+      /* Try linking the subsegment to triangles that share these vertices. */
+      for (subsegloop.ssorient = 0; subsegloop.ssorient < 2;
+           subsegloop.ssorient++) {
+        /* Take the number for the destination of subsegloop. */
+        aroundvertex = end[1 - subsegloop.ssorient];
+        /* Look for triangles having this vertex. */
+        prevlink = &vertexarray[aroundvertex - b->firstnumber];
+        nexttri = vertexarray[aroundvertex - b->firstnumber];
+        decode(nexttri, checktri);
+        sorg(subsegloop, shorg);
+        notfound = 1;
+        /* Look for triangles having this edge.  Note that I'm only       */
+        /*   comparing each triangle's destination with the subsegment;   */
+        /*   each triangle's apex is handled through a different vertex.  */
+        /*   Because each triangle appears on three vertices' lists, each */
+        /*   occurrence of a triangle on a list can (and does) represent  */
+        /*   an edge.  In this way, most edges are represented twice, and */
+        /*   every triangle-subsegment bond is represented once.          */
+        while (notfound && (checktri.tri != m->dummytri)) {
+          dest(checktri, checkdest);
+          if (shorg == checkdest) {
+            /* We have a match.  Remove this triangle from the list. */
+            *prevlink = checktri.tri[6 + checktri.orient];
+            /* Bond the subsegment to the triangle. */
+            tsbond(checktri, subsegloop);
+            /* Check if this is a boundary edge. */
+            sym(checktri, checkneighbor);
+            if (checkneighbor.tri == m->dummytri) {
+              /* The next line doesn't insert a subsegment (because there's */
+              /*   already one there), but it sets the boundary markers of  */
+              /*   the existing subsegment and its vertices.                */
+              insertsubseg(m, b, &checktri, 1);
+              hullsize++;
+            }
+            notfound = 0;
+          }
+          /* Find the next triangle in the stack. */
+          prevlink = &checktri.tri[6 + checktri.orient];
+          nexttri = checktri.tri[6 + checktri.orient];
+          decode(nexttri, checktri);
+        }
+      }
+      subsegloop.ss = subsegtraverse(m);
+      segmentnumber++;
+    }
+  }
+
+  /* Mark the remaining edges as not being attached to any subsegment. */
+  /* Also, count the (yet uncounted) boundary edges.                   */
+  for (i = 0; i < m->vertices.items; i++) {
+    /* Search the stack of triangles adjacent to a vertex. */
+    nexttri = vertexarray[i];
+    decode(nexttri, checktri);
+    while (checktri.tri != m->dummytri) {
+      /* Find the next triangle in the stack before this */
+      /*   information gets overwritten.                 */
+      nexttri = checktri.tri[6 + checktri.orient];
+      /* No adjacent subsegment.  (This overwrites the stack info.) */
+      tsdissolve(checktri);
+      sym(checktri, checkneighbor);
+      if (checkneighbor.tri == m->dummytri) {
+        insertsubseg(m, b, &checktri, 1);
+        hullsize++;
+      }
+      decode(nexttri, checktri);
+    }
+  }
+
+  trifree((VOID *) vertexarray);
+  return hullsize;
+}
+
+#endif /* not CDT_ONLY */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* General mesh construction routines end here               *********/
+
+/********* Segment insertion begins here                             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  finddirection()   Find the first triangle on the path from one point     */
+/*                    to another.                                            */
+/*                                                                           */
+/*  Finds the triangle that intersects a line segment drawn from the         */
+/*  origin of `searchtri' to the point `searchpoint', and returns the result */
+/*  in `searchtri'.  The origin of `searchtri' does not change, even though  */
+/*  the triangle returned may differ from the one passed in.  This routine   */
+/*  is used to find the direction to move in to get from one point to        */
+/*  another.                                                                 */
+/*                                                                           */
+/*  The return value notes whether the destination or apex of the found      */
+/*  triangle is collinear with the two points in question.                   */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+enum finddirectionresult finddirection(struct mesh *m, struct behavior *b,
+                                       struct otri *searchtri,
+                                       vertex searchpoint)
+#else /* not ANSI_DECLARATORS */
+enum finddirectionresult finddirection(m, b, searchtri, searchpoint)
+struct mesh *m;
+struct behavior *b;
+struct otri *searchtri;
+vertex searchpoint;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri checktri;
+  vertex startvertex;
+  vertex leftvertex, rightvertex;
+  REAL leftccw, rightccw;
+  int leftflag, rightflag;
+  triangle ptr;           /* Temporary variable used by onext() and oprev(). */
+
+  org(*searchtri, startvertex);
+  dest(*searchtri, rightvertex);
+  apex(*searchtri, leftvertex);
+  /* Is `searchpoint' to the left? */
+  leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
+  leftflag = leftccw > 0.0;
+  /* Is `searchpoint' to the right? */
+  rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
+  rightflag = rightccw > 0.0;
+  if (leftflag && rightflag) {
+    /* `searchtri' faces directly away from `searchpoint'.  We could go left */
+    /*   or right.  Ask whether it's a triangle or a boundary on the left.   */
+    onext(*searchtri, checktri);
+    if (checktri.tri == m->dummytri) {
+      leftflag = 0;
+    } else {
+      rightflag = 0;
+    }
+  }
+  while (leftflag) {
+    /* Turn left until satisfied. */
+    onextself(*searchtri);
+    if (searchtri->tri == m->dummytri) {
+      fprintf(stderr, "Internal error in finddirection():  Unable to find a\n");
+      fprintf(stderr, "  triangle leading from (%.12g, %.12g) to", startvertex[0],
+             startvertex[1]);
+      fprintf(stderr, "  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
+      internalerror();
+    }
+    apex(*searchtri, leftvertex);
+    rightccw = leftccw;
+    leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
+    leftflag = leftccw > 0.0;
+  }
+  while (rightflag) {
+    /* Turn right until satisfied. */
+    oprevself(*searchtri);
+    if (searchtri->tri == m->dummytri) {
+      fprintf(stderr, "Internal error in finddirection():  Unable to find a\n");
+      fprintf(stderr, "  triangle leading from (%.12g, %.12g) to", startvertex[0],
+             startvertex[1]);
+      fprintf(stderr, "  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
+      internalerror();
+    }
+    dest(*searchtri, rightvertex);
+    leftccw = rightccw;
+    rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
+    rightflag = rightccw > 0.0;
+  }
+  if (leftccw == 0.0) {
+    return LEFTCOLLINEAR;
+  } else if (rightccw == 0.0) {
+    return RIGHTCOLLINEAR;
+  } else {
+    return WITHIN;
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  segmentintersection()   Find the intersection of an existing segment     */
+/*                          and a segment that is being inserted.  Insert    */
+/*                          a vertex at the intersection, splitting an       */
+/*                          existing subsegment.                             */
+/*                                                                           */
+/*  The segment being inserted connects the apex of splittri to endpoint2.   */
+/*  splitsubseg is the subsegment being split, and MUST adjoin splittri.     */
+/*  Hence, endpoints of the subsegment being split are the origin and        */
+/*  destination of splittri.                                                 */
+/*                                                                           */
+/*  On completion, splittri is a handle having the newly inserted            */
+/*  intersection point as its origin, and endpoint1 as its destination.      */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void segmentintersection(struct mesh *m, struct behavior *b,
+                         struct otri *splittri, struct osub *splitsubseg,
+                         vertex endpoint2)
+#else /* not ANSI_DECLARATORS */
+void segmentintersection(m, b, splittri, splitsubseg, endpoint2)
+struct mesh *m;
+struct behavior *b;
+struct otri *splittri;
+struct osub *splitsubseg;
+vertex endpoint2;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  vertex endpoint1;
+  vertex torg, tdest;
+  vertex leftvertex, rightvertex;
+  vertex newvertex;
+  enum insertvertexresult success;
+  enum finddirectionresult collinear;
+  REAL ex, ey;
+  REAL tx, ty;
+  REAL etx, ety;
+  REAL split, denom;
+  int i;
+  triangle ptr;                       /* Temporary variable used by onext(). */
+
+  /* Find the other three segment endpoints. */
+  apex(*splittri, endpoint1);
+  org(*splittri, torg);
+  dest(*splittri, tdest);
+  /* Segment intersection formulae; see the Antonio reference. */
+  tx = tdest[0] - torg[0];
+  ty = tdest[1] - torg[1];
+  ex = endpoint2[0] - endpoint1[0];
+  ey = endpoint2[1] - endpoint1[1];
+  etx = torg[0] - endpoint2[0];
+  ety = torg[1] - endpoint2[1];
+  denom = ty * ex - tx * ey;
+  if (denom == 0.0) {
+    fprintf(stderr, "Internal error in segmentintersection():");
+    fprintf(stderr, "  Attempt to find intersection of parallel segments.\n");
+    internalerror();
+  }
+  split = (ey * etx - ex * ety) / denom;
+  /* Create the new vertex. */
+  newvertex = (vertex) poolalloc(&m->vertices);
+  /* Interpolate its coordinate and attributes. */
+  for (i = 0; i < 2 + m->nextras; i++) {
+    newvertex[i] = torg[i] + split * (tdest[i] - torg[i]);
+  }
+  setvertexmark(newvertex, mark(*splitsubseg));
+  setvertextype(newvertex, INPUTVERTEX);
+  if (b->verbose > 1) {
+    fprintf(stderr, 
+  "  Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
+           torg[0], torg[1], tdest[0], tdest[1], newvertex[0], newvertex[1]);
+  }
+  /* Insert the intersection vertex.  This should always succeed. */
+  success = insertvertex(m, b, newvertex, splittri, splitsubseg, 0, 0, 0.0);
+  if (success != SUCCESSFULVERTEX) {
+    fprintf(stderr, "Internal error in segmentintersection():\n");
+    fprintf(stderr, "  Failure to split a segment.\n");
+    internalerror();
+  }
+  if (m->steinerleft > 0) {
+    m->steinerleft--;
+  }
+  /* Inserting the vertex may have caused edge flips.  We wish to rediscover */
+  /*   the edge connecting endpoint1 to the new intersection vertex.         */
+  collinear = finddirection(m, b, splittri, endpoint1);
+  dest(*splittri, rightvertex);
+  apex(*splittri, leftvertex);
+  if ((leftvertex[0] == endpoint1[0]) && (leftvertex[1] == endpoint1[1])) {
+    onextself(*splittri);
+  } else if ((rightvertex[0] != endpoint1[0]) ||
+             (rightvertex[1] != endpoint1[1])) {
+    fprintf(stderr, "Internal error in segmentintersection():\n");
+    fprintf(stderr, "  Topological inconsistency after splitting a segment.\n");
+    internalerror();
+  }
+  /* `splittri' should have destination endpoint1. */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  scoutsegment()   Scout the first triangle on the path from one endpoint  */
+/*                   to another, and check for completion (reaching the      */
+/*                   second endpoint), a collinear vertex, or the            */
+/*                   intersection of two segments.                           */
+/*                                                                           */
+/*  Returns one if the entire segment is successfully inserted, and zero if  */
+/*  the job must be finished by conformingedge() or constrainededge().       */
+/*                                                                           */
+/*  If the first triangle on the path has the second endpoint as its         */
+/*  destination or apex, a subsegment is inserted and the job is done.       */
+/*                                                                           */
+/*  If the first triangle on the path has a destination or apex that lies on */
+/*  the segment, a subsegment is inserted connecting the first endpoint to   */
+/*  the collinear vertex, and the search is continued from the collinear     */
+/*  vertex.                                                                  */
+/*                                                                           */
+/*  If the first triangle on the path has a subsegment opposite its origin,  */
+/*  then there is a segment that intersects the segment being inserted.      */
+/*  Their intersection vertex is inserted, splitting the subsegment.         */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+int scoutsegment(struct mesh *m, struct behavior *b, struct otri *searchtri,
+                 vertex endpoint2, int newmark)
+#else /* not ANSI_DECLARATORS */
+int scoutsegment(m, b, searchtri, endpoint2, newmark)
+struct mesh *m;
+struct behavior *b;
+struct otri *searchtri;
+vertex endpoint2;
+int newmark;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri crosstri;
+  struct osub crosssubseg;
+  vertex leftvertex, rightvertex;
+  enum finddirectionresult collinear;
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  collinear = finddirection(m, b, searchtri, endpoint2);
+  dest(*searchtri, rightvertex);
+  apex(*searchtri, leftvertex);
+  if (((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) ||
+      ((rightvertex[0] == endpoint2[0]) && (rightvertex[1] == endpoint2[1]))) {
+    /* The segment is already an edge in the mesh. */
+    if ((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) {
+      lprevself(*searchtri);
+    }
+    /* Insert a subsegment, if there isn't already one there. */
+    insertsubseg(m, b, searchtri, newmark);
+    return 1;
+  } else if (collinear == LEFTCOLLINEAR) {
+    /* We've collided with a vertex between the segment's endpoints. */
+    /* Make the collinear vertex be the triangle's origin. */
+    lprevself(*searchtri);
+    insertsubseg(m, b, searchtri, newmark);
+    /* Insert the remainder of the segment. */
+    return scoutsegment(m, b, searchtri, endpoint2, newmark);
+  } else if (collinear == RIGHTCOLLINEAR) {
+    /* We've collided with a vertex between the segment's endpoints. */
+    insertsubseg(m, b, searchtri, newmark);
+    /* Make the collinear vertex be the triangle's origin. */
+    lnextself(*searchtri);
+    /* Insert the remainder of the segment. */
+    return scoutsegment(m, b, searchtri, endpoint2, newmark);
+  } else {
+    lnext(*searchtri, crosstri);
+    tspivot(crosstri, crosssubseg);
+    /* Check for a crossing segment. */
+    if (crosssubseg.ss == m->dummysub) {
+      return 0;
+    } else {
+      /* Insert a vertex at the intersection. */
+      segmentintersection(m, b, &crosstri, &crosssubseg, endpoint2);
+      otricopy(crosstri, *searchtri);
+      insertsubseg(m, b, searchtri, newmark);
+      /* Insert the remainder of the segment. */
+      return scoutsegment(m, b, searchtri, endpoint2, newmark);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  conformingedge()   Force a segment into a conforming Delaunay            */
+/*                     triangulation by inserting a vertex at its midpoint,  */
+/*                     and recursively forcing in the two half-segments if   */
+/*                     necessary.                                            */
+/*                                                                           */
+/*  Generates a sequence of subsegments connecting `endpoint1' to            */
+/*  `endpoint2'.  `newmark' is the boundary marker of the segment, assigned  */
+/*  to each new splitting vertex and subsegment.                             */
+/*                                                                           */
+/*  Note that conformingedge() does not always maintain the conforming       */
+/*  Delaunay property.  Once inserted, segments are locked into place;       */
+/*  vertices inserted later (to force other segments in) may render these    */
+/*  fixed segments non-Delaunay.  The conforming Delaunay property will be   */
+/*  restored by enforcequality() by splitting encroached subsegments.        */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef REDUCED
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void conformingedge(struct mesh *m, struct behavior *b,
+                    vertex endpoint1, vertex endpoint2, int newmark)
+#else /* not ANSI_DECLARATORS */
+void conformingedge(m, b, endpoint1, endpoint2, newmark)
+struct mesh *m;
+struct behavior *b;
+vertex endpoint1;
+vertex endpoint2;
+int newmark;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri searchtri1, searchtri2;
+  struct osub brokensubseg;
+  vertex newvertex;
+  vertex midvertex1, midvertex2;
+  enum insertvertexresult success;
+  int i;
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (b->verbose > 2) {
+    fprintf(stderr, "Forcing segment into triangulation by recursive splitting:\n");
+    fprintf(stderr, "  (%.12g, %.12g) (%.12g, %.12g)\n", endpoint1[0], endpoint1[1],
+           endpoint2[0], endpoint2[1]);
+  }
+  /* Create a new vertex to insert in the middle of the segment. */
+  newvertex = (vertex) poolalloc(&m->vertices);
+  /* Interpolate coordinates and attributes. */
+  for (i = 0; i < 2 + m->nextras; i++) {
+    newvertex[i] = 0.5 * (endpoint1[i] + endpoint2[i]);
+  }
+  setvertexmark(newvertex, newmark);
+  setvertextype(newvertex, SEGMENTVERTEX);
+  /* No known triangle to search from. */
+  searchtri1.tri = m->dummytri;
+  /* Attempt to insert the new vertex. */
+  success = insertvertex(m, b, newvertex, &searchtri1, (struct osub *) NULL,
+                         0, 0, 0.0);
+  if (success == DUPLICATEVERTEX) {
+    if (b->verbose > 2) {
+      fprintf(stderr, "  Segment intersects existing vertex (%.12g, %.12g).\n",
+             newvertex[0], newvertex[1]);
+    }
+    /* Use the vertex that's already there. */
+    vertexdealloc(m, newvertex);
+    org(searchtri1, newvertex);
+  } else {
+    if (success == VIOLATINGVERTEX) {
+      if (b->verbose > 2) {
+        fprintf(stderr, "  Two segments intersect at (%.12g, %.12g).\n",
+               newvertex[0], newvertex[1]);
+      }
+      /* By fluke, we've landed right on another segment.  Split it. */
+      tspivot(searchtri1, brokensubseg);
+      success = insertvertex(m, b, newvertex, &searchtri1, &brokensubseg,
+                             0, 0, 0.0);
+      if (success != SUCCESSFULVERTEX) {
+        fprintf(stderr, "Internal error in conformingedge():\n");
+        fprintf(stderr, "  Failure to split a segment.\n");
+        internalerror();
+      }
+    }
+    /* The vertex has been inserted successfully. */
+    if (m->steinerleft > 0) {
+      m->steinerleft--;
+    }
+  }
+  otricopy(searchtri1, searchtri2);
+  /* `searchtri1' and `searchtri2' are fastened at their origins to         */
+  /*   `newvertex', and will be directed toward `endpoint1' and `endpoint2' */
+  /*   respectively.  First, we must get `searchtri2' out of the way so it  */
+  /*   won't be invalidated during the insertion of the first half of the   */
+  /*   segment.                                                             */
+  finddirection(m, b, &searchtri2, endpoint2);
+  if (!scoutsegment(m, b, &searchtri1, endpoint1, newmark)) {
+    /* The origin of searchtri1 may have changed if a collision with an */
+    /*   intervening vertex on the segment occurred.                    */
+    org(searchtri1, midvertex1);
+    conformingedge(m, b, midvertex1, endpoint1, newmark);
+  }
+  if (!scoutsegment(m, b, &searchtri2, endpoint2, newmark)) {
+    /* The origin of searchtri2 may have changed if a collision with an */
+    /*   intervening vertex on the segment occurred.                    */
+    org(searchtri2, midvertex2);
+    conformingedge(m, b, midvertex2, endpoint2, newmark);
+  }
+}
+
+#endif /* not CDT_ONLY */
+#endif /* not REDUCED */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  delaunayfixup()   Enforce the Delaunay condition at an edge, fanning out */
+/*                    recursively from an existing vertex.  Pay special      */
+/*                    attention to stacking inverted triangles.              */
+/*                                                                           */
+/*  This is a support routine for inserting segments into a constrained      */
+/*  Delaunay triangulation.                                                  */
+/*                                                                           */
+/*  The origin of fixuptri is treated as if it has just been inserted, and   */
+/*  the local Delaunay condition needs to be enforced.  It is only enforced  */
+/*  in one sector, however, that being the angular range defined by          */
+/*  fixuptri.                                                                */
+/*                                                                           */
+/*  This routine also needs to make decisions regarding the "stacking" of    */
+/*  triangles.  (Read the description of constrainededge() below before      */
+/*  reading on here, so you understand the algorithm.)  If the position of   */
+/*  the new vertex (the origin of fixuptri) indicates that the vertex before */
+/*  it on the polygon is a reflex vertex, then "stack" the triangle by       */
+/*  doing nothing.  (fixuptri is an inverted triangle, which is how stacked  */
+/*  triangles are identified.)                                               */
+/*                                                                           */
+/*  Otherwise, check whether the vertex before that was a reflex vertex.     */
+/*  If so, perform an edge flip, thereby eliminating an inverted triangle    */
+/*  (popping it off the stack).  The edge flip may result in the creation    */
+/*  of a new inverted triangle, depending on whether or not the new vertex   */
+/*  is visible to the vertex three edges behind on the polygon.              */
+/*                                                                           */
+/*  If neither of the two vertices behind the new vertex are reflex          */
+/*  vertices, fixuptri and fartri, the triangle opposite it, are not         */
+/*  inverted; hence, ensure that the edge between them is locally Delaunay.  */
+/*                                                                           */
+/*  `leftside' indicates whether or not fixuptri is to the left of the       */
+/*  segment being inserted.  (Imagine that the segment is pointing up from   */
+/*  endpoint1 to endpoint2.)                                                 */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void delaunayfixup(struct mesh *m, struct behavior *b,
+                   struct otri *fixuptri, int leftside)
+#else /* not ANSI_DECLARATORS */
+void delaunayfixup(m, b, fixuptri, leftside)
+struct mesh *m;
+struct behavior *b;
+struct otri *fixuptri;
+int leftside;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri neartri;
+  struct otri fartri;
+  struct osub faredge;
+  vertex nearvertex, leftvertex, rightvertex, farvertex;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  lnext(*fixuptri, neartri);
+  sym(neartri, fartri);
+  /* Check if the edge opposite the origin of fixuptri can be flipped. */
+  if (fartri.tri == m->dummytri) {
+    return;
+  }
+  tspivot(neartri, faredge);
+  if (faredge.ss != m->dummysub) {
+    return;
+  }
+  /* Find all the relevant vertices. */
+  apex(neartri, nearvertex);
+  org(neartri, leftvertex);
+  dest(neartri, rightvertex);
+  apex(fartri, farvertex);
+  /* Check whether the previous polygon vertex is a reflex vertex. */
+  if (leftside) {
+    if (counterclockwise(m, b, nearvertex, leftvertex, farvertex) <= 0.0) {
+      /* leftvertex is a reflex vertex too.  Nothing can */
+      /*   be done until a convex section is found.      */
+      return;
+    }
+  } else {
+    if (counterclockwise(m, b, farvertex, rightvertex, nearvertex) <= 0.0) {
+      /* rightvertex is a reflex vertex too.  Nothing can */
+      /*   be done until a convex section is found.       */
+      return;
+    }
+  }
+  if (counterclockwise(m, b, rightvertex, leftvertex, farvertex) > 0.0) {
+    /* fartri is not an inverted triangle, and farvertex is not a reflex */
+    /*   vertex.  As there are no reflex vertices, fixuptri isn't an     */
+    /*   inverted triangle, either.  Hence, test the edge between the    */
+    /*   triangles to ensure it is locally Delaunay.                     */
+    if (incircle(m, b, leftvertex, farvertex, rightvertex, nearvertex) <=
+        0.0) {
+      return;
+    }
+    /* Not locally Delaunay; go on to an edge flip. */
+  }        /* else fartri is inverted; remove it from the stack by flipping. */
+  flip(m, b, &neartri);
+  lprevself(*fixuptri);    /* Restore the origin of fixuptri after the flip. */
+  /* Recursively process the two triangles that result from the flip. */
+  delaunayfixup(m, b, fixuptri, leftside);
+  delaunayfixup(m, b, &fartri, leftside);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  constrainededge()   Force a segment into a constrained Delaunay          */
+/*                      triangulation by deleting the triangles it           */
+/*                      intersects, and triangulating the polygons that      */
+/*                      form on each side of it.                             */
+/*                                                                           */
+/*  Generates a single subsegment connecting `endpoint1' to `endpoint2'.     */
+/*  The triangle `starttri' has `endpoint1' as its origin.  `newmark' is the */
+/*  boundary marker of the segment.                                          */
+/*                                                                           */
+/*  To insert a segment, every triangle whose interior intersects the        */
+/*  segment is deleted.  The union of these deleted triangles is a polygon   */
+/*  (which is not necessarily monotone, but is close enough), which is       */
+/*  divided into two polygons by the new segment.  This routine's task is    */
+/*  to generate the Delaunay triangulation of these two polygons.            */
+/*                                                                           */
+/*  You might think of this routine's behavior as a two-step process.  The   */
+/*  first step is to walk from endpoint1 to endpoint2, flipping each edge    */
+/*  encountered.  This step creates a fan of edges connected to endpoint1,   */
+/*  including the desired edge to endpoint2.  The second step enforces the   */
+/*  Delaunay condition on each side of the segment in an incremental manner: */
+/*  proceeding along the polygon from endpoint1 to endpoint2 (this is done   */
+/*  independently on each side of the segment), each vertex is "enforced"    */
+/*  as if it had just been inserted, but affecting only the previous         */
+/*  vertices.  The result is the same as if the vertices had been inserted   */
+/*  in the order they appear on the polygon, so the result is Delaunay.      */
+/*                                                                           */
+/*  In truth, constrainededge() interleaves these two steps.  The procedure  */
+/*  walks from endpoint1 to endpoint2, and each time an edge is encountered  */
+/*  and flipped, the newly exposed vertex (at the far end of the flipped     */
+/*  edge) is "enforced" upon the previously flipped edges, usually affecting */
+/*  only one side of the polygon (depending upon which side of the segment   */
+/*  the vertex falls on).                                                    */
+/*                                                                           */
+/*  The algorithm is complicated by the need to handle polygons that are not */
+/*  convex.  Although the polygon is not necessarily monotone, it can be     */
+/*  triangulated in a manner similar to the stack-based algorithms for       */
+/*  monotone polygons.  For each reflex vertex (local concavity) of the      */
+/*  polygon, there will be an inverted triangle formed by one of the edge    */
+/*  flips.  (An inverted triangle is one with negative area - that is, its   */
+/*  vertices are arranged in clockwise order - and is best thought of as a   */
+/*  wrinkle in the fabric of the mesh.)  Each inverted triangle can be       */
+/*  thought of as a reflex vertex pushed on the stack, waiting to be fixed   */
+/*  later.                                                                   */
+/*                                                                           */
+/*  A reflex vertex is popped from the stack when a vertex is inserted that  */
+/*  is visible to the reflex vertex.  (However, if the vertex behind the     */
+/*  reflex vertex is not visible to the reflex vertex, a new inverted        */
+/*  triangle will take its place on the stack.)  These details are handled   */
+/*  by the delaunayfixup() routine above.                                    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void constrainededge(struct mesh *m, struct behavior *b,
+                     struct otri *starttri, vertex endpoint2, int newmark)
+#else /* not ANSI_DECLARATORS */
+void constrainededge(m, b, starttri, endpoint2, newmark)
+struct mesh *m;
+struct behavior *b;
+struct otri *starttri;
+vertex endpoint2;
+int newmark;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri fixuptri, fixuptri2;
+  struct osub crosssubseg;
+  vertex endpoint1;
+  vertex farvertex;
+  REAL area;
+  int collision;
+  int done;
+  triangle ptr;             /* Temporary variable used by sym() and oprev(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  org(*starttri, endpoint1);
+  lnext(*starttri, fixuptri);
+  flip(m, b, &fixuptri);
+  /* `collision' indicates whether we have found a vertex directly */
+  /*   between endpoint1 and endpoint2.                            */
+  collision = 0;
+  done = 0;
+  do {
+    org(fixuptri, farvertex);
+    /* `farvertex' is the extreme point of the polygon we are "digging" */
+    /*   to get from endpoint1 to endpoint2.                           */
+    if ((farvertex[0] == endpoint2[0]) && (farvertex[1] == endpoint2[1])) {
+      oprev(fixuptri, fixuptri2);
+      /* Enforce the Delaunay condition around endpoint2. */
+      delaunayfixup(m, b, &fixuptri, 0);
+      delaunayfixup(m, b, &fixuptri2, 1);
+      done = 1;
+    } else {
+      /* Check whether farvertex is to the left or right of the segment */
+      /*   being inserted, to decide which edge of fixuptri to dig      */
+      /*   through next.                                                */
+      area = counterclockwise(m, b, endpoint1, endpoint2, farvertex);
+      if (area == 0.0) {
+        /* We've collided with a vertex between endpoint1 and endpoint2. */
+        collision = 1;
+        oprev(fixuptri, fixuptri2);
+        /* Enforce the Delaunay condition around farvertex. */
+        delaunayfixup(m, b, &fixuptri, 0);
+        delaunayfixup(m, b, &fixuptri2, 1);
+        done = 1;
+      } else {
+        if (area > 0.0) {        /* farvertex is to the left of the segment. */
+          oprev(fixuptri, fixuptri2);
+          /* Enforce the Delaunay condition around farvertex, on the */
+          /*   left side of the segment only.                        */
+          delaunayfixup(m, b, &fixuptri2, 1);
+          /* Flip the edge that crosses the segment.  After the edge is */
+          /*   flipped, one of its endpoints is the fan vertex, and the */
+          /*   destination of fixuptri is the fan vertex.               */
+          lprevself(fixuptri);
+        } else {                /* farvertex is to the right of the segment. */
+          delaunayfixup(m, b, &fixuptri, 0);
+          /* Flip the edge that crosses the segment.  After the edge is */
+          /*   flipped, one of its endpoints is the fan vertex, and the */
+          /*   destination of fixuptri is the fan vertex.               */
+          oprevself(fixuptri);
+        }
+        /* Check for two intersecting segments. */
+        tspivot(fixuptri, crosssubseg);
+        if (crosssubseg.ss == m->dummysub) {
+          flip(m, b, &fixuptri);    /* May create inverted triangle at left. */
+        } else {
+          /* We've collided with a segment between endpoint1 and endpoint2. */
+          collision = 1;
+          /* Insert a vertex at the intersection. */
+          segmentintersection(m, b, &fixuptri, &crosssubseg, endpoint2);
+          done = 1;
+        }
+      }
+    }
+  } while (!done);
+  /* Insert a subsegment to make the segment permanent. */
+  insertsubseg(m, b, &fixuptri, newmark);
+  /* If there was a collision with an interceding vertex, install another */
+  /*   segment connecting that vertex with endpoint2.                     */
+  if (collision) {
+    /* Insert the remainder of the segment. */
+    if (!scoutsegment(m, b, &fixuptri, endpoint2, newmark)) {
+      constrainededge(m, b, &fixuptri, endpoint2, newmark);
+    }
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  insertsegment()   Insert a PSLG segment into a triangulation.            */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void insertsegment(struct mesh *m, struct behavior *b,
+                   vertex endpoint1, vertex endpoint2, int newmark)
+#else /* not ANSI_DECLARATORS */
+void insertsegment(m, b, endpoint1, endpoint2, newmark)
+struct mesh *m;
+struct behavior *b;
+vertex endpoint1;
+vertex endpoint2;
+int newmark;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri searchtri1, searchtri2;
+  triangle encodedtri;
+  vertex checkvertex;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (b->verbose > 1) {
+    fprintf(stderr, "  Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
+           endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
+  }
+
+  /* Find a triangle whose origin is the segment's first endpoint. */
+  checkvertex = (vertex) NULL;
+  encodedtri = vertex2tri(endpoint1);
+  if (encodedtri != (triangle) NULL) {
+    decode(encodedtri, searchtri1);
+    org(searchtri1, checkvertex);
+  }
+  if (checkvertex != endpoint1) {
+    /* Find a boundary triangle to search from. */
+    searchtri1.tri = m->dummytri;
+    searchtri1.orient = 0;
+    symself(searchtri1);
+    /* Search for the segment's first endpoint by point location. */
+    if (locate(m, b, endpoint1, &searchtri1) != ONVERTEX) {
+      fprintf(stderr, 
+        "Internal error in insertsegment():  Unable to locate PSLG vertex\n");
+      fprintf(stderr, "  (%.12g, %.12g) in triangulation.\n",
+             endpoint1[0], endpoint1[1]);
+      internalerror();
+    }
+  }
+  /* Remember this triangle to improve subsequent point location. */
+  otricopy(searchtri1, m->recenttri);
+  /* Scout the beginnings of a path from the first endpoint */
+  /*   toward the second.                                   */
+  if (scoutsegment(m, b, &searchtri1, endpoint2, newmark)) {
+    /* The segment was easily inserted. */
+    return;
+  }
+  /* The first endpoint may have changed if a collision with an intervening */
+  /*   vertex on the segment occurred.                                      */
+  org(searchtri1, endpoint1);
+
+  /* Find a triangle whose origin is the segment's second endpoint. */
+  checkvertex = (vertex) NULL;
+  encodedtri = vertex2tri(endpoint2);
+  if (encodedtri != (triangle) NULL) {
+    decode(encodedtri, searchtri2);
+    org(searchtri2, checkvertex);
+  }
+  if (checkvertex != endpoint2) {
+    /* Find a boundary triangle to search from. */
+    searchtri2.tri = m->dummytri;
+    searchtri2.orient = 0;
+    symself(searchtri2);
+    /* Search for the segment's second endpoint by point location. */
+    if (locate(m, b, endpoint2, &searchtri2) != ONVERTEX) {
+      fprintf(stderr, 
+        "Internal error in insertsegment():  Unable to locate PSLG vertex\n");
+      fprintf(stderr, "  (%.12g, %.12g) in triangulation.\n",
+             endpoint2[0], endpoint2[1]);
+      internalerror();
+    }
+  }
+  /* Remember this triangle to improve subsequent point location. */
+  otricopy(searchtri2, m->recenttri);
+  /* Scout the beginnings of a path from the second endpoint */
+  /*   toward the first.                                     */
+  if (scoutsegment(m, b, &searchtri2, endpoint1, newmark)) {
+    /* The segment was easily inserted. */
+    return;
+  }
+  /* The second endpoint may have changed if a collision with an intervening */
+  /*   vertex on the segment occurred.                                       */
+  org(searchtri2, endpoint2);
+
+#ifndef REDUCED
+#ifndef CDT_ONLY
+  if (b->splitseg) {
+    /* Insert vertices to force the segment into the triangulation. */
+    conformingedge(m, b, endpoint1, endpoint2, newmark);
+  } else {
+#endif /* not CDT_ONLY */
+#endif /* not REDUCED */
+    /* Insert the segment directly into the triangulation. */
+    constrainededge(m, b, &searchtri1, endpoint2, newmark);
+#ifndef REDUCED
+#ifndef CDT_ONLY
+  }
+#endif /* not CDT_ONLY */
+#endif /* not REDUCED */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  markhull()   Cover the convex hull of a triangulation with subsegments.  */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void markhull(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void markhull(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri hulltri;
+  struct otri nexttri;
+  struct otri starttri;
+  triangle ptr;             /* Temporary variable used by sym() and oprev(). */
+
+  /* Find a triangle handle on the hull. */
+  hulltri.tri = m->dummytri;
+  hulltri.orient = 0;
+  symself(hulltri);
+  /* Remember where we started so we know when to stop. */
+  otricopy(hulltri, starttri);
+  /* Go once counterclockwise around the convex hull. */
+  do {
+    /* Create a subsegment if there isn't already one here. */
+    insertsubseg(m, b, &hulltri, 1);
+    /* To find the next hull edge, go clockwise around the next vertex. */
+    lnextself(hulltri);
+    oprev(hulltri, nexttri);
+    while (nexttri.tri != m->dummytri) {
+      otricopy(nexttri, hulltri);
+      oprev(hulltri, nexttri);
+    }
+  } while (!otriequal(hulltri, starttri));
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  formskeleton()   Create the segments of a triangulation, including PSLG  */
+/*                   segments and edges on the convex hull.                  */
+/*                                                                           */
+/*  The PSLG segments are read from a .poly file.  The return value is the   */
+/*  number of segments in the file.                                          */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void formskeleton(struct mesh *m, struct behavior *b, int *segmentlist,
+                  int *segmentmarkerlist, int numberofsegments)
+#else /* not ANSI_DECLARATORS */
+void formskeleton(m, b, segmentlist, segmentmarkerlist, numberofsegments)
+struct mesh *m;
+struct behavior *b;
+int *segmentlist;
+int *segmentmarkerlist;
+int numberofsegments;
+#endif /* not ANSI_DECLARATORS */
+
+#else /* not TRILIBRARY */
+
+#ifdef ANSI_DECLARATORS
+void formskeleton(struct mesh *m, struct behavior *b,
+                  FILE *polyfile, char *polyfilename)
+#else /* not ANSI_DECLARATORS */
+void formskeleton(m, b, polyfile, polyfilename)
+struct mesh *m;
+struct behavior *b;
+FILE *polyfile;
+char *polyfilename;
+#endif /* not ANSI_DECLARATORS */
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  char polyfilename[6];
+  int index;
+#else /* not TRILIBRARY */
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+#endif /* not TRILIBRARY */
+  vertex endpoint1, endpoint2;
+  int segmentmarkers;
+  int end1, end2;
+  int boundmarker;
+  int i;
+
+  if (b->poly) {
+    if (!b->quiet) {
+      fprintf(stderr, "Recovering segments in Delaunay triangulation.\n");
+    }
+#ifdef TRILIBRARY
+    strcpy(polyfilename, "input");
+    m->insegments = numberofsegments;
+    segmentmarkers = segmentmarkerlist != (int *) NULL;
+    index = 0;
+#else /* not TRILIBRARY */
+    /* Read the segments from a .poly file. */
+    /* Read number of segments and number of boundary markers. */
+    stringptr = readline(inputline, polyfile, polyfilename);
+    m->insegments = (int) strtol(stringptr, &stringptr, 0);
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      segmentmarkers = 0;
+    } else {
+      segmentmarkers = (int) strtol(stringptr, &stringptr, 0);
+    }
+#endif /* not TRILIBRARY */
+    /* If the input vertices are collinear, there is no triangulation, */
+    /*   so don't try to insert segments.                              */
+    if (m->triangles.items == 0) {
+      return;
+    }
+
+    /* If segments are to be inserted, compute a mapping */
+    /*   from vertices to triangles.                     */
+    if (m->insegments > 0) {
+      makevertexmap(m, b);
+      if (b->verbose) {
+        fprintf(stderr, "  Recovering PSLG segments.\n");
+      }
+    }
+
+    boundmarker = 0;
+    /* Read and insert the segments. */
+    for (i = 0; i < m->insegments; i++) {
+#ifdef TRILIBRARY
+      end1 = segmentlist[index++];
+      end2 = segmentlist[index++];
+      if (segmentmarkers) {
+        boundmarker = segmentmarkerlist[i];
+      }
+#else /* not TRILIBRARY */
+      stringptr = readline(inputline, polyfile, b->inpolyfilename);
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        fprintf(stderr, "Error:  Segment %d has no endpoints in %s.\n",
+               b->firstnumber + i, polyfilename);
+        exit(1);
+      } else {
+        end1 = (int) strtol(stringptr, &stringptr, 0);
+      }
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        fprintf(stderr, "Error:  Segment %d is missing its second endpoint in %s.\n",
+               b->firstnumber + i, polyfilename);
+        exit(1);
+      } else {
+        end2 = (int) strtol(stringptr, &stringptr, 0);
+      }
+      if (segmentmarkers) {
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          boundmarker = 0;
+        } else {
+          boundmarker = (int) strtol(stringptr, &stringptr, 0);
+        }
+      }
+#endif /* not TRILIBRARY */
+      if ((end1 < b->firstnumber) ||
+          (end1 >= b->firstnumber + m->invertices)) {
+        if (!b->quiet) {
+          fprintf(stderr, "Warning:  Invalid first endpoint of segment %d in %s.\n",
+                 b->firstnumber + i, polyfilename);
+        }
+      } else if ((end2 < b->firstnumber) ||
+                 (end2 >= b->firstnumber + m->invertices)) {
+        if (!b->quiet) {
+          fprintf(stderr, "Warning:  Invalid second endpoint of segment %d in %s.\n",
+                 b->firstnumber + i, polyfilename);
+        }
+      } else {
+        endpoint1 = getvertex(m, b, end1);
+        endpoint2 = getvertex(m, b, end2);
+        if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
+          if (!b->quiet) {
+            fprintf(stderr, "Warning:  Endpoints of segment %d are coincident in %s.\n",
+                   b->firstnumber + i, polyfilename);
+          }
+        } else {
+          insertsegment(m, b, endpoint1, endpoint2, boundmarker);
+        }
+      }
+    }
+  } else {
+    m->insegments = 0;
+  }
+  if (b->convex || !b->poly) {
+    /* Enclose the convex hull with subsegments. */
+    if (b->verbose) {
+      fprintf(stderr, "  Enclosing convex hull with segments.\n");
+    }
+    markhull(m, b);
+  }
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Segment insertion ends here                               *********/
+
+/********* Carving out holes and concavities begins here             *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  infecthull()   Virally infect all of the triangles of the convex hull    */
+/*                 that are not protected by subsegments.  Where there are   */
+/*                 subsegments, set boundary markers as appropriate.         */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void infecthull(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void infecthull(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri hulltri;
+  struct otri nexttri;
+  struct otri starttri;
+  struct osub hullsubseg;
+  triangle **deadtriangle;
+  vertex horg, hdest;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (b->verbose) {
+    fprintf(stderr, "  Marking concavities (external triangles) for elimination.\n");
+  }
+  /* Find a triangle handle on the hull. */
+  hulltri.tri = m->dummytri;
+  hulltri.orient = 0;
+  symself(hulltri);
+  /* Remember where we started so we know when to stop. */
+  otricopy(hulltri, starttri);
+  /* Go once counterclockwise around the convex hull. */
+  do {
+    /* Ignore triangles that are already infected. */
+    if (!infected(hulltri)) {
+      /* Is the triangle protected by a subsegment? */
+      tspivot(hulltri, hullsubseg);
+      if (hullsubseg.ss == m->dummysub) {
+        /* The triangle is not protected; infect it. */
+        if (!infected(hulltri)) {
+          infect(hulltri);
+          deadtriangle = (triangle **) poolalloc(&m->viri);
+          *deadtriangle = hulltri.tri;
+        }
+      } else {
+        /* The triangle is protected; set boundary markers if appropriate. */
+        if (mark(hullsubseg) == 0) {
+          setmark(hullsubseg, 1);
+          org(hulltri, horg);
+          dest(hulltri, hdest);
+          if (vertexmark(horg) == 0) {
+            setvertexmark(horg, 1);
+          }
+          if (vertexmark(hdest) == 0) {
+            setvertexmark(hdest, 1);
+          }
+        }
+      }
+    }
+    /* To find the next hull edge, go clockwise around the next vertex. */
+    lnextself(hulltri);
+    oprev(hulltri, nexttri);
+    while (nexttri.tri != m->dummytri) {
+      otricopy(nexttri, hulltri);
+      oprev(hulltri, nexttri);
+    }
+  } while (!otriequal(hulltri, starttri));
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  plague()   Spread the virus from all infected triangles to any neighbors */
+/*             not protected by subsegments.  Delete all infected triangles. */
+/*                                                                           */
+/*  This is the procedure that actually creates holes and concavities.       */
+/*                                                                           */
+/*  This procedure operates in two phases.  The first phase identifies all   */
+/*  the triangles that will die, and marks them as infected.  They are       */
+/*  marked to ensure that each triangle is added to the virus pool only      */
+/*  once, so the procedure will terminate.                                   */
+/*                                                                           */
+/*  The second phase actually eliminates the infected triangles.  It also    */
+/*  eliminates orphaned vertices.                                            */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void plague(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void plague(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri testtri;
+  struct otri neighbor;
+  triangle **virusloop;
+  triangle **deadtriangle;
+  struct osub neighborsubseg;
+  vertex testvertex;
+  vertex norg, ndest;
+  vertex deadorg, deaddest, deadapex;
+  int killorg;
+  triangle ptr;             /* Temporary variable used by sym() and onext(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (b->verbose) {
+    fprintf(stderr, "  Marking neighbors of marked triangles.\n");
+  }
+  /* Loop through all the infected triangles, spreading the virus to */
+  /*   their neighbors, then to their neighbors' neighbors.          */
+  traversalinit(&m->viri);
+  virusloop = (triangle **) traverse(&m->viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+    /* A triangle is marked as infected by messing with one of its pointers */
+    /*   to subsegments, setting it to an illegal value.  Hence, we have to */
+    /*   temporarily uninfect this triangle so that we can examine its      */
+    /*   adjacent subsegments.                                              */
+    uninfect(testtri);
+    if (b->verbose > 2) {
+      /* Assign the triangle an orientation for convenience in */
+      /*   checking its vertices.                              */
+      testtri.orient = 0;
+      org(testtri, deadorg);
+      dest(testtri, deaddest);
+      apex(testtri, deadapex);
+      fprintf(stderr, "    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+             deadorg[0], deadorg[1], deaddest[0], deaddest[1],
+             deadapex[0], deadapex[1]);
+    }
+    /* Check each of the triangle's three neighbors. */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      /* Find the neighbor. */
+      sym(testtri, neighbor);
+      /* Check for a subsegment between the triangle and its neighbor. */
+      tspivot(testtri, neighborsubseg);
+      /* Check if the neighbor is nonexistent or already infected. */
+      if ((neighbor.tri == m->dummytri) || infected(neighbor)) {
+        if (neighborsubseg.ss != m->dummysub) {
+          /* There is a subsegment separating the triangle from its      */
+          /*   neighbor, but both triangles are dying, so the subsegment */
+          /*   dies too.                                                 */
+          subsegdealloc(m, neighborsubseg.ss);
+          if (neighbor.tri != m->dummytri) {
+            /* Make sure the subsegment doesn't get deallocated again */
+            /*   later when the infected neighbor is visited.         */
+            uninfect(neighbor);
+            tsdissolve(neighbor);
+            infect(neighbor);
+          }
+        }
+      } else {                   /* The neighbor exists and is not infected. */
+        if (neighborsubseg.ss == m->dummysub) {
+          /* There is no subsegment protecting the neighbor, so */
+          /*   the neighbor becomes infected.                   */
+          if (b->verbose > 2) {
+            org(neighbor, deadorg);
+            dest(neighbor, deaddest);
+            apex(neighbor, deadapex);
+            fprintf(stderr, 
+              "    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+                   deadorg[0], deadorg[1], deaddest[0], deaddest[1],
+                   deadapex[0], deadapex[1]);
+          }
+          infect(neighbor);
+          /* Ensure that the neighbor's neighbors will be infected. */
+          deadtriangle = (triangle **) poolalloc(&m->viri);
+          *deadtriangle = neighbor.tri;
+        } else {               /* The neighbor is protected by a subsegment. */
+          /* Remove this triangle from the subsegment. */
+          stdissolve(neighborsubseg);
+          /* The subsegment becomes a boundary.  Set markers accordingly. */
+          if (mark(neighborsubseg) == 0) {
+            setmark(neighborsubseg, 1);
+          }
+          org(neighbor, norg);
+          dest(neighbor, ndest);
+          if (vertexmark(norg) == 0) {
+            setvertexmark(norg, 1);
+          }
+          if (vertexmark(ndest) == 0) {
+            setvertexmark(ndest, 1);
+          }
+        }
+      }
+    }
+    /* Remark the triangle as infected, so it doesn't get added to the */
+    /*   virus pool again.                                             */
+    infect(testtri);
+    virusloop = (triangle **) traverse(&m->viri);
+  }
+
+  if (b->verbose) {
+    fprintf(stderr, "  Deleting marked triangles.\n");
+  }
+
+  traversalinit(&m->viri);
+  virusloop = (triangle **) traverse(&m->viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+
+    /* Check each of the three corners of the triangle for elimination. */
+    /*   This is done by walking around each vertex, checking if it is  */
+    /*   still connected to at least one live triangle.                 */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      org(testtri, testvertex);
+      /* Check if the vertex has already been tested. */
+      if (testvertex != (vertex) NULL) {
+        killorg = 1;
+        /* Mark the corner of the triangle as having been tested. */
+        setorg(testtri, NULL);
+        /* Walk counterclockwise about the vertex. */
+        onext(testtri, neighbor);
+        /* Stop upon reaching a boundary or the starting triangle. */
+        while ((neighbor.tri != m->dummytri) &&
+               (!otriequal(neighbor, testtri))) {
+          if (infected(neighbor)) {
+            /* Mark the corner of this triangle as having been tested. */
+            setorg(neighbor, NULL);
+          } else {
+            /* A live triangle.  The vertex survives. */
+            killorg = 0;
+          }
+          /* Walk counterclockwise about the vertex. */
+          onextself(neighbor);
+        }
+        /* If we reached a boundary, we must walk clockwise as well. */
+        if (neighbor.tri == m->dummytri) {
+          /* Walk clockwise about the vertex. */
+          oprev(testtri, neighbor);
+          /* Stop upon reaching a boundary. */
+          while (neighbor.tri != m->dummytri) {
+            if (infected(neighbor)) {
+            /* Mark the corner of this triangle as having been tested. */
+              setorg(neighbor, NULL);
+            } else {
+              /* A live triangle.  The vertex survives. */
+              killorg = 0;
+            }
+            /* Walk clockwise about the vertex. */
+            oprevself(neighbor);
+          }
+        }
+        if (killorg) {
+          if (b->verbose > 1) {
+            fprintf(stderr, "    Deleting vertex (%.12g, %.12g)\n",
+                   testvertex[0], testvertex[1]);
+          }
+          setvertextype(testvertex, UNDEADVERTEX);
+          m->undeads++;
+        }
+      }
+    }
+
+    /* Record changes in the number of boundary edges, and disconnect */
+    /*   dead triangles from their neighbors.                         */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      sym(testtri, neighbor);
+      if (neighbor.tri == m->dummytri) {
+        /* There is no neighboring triangle on this edge, so this edge    */
+        /*   is a boundary edge.  This triangle is being deleted, so this */
+        /*   boundary edge is deleted.                                    */
+        m->hullsize--;
+      } else {
+        /* Disconnect the triangle from its neighbor. */
+        dissolve(neighbor);
+        /* There is a neighboring triangle on this edge, so this edge */
+        /*   becomes a boundary edge when this triangle is deleted.   */
+        m->hullsize++;
+      }
+    }
+    /* Return the dead triangle to the pool of triangles. */
+    triangledealloc(m, testtri.tri);
+    virusloop = (triangle **) traverse(&m->viri);
+  }
+  /* Empty the virus pool. */
+  poolrestart(&m->viri);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  regionplague()   Spread regional attributes and/or area constraints      */
+/*                   (from a .poly file) throughout the mesh.                */
+/*                                                                           */
+/*  This procedure operates in two phases.  The first phase spreads an       */
+/*  attribute and/or an area constraint through a (segment-bounded) region.  */
+/*  The triangles are marked to ensure that each triangle is added to the    */
+/*  virus pool only once, so the procedure will terminate.                   */
+/*                                                                           */
+/*  The second phase uninfects all infected triangles, returning them to     */
+/*  normal.                                                                  */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void regionplague(struct mesh *m, struct behavior *b,
+                  REAL attribute, REAL area)
+#else /* not ANSI_DECLARATORS */
+void regionplague(m, b, attribute, area)
+struct mesh *m;
+struct behavior *b;
+REAL attribute;
+REAL area;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri testtri;
+  struct otri neighbor;
+  triangle **virusloop;
+  triangle **regiontri;
+  struct osub neighborsubseg;
+  vertex regionorg, regiondest, regionapex;
+  triangle ptr;             /* Temporary variable used by sym() and onext(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (b->verbose > 1) {
+    fprintf(stderr, "  Marking neighbors of marked triangles.\n");
+  }
+  /* Loop through all the infected triangles, spreading the attribute      */
+  /*   and/or area constraint to their neighbors, then to their neighbors' */
+  /*   neighbors.                                                          */
+  traversalinit(&m->viri);
+  virusloop = (triangle **) traverse(&m->viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+    /* A triangle is marked as infected by messing with one of its pointers */
+    /*   to subsegments, setting it to an illegal value.  Hence, we have to */
+    /*   temporarily uninfect this triangle so that we can examine its      */
+    /*   adjacent subsegments.                                              */
+    uninfect(testtri);
+    if (b->regionattrib) {
+      /* Set an attribute. */
+      setelemattribute(testtri, m->eextras, attribute);
+    }
+    if (b->vararea) {
+      /* Set an area constraint. */
+      setareabound(testtri, area);
+    }
+    if (b->verbose > 2) {
+      /* Assign the triangle an orientation for convenience in */
+      /*   checking its vertices.                              */
+      testtri.orient = 0;
+      org(testtri, regionorg);
+      dest(testtri, regiondest);
+      apex(testtri, regionapex);
+      fprintf(stderr, "    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+             regionorg[0], regionorg[1], regiondest[0], regiondest[1],
+             regionapex[0], regionapex[1]);
+    }
+    /* Check each of the triangle's three neighbors. */
+    for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
+      /* Find the neighbor. */
+      sym(testtri, neighbor);
+      /* Check for a subsegment between the triangle and its neighbor. */
+      tspivot(testtri, neighborsubseg);
+      /* Make sure the neighbor exists, is not already infected, and */
+      /*   isn't protected by a subsegment.                          */
+      if ((neighbor.tri != m->dummytri) && !infected(neighbor)
+          && (neighborsubseg.ss == m->dummysub)) {
+        if (b->verbose > 2) {
+          org(neighbor, regionorg);
+          dest(neighbor, regiondest);
+          apex(neighbor, regionapex);
+          fprintf(stderr, "    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+                 regionorg[0], regionorg[1], regiondest[0], regiondest[1],
+                 regionapex[0], regionapex[1]);
+        }
+        /* Infect the neighbor. */
+        infect(neighbor);
+        /* Ensure that the neighbor's neighbors will be infected. */
+        regiontri = (triangle **) poolalloc(&m->viri);
+        *regiontri = neighbor.tri;
+      }
+    }
+    /* Remark the triangle as infected, so it doesn't get added to the */
+    /*   virus pool again.                                             */
+    infect(testtri);
+    virusloop = (triangle **) traverse(&m->viri);
+  }
+
+  /* Uninfect all triangles. */
+  if (b->verbose > 1) {
+    fprintf(stderr, "  Unmarking marked triangles.\n");
+  }
+  traversalinit(&m->viri);
+  virusloop = (triangle **) traverse(&m->viri);
+  while (virusloop != (triangle **) NULL) {
+    testtri.tri = *virusloop;
+    uninfect(testtri);
+    virusloop = (triangle **) traverse(&m->viri);
+  }
+  /* Empty the virus pool. */
+  poolrestart(&m->viri);
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  carveholes()   Find the holes and infect them.  Find the area            */
+/*                 constraints and infect them.  Infect the convex hull.     */
+/*                 Spread the infection and kill triangles.  Spread the      */
+/*                 area constraints.                                         */
+/*                                                                           */
+/*  This routine mainly calls other routines to carry out all these          */
+/*  functions.                                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void carveholes(struct mesh *m, struct behavior *b, REAL *holelist, int holes,
+                REAL *regionlist, int regions)
+#else /* not ANSI_DECLARATORS */
+void carveholes(m, b, holelist, holes, regionlist, regions)
+struct mesh *m;
+struct behavior *b;
+REAL *holelist;
+int holes;
+REAL *regionlist;
+int regions;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri searchtri;
+  struct otri triangleloop;
+  struct otri *regiontris;
+  triangle **holetri;
+  triangle **regiontri;
+  vertex searchorg, searchdest;
+  enum locateresult intersect;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+  if (!(b->quiet || (b->noholes && b->convex))) {
+    fprintf(stderr, "Removing unwanted triangles.\n");
+    if (b->verbose && (holes > 0)) {
+      fprintf(stderr, "  Marking holes for elimination.\n");
+    }
+  }
+
+  if (regions > 0) {
+    /* Allocate storage for the triangles in which region points fall. */
+    regiontris = (struct otri *) trimalloc(regions * sizeof(struct otri));
+  }
+
+  if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
+    /* Initialize a pool of viri to be used for holes, concavities, */
+    /*   regional attributes, and/or regional area constraints.     */
+    poolinit(&m->viri, sizeof(triangle *), VIRUSPERBLOCK, POINTER, 0);
+  }
+
+  if (!b->convex) {
+    /* Mark as infected any unprotected triangles on the boundary. */
+    /*   This is one way by which concavities are created.         */
+    infecthull(m, b);
+  }
+
+  if ((holes > 0) && !b->noholes) {
+    /* Infect each triangle in which a hole lies. */
+    for (i = 0; i < 2 * holes; i += 2) {
+      /* Ignore holes that aren't within the bounds of the mesh. */
+      if ((holelist[i] >= m->xmin) && (holelist[i] <= m->xmax)
+          && (holelist[i + 1] >= m->ymin) && (holelist[i + 1] <= m->ymax)) {
+        /* Start searching from some triangle on the outer boundary. */
+        searchtri.tri = m->dummytri;
+        searchtri.orient = 0;
+        symself(searchtri);
+        /* Ensure that the hole is to the left of this boundary edge; */
+        /*   otherwise, locate() will falsely report that the hole    */
+        /*   falls within the starting triangle.                      */
+        org(searchtri, searchorg);
+        dest(searchtri, searchdest);
+        if (counterclockwise(m, b, searchorg, searchdest, &holelist[i]) >
+            0.0) {
+          /* Find a triangle that contains the hole. */
+          intersect = locate(m, b, &holelist[i], &searchtri);
+          if ((intersect != OUTSIDE) && (!infected(searchtri))) {
+            /* Infect the triangle.  This is done by marking the triangle  */
+            /*   as infected and including the triangle in the virus pool. */
+            infect(searchtri);
+            holetri = (triangle **) poolalloc(&m->viri);
+            *holetri = searchtri.tri;
+          }
+        }
+      }
+    }
+  }
+
+  /* Now, we have to find all the regions BEFORE we carve the holes, because */
+  /*   locate() won't work when the triangulation is no longer convex.       */
+  /*   (Incidentally, this is the reason why regional attributes and area    */
+  /*   constraints can't be used when refining a preexisting mesh, which     */
+  /*   might not be convex; they can only be used with a freshly             */
+  /*   triangulated PSLG.)                                                   */
+  if (regions > 0) {
+    /* Find the starting triangle for each region. */
+    for (i = 0; i < regions; i++) {
+      regiontris[i].tri = m->dummytri;
+      /* Ignore region points that aren't within the bounds of the mesh. */
+      if ((regionlist[4 * i] >= m->xmin) && (regionlist[4 * i] <= m->xmax) &&
+          (regionlist[4 * i + 1] >= m->ymin) &&
+          (regionlist[4 * i + 1] <= m->ymax)) {
+        /* Start searching from some triangle on the outer boundary. */
+        searchtri.tri = m->dummytri;
+        searchtri.orient = 0;
+        symself(searchtri);
+        /* Ensure that the region point is to the left of this boundary */
+        /*   edge; otherwise, locate() will falsely report that the     */
+        /*   region point falls within the starting triangle.           */
+        org(searchtri, searchorg);
+        dest(searchtri, searchdest);
+        if (counterclockwise(m, b, searchorg, searchdest, &regionlist[4 * i]) >
+            0.0) {
+          /* Find a triangle that contains the region point. */
+          intersect = locate(m, b, &regionlist[4 * i], &searchtri);
+          if ((intersect != OUTSIDE) && (!infected(searchtri))) {
+            /* Record the triangle for processing after the */
+            /*   holes have been carved.                    */
+            otricopy(searchtri, regiontris[i]);
+          }
+        }
+      }
+    }
+  }
+
+  if (m->viri.items > 0) {
+    /* Carve the holes and concavities. */
+    plague(m, b);
+  }
+  /* The virus pool should be empty now. */
+
+  if (regions > 0) {
+    if (!b->quiet) {
+      if (b->regionattrib) {
+        if (b->vararea) {
+          fprintf(stderr, "Spreading regional attributes and area constraints.\n");
+        } else {
+          fprintf(stderr, "Spreading regional attributes.\n");
+        }
+      } else { 
+        fprintf(stderr, "Spreading regional area constraints.\n");
+      }
+    }
+    if (b->regionattrib && !b->refine) {
+      /* Assign every triangle a regional attribute of zero. */
+      traversalinit(&m->triangles);
+      triangleloop.orient = 0;
+      triangleloop.tri = triangletraverse(m);
+      while (triangleloop.tri != (triangle *) NULL) {
+        setelemattribute(triangleloop, m->eextras, 0.0);
+        triangleloop.tri = triangletraverse(m);
+      }
+    }
+    for (i = 0; i < regions; i++) {
+      if (regiontris[i].tri != m->dummytri) {
+        /* Make sure the triangle under consideration still exists. */
+        /*   It may have been eaten by the virus.                   */
+        if (!deadtri(regiontris[i].tri)) {
+          /* Put one triangle in the virus pool. */
+          infect(regiontris[i]);
+          regiontri = (triangle **) poolalloc(&m->viri);
+          *regiontri = regiontris[i].tri;
+          /* Apply one region's attribute and/or area constraint. */
+          regionplague(m, b, regionlist[4 * i + 2], regionlist[4 * i + 3]);
+          /* The virus pool should be empty now. */
+        }
+      }
+    }
+    if (b->regionattrib && !b->refine) {
+      /* Note the fact that each triangle has an additional attribute. */
+      m->eextras++;
+    }
+  }
+
+  /* Free up memory. */
+  if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
+    pooldeinit(&m->viri);
+  }
+  if (regions > 0) {
+    trifree((VOID *) regiontris);
+  }
+}
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Carving out holes and concavities ends here               *********/
+
+/********* Mesh quality maintenance begins here                      *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  tallyencs()   Traverse the entire list of subsegments, and check each    */
+/*                to see if it is encroached.  If so, add it to the list.    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void tallyencs(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void tallyencs(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct osub subsegloop;
+  int dummy;
+
+  traversalinit(&m->subsegs);
+  subsegloop.ssorient = 0;
+  subsegloop.ss = subsegtraverse(m);
+  while (subsegloop.ss != (subseg *) NULL) {
+    /* If the segment is encroached, add it to the list. */
+    dummy = checkseg4encroach(m, b, &subsegloop, 0.0);
+    subsegloop.ss = subsegtraverse(m);
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  precisionerror()  Print an error message for precision problems.         */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+void precisionerror()
+{
+  fprintf(stderr, "Try increasing the area criterion and/or reducing the minimum\n");
+  fprintf(stderr, "  allowable angle so that tiny triangles are not created.\n");
+#ifdef SINGLE
+  fprintf(stderr, "Alternatively, try recompiling me with double precision\n");
+  fprintf(stderr, "  arithmetic (by removing \"#define SINGLE\" from the\n");
+  fprintf(stderr, "  source file or \"-DSINGLE\" from the makefile).\n");
+#endif /* SINGLE */
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  splitencsegs()   Split all the encroached subsegments.                   */
+/*                                                                           */
+/*  Each encroached subsegment is repaired by splitting it - inserting a     */
+/*  vertex at or near its midpoint.  Newly inserted vertices may encroach    */
+/*  upon other subsegments; these are also repaired.                         */
+/*                                                                           */
+/*  `triflaws' is a flag that specifies whether one should take note of new  */
+/*  bad triangles that result from inserting vertices to repair encroached   */
+/*  subsegments.                                                             */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void splitencsegs(struct mesh *m, struct behavior *b, int triflaws)
+#else /* not ANSI_DECLARATORS */
+void splitencsegs(m, b, triflaws)
+struct mesh *m;
+struct behavior *b;
+int triflaws;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri enctri;
+  struct otri testtri;
+  struct osub testsh;
+  struct osub currentenc;
+  struct badsubseg *encloop;
+  vertex eorg, edest, eapex;
+  vertex newvertex;
+  enum insertvertexresult success;
+  REAL segmentlength, nearestpoweroftwo;
+  REAL split;
+  REAL multiplier, divisor;
+  int acuteorg, acuteorg2, acutedest, acutedest2;
+  int dummy;
+  int i;
+  triangle ptr;                     /* Temporary variable used by stpivot(). */
+  subseg sptr;                        /* Temporary variable used by snext(). */
+
+  /* Note that steinerleft == -1 if an unlimited number */
+  /*   of Steiner points is allowed.                    */
+  while ((m->badsubsegs.items > 0) && (m->steinerleft != 0)) {
+    traversalinit(&m->badsubsegs);
+    encloop = badsubsegtraverse(m);
+    while ((encloop != (struct badsubseg *) NULL) && (m->steinerleft != 0)) {
+      sdecode(encloop->encsubseg, currentenc);
+      sorg(currentenc, eorg);
+      sdest(currentenc, edest);
+      /* Make sure that this segment is still the same segment it was   */
+      /*   when it was determined to be encroached.  If the segment was */
+      /*   enqueued multiple times (because several newly inserted      */
+      /*   vertices encroached it), it may have already been split.     */
+      if (!deadsubseg(currentenc.ss) &&
+          (eorg == encloop->subsegorg) && (edest == encloop->subsegdest)) {
+        /* To decide where to split a segment, we need to know if the   */
+        /*   segment shares an endpoint with an adjacent segment.       */
+        /*   The concern is that, if we simply split every encroached   */
+        /*   segment in its center, two adjacent segments with a small  */
+        /*   angle between them might lead to an infinite loop; each    */
+        /*   vertex added to split one segment will encroach upon the   */
+        /*   other segment, which must then be split with a vertex that */
+        /*   will encroach upon the first segment, and so on forever.   */
+        /* To avoid this, imagine a set of concentric circles, whose    */
+        /*   radii are powers of two, about each segment endpoint.      */
+        /*   These concentric circles determine where the segment is    */
+        /*   split.  (If both endpoints are shared with adjacent        */
+        /*   segments, split the segment in the middle, and apply the   */
+        /*   concentric circles for later splittings.)                  */
+
+        /* Is the origin shared with another segment? */
+        stpivot(currentenc, enctri);
+        lnext(enctri, testtri);
+        tspivot(testtri, testsh);
+        acuteorg = testsh.ss != m->dummysub;
+        /* Is the destination shared with another segment? */
+        lnextself(testtri);
+        tspivot(testtri, testsh);
+        acutedest = testsh.ss != m->dummysub;
+
+        /* If we're using diametral lenses (rather than diametral circles) */
+        /*   to define encroachment, delete free vertices from the         */
+        /*   subsegment's diametral circle.                                */
+        if (!b->nolenses && !acuteorg && !acutedest) {
+          apex(enctri, eapex);
+          while ((vertextype(eapex) == FREEVERTEX) &&
+                 ((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
+                  (eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) {
+            deletevertex(m, b, &testtri);
+            stpivot(currentenc, enctri);
+            apex(enctri, eapex);
+            lprev(enctri, testtri);
+          }
+        }
+
+        /* Now, check the other side of the segment, if there's a triangle */
+        /*   there.                                                        */
+        sym(enctri, testtri);
+        if (testtri.tri != m->dummytri) {
+          /* Is the destination shared with another segment? */
+          lnextself(testtri);
+          tspivot(testtri, testsh);
+          acutedest2 = testsh.ss != m->dummysub;
+          acutedest = acutedest || acutedest2;
+          /* Is the origin shared with another segment? */
+          lnextself(testtri);
+          tspivot(testtri, testsh);
+          acuteorg2 = testsh.ss != m->dummysub;
+          acuteorg = acuteorg || acuteorg2;
+
+          /* Delete free vertices from the subsegment's diametral circle. */
+          if (!b->nolenses && !acuteorg2 && !acutedest2) {
+            org(testtri, eapex);
+            while ((vertextype(eapex) == FREEVERTEX) &&
+                   ((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
+                    (eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) {
+              deletevertex(m, b, &testtri);
+              sym(enctri, testtri);
+              apex(testtri, eapex);
+              lprevself(testtri);
+            }
+          }
+        }
+
+        /* Use the concentric circles if exactly one endpoint is shared */
+        /*   with another adjacent segment.                             */
+        if (acuteorg || acutedest) {
+          segmentlength = sqrt((edest[0] - eorg[0]) * (edest[0] - eorg[0]) +
+                               (edest[1] - eorg[1]) * (edest[1] - eorg[1]));
+          /* Find the power of two that most evenly splits the segment.  */
+          /*   The worst case is a 2:1 ratio between subsegment lengths. */
+          nearestpoweroftwo = 1.0;
+          while (segmentlength > 3.0 * nearestpoweroftwo) {
+            nearestpoweroftwo *= 2.0;
+          }
+          while (segmentlength < 1.5 * nearestpoweroftwo) {
+            nearestpoweroftwo *= 0.5;
+          }
+          /* Where do we split the segment? */
+          split = nearestpoweroftwo / segmentlength;
+          if (acutedest) {
+            split = 1.0 - split;
+          }
+        } else {
+          /* If we're not worried about adjacent segments, split */
+          /*   this segment in the middle.                       */
+          split = 0.5;
+        }
+
+        /* Create the new vertex. */
+        newvertex = (vertex) poolalloc(&m->vertices);
+        /* Interpolate its coordinate and attributes. */
+        for (i = 0; i < 2 + m->nextras; i++) {
+          newvertex[i] = eorg[i] + split * (edest[i] - eorg[i]);
+        }
+
+        if (!b->noexact) {
+          /* Roundoff in the above calculation may yield a `newvertex'   */
+          /*   that is not precisely collinear with `eorg' and `edest'.  */
+          /*   Improve collinearity by one step of iterative refinement. */
+          multiplier = counterclockwise(m, b, eorg, edest, newvertex);
+          divisor = ((eorg[0] - edest[0]) * (eorg[0] - edest[0]) +
+                     (eorg[1] - edest[1]) * (eorg[1] - edest[1]));
+          if ((multiplier != 0.0) && (divisor != 0.0)) {
+            multiplier = multiplier / divisor;
+            /* Watch out for NANs. */
+            if (multiplier == multiplier) {
+              newvertex[0] += multiplier * (edest[1] - eorg[1]);
+              newvertex[1] += multiplier * (eorg[0] - edest[0]);
+            }
+          }
+        }
+
+        setvertexmark(newvertex, mark(currentenc));
+        setvertextype(newvertex, SEGMENTVERTEX);
+        if (b->verbose > 1) {
+          fprintf(stderr, 
+  "  Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
+                 eorg[0], eorg[1], edest[0], edest[1],
+                 newvertex[0], newvertex[1]);
+        }
+        /* Check whether the new vertex lies on an endpoint. */
+        if (((newvertex[0] == eorg[0]) && (newvertex[1] == eorg[1])) ||
+            ((newvertex[0] == edest[0]) && (newvertex[1] == edest[1]))) {
+          fprintf(stderr, "Error:  Ran out of precision at (%.12g, %.12g).\n",
+                 newvertex[0], newvertex[1]);
+          fprintf(stderr, "I attempted to split a segment to a smaller size than\n");
+          fprintf(stderr, "  can be accommodated by the finite precision of\n");
+          fprintf(stderr, "  floating point arithmetic.\n");
+          precisionerror();
+          exit(1);
+        }
+        /* Insert the splitting vertex.  This should always succeed. */
+        success = insertvertex(m, b, newvertex, &enctri, &currentenc,
+                               1, triflaws, 0.0);
+        if ((success != SUCCESSFULVERTEX) && (success != ENCROACHINGVERTEX)) {
+          fprintf(stderr, "Internal error in splitencsegs():\n");
+          fprintf(stderr, "  Failure to split a segment.\n");
+          internalerror();
+        }
+        if (m->steinerleft > 0) {
+          m->steinerleft--;
+        }
+        /* Check the two new subsegments to see if they're encroached. */
+        dummy = checkseg4encroach(m, b, &currentenc, 0.0);
+        snextself(currentenc);
+        dummy = checkseg4encroach(m, b, &currentenc, 0.0);
+      }
+
+      badsubsegdealloc(m, encloop);
+      encloop = badsubsegtraverse(m);
+    }
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  tallyfaces()   Test every triangle in the mesh for quality measures.     */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void tallyfaces(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void tallyfaces(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri triangleloop;
+
+  if (b->verbose) {
+    fprintf(stderr, "  Making a list of bad triangles.\n");
+  }
+  traversalinit(&m->triangles);
+  triangleloop.orient = 0;
+  triangleloop.tri = triangletraverse(m);
+  while (triangleloop.tri != (triangle *) NULL) {
+    /* If the triangle is bad, enqueue it. */
+    testtriangle(m, b, &triangleloop);
+    triangleloop.tri = triangletraverse(m);
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  splittriangle()   Inserts a vertex at the circumcenter of a triangle.    */
+/*                    Deletes the newly inserted vertex if it encroaches     */
+/*                    upon a segment.                                        */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void splittriangle(struct mesh *m, struct behavior *b,
+                   struct badtriang *badtri)
+#else /* not ANSI_DECLARATORS */
+void splittriangle(m, b, badtri)
+struct mesh *m;
+struct behavior *b;
+struct badtriang *badtri;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri badotri;
+  vertex borg, bdest, bapex;
+  vertex newvertex;
+  REAL xi, eta;
+  REAL minedge;
+  enum insertvertexresult success;
+  int errorflag;
+  int i;
+
+  decode(badtri->poortri, badotri);
+  org(badotri, borg);
+  dest(badotri, bdest);
+  apex(badotri, bapex);
+  /* Make sure that this triangle is still the same triangle it was      */
+  /*   when it was tested and determined to be of bad quality.           */
+  /*   Subsequent transformations may have made it a different triangle. */
+  if (!deadtri(badotri.tri) && (borg == badtri->triangorg) &&
+      (bdest == badtri->triangdest) && (bapex == badtri->triangapex)) {
+    if (b->verbose > 1) {
+      fprintf(stderr, "  Splitting this triangle at its circumcenter:\n");
+      fprintf(stderr, "    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", borg[0],
+             borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
+    }
+
+    errorflag = 0;
+    /* Create a new vertex at the triangle's circumcenter. */
+    newvertex = (vertex) poolalloc(&m->vertices);
+    findcircumcenter(m, b, borg, bdest, bapex, newvertex, &xi, &eta, &minedge);
+
+    /* Check whether the new vertex lies on a triangle vertex. */
+    if (((newvertex[0] == borg[0]) && (newvertex[1] == borg[1])) ||
+        ((newvertex[0] == bdest[0]) && (newvertex[1] == bdest[1])) ||
+        ((newvertex[0] == bapex[0]) && (newvertex[1] == bapex[1]))) {
+      if (!b->quiet) {
+        fprintf(stderr, 
+            "Warning:  New vertex (%.12g, %.12g) falls on existing vertex.\n",
+               newvertex[0], newvertex[1]);
+        errorflag = 1;
+      }
+      vertexdealloc(m, newvertex);
+    } else {
+      for (i = 2; i < 2 + m->nextras; i++) {
+        /* Interpolate the vertex attributes at the circumcenter. */
+        newvertex[i] = borg[i] + xi * (bdest[i] - borg[i])
+                              + eta * (bapex[i] - borg[i]);
+      }
+      /* The new vertex must be in the interior, and therefore is a */
+      /*   free vertex with a marker of zero.                       */
+      setvertexmark(newvertex, 0);
+      setvertextype(newvertex, FREEVERTEX);
+
+      /* Ensure that the handle `badotri' does not represent the longest  */
+      /*   edge of the triangle.  This ensures that the circumcenter must */
+      /*   fall to the left of this edge, so point location will work.    */
+      /*   (If the angle org-apex-dest exceeds 90 degrees, then the       */
+      /*   circumcenter lies outside the org-dest edge, and eta is        */
+      /*   negative.  Roundoff error might prevent eta from being         */
+      /*   negative when it should be, so I test eta against xi.)         */
+      if (eta < xi) {
+        lprevself(badotri);
+      }
+
+      /* Insert the circumcenter, searching from the edge of the triangle, */
+      /*   and maintain the Delaunay property of the triangulation.        */
+      success = insertvertex(m, b, newvertex, &badotri, (struct osub *) NULL,
+                             1, 1, minedge);
+      if (success == SUCCESSFULVERTEX) {
+        if (m->steinerleft > 0) {
+          m->steinerleft--;
+        }
+      } else if (success == ENCROACHINGVERTEX) {
+        /* If the newly inserted vertex encroaches upon a subsegment, */
+        /*   delete the new vertex.                                   */
+        undovertex(m, b);
+        if (b->verbose > 1) {
+          fprintf(stderr, "  Rejecting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
+        }
+        vertexdealloc(m, newvertex);
+      } else if (success == VIOLATINGVERTEX) {
+        /* Failed to insert the new vertex, but some subsegment was */
+        /*   marked as being encroached.                            */
+        vertexdealloc(m, newvertex);
+      } else {                                 /* success == DUPLICATEVERTEX */
+        /* Couldn't insert the new vertex because a vertex is already there. */
+        if (!b->quiet) {
+          fprintf(stderr, 
+            "Warning:  New vertex (%.12g, %.12g) falls on existing vertex.\n",
+                 newvertex[0], newvertex[1]);
+          errorflag = 1;
+        }
+        vertexdealloc(m, newvertex);
+      }
+    }
+    if (errorflag) {
+      if (b->verbose) {
+        fprintf(stderr, "  The new vertex is at the circumcenter of triangle\n");
+        fprintf(stderr, "    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
+               borg[0], borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
+      }
+      fprintf(stderr, "This probably means that I am trying to refine triangles\n");
+      fprintf(stderr, "  to a smaller size than can be accommodated by the finite\n");
+      fprintf(stderr, "  precision of floating point arithmetic.  (You can be\n");
+      fprintf(stderr, "  sure of this if I fail to terminate.)\n");
+      precisionerror();
+    }
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  enforcequality()   Remove all the encroached subsegments and bad         */
+/*                     triangles from the triangulation.                     */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef CDT_ONLY
+
+#ifdef ANSI_DECLARATORS
+void enforcequality(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void enforcequality(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct badtriang *badtri;
+  int i;
+
+  if (!b->quiet) {
+    fprintf(stderr, "Adding Steiner points to enforce quality.\n");
+  }
+  /* Initialize the pool of encroached subsegments. */
+  poolinit(&m->badsubsegs, sizeof(struct badsubseg), BADSUBSEGPERBLOCK,
+           POINTER, 0);
+  if (b->verbose) {
+    fprintf(stderr, "  Looking for encroached subsegments.\n");
+  }
+  /* Test all segments to see if they're encroached. */
+  tallyencs(m, b);
+  if (b->verbose && (m->badsubsegs.items > 0)) {
+    fprintf(stderr, "  Splitting encroached subsegments.\n");
+  }
+  /* Fix encroached subsegments without noting bad triangles. */
+  splitencsegs(m, b, 0);
+  /* At this point, if we haven't run out of Steiner points, the */
+  /*   triangulation should be (conforming) Delaunay.            */
+
+  /* Next, we worry about enforcing triangle quality. */
+  if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) {
+    /* Initialize the pool of bad triangles. */
+    poolinit(&m->badtriangles, sizeof(struct badtriang), BADTRIPERBLOCK,
+             POINTER, 0);
+    /* Initialize the queues of bad triangles. */
+    for (i = 0; i < 64; i++) {
+      m->queuefront[i] = (struct badtriang *) NULL;
+    }
+    m->firstnonemptyq = -1;
+    /* Test all triangles to see if they're bad. */
+    tallyfaces(m, b);
+    /* Initialize the pool of recently flipped triangles. */
+    poolinit(&m->flipstackers, sizeof(struct flipstacker), FLIPSTACKERPERBLOCK,
+             POINTER, 0);
+    m->checkquality = 1;
+    if (b->verbose) {
+      fprintf(stderr, "  Splitting bad triangles.\n");
+    }
+    while ((m->badtriangles.items > 0) && (m->steinerleft != 0)) {
+      /* Fix one bad triangle by inserting a vertex at its circumcenter. */
+      badtri = dequeuebadtriang(m);
+      splittriangle(m, b, badtri);
+      if (m->badsubsegs.items > 0) {
+        /* Put bad triangle back in queue for another try later. */
+        enqueuebadtriang(m, b, badtri);
+        /* Fix any encroached subsegments that resulted. */
+        /*   Record any new bad triangles that result.   */
+        splitencsegs(m, b, 1);
+      } else {
+        /* Return the bad triangle to the pool. */
+        pooldealloc(&m->badtriangles, (VOID *) badtri);
+      }
+    }
+  }
+  /* At this point, if we haven't run out of Steiner points, the */
+  /*   triangulation should be (conforming) Delaunay and have no */
+  /*   low-quality triangles.                                    */
+
+  /* Might we have run out of Steiner points too soon? */
+  if (!b->quiet && (m->badsubsegs.items > 0) && (m->steinerleft == 0)) {
+    fprintf(stderr, "\nWarning:  I ran out of Steiner points, but the mesh has\n");
+    if (m->badsubsegs.items == 1) {
+      fprintf(stderr, "  an encroached subsegment, and therefore might not be truly\n");
+    } else {
+      fprintf(stderr, "  %ld encroached subsegments, and therefore might not be truly\n"
+             , m->badsubsegs.items);
+    }
+    fprintf(stderr, "  Delaunay.  If the Delaunay property is important to you,\n");
+    fprintf(stderr, "  try increasing the number of Steiner points (controlled by\n");
+    fprintf(stderr, "  the -S switch) slightly and try again.\n\n");
+  }
+}
+
+#endif /* not CDT_ONLY */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* Mesh quality maintenance ends here                        *********/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  highorder()   Create extra nodes for quadratic subparametric elements.   */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void highorder(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void highorder(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri triangleloop, trisym;
+  struct osub checkmark;
+  vertex newvertex;
+  vertex torg, tdest;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+  if (!b->quiet) {
+    fprintf(stderr, "Adding vertices for second-order triangles.\n");
+  }
+  /* The following line ensures that dead items in the pool of nodes    */
+  /*   cannot be allocated for the extra nodes associated with high     */
+  /*   order elements.  This ensures that the primary nodes (at the     */
+  /*   corners of elements) will occur earlier in the output files, and */
+  /*   have lower indices, than the extra nodes.                        */
+  m->vertices.deaditemstack = (VOID *) NULL;
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  /* To loop over the set of edges, loop over all triangles, and look at   */
+  /*   the three edges of each triangle.  If there isn't another triangle  */
+  /*   adjacent to the edge, operate on the edge.  If there is another     */
+  /*   adjacent triangle, operate on the edge only if the current triangle */
+  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
+  /*   considered only once.                                               */
+  while (triangleloop.tri != (triangle *) NULL) {
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      sym(triangleloop, trisym);
+      if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
+        org(triangleloop, torg);
+        dest(triangleloop, tdest);
+        /* Create a new node in the middle of the edge.  Interpolate */
+        /*   its attributes.                                         */
+        newvertex = (vertex) poolalloc(&m->vertices);
+        for (i = 0; i < 2 + m->nextras; i++) {
+          newvertex[i] = 0.5 * (torg[i] + tdest[i]);
+        }
+        /* Set the new node's marker to zero or one, depending on */
+        /*   whether it lies on a boundary.                       */
+        setvertexmark(newvertex, trisym.tri == m->dummytri);
+        setvertextype(newvertex,
+                      trisym.tri == m->dummytri ? FREEVERTEX : SEGMENTVERTEX);
+        if (b->usesegments) {
+          tspivot(triangleloop, checkmark);
+          /* If this edge is a segment, transfer the marker to the new node. */
+          if (checkmark.ss != m->dummysub) {
+            setvertexmark(newvertex, mark(checkmark));
+            setvertextype(newvertex, SEGMENTVERTEX);
+          }
+        }
+        if (b->verbose > 1) {
+          fprintf(stderr, "  Creating (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
+        }
+        /* Record the new node in the (one or two) adjacent elements. */
+        triangleloop.tri[m->highorderindex + triangleloop.orient] =
+                (triangle) newvertex;
+        if (trisym.tri != m->dummytri) {
+          trisym.tri[m->highorderindex + trisym.orient] = (triangle) newvertex;
+        }
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+}
+
+/********* File I/O routines begin here                              *********/
+/**                                                                         **/
+/**                                                                         **/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  readline()   Read a nonempty line from a file.                           */
+/*                                                                           */
+/*  A line is considered "nonempty" if it contains something that looks like */
+/*  a number.  Comments (prefaced by `#') are ignored.                       */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+char *readline(char *string, FILE *infile, char *infilename)
+#else /* not ANSI_DECLARATORS */
+char *readline(string, infile, infilename)
+char *string;
+FILE *infile;
+char *infilename;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  char *result;
+
+  /* Search for something that looks like a number. */
+  do {
+    result = fgets(string, INPUTLINESIZE, infile);
+    if (result == (char *) NULL) {
+      fprintf(stderr, "  Error:  Unexpected end of file in %s.\n", infilename);
+      exit(1);
+    }
+    /* Skip anything that doesn't look like a number, a comment, */
+    /*   or the end of a line.                                   */
+    while ((*result != '\0') && (*result != '#')
+           && (*result != '.') && (*result != '+') && (*result != '-')
+           && ((*result < '0') || (*result > '9'))) {
+      result++;
+    }
+  /* If it's a comment or end of line, read another line and try again. */
+  } while ((*result == '#') || (*result == '\0'));
+  return result;
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  findfield()   Find the next field of a string.                           */
+/*                                                                           */
+/*  Jumps past the current field by searching for whitespace, then jumps     */
+/*  past the whitespace to find the next field.                              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+char *findfield(char *string)
+#else /* not ANSI_DECLARATORS */
+char *findfield(string)
+char *string;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  char *result;
+
+  result = string;
+  /* Skip the current field.  Stop upon reaching whitespace. */
+  while ((*result != '\0') && (*result != '#')
+         && (*result != ' ') && (*result != '\t')) {
+    result++;
+  }
+  /* Now skip the whitespace and anything else that doesn't look like a */
+  /*   number, a comment, or the end of a line.                         */
+  while ((*result != '\0') && (*result != '#')
+         && (*result != '.') && (*result != '+') && (*result != '-')
+         && ((*result < '0') || (*result > '9'))) {
+    result++;
+  }
+  /* Check for a comment (prefixed with `#'). */
+  if (*result == '#') {
+    *result = '\0';
+  }
+  return result;
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  readnodes()   Read the vertices from a file, which may be a .node or     */
+/*                .poly file.                                                */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void readnodes(struct mesh *m, struct behavior *b, char *nodefilename,
+               char *polyfilename, FILE **polyfile)
+#else /* not ANSI_DECLARATORS */
+void readnodes(m, b, nodefilename, polyfilename, polyfile)
+struct mesh *m;
+struct behavior *b;
+char *nodefilename;
+char *polyfilename;
+FILE **polyfile;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  FILE *infile;
+  vertex vertexloop;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  char *infilename;
+  REAL x, y;
+  int firstnode;
+  int nodemarkers;
+  int currentmarker;
+  int i, j;
+
+  if (b->poly) {
+    /* Read the vertices from a .poly file. */
+    if (!b->quiet) {
+      fprintf(stderr, "Opening %s.\n", polyfilename);
+    }
+    *polyfile = fopen(polyfilename, "r");
+    if (*polyfile == (FILE *) NULL) {
+      fprintf(stderr, "  Error:  Cannot access file %s.\n", polyfilename);
+      exit(1);
+    }
+    /* Read number of vertices, number of dimensions, number of vertex */
+    /*   attributes, and number of boundary markers.                   */
+    stringptr = readline(inputline, *polyfile, polyfilename);
+    m->invertices = (int) strtol(stringptr, &stringptr, 0);
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      m->mesh_dim = 2;
+    } else {
+      m->mesh_dim = (int) strtol(stringptr, &stringptr, 0);
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      m->nextras = 0;
+    } else {
+      m->nextras = (int) strtol(stringptr, &stringptr, 0);
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      nodemarkers = 0;
+    } else {
+      nodemarkers = (int) strtol(stringptr, &stringptr, 0);
+    }
+    if (m->invertices > 0) {
+      infile = *polyfile;
+      infilename = polyfilename;
+      m->readnodefile = 0;
+    } else {
+      /* If the .poly file claims there are zero vertices, that means that */
+      /*   the vertices should be read from a separate .node file.         */
+      m->readnodefile = 1;
+      infilename = nodefilename;
+    }
+  } else {
+    m->readnodefile = 1;
+    infilename = nodefilename;
+    *polyfile = (FILE *) NULL;
+  }
+
+  if (m->readnodefile) {
+    /* Read the vertices from a .node file. */
+    if (!b->quiet) {
+      fprintf(stderr, "Opening %s.\n", nodefilename);
+    }
+    infile = fopen(nodefilename, "r");
+    if (infile == (FILE *) NULL) {
+      fprintf(stderr, "  Error:  Cannot access file %s.\n", nodefilename);
+      exit(1);
+    }
+    /* Read number of vertices, number of dimensions, number of vertex */
+    /*   attributes, and number of boundary markers.                   */
+    stringptr = readline(inputline, infile, nodefilename);
+    m->invertices = (int) strtol(stringptr, &stringptr, 0);
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      m->mesh_dim = 2;
+    } else {
+      m->mesh_dim = (int) strtol(stringptr, &stringptr, 0);
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      m->nextras = 0;
+    } else {
+      m->nextras = (int) strtol(stringptr, &stringptr, 0);
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      nodemarkers = 0;
+    } else {
+      nodemarkers = (int) strtol(stringptr, &stringptr, 0);
+    }
+  }
+
+  if (m->invertices < 3) {
+    fprintf(stderr, "Error:  Input must have at least three input vertices.\n");
+    exit(1);
+  }
+  if (m->mesh_dim != 2) {
+    fprintf(stderr, "Error:  Triangle only works with two-dimensional meshes.\n");
+    exit(1);
+  }
+  if (m->nextras == 0) {
+    b->weighted = 0;
+  }
+
+  initializevertexpool(m, b);
+
+  /* Read the vertices. */
+  for (i = 0; i < m->invertices; i++) {
+    vertexloop = (vertex) poolalloc(&m->vertices);
+    stringptr = readline(inputline, infile, infilename);
+    if (i == 0) {
+      firstnode = (int) strtol(stringptr, &stringptr, 0);
+      if ((firstnode == 0) || (firstnode == 1)) {
+        b->firstnumber = firstnode;
+      }
+    }
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      fprintf(stderr, "Error:  Vertex %d has no x coordinate.\n", b->firstnumber + i);
+      exit(1);
+    }
+    x = (REAL) strtod(stringptr, &stringptr);
+    stringptr = findfield(stringptr);
+    if (*stringptr == '\0') {
+      fprintf(stderr, "Error:  Vertex %d has no y coordinate.\n", b->firstnumber + i);
+      exit(1);
+    }
+    y = (REAL) strtod(stringptr, &stringptr);
+    vertexloop[0] = x;
+    vertexloop[1] = y;
+    /* Read the vertex attributes. */
+    for (j = 2; j < 2 + m->nextras; j++) {
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        vertexloop[j] = 0.0;
+      } else {
+        vertexloop[j] = (REAL) strtod(stringptr, &stringptr);
+      }
+    }
+    if (nodemarkers) {
+      /* Read a vertex marker. */
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        setvertexmark(vertexloop, 0);
+      } else {
+        currentmarker = (int) strtol(stringptr, &stringptr, 0);
+        setvertexmark(vertexloop, currentmarker);
+      }
+    } else {
+      /* If no markers are specified in the file, they default to zero. */
+      setvertexmark(vertexloop, 0);
+    }
+    setvertextype(vertexloop, INPUTVERTEX);
+    /* Determine the smallest and largest x and y coordinates. */
+    if (i == 0) {
+      m->xmin = m->xmax = x;
+      m->ymin = m->ymax = y;
+    } else {
+      m->xmin = (x < m->xmin) ? x : m->xmin;
+      m->xmax = (x > m->xmax) ? x : m->xmax;
+      m->ymin = (y < m->ymin) ? y : m->ymin;
+      m->ymax = (y > m->ymax) ? y : m->ymax;
+    }
+  }
+  if (m->readnodefile) {
+    fclose(infile);
+  }
+
+  /* Nonexistent x value used as a flag to mark circle events in sweepline */
+  /*   Delaunay algorithm.                                                 */
+  m->xminextreme = 10 * m->xmin - 9 * m->xmax;
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  transfernodes()   Read the vertices from memory.                         */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void transfernodes(struct mesh *m, struct behavior *b, REAL *pointlist,
+                   REAL *pointattriblist, int *pointmarkerlist,
+                   int numberofpoints, int numberofpointattribs)
+#else /* not ANSI_DECLARATORS */
+void transfernodes(m, b, pointlist, pointattriblist, pointmarkerlist,
+                   numberofpoints, numberofpointattribs)
+struct mesh *m;
+struct behavior *b;
+REAL *pointlist;
+REAL *pointattriblist;
+int *pointmarkerlist;
+int numberofpoints;
+int numberofpointattribs;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  vertex vertexloop;
+  REAL x, y;
+  int i, j;
+  int coordindex;
+  int attribindex;
+
+  m->invertices = numberofpoints;
+  m->mesh_dim = 2;
+  m->nextras = numberofpointattribs;
+  m->readnodefile = 0;
+  if (m->invertices < 3) {
+    fprintf(stderr, "Error:  Input must have at least three input vertices.\n");
+    exit(1);
+  }
+  if (m->nextras == 0) {
+    b->weighted = 0;
+  }
+
+  initializevertexpool(m, b);
+
+  /* Read the vertices. */
+  coordindex = 0;
+  attribindex = 0;
+  for (i = 0; i < m->invertices; i++) {
+    vertexloop = (vertex) poolalloc(&m->vertices);
+    /* Read the vertex coordinates. */
+    x = vertexloop[0] = pointlist[coordindex++];
+    y = vertexloop[1] = pointlist[coordindex++];
+    /* Read the vertex attributes. */
+    for (j = 0; j < numberofpointattribs; j++) {
+      vertexloop[2 + j] = pointattriblist[attribindex++];
+    }
+    if (pointmarkerlist != (int *) NULL) {
+      /* Read a vertex marker. */
+      setvertexmark(vertexloop, pointmarkerlist[i]);
+    } else {
+      /* If no markers are specified, they default to zero. */
+      setvertexmark(vertexloop, 0);
+    }
+    setvertextype(vertexloop, INPUTVERTEX);
+    /* Determine the smallest and largest x and y coordinates. */
+    if (i == 0) {
+      m->xmin = m->xmax = x;
+      m->ymin = m->ymax = y;
+    } else {
+      m->xmin = (x < m->xmin) ? x : m->xmin;
+      m->xmax = (x > m->xmax) ? x : m->xmax;
+      m->ymin = (y < m->ymin) ? y : m->ymin;
+      m->ymax = (y > m->ymax) ? y : m->ymax;
+    }
+  }
+
+  /* Nonexistent x value used as a flag to mark circle events in sweepline */
+  /*   Delaunay algorithm.                                                 */
+  m->xminextreme = 10 * m->xmin - 9 * m->xmax;
+}
+
+#endif /* TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  readholes()   Read the holes, and possibly regional attributes and area  */
+/*                constraints, from a .poly file.                            */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void readholes(struct mesh *m, struct behavior *b,
+               FILE *polyfile, char *polyfilename, REAL **hlist, int *holes,
+               REAL **rlist, int *regions)
+#else /* not ANSI_DECLARATORS */
+void readholes(m, b, polyfile, polyfilename, hlist, holes, rlist, regions)
+struct mesh *m;
+struct behavior *b;
+FILE *polyfile;
+char *polyfilename;
+REAL **hlist;
+int *holes;
+REAL **rlist;
+int *regions;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  REAL *holelist;
+  REAL *regionlist;
+  char inputline[INPUTLINESIZE];
+  char *stringptr;
+  int index;
+  int i;
+
+  /* Read the holes. */
+  stringptr = readline(inputline, polyfile, polyfilename);
+  *holes = (int) strtol(stringptr, &stringptr, 0);
+  if (*holes > 0) {
+    holelist = (REAL *) trimalloc(2 * *holes * sizeof(REAL));
+    *hlist = holelist;
+    for (i = 0; i < 2 * *holes; i += 2) {
+      stringptr = readline(inputline, polyfile, polyfilename);
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        fprintf(stderr, "Error:  Hole %d has no x coordinate.\n",
+               b->firstnumber + (i >> 1));
+        exit(1);
+      } else {
+        holelist[i] = (REAL) strtod(stringptr, &stringptr);
+      }
+      stringptr = findfield(stringptr);
+      if (*stringptr == '\0') {
+        fprintf(stderr, "Error:  Hole %d has no y coordinate.\n",
+               b->firstnumber + (i >> 1));
+        exit(1);
+      } else {
+        holelist[i + 1] = (REAL) strtod(stringptr, &stringptr);
+      }
+    }
+  } else {
+    *hlist = (REAL *) NULL;
+  }
+
+#ifndef CDT_ONLY
+  if ((b->regionattrib || b->vararea) && !b->refine) {
+    /* Read the area constraints. */
+    stringptr = readline(inputline, polyfile, polyfilename);
+    *regions = (int) strtol(stringptr, &stringptr, 0);
+    if (*regions > 0) {
+      regionlist = (REAL *) trimalloc(4 * *regions * sizeof(REAL));
+      *rlist = regionlist;
+      index = 0;
+      for (i = 0; i < *regions; i++) {
+        stringptr = readline(inputline, polyfile, polyfilename);
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          fprintf(stderr, "Error:  Region %d has no x coordinate.\n",
+                 b->firstnumber + i);
+          exit(1);
+        } else {
+          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
+        }
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          fprintf(stderr, "Error:  Region %d has no y coordinate.\n",
+                 b->firstnumber + i);
+          exit(1);
+        } else {
+          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
+        }
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          fprintf(stderr, 
+            "Error:  Region %d has no region attribute or area constraint.\n",
+                 b->firstnumber + i);
+          exit(1);
+        } else {
+          regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
+        }
+        stringptr = findfield(stringptr);
+        if (*stringptr == '\0') {
+          regionlist[index] = regionlist[index - 1];
+        } else {
+          regionlist[index] = (REAL) strtod(stringptr, &stringptr);
+        }
+        index++;
+      }
+    }
+  } else {
+    /* Set `*regions' to zero to avoid an accidental free() later. */
+    *regions = 0;
+    *rlist = (REAL *) NULL;
+  }
+#endif /* not CDT_ONLY */
+
+  fclose(polyfile);
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  finishfile()   Write the command line to the output file so the user     */
+/*                 can remember how the file was generated.  Close the file. */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void finishfile(FILE *outfile, int argc, char **argv)
+#else /* not ANSI_DECLARATORS */
+void finishfile(outfile, argc, argv)
+FILE *outfile;
+int argc;
+char **argv;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  int i;
+
+  fprintf(outfile, "# Generated by");
+  for (i = 0; i < argc; i++) {
+    fprintf(outfile, " ");
+    fputs(argv[i], outfile);
+  }
+  fprintf(outfile, "\n");
+  fclose(outfile);
+}
+
+#endif /* not TRILIBRARY */
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writenodes()   Number the vertices and write them to a .node file.       */
+/*                                                                           */
+/*  To save memory, the vertex numbers are written over the boundary markers */
+/*  after the vertices are written to a file.                                */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void writenodes(struct mesh *m, struct behavior *b, REAL **pointlist,
+                REAL **pointattriblist, int **pointmarkerlist)
+#else /* not ANSI_DECLARATORS */
+void writenodes(m, b, pointlist, pointattriblist, pointmarkerlist)
+struct mesh *m;
+struct behavior *b;
+REAL **pointlist;
+REAL **pointattriblist;
+int **pointmarkerlist;
+#endif /* not ANSI_DECLARATORS */
+
+#else /* not TRILIBRARY */
+
+#ifdef ANSI_DECLARATORS
+void writenodes(struct mesh *m, struct behavior *b, char *nodefilename,
+                int argc, char **argv)
+#else /* not ANSI_DECLARATORS */
+void writenodes(m, b, nodefilename, argc, argv)
+struct mesh *m;
+struct behavior *b;
+char *nodefilename;
+int argc;
+char **argv;
+#endif /* not ANSI_DECLARATORS */
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  REAL *plist;
+  REAL *palist;
+  int *pmlist;
+  int coordindex;
+  int attribindex;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+#endif /* not TRILIBRARY */
+  vertex vertexloop;
+  long outvertices;
+  int vertexnumber;
+  int i;
+
+  if (b->jettison) {
+    outvertices = m->vertices.items - m->undeads;
+  } else {
+    outvertices = m->vertices.items;
+  }
+
+#ifdef TRILIBRARY
+  if (!b->quiet) {
+    fprintf(stderr, "Writing vertices.\n");
+  }
+  /* Allocate memory for output vertices if necessary. */
+  if (*pointlist == (REAL *) NULL) {
+    *pointlist = (REAL *) trimalloc(outvertices * 2 * sizeof(REAL));
+  }
+  /* Allocate memory for output vertex attributes if necessary. */
+  if ((m->nextras > 0) && (*pointattriblist == (REAL *) NULL)) {
+    *pointattriblist = (REAL *) trimalloc(outvertices * m->nextras *
+                                          sizeof(REAL));
+  }
+  /* Allocate memory for output vertex markers if necessary. */
+  if (!b->nobound && (*pointmarkerlist == (int *) NULL)) {
+    *pointmarkerlist = (int *) trimalloc(outvertices * sizeof(int));
+  }
+  plist = *pointlist;
+  palist = *pointattriblist;
+  pmlist = *pointmarkerlist;
+  coordindex = 0;
+  attribindex = 0;
+#else /* not TRILIBRARY */
+  if (!b->quiet) {
+    fprintf(stderr, "Writing %s.\n", nodefilename);
+  }
+  outfile = fopen(nodefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    fprintf(stderr, "  Error:  Cannot create file %s.\n", nodefilename);
+    exit(1);
+  }
+  /* Number of vertices, number of dimensions, number of vertex attributes, */
+  /*   and number of boundary markers (zero or one).                        */
+  fprintf(outfile, "%ld  %d  %d  %d\n", outvertices, m->mesh_dim,
+          m->nextras, 1 - b->nobound);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&m->vertices);
+  vertexnumber = b->firstnumber;
+  vertexloop = vertextraverse(m);
+  while (vertexloop != (vertex) NULL) {
+    if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
+#ifdef TRILIBRARY
+      /* X and y coordinates. */
+      plist[coordindex++] = vertexloop[0];
+      plist[coordindex++] = vertexloop[1];
+      /* Vertex attributes. */
+      for (i = 0; i < m->nextras; i++) {
+        palist[attribindex++] = vertexloop[2 + i];
+      }
+      if (!b->nobound) {
+        /* Copy the boundary marker. */
+        pmlist[vertexnumber - b->firstnumber] = vertexmark(vertexloop);
+      }
+#else /* not TRILIBRARY */
+      /* Vertex number, x and y coordinates. */
+      fprintf(outfile, "%4d    %.17g  %.17g", vertexnumber, vertexloop[0],
+              vertexloop[1]);
+      for (i = 0; i < m->nextras; i++) {
+        /* Write an attribute. */
+        fprintf(outfile, "  %.17g", vertexloop[i + 2]);
+      }
+      if (b->nobound) {
+        fprintf(outfile, "\n");
+      } else {
+        /* Write the boundary marker. */
+        fprintf(outfile, "    %d\n", vertexmark(vertexloop));
+      }
+#endif /* not TRILIBRARY */
+
+      setvertexmark(vertexloop, vertexnumber);
+      vertexnumber++;
+    }
+    vertexloop = vertextraverse(m);
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  numbernodes()   Number the vertices.                                     */
+/*                                                                           */
+/*  Each vertex is assigned a marker equal to its number.                    */
+/*                                                                           */
+/*  Used when writenodes() is not called because no .node file is written.   */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void numbernodes(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void numbernodes(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  vertex vertexloop;
+  int vertexnumber;
+
+  traversalinit(&m->vertices);
+  vertexnumber = b->firstnumber;
+  vertexloop = vertextraverse(m);
+  while (vertexloop != (vertex) NULL) {
+    setvertexmark(vertexloop, vertexnumber);
+    if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
+      vertexnumber++;
+    }
+    vertexloop = vertextraverse(m);
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writeelements()   Write the triangles to an .ele file.                   */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void writeelements(struct mesh *m, struct behavior *b,
+                   int **trianglelist, REAL **triangleattriblist)
+#else /* not ANSI_DECLARATORS */
+void writeelements(m, b, trianglelist, triangleattriblist)
+struct mesh *m;
+struct behavior *b;
+int **trianglelist;
+REAL **triangleattriblist;
+#endif /* not ANSI_DECLARATORS */
+
+#else /* not TRILIBRARY */
+
+#ifdef ANSI_DECLARATORS
+void writeelements(struct mesh *m, struct behavior *b, char *elefilename,
+                   int argc, char **argv)
+#else /* not ANSI_DECLARATORS */
+void writeelements(m, b, elefilename, argc, argv)
+struct mesh *m;
+struct behavior *b;
+char *elefilename;
+int argc;
+char **argv;
+#endif /* not ANSI_DECLARATORS */
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  int *tlist;
+  REAL *talist;
+  int vertexindex;
+  int attribindex;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+#endif /* not TRILIBRARY */
+  struct otri triangleloop;
+  vertex p1, p2, p3;
+  vertex mid1, mid2, mid3;
+  long elementnumber;
+  int i;
+
+#ifdef TRILIBRARY
+  if (!b->quiet) {
+    fprintf(stderr, "Writing triangles.\n");
+  }
+  /* Allocate memory for output triangles if necessary. */
+  if (*trianglelist == (int *) NULL) {
+    *trianglelist = (int *) trimalloc(m->triangles.items *
+                                      ((b->order + 1) * (b->order + 2) / 2) *
+                                      sizeof(int));
+  }
+  /* Allocate memory for output triangle attributes if necessary. */
+  if ((m->eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {
+    *triangleattriblist = (REAL *) trimalloc(m->triangles.items * m->eextras *
+                                             sizeof(REAL));
+  }
+  tlist = *trianglelist;
+  talist = *triangleattriblist;
+  vertexindex = 0;
+  attribindex = 0;
+#else /* not TRILIBRARY */
+  if (!b->quiet) {
+    fprintf(stderr, "Writing %s.\n", elefilename);
+  }
+  outfile = fopen(elefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    fprintf(stderr, "  Error:  Cannot create file %s.\n", elefilename);
+    exit(1);
+  }
+  /* Number of triangles, vertices per triangle, attributes per triangle. */
+  fprintf(outfile, "%ld  %d  %d\n", m->triangles.items,
+          (b->order + 1) * (b->order + 2) / 2, m->eextras);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  triangleloop.orient = 0;
+  elementnumber = b->firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, p1);
+    dest(triangleloop, p2);
+    apex(triangleloop, p3);
+    if (b->order == 1) {
+#ifdef TRILIBRARY
+      tlist[vertexindex++] = vertexmark(p1);
+      tlist[vertexindex++] = vertexmark(p2);
+      tlist[vertexindex++] = vertexmark(p3);
+#else /* not TRILIBRARY */
+      /* Triangle number, indices for three vertices. */
+      fprintf(outfile, "%4ld    %4d  %4d  %4d", elementnumber,
+              vertexmark(p1), vertexmark(p2), vertexmark(p3));
+#endif /* not TRILIBRARY */
+    } else {
+      mid1 = (vertex) triangleloop.tri[m->highorderindex + 1];
+      mid2 = (vertex) triangleloop.tri[m->highorderindex + 2];
+      mid3 = (vertex) triangleloop.tri[m->highorderindex];
+#ifdef TRILIBRARY
+      tlist[vertexindex++] = vertexmark(p1);
+      tlist[vertexindex++] = vertexmark(p2);
+      tlist[vertexindex++] = vertexmark(p3);
+      tlist[vertexindex++] = vertexmark(mid1);
+      tlist[vertexindex++] = vertexmark(mid2);
+      tlist[vertexindex++] = vertexmark(mid3);
+#else /* not TRILIBRARY */
+      /* Triangle number, indices for six vertices. */
+      fprintf(outfile, "%4ld    %4d  %4d  %4d  %4d  %4d  %4d", elementnumber,
+              vertexmark(p1), vertexmark(p2), vertexmark(p3), vertexmark(mid1),
+              vertexmark(mid2), vertexmark(mid3));
+#endif /* not TRILIBRARY */
+    }
+
+#ifdef TRILIBRARY
+    for (i = 0; i < m->eextras; i++) {
+      talist[attribindex++] = elemattribute(triangleloop, i);
+    }
+#else /* not TRILIBRARY */
+    for (i = 0; i < m->eextras; i++) {
+      fprintf(outfile, "  %.17g", elemattribute(triangleloop, i));
+    }
+    fprintf(outfile, "\n");
+#endif /* not TRILIBRARY */
+
+    triangleloop.tri = triangletraverse(m);
+    elementnumber++;
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writepoly()   Write the segments and holes to a .poly file.              */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void writepoly(struct mesh *m, struct behavior *b,
+               int **segmentlist, int **segmentmarkerlist)
+#else /* not ANSI_DECLARATORS */
+void writepoly(m, b, segmentlist, segmentmarkerlist)
+struct mesh *m;
+struct behavior *b;
+int **segmentlist;
+int **segmentmarkerlist;
+#endif /* not ANSI_DECLARATORS */
+
+#else /* not TRILIBRARY */
+
+#ifdef ANSI_DECLARATORS
+void writepoly(struct mesh *m, struct behavior *b, char *polyfilename,
+               REAL *holelist, int holes, REAL *regionlist, int regions,
+               int argc, char **argv)
+#else /* not ANSI_DECLARATORS */
+void writepoly(m, b, polyfilename, holelist, holes, regionlist, regions,
+               argc, argv)
+struct mesh *m;
+struct behavior *b;
+char *polyfilename;
+REAL *holelist;
+int holes;
+REAL *regionlist;
+int regions;
+int argc;
+char **argv;
+#endif /* not ANSI_DECLARATORS */
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  int *slist;
+  int *smlist;
+  int index;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+  long holenumber, regionnumber;
+#endif /* not TRILIBRARY */
+  struct osub subsegloop;
+  vertex endpoint1, endpoint2;
+  long subsegnumber;
+
+#ifdef TRILIBRARY
+  if (!b->quiet) {
+    fprintf(stderr, "Writing segments.\n");
+  }
+  /* Allocate memory for output segments if necessary. */
+  if (*segmentlist == (int *) NULL) {
+    *segmentlist = (int *) trimalloc(m->subsegs.items * 2 * sizeof(int));
+  }
+  /* Allocate memory for output segment markers if necessary. */
+  if (!b->nobound && (*segmentmarkerlist == (int *) NULL)) {
+    *segmentmarkerlist = (int *) trimalloc(m->subsegs.items * sizeof(int));
+  }
+  slist = *segmentlist;
+  smlist = *segmentmarkerlist;
+  index = 0;
+#else /* not TRILIBRARY */
+  if (!b->quiet) {
+    fprintf(stderr, "Writing %s.\n", polyfilename);
+  }
+  outfile = fopen(polyfilename, "w");
+  if (outfile == (FILE *) NULL) {
+    fprintf(stderr, "  Error:  Cannot create file %s.\n", polyfilename);
+    exit(1);
+  }
+  /* The zero indicates that the vertices are in a separate .node file. */
+  /*   Followed by number of dimensions, number of vertex attributes,   */
+  /*   and number of boundary markers (zero or one).                    */
+  fprintf(outfile, "%d  %d  %d  %d\n", 0, m->mesh_dim, m->nextras,
+          1 - b->nobound);
+  /* Number of segments, number of boundary markers (zero or one). */
+  fprintf(outfile, "%ld  %d\n", m->subsegs.items, 1 - b->nobound);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&m->subsegs);
+  subsegloop.ss = subsegtraverse(m);
+  subsegloop.ssorient = 0;
+  subsegnumber = b->firstnumber;
+  while (subsegloop.ss != (subseg *) NULL) {
+    sorg(subsegloop, endpoint1);
+    sdest(subsegloop, endpoint2);
+#ifdef TRILIBRARY
+    /* Copy indices of the segment's two endpoints. */
+    slist[index++] = vertexmark(endpoint1);
+    slist[index++] = vertexmark(endpoint2);
+    if (!b->nobound) {
+      /* Copy the boundary marker. */
+      smlist[subsegnumber - b->firstnumber] = mark(subsegloop);
+    }
+#else /* not TRILIBRARY */
+    /* Segment number, indices of its two endpoints, and possibly a marker. */
+    if (b->nobound) {
+      fprintf(outfile, "%4ld    %4d  %4d\n", subsegnumber,
+              vertexmark(endpoint1), vertexmark(endpoint2));
+    } else {
+      fprintf(outfile, "%4ld    %4d  %4d    %4d\n", subsegnumber,
+              vertexmark(endpoint1), vertexmark(endpoint2), mark(subsegloop));
+    }
+#endif /* not TRILIBRARY */
+
+    subsegloop.ss = subsegtraverse(m);
+    subsegnumber++;
+  }
+
+#ifndef TRILIBRARY
+#ifndef CDT_ONLY
+  fprintf(outfile, "%d\n", holes);
+  if (holes > 0) {
+    for (holenumber = 0; holenumber < holes; holenumber++) {
+      /* Hole number, x and y coordinates. */
+      fprintf(outfile, "%4ld   %.17g  %.17g\n", b->firstnumber + holenumber,
+              holelist[2 * holenumber], holelist[2 * holenumber + 1]);
+    }
+  }
+  if (regions > 0) {
+    fprintf(outfile, "%d\n", regions);
+    for (regionnumber = 0; regionnumber < regions; regionnumber++) {
+      /* Region number, x and y coordinates, attribute, maximum area. */
+      fprintf(outfile, "%4ld   %.17g  %.17g  %.17g  %.17g\n",
+              b->firstnumber + regionnumber,
+              regionlist[4 * regionnumber], regionlist[4 * regionnumber + 1],
+              regionlist[4 * regionnumber + 2],
+              regionlist[4 * regionnumber + 3]);
+    }
+  }
+#endif /* not CDT_ONLY */
+
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writeedges()   Write the edges to an .edge file.                         */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void writeedges(struct mesh *m, struct behavior *b,
+                int **edgelist, int **edgemarkerlist)
+#else /* not ANSI_DECLARATORS */
+void writeedges(m, b, edgelist, edgemarkerlist)
+struct mesh *m;
+struct behavior *b;
+int **edgelist;
+int **edgemarkerlist;
+#endif /* not ANSI_DECLARATORS */
+
+#else /* not TRILIBRARY */
+
+#ifdef ANSI_DECLARATORS
+void writeedges(struct mesh *m, struct behavior *b, char *edgefilename,
+                int argc, char **argv)
+#else /* not ANSI_DECLARATORS */
+void writeedges(m, b, edgefilename, argc, argv)
+struct mesh *m;
+struct behavior *b;
+char *edgefilename;
+int argc;
+char **argv;
+#endif /* not ANSI_DECLARATORS */
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  int *elist;
+  int *emlist;
+  int index;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+#endif /* not TRILIBRARY */
+  struct otri triangleloop, trisym;
+  struct osub checkmark;
+  vertex p1, p2;
+  long edgenumber;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+  subseg sptr;                      /* Temporary variable used by tspivot(). */
+
+#ifdef TRILIBRARY
+  if (!b->quiet) {
+    fprintf(stderr, "Writing edges.\n");
+  }
+  /* Allocate memory for edges if necessary. */
+  if (*edgelist == (int *) NULL) {
+    *edgelist = (int *) trimalloc(m->edges * 2 * sizeof(int));
+  }
+  /* Allocate memory for edge markers if necessary. */
+  if (!b->nobound && (*edgemarkerlist == (int *) NULL)) {
+    *edgemarkerlist = (int *) trimalloc(m->edges * sizeof(int));
+  }
+  elist = *edgelist;
+  emlist = *edgemarkerlist;
+  index = 0;
+#else /* not TRILIBRARY */
+  if (!b->quiet) {
+    fprintf(stderr, "Writing %s.\n", edgefilename);
+  }
+  outfile = fopen(edgefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    fprintf(stderr, "  Error:  Cannot create file %s.\n", edgefilename);
+    exit(1);
+  }
+  /* Number of edges, number of boundary markers (zero or one). */
+  fprintf(outfile, "%ld  %d\n", m->edges, 1 - b->nobound);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  edgenumber = b->firstnumber;
+  /* To loop over the set of edges, loop over all triangles, and look at   */
+  /*   the three edges of each triangle.  If there isn't another triangle  */
+  /*   adjacent to the edge, operate on the edge.  If there is another     */
+  /*   adjacent triangle, operate on the edge only if the current triangle */
+  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
+  /*   considered only once.                                               */
+  while (triangleloop.tri != (triangle *) NULL) {
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      sym(triangleloop, trisym);
+      if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
+        org(triangleloop, p1);
+        dest(triangleloop, p2);
+#ifdef TRILIBRARY
+        elist[index++] = vertexmark(p1);
+        elist[index++] = vertexmark(p2);
+#endif /* TRILIBRARY */
+        if (b->nobound) {
+#ifndef TRILIBRARY
+          /* Edge number, indices of two endpoints. */
+          fprintf(outfile, "%4ld   %d  %d\n", edgenumber,
+                  vertexmark(p1), vertexmark(p2));
+#endif /* not TRILIBRARY */
+        } else {
+          /* Edge number, indices of two endpoints, and a boundary marker. */
+          /*   If there's no subsegment, the boundary marker is zero.      */
+          if (b->usesegments) {
+            tspivot(triangleloop, checkmark);
+            if (checkmark.ss == m->dummysub) {
+#ifdef TRILIBRARY
+              emlist[edgenumber - b->firstnumber] = 0;
+#else /* not TRILIBRARY */
+              fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,
+                      vertexmark(p1), vertexmark(p2), 0);
+#endif /* not TRILIBRARY */
+            } else {
+#ifdef TRILIBRARY
+              emlist[edgenumber - b->firstnumber] = mark(checkmark);
+#else /* not TRILIBRARY */
+              fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,
+                      vertexmark(p1), vertexmark(p2), mark(checkmark));
+#endif /* not TRILIBRARY */
+            }
+          } else {
+#ifdef TRILIBRARY
+            emlist[edgenumber - b->firstnumber] = trisym.tri == m->dummytri;
+#else /* not TRILIBRARY */
+            fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,
+                    vertexmark(p1), vertexmark(p2), trisym.tri == m->dummytri);
+#endif /* not TRILIBRARY */
+          }
+        }
+        edgenumber++;
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writevoronoi()   Write the Voronoi diagram to a .v.node and .v.edge      */
+/*                   file.                                                   */
+/*                                                                           */
+/*  The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
+/*  Hence, the Voronoi vertices are listed by traversing the Delaunay        */
+/*  triangles, and the Voronoi edges are listed by traversing the Delaunay   */
+/*  edges.                                                                   */
+/*                                                                           */
+/*  WARNING:  In order to assign numbers to the Voronoi vertices, this       */
+/*  procedure messes up the subsegments or the extra nodes of every          */
+/*  element.  Hence, you should call this procedure last.                    */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void writevoronoi(struct mesh *m, struct behavior *b, REAL **vpointlist,
+                  REAL **vpointattriblist, int **vpointmarkerlist,
+                  int **vedgelist, int **vedgemarkerlist, REAL **vnormlist)
+#else /* not ANSI_DECLARATORS */
+void writevoronoi(m, b, vpointlist, vpointattriblist, vpointmarkerlist,
+                  vedgelist, vedgemarkerlist, vnormlist)
+struct mesh *m;
+struct behavior *b;
+REAL **vpointlist;
+REAL **vpointattriblist;
+int **vpointmarkerlist;
+int **vedgelist;
+int **vedgemarkerlist;
+REAL **vnormlist;
+#endif /* not ANSI_DECLARATORS */
+
+#else /* not TRILIBRARY */
+
+#ifdef ANSI_DECLARATORS
+void writevoronoi(struct mesh *m, struct behavior *b, char *vnodefilename,
+                  char *vedgefilename, int argc, char **argv)
+#else /* not ANSI_DECLARATORS */
+void writevoronoi(m, b, vnodefilename, vedgefilename, argc, argv)
+struct mesh *m;
+struct behavior *b;
+char *vnodefilename;
+char *vedgefilename;
+int argc;
+char **argv;
+#endif /* not ANSI_DECLARATORS */
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  REAL *plist;
+  REAL *palist;
+  int *elist;
+  REAL *normlist;
+  int coordindex;
+  int attribindex;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+#endif /* not TRILIBRARY */
+  struct otri triangleloop, trisym;
+  vertex torg, tdest, tapex;
+  REAL circumcenter[2];
+  REAL xi, eta;
+  REAL dum;
+  long vnodenumber, vedgenumber;
+  int p1, p2;
+  int i;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+#ifdef TRILIBRARY
+  if (!b->quiet) {
+    fprintf(stderr, "Writing Voronoi vertices.\n");
+  }
+  /* Allocate memory for Voronoi vertices if necessary. */
+  if (*vpointlist == (REAL *) NULL) {
+    *vpointlist = (REAL *) trimalloc(m->triangles.items * 2 * sizeof(REAL));
+  }
+  /* Allocate memory for Voronoi vertex attributes if necessary. */
+  if (*vpointattriblist == (REAL *) NULL) {
+    *vpointattriblist = (REAL *) trimalloc(m->triangles.items * m->nextras *
+                                           sizeof(REAL));
+  }
+  *vpointmarkerlist = (int *) NULL;
+  plist = *vpointlist;
+  palist = *vpointattriblist;
+  coordindex = 0;
+  attribindex = 0;
+#else /* not TRILIBRARY */
+  if (!b->quiet) {
+    fprintf(stderr, "Writing %s.\n", vnodefilename);
+  }
+  outfile = fopen(vnodefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    fprintf(stderr, "  Error:  Cannot create file %s.\n", vnodefilename);
+    exit(1);
+  }
+  /* Number of triangles, two dimensions, number of vertex attributes, */
+  /*   no markers.                                                     */
+  fprintf(outfile, "%ld  %d  %d  %d\n", m->triangles.items, 2, m->nextras, 0);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  triangleloop.orient = 0;
+  vnodenumber = b->firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, torg);
+    dest(triangleloop, tdest);
+    apex(triangleloop, tapex);
+    findcircumcenter(m, b, torg, tdest, tapex, circumcenter, &xi, &eta, &dum);
+#ifdef TRILIBRARY
+    /* X and y coordinates. */
+    plist[coordindex++] = circumcenter[0];
+    plist[coordindex++] = circumcenter[1];
+    for (i = 2; i < 2 + m->nextras; i++) {
+      /* Interpolate the vertex attributes at the circumcenter. */
+      palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])
+                                     + eta * (tapex[i] - torg[i]);
+    }
+#else /* not TRILIBRARY */
+    /* Voronoi vertex number, x and y coordinates. */
+    fprintf(outfile, "%4ld    %.17g  %.17g", vnodenumber, circumcenter[0],
+            circumcenter[1]);
+    for (i = 2; i < 2 + m->nextras; i++) {
+      /* Interpolate the vertex attributes at the circumcenter. */
+      fprintf(outfile, "  %.17g", torg[i] + xi * (tdest[i] - torg[i])
+                                         + eta * (tapex[i] - torg[i]));
+    }
+    fprintf(outfile, "\n");
+#endif /* not TRILIBRARY */
+
+    * (int *) (triangleloop.tri + 6) = (int) vnodenumber;
+    triangleloop.tri = triangletraverse(m);
+    vnodenumber++;
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+
+#ifdef TRILIBRARY
+  if (!b->quiet) {
+    fprintf(stderr, "Writing Voronoi edges.\n");
+  }
+  /* Allocate memory for output Voronoi edges if necessary. */
+  if (*vedgelist == (int *) NULL) {
+    *vedgelist = (int *) trimalloc(m->edges * 2 * sizeof(int));
+  }
+  *vedgemarkerlist = (int *) NULL;
+  /* Allocate memory for output Voronoi norms if necessary. */
+  if (*vnormlist == (REAL *) NULL) {
+    *vnormlist = (REAL *) trimalloc(m->edges * 2 * sizeof(REAL));
+  }
+  elist = *vedgelist;
+  normlist = *vnormlist;
+  coordindex = 0;
+#else /* not TRILIBRARY */
+  if (!b->quiet) {
+    fprintf(stderr, "Writing %s.\n", vedgefilename);
+  }
+  outfile = fopen(vedgefilename, "w");
+  if (outfile == (FILE *) NULL) {
+    fprintf(stderr, "  Error:  Cannot create file %s.\n", vedgefilename);
+    exit(1);
+  }
+  /* Number of edges, zero boundary markers. */
+  fprintf(outfile, "%ld  %d\n", m->edges, 0);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  vedgenumber = b->firstnumber;
+  /* To loop over the set of edges, loop over all triangles, and look at   */
+  /*   the three edges of each triangle.  If there isn't another triangle  */
+  /*   adjacent to the edge, operate on the edge.  If there is another     */
+  /*   adjacent triangle, operate on the edge only if the current triangle */
+  /*   has a smaller pointer than its neighbor.  This way, each edge is    */
+  /*   considered only once.                                               */
+  while (triangleloop.tri != (triangle *) NULL) {
+    for (triangleloop.orient = 0; triangleloop.orient < 3;
+         triangleloop.orient++) {
+      sym(triangleloop, trisym);
+      if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
+        /* Find the number of this triangle (and Voronoi vertex). */
+        p1 = * (int *) (triangleloop.tri + 6);
+        if (trisym.tri == m->dummytri) {
+          org(triangleloop, torg);
+          dest(triangleloop, tdest);
+#ifdef TRILIBRARY
+          /* Copy an infinite ray.  Index of one endpoint, and -1. */
+          elist[coordindex] = p1;
+          normlist[coordindex++] = tdest[1] - torg[1];
+          elist[coordindex] = -1;
+          normlist[coordindex++] = torg[0] - tdest[0];
+#else /* not TRILIBRARY */
+          /* Write an infinite ray.  Edge number, index of one endpoint, -1, */
+          /*   and x and y coordinates of a vector representing the          */
+          /*   direction of the ray.                                         */
+          fprintf(outfile, "%4ld   %d  %d   %.17g  %.17g\n", vedgenumber,
+                  p1, -1, tdest[1] - torg[1], torg[0] - tdest[0]);
+#endif /* not TRILIBRARY */
+        } else {
+          /* Find the number of the adjacent triangle (and Voronoi vertex). */
+          p2 = * (int *) (trisym.tri + 6);
+          /* Finite edge.  Write indices of two endpoints. */
+#ifdef TRILIBRARY
+          elist[coordindex] = p1;
+          normlist[coordindex++] = 0.0;
+          elist[coordindex] = p2;
+          normlist[coordindex++] = 0.0;
+#else /* not TRILIBRARY */
+          fprintf(outfile, "%4ld   %d  %d\n", vedgenumber, p1, p2);
+#endif /* not TRILIBRARY */
+        }
+        vedgenumber++;
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+#ifdef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void writeneighbors(struct mesh *m, struct behavior *b, int **neighborlist)
+#else /* not ANSI_DECLARATORS */
+void writeneighbors(m, b, neighborlist)
+struct mesh *m;
+struct behavior *b;
+int **neighborlist;
+#endif /* not ANSI_DECLARATORS */
+
+#else /* not TRILIBRARY */
+
+#ifdef ANSI_DECLARATORS
+void writeneighbors(struct mesh *m, struct behavior *b, char *neighborfilename,
+                    int argc, char **argv)
+#else /* not ANSI_DECLARATORS */
+void writeneighbors(m, b, neighborfilename, argc, argv)
+struct mesh *m;
+struct behavior *b;
+char *neighborfilename;
+int argc;
+char **argv;
+#endif /* not ANSI_DECLARATORS */
+
+#endif /* not TRILIBRARY */
+
+{
+#ifdef TRILIBRARY
+  int *nlist;
+  int index;
+#else /* not TRILIBRARY */
+  FILE *outfile;
+#endif /* not TRILIBRARY */
+  struct otri triangleloop, trisym;
+  long elementnumber;
+  int neighbor1, neighbor2, neighbor3;
+  triangle ptr;                         /* Temporary variable used by sym(). */
+
+#ifdef TRILIBRARY
+  if (!b->quiet) {
+    fprintf(stderr, "Writing neighbors.\n");
+  }
+  /* Allocate memory for neighbors if necessary. */
+  if (*neighborlist == (int *) NULL) {
+    *neighborlist = (int *) trimalloc(m->triangles.items * 3 * sizeof(int));
+  }
+  nlist = *neighborlist;
+  index = 0;
+#else /* not TRILIBRARY */
+  if (!b->quiet) {
+    fprintf(stderr, "Writing %s.\n", neighborfilename);
+  }
+  outfile = fopen(neighborfilename, "w");
+  if (outfile == (FILE *) NULL) {
+    fprintf(stderr, "  Error:  Cannot create file %s.\n", neighborfilename);
+    exit(1);
+  }
+  /* Number of triangles, three neighbors per triangle. */
+  fprintf(outfile, "%ld  %d\n", m->triangles.items, 3);
+#endif /* not TRILIBRARY */
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  triangleloop.orient = 0;
+  elementnumber = b->firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    * (int *) (triangleloop.tri + 6) = (int) elementnumber;
+    triangleloop.tri = triangletraverse(m);
+    elementnumber++;
+  }
+  * (int *) (m->dummytri + 6) = -1;
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  elementnumber = b->firstnumber;
+  while (triangleloop.tri != (triangle *) NULL) {
+    triangleloop.orient = 1;
+    sym(triangleloop, trisym);
+    neighbor1 = * (int *) (trisym.tri + 6);
+    triangleloop.orient = 2;
+    sym(triangleloop, trisym);
+    neighbor2 = * (int *) (trisym.tri + 6);
+    triangleloop.orient = 0;
+    sym(triangleloop, trisym);
+    neighbor3 = * (int *) (trisym.tri + 6);
+#ifdef TRILIBRARY
+    nlist[index++] = neighbor1;
+    nlist[index++] = neighbor2;
+    nlist[index++] = neighbor3;
+#else /* not TRILIBRARY */
+    /* Triangle number, neighboring triangle numbers. */
+    fprintf(outfile, "%4ld    %d  %d  %d\n", elementnumber,
+            neighbor1, neighbor2, neighbor3);
+#endif /* not TRILIBRARY */
+
+    triangleloop.tri = triangletraverse(m);
+    elementnumber++;
+  }
+
+#ifndef TRILIBRARY
+  finishfile(outfile, argc, argv);
+#endif /* not TRILIBRARY */
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  writeoff()   Write the triangulation to an .off file.                    */
+/*                                                                           */
+/*  OFF stands for the Object File Format, a format used by the Geometry     */
+/*  Center's Geomview package.                                               */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifndef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void writeoff(struct mesh *m, struct behavior *b, char *offfilename,
+              int argc, char **argv)
+#else /* not ANSI_DECLARATORS */
+void writeoff(m, b, offfilename, argc, argv)
+struct mesh *m;
+struct behavior *b;
+char *offfilename;
+int argc;
+char **argv;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  FILE *outfile;
+  struct otri triangleloop;
+  vertex vertexloop;
+  vertex p1, p2, p3;
+  long outvertices;
+
+  if (!b->quiet) {
+    fprintf(stderr, "Writing %s.\n", offfilename);
+  }
+
+  if (b->jettison) {
+    outvertices = m->vertices.items - m->undeads;
+  } else {
+    outvertices = m->vertices.items;
+  }
+
+  outfile = fopen(offfilename, "w");
+  if (outfile == (FILE *) NULL) {
+    fprintf(stderr, "  Error:  Cannot create file %s.\n", offfilename);
+    exit(1);
+  }
+  /* Number of vertices, triangles, and edges. */
+  fprintf(outfile, "OFF\n%ld  %ld  %ld\n", outvertices, m->triangles.items,
+          m->edges);
+
+  /* Write the vertices. */
+  traversalinit(&m->vertices);
+  vertexloop = vertextraverse(m);
+  while (vertexloop != (vertex) NULL) {
+    if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
+      /* The "0.0" is here because the OFF format uses 3D coordinates. */
+      fprintf(outfile, " %.17g  %.17g  %.17g\n", vertexloop[0], vertexloop[1],
+              0.0);
+    }
+    vertexloop = vertextraverse(m);
+  }
+
+  /* Write the triangles. */
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  triangleloop.orient = 0;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, p1);
+    dest(triangleloop, p2);
+    apex(triangleloop, p3);
+    /* The "3" means a three-vertex polygon. */
+    fprintf(outfile, " 3   %4d  %4d  %4d\n", vertexmark(p1) - 1,
+            vertexmark(p2) - 1, vertexmark(p3) - 1);
+    triangleloop.tri = triangletraverse(m);
+  }
+  finishfile(outfile, argc, argv);
+}
+
+#endif /* not TRILIBRARY */
+
+/**                                                                         **/
+/**                                                                         **/
+/********* File I/O routines end here                                *********/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  quality_statistics()   Print statistics about the quality of the mesh.   */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void quality_statistics(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void quality_statistics(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  struct otri triangleloop;
+  vertex p[3];
+  REAL cossquaretable[8];
+  REAL ratiotable[16];
+  REAL dx[3], dy[3];
+  REAL edgelength[3];
+  REAL dotproduct;
+  REAL cossquare;
+  REAL triarea;
+  REAL shortest, longest;
+  REAL trilongest2;
+  REAL smallestarea, biggestarea;
+  REAL triminaltitude2;
+  REAL minaltitude;
+  REAL triaspect2;
+  REAL worstaspect;
+  REAL smallestangle, biggestangle;
+  REAL radconst, degconst;
+  int angletable[18];
+  int aspecttable[16];
+  int aspectindex;
+  int tendegree;
+  int acutebiggest;
+  int i, ii, j, k;
+
+  fprintf(stderr, "Mesh quality statistics:\n\n");
+  radconst = PI / 18.0;
+  degconst = 180.0 / PI;
+  for (i = 0; i < 8; i++) {
+    cossquaretable[i] = cos(radconst * (REAL) (i + 1));
+    cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
+  }
+  for (i = 0; i < 18; i++) {
+    angletable[i] = 0;
+  }
+
+  ratiotable[0]  =      1.5;      ratiotable[1]  =     2.0;
+  ratiotable[2]  =      2.5;      ratiotable[3]  =     3.0;
+  ratiotable[4]  =      4.0;      ratiotable[5]  =     6.0;
+  ratiotable[6]  =     10.0;      ratiotable[7]  =    15.0;
+  ratiotable[8]  =     25.0;      ratiotable[9]  =    50.0;
+  ratiotable[10] =    100.0;      ratiotable[11] =   300.0;
+  ratiotable[12] =   1000.0;      ratiotable[13] = 10000.0;
+  ratiotable[14] = 100000.0;      ratiotable[15] =     0.0;
+  for (i = 0; i < 16; i++) {
+    aspecttable[i] = 0;
+  }
+
+  worstaspect = 0.0;
+  minaltitude = m->xmax - m->xmin + m->ymax - m->ymin;
+  minaltitude = minaltitude * minaltitude;
+  shortest = minaltitude;
+  longest = 0.0;
+  smallestarea = minaltitude;
+  biggestarea = 0.0;
+  worstaspect = 0.0;
+  smallestangle = 0.0;
+  biggestangle = 2.0;
+  acutebiggest = 1;
+
+  traversalinit(&m->triangles);
+  triangleloop.tri = triangletraverse(m);
+  triangleloop.orient = 0;
+  while (triangleloop.tri != (triangle *) NULL) {
+    org(triangleloop, p[0]);
+    dest(triangleloop, p[1]);
+    apex(triangleloop, p[2]);
+    trilongest2 = 0.0;
+
+    for (i = 0; i < 3; i++) {
+      j = plus1mod3[i];
+      k = minus1mod3[i];
+      dx[i] = p[j][0] - p[k][0];
+      dy[i] = p[j][1] - p[k][1];
+      edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
+      if (edgelength[i] > trilongest2) {
+        trilongest2 = edgelength[i];
+      }
+      if (edgelength[i] > longest) {
+        longest = edgelength[i];
+      }
+      if (edgelength[i] < shortest) {
+        shortest = edgelength[i];
+      }
+    }
+
+    triarea = counterclockwise(m, b, p[0], p[1], p[2]);
+    if (triarea < smallestarea) {
+      smallestarea = triarea;
+    }
+    if (triarea > biggestarea) {
+      biggestarea = triarea;
+    }
+    triminaltitude2 = triarea * triarea / trilongest2;
+    if (triminaltitude2 < minaltitude) {
+      minaltitude = triminaltitude2;
+    }
+    triaspect2 = trilongest2 / triminaltitude2;
+    if (triaspect2 > worstaspect) {
+      worstaspect = triaspect2;
+    }
+    aspectindex = 0;
+    while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])
+           && (aspectindex < 15)) {
+      aspectindex++;
+    }
+    aspecttable[aspectindex]++;
+
+    for (i = 0; i < 3; i++) {
+      j = plus1mod3[i];
+      k = minus1mod3[i];
+      dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
+      cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
+      tendegree = 8;
+      for (ii = 7; ii >= 0; ii--) {
+        if (cossquare > cossquaretable[ii]) {
+          tendegree = ii;
+        }
+      }
+      if (dotproduct <= 0.0) {
+        angletable[tendegree]++;
+        if (cossquare > smallestangle) {
+          smallestangle = cossquare;
+        }
+        if (acutebiggest && (cossquare < biggestangle)) {
+          biggestangle = cossquare;
+        }
+      } else {
+        angletable[17 - tendegree]++;
+        if (acutebiggest || (cossquare > biggestangle)) {
+          biggestangle = cossquare;
+          acutebiggest = 0;
+        }
+      }
+    }
+    triangleloop.tri = triangletraverse(m);
+  }
+
+  shortest = sqrt(shortest);
+  longest = sqrt(longest);
+  minaltitude = sqrt(minaltitude);
+  worstaspect = sqrt(worstaspect);
+  smallestarea *= 0.5;
+  biggestarea *= 0.5;
+  if (smallestangle >= 1.0) {
+    smallestangle = 0.0;
+  } else {
+    smallestangle = degconst * acos(sqrt(smallestangle));
+  }
+  if (biggestangle >= 1.0) {
+    biggestangle = 180.0;
+  } else {
+    if (acutebiggest) {
+      biggestangle = degconst * acos(sqrt(biggestangle));
+    } else {
+      biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
+    }
+  }
+
+  fprintf(stderr, "  Smallest area: %16.5g   |  Largest area: %16.5g\n",
+         smallestarea, biggestarea);
+  fprintf(stderr, "  Shortest edge: %16.5g   |  Longest edge: %16.5g\n",
+         shortest, longest);
+  fprintf(stderr, "  Shortest altitude: %12.5g   |  Largest aspect ratio: %8.5g\n\n",
+         minaltitude, worstaspect);
+
+  fprintf(stderr, "  Triangle aspect ratio histogram:\n");
+  fprintf(stderr, "  1.1547 - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
+         ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8],
+         aspecttable[8]);
+  for (i = 1; i < 7; i++) {
+    fprintf(stderr, "  %6.6g - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
+           ratiotable[i - 1], ratiotable[i], aspecttable[i],
+           ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
+  }
+  fprintf(stderr, "  %6.6g - %-6.6g    :  %8d    | %6.6g -            :  %8d\n",
+         ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14],
+         aspecttable[15]);
+  fprintf(stderr, "  (Aspect ratio is longest edge divided by shortest altitude)\n\n");
+
+  fprintf(stderr, "  Smallest angle: %15.5g   |  Largest angle: %15.5g\n\n",
+         smallestangle, biggestangle);
+
+  fprintf(stderr, "  Angle histogram:\n");
+  for (i = 0; i < 9; i++) {
+    fprintf(stderr, "    %3d - %3d degrees:  %8d    |    %3d - %3d degrees:  %8d\n",
+           i * 10, i * 10 + 10, angletable[i],
+           i * 10 + 90, i * 10 + 100, angletable[i + 9]);
+  }
+  fprintf(stderr, "\n");
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  statistics()   Print all sorts of cool facts.                            */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef ANSI_DECLARATORS
+void statistics(struct mesh *m, struct behavior *b)
+#else /* not ANSI_DECLARATORS */
+void statistics(m, b)
+struct mesh *m;
+struct behavior *b;
+#endif /* not ANSI_DECLARATORS */
+
+{
+  fprintf(stderr, "\nStatistics:\n\n");
+  fprintf(stderr, "  Input vertices: %d\n", m->invertices);
+  if (b->refine) {
+    fprintf(stderr, "  Input triangles: %d\n", m->inelements);
+  }
+  if (b->poly) {
+    fprintf(stderr, "  Input segments: %d\n", m->insegments);
+    if (!b->refine) {
+      fprintf(stderr, "  Input holes: %d\n", m->holes);
+    }
+  }
+
+  fprintf(stderr, "\n  Mesh vertices: %ld\n", m->vertices.items - m->undeads);
+  fprintf(stderr, "  Mesh triangles: %ld\n", m->triangles.items);
+  fprintf(stderr, "  Mesh edges: %ld\n", m->edges);
+  fprintf(stderr, "  Mesh exterior boundary edges: %ld\n", m->hullsize);
+  if (b->poly || b->refine) {
+    fprintf(stderr, "  Mesh interior boundary edges: %ld\n",
+           m->subsegs.items - m->hullsize);
+    fprintf(stderr, "  Mesh subsegments (constrained edges): %ld\n",
+           m->subsegs.items);
+  }
+  fprintf(stderr, "\n");
+
+  if (b->verbose) {
+    quality_statistics(m, b);
+    fprintf(stderr, "Memory allocation statistics:\n\n");
+    fprintf(stderr, "  Maximum number of vertices: %ld\n", m->vertices.maxitems);
+    fprintf(stderr, "  Maximum number of triangles: %ld\n", m->triangles.maxitems);
+    if (m->subsegs.maxitems > 0) {
+      fprintf(stderr, "  Maximum number of subsegments: %ld\n", m->subsegs.maxitems);
+    }
+    if (m->viri.maxitems > 0) {
+      fprintf(stderr, "  Maximum number of viri: %ld\n", m->viri.maxitems);
+    }
+    if (m->badsubsegs.maxitems > 0) {
+      fprintf(stderr, "  Maximum number of encroached subsegments: %ld\n",
+             m->badsubsegs.maxitems);
+    }
+    if (m->badtriangles.maxitems > 0) {
+      fprintf(stderr, "  Maximum number of bad triangles: %ld\n",
+             m->badtriangles.maxitems);
+    }
+    if (m->flipstackers.maxitems > 0) {
+      fprintf(stderr, "  Maximum number of stacked triangle flips: %ld\n",
+             m->flipstackers.maxitems);
+    }
+    if (m->splaynodes.maxitems > 0) {
+      fprintf(stderr, "  Maximum number of splay tree nodes: %ld\n",
+             m->splaynodes.maxitems);
+    }
+    fprintf(stderr, "  Approximate heap memory use (bytes): %ld\n\n",
+           m->vertices.maxitems * m->vertices.itembytes +
+           m->triangles.maxitems * m->triangles.itembytes +
+           m->subsegs.maxitems * m->subsegs.itembytes +
+           m->viri.maxitems * m->viri.itembytes +
+           m->badsubsegs.maxitems * m->badsubsegs.itembytes +
+           m->badtriangles.maxitems * m->badtriangles.itembytes +
+           m->flipstackers.maxitems * m->flipstackers.itembytes +
+           m->splaynodes.maxitems * m->splaynodes.itembytes);
+
+    fprintf(stderr, "Algorithmic statistics:\n\n");
+    if (!b->weighted) {
+      fprintf(stderr, "  Number of incircle tests: %ld\n", m->incirclecount);
+    } else {
+      fprintf(stderr, "  Number of 3D orientation tests: %ld\n", m->orient3dcount);
+    }
+    fprintf(stderr, "  Number of 2D orientation tests: %ld\n", m->counterclockcount);
+    if (m->hyperbolacount > 0) {
+      fprintf(stderr, "  Number of right-of-hyperbola tests: %ld\n",
+             m->hyperbolacount);
+    }
+    if (m->circletopcount > 0) {
+      fprintf(stderr, "  Number of circle top computations: %ld\n",
+             m->circletopcount);
+    }
+    if (m->circumcentercount > 0) {
+      fprintf(stderr, "  Number of triangle circumcenter computations: %ld\n",
+             m->circumcentercount);
+    }
+    fprintf(stderr, "\n");
+  }
+}
+
+/*****************************************************************************/
+/*                                                                           */
+/*  main() or triangulate()   Gosh, do everything.                           */
+/*                                                                           */
+/*  The sequence is roughly as follows.  Many of these steps can be skipped, */
+/*  depending on the command line switches.                                  */
+/*                                                                           */
+/*  - Initialize constants and parse the command line.                       */
+/*  - Read the vertices from a file and either                               */
+/*    - triangulate them (no -r), or                                         */
+/*    - read an old mesh from files and reconstruct it (-r).                 */
+/*  - Insert the PSLG segments (-p), and possibly segments on the convex     */
+/*      hull (-c).                                                           */
+/*  - Read the holes (-p), regional attributes (-pA), and regional area      */
+/*      constraints (-pa).  Carve the holes and concavities, and spread the  */
+/*      regional attributes and area constraints.                            */
+/*  - Enforce the constraints on minimum angle (-q) and maximum area (-a).   */
+/*      Also enforce the conforming Delaunay property (-q and -a).           */
+/*  - Compute the number of edges in the resulting mesh.                     */
+/*  - Promote the mesh's linear triangles to higher order elements (-o).     */
+/*  - Write the output files and print the statistics.                       */
+/*  - Check the consistency and Delaunay property of the mesh (-C).          */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef TRILIBRARY
+
+#ifdef ANSI_DECLARATORS
+void triangulate(char *triswitches, struct triangulateio *in,
+                 struct triangulateio *out, struct triangulateio *vorout)
+#else /* not ANSI_DECLARATORS */
+void triangulate(triswitches, in, out, vorout)
+char *triswitches;
+struct triangulateio *in;
+struct triangulateio *out;
+struct triangulateio *vorout;
+#endif /* not ANSI_DECLARATORS */
+
+#else /* not TRILIBRARY */
+
+#ifdef ANSI_DECLARATORS
+int main(int argc, char **argv)
+#else /* not ANSI_DECLARATORS */
+int main(argc, argv)
+int argc;
+char **argv;
+#endif /* not ANSI_DECLARATORS */
+
+#endif /* not TRILIBRARY */
+
+{
+  struct mesh m;
+  struct behavior b;
+  REAL *holearray;                                        /* Array of holes. */
+  REAL *regionarray;   /* Array of regional attributes and area constraints. */
+#ifndef TRILIBRARY
+  FILE *polyfile;
+#endif /* not TRILIBRARY */
+#ifndef NO_TIMER
+  /* Variables for timing the performance of Triangle.  The types are */
+  /*   defined in sys/time.h.                                         */
+  struct timeval tv0, tv1, tv2, tv3, tv4, tv5, tv6;
+  struct timezone tz;
+#endif /* not NO_TIMER */
+
+#ifndef NO_TIMER
+  gettimeofday(&tv0, &tz);
+#endif /* not NO_TIMER */
+
+  triangleinit(&m);
+#ifdef TRILIBRARY
+  parsecommandline(1, &triswitches, &b);
+#else /* not TRILIBRARY */
+  parsecommandline(argc, argv, &b);
+#endif /* not TRILIBRARY */
+  m.steinerleft = b.steiner;
+
+#ifdef TRILIBRARY
+  transfernodes(&m, &b, in->pointlist, in->pointattributelist,
+                in->pointmarkerlist, in->numberofpoints,
+                in->numberofpointattributes);
+#else /* not TRILIBRARY */
+  readnodes(&m, &b, b.innodefilename, b.inpolyfilename, &polyfile);
+#endif /* not TRILIBRARY */
+
+#ifndef NO_TIMER
+  if (!b.quiet) {
+    gettimeofday(&tv1, &tz);
+  }
+#endif /* not NO_TIMER */
+
+#ifdef CDT_ONLY
+  m.hullsize = delaunay(&m, &b);                /* Triangulate the vertices. */
+#else /* not CDT_ONLY */
+  if (b.refine) {
+    /* Read and reconstruct a mesh. */
+#ifdef TRILIBRARY
+    m.hullsize = reconstruct(&m, &b, in->trianglelist,
+                             in->triangleattributelist, in->trianglearealist,
+                             in->numberoftriangles, in->numberofcorners,
+                             in->numberoftriangleattributes,
+                             in->segmentlist, in->segmentmarkerlist,
+                             in->numberofsegments);
+#else /* not TRILIBRARY */
+    m.hullsize = reconstruct(&m, &b, b.inelefilename, b.areafilename,
+                             b.inpolyfilename, polyfile);
+#endif /* not TRILIBRARY */
+  } else {
+    m.hullsize = delaunay(&m, &b);              /* Triangulate the vertices. */
+  }
+#endif /* not CDT_ONLY */
+
+#ifndef NO_TIMER
+  if (!b.quiet) {
+    gettimeofday(&tv2, &tz);
+    if (b.refine) {
+      fprintf(stderr, "Mesh reconstruction");
+    } else {
+      fprintf(stderr, "Delaunay");
+    }
+    fprintf(stderr, " milliseconds:  %ld\n", 1000l * (tv2.tv_sec - tv1.tv_sec) +
+           (tv2.tv_usec - tv1.tv_usec) / 1000l);
+  }
+#endif /* not NO_TIMER */
+
+  /* Ensure that no vertex can be mistaken for a triangular bounding */
+  /*   box vertex in insertvertex().                                 */
+  m.infvertex1 = (vertex) NULL;
+  m.infvertex2 = (vertex) NULL;
+  m.infvertex3 = (vertex) NULL;
+
+  if (b.usesegments) {
+    m.checksegments = 1;                /* Segments will be introduced next. */
+    if (!b.refine) {
+      /* Insert PSLG segments and/or convex hull segments. */
+#ifdef TRILIBRARY
+      formskeleton(&m, &b, in->segmentlist,
+                   in->segmentmarkerlist, in->numberofsegments);
+#else /* not TRILIBRARY */
+      formskeleton(&m, &b, polyfile, b.inpolyfilename);
+#endif /* not TRILIBRARY */
+    }
+  }
+
+#ifndef NO_TIMER
+  if (!b.quiet) {
+    gettimeofday(&tv3, &tz);
+    if (b.usesegments && !b.refine) {
+      fprintf(stderr, "Segment milliseconds:  %ld\n",
+             1000l * (tv3.tv_sec - tv2.tv_sec) +
+             (tv3.tv_usec - tv2.tv_usec) / 1000l);
+    }
+  }
+#endif /* not NO_TIMER */
+
+  if (b.poly && (m.triangles.items > 0)) {
+#ifdef TRILIBRARY
+    holearray = in->holelist;
+    m.holes = in->numberofholes;
+    regionarray = in->regionlist;
+    m.regions = in->numberofregions;
+#else /* not TRILIBRARY */
+    readholes(&m, &b, polyfile, b.inpolyfilename, &holearray, &m.holes,
+              &regionarray, &m.regions);
+#endif /* not TRILIBRARY */
+    if (!b.refine) {
+      /* Carve out holes and concavities. */
+      carveholes(&m, &b, holearray, m.holes, regionarray, m.regions);
+    }
+  } else {
+    /* Without a PSLG, there can be no holes or regional attributes   */
+    /*   or area constraints.  The following are set to zero to avoid */
+    /*   an accidental free() later.                                  */
+    m.holes = 0;
+    m.regions = 0;
+  }
+
+#ifndef NO_TIMER
+  if (!b.quiet) {
+    gettimeofday(&tv4, &tz);
+    if (b.poly && !b.refine) {
+      fprintf(stderr, "Hole milliseconds:  %ld\n", 1000l * (tv4.tv_sec - tv3.tv_sec) +
+             (tv4.tv_usec - tv3.tv_usec) / 1000l);
+    }
+  }
+#endif /* not NO_TIMER */
+
+#ifndef CDT_ONLY
+  if (b.quality && (m.triangles.items > 0)) {
+    enforcequality(&m, &b);           /* Enforce angle and area constraints. */
+  }
+#endif /* not CDT_ONLY */
+
+#ifndef NO_TIMER
+  if (!b.quiet) {
+    gettimeofday(&tv5, &tz);
+#ifndef CDT_ONLY
+    if (b.quality) {
+      fprintf(stderr, "Quality milliseconds:  %ld\n",
+             1000l * (tv5.tv_sec - tv4.tv_sec) +
+             (tv5.tv_usec - tv4.tv_usec) / 1000l);
+    }
+#endif /* not CDT_ONLY */
+  }
+#endif /* not NO_TIMER */
+
+  /* Calculate the number of edges. */
+  m.edges = (3l * m.triangles.items + m.hullsize) / 2l;
+
+  if (b.order > 1) {
+    highorder(&m, &b);       /* Promote elements to higher polynomial order. */
+  }
+  if (!b.quiet) {
+    fprintf(stderr, "\n");
+  }
+
+#ifdef TRILIBRARY
+  out->numberofpoints = m.vertices.items;
+  out->numberofpointattributes = m.nextras;
+  out->numberoftriangles = m.triangles.items;
+  out->numberofcorners = (b.order + 1) * (b.order + 2) / 2;
+  out->numberoftriangleattributes = m.eextras;
+  out->numberofedges = m.edges;
+  if (b.usesegments) {
+    out->numberofsegments = m.subsegs.items;
+  } else {
+    out->numberofsegments = m.hullsize;
+  }
+  if (vorout != (struct triangulateio *) NULL) {
+    vorout->numberofpoints = m.triangles.items;
+    vorout->numberofpointattributes = m.nextras;
+    vorout->numberofedges = m.edges;
+  }
+#endif /* TRILIBRARY */
+  /* If not using iteration numbers, don't write a .node file if one was */
+  /*   read, because the original one would be overwritten!              */
+  if (b.nonodewritten || (b.noiterationnum && m.readnodefile)) {
+    if (!b.quiet) {
+#ifdef TRILIBRARY
+      fprintf(stderr, "NOT writing vertices.\n");
+#else /* not TRILIBRARY */
+      fprintf(stderr, "NOT writing a .node file.\n");
+#endif /* not TRILIBRARY */
+    }
+    numbernodes(&m, &b);         /* We must remember to number the vertices. */
+  } else {
+    /* writenodes() numbers the vertices too. */
+#ifdef TRILIBRARY
+    writenodes(&m, &b, &out->pointlist, &out->pointattributelist,
+               &out->pointmarkerlist);
+#else /* not TRILIBRARY */
+    writenodes(&m, &b, b.outnodefilename, argc, argv);
+#endif /* TRILIBRARY */
+  }
+  if (b.noelewritten) {
+    if (!b.quiet) {
+#ifdef TRILIBRARY
+      fprintf(stderr, "NOT writing triangles.\n");
+#else /* not TRILIBRARY */
+      fprintf(stderr, "NOT writing an .ele file.\n");
+#endif /* not TRILIBRARY */
+    }
+  } else {
+#ifdef TRILIBRARY
+    writeelements(&m, &b, &out->trianglelist, &out->triangleattributelist);
+#else /* not TRILIBRARY */
+    writeelements(&m, &b, b.outelefilename, argc, argv);
+#endif /* not TRILIBRARY */
+  }
+  /* The -c switch (convex switch) causes a PSLG to be written */
+  /*   even if none was read.                                  */
+  if (b.poly || b.convex) {
+    /* If not using iteration numbers, don't overwrite the .poly file. */
+    if (b.nopolywritten || b.noiterationnum) {
+      if (!b.quiet) {
+#ifdef TRILIBRARY
+        fprintf(stderr, "NOT writing segments.\n");
+#else /* not TRILIBRARY */
+        fprintf(stderr, "NOT writing a .poly file.\n");
+#endif /* not TRILIBRARY */
+      }
+    } else {
+#ifdef TRILIBRARY
+      writepoly(&m, &b, &out->segmentlist, &out->segmentmarkerlist);
+      out->numberofholes = m.holes;
+      out->numberofregions = m.regions;
+      if (b.poly) {
+        out->holelist = in->holelist;
+        out->regionlist = in->regionlist;
+      } else {
+        out->holelist = (REAL *) NULL;
+        out->regionlist = (REAL *) NULL;
+      }
+#else /* not TRILIBRARY */
+      writepoly(&m, &b, b.outpolyfilename, holearray, m.holes, regionarray,
+                m.regions, argc, argv);
+#endif /* not TRILIBRARY */
+    }
+  }
+#ifndef TRILIBRARY
+#ifndef CDT_ONLY
+  if (m.regions > 0) {
+    trifree((VOID *) regionarray);
+  }
+#endif /* not CDT_ONLY */
+  if (m.holes > 0) {
+    trifree((VOID *) holearray);
+  }
+  if (b.geomview) {
+    writeoff(&m, &b, b.offfilename, argc, argv);
+  }
+#endif /* not TRILIBRARY */
+  if (b.edgesout) {
+#ifdef TRILIBRARY
+    writeedges(&m, &b, &out->edgelist, &out->edgemarkerlist);
+#else /* not TRILIBRARY */
+    writeedges(&m, &b, b.edgefilename, argc, argv);
+#endif /* not TRILIBRARY */
+  }
+  if (b.voronoi) {
+#ifdef TRILIBRARY
+    writevoronoi(&m, &b, &vorout->pointlist, &vorout->pointattributelist,
+                 &vorout->pointmarkerlist, &vorout->edgelist,
+                 &vorout->edgemarkerlist, &vorout->normlist);
+#else /* not TRILIBRARY */
+    writevoronoi(&m, &b, b.vnodefilename, b.vedgefilename, argc, argv);
+#endif /* not TRILIBRARY */
+  }
+  if (b.neighbors) {
+#ifdef TRILIBRARY
+    writeneighbors(&m, &b, &out->neighborlist);
+#else /* not TRILIBRARY */
+    writeneighbors(&m, &b, b.neighborfilename, argc, argv);
+#endif /* not TRILIBRARY */
+  }
+
+  if (!b.quiet) {
+#ifndef NO_TIMER
+    gettimeofday(&tv6, &tz);
+    fprintf(stderr, "\nOutput milliseconds:  %ld\n",
+           1000l * (tv6.tv_sec - tv5.tv_sec) +
+           (tv6.tv_usec - tv5.tv_usec) / 1000l);
+    fprintf(stderr, "Total running milliseconds:  %ld\n",
+           1000l * (tv6.tv_sec - tv0.tv_sec) +
+           (tv6.tv_usec - tv0.tv_usec) / 1000l);
+#endif /* not NO_TIMER */
+
+    statistics(&m, &b);
+  }
+
+#ifndef REDUCED
+  if (b.docheck) {
+    checkmesh(&m, &b);
+    checkdelaunay(&m, &b);
+  }
+#endif /* not REDUCED */
+
+  triangledeinit(&m, &b);
+#ifndef TRILIBRARY
+  return 0;
+#endif /* not TRILIBRARY */
+}
diff --git a/src/modules/grid/grid_gridding/nn/triangle.h b/src/modules/grid/grid_gridding/nn/triangle.h
new file mode 100755
index 0000000..5b17f96
--- /dev/null
+++ b/src/modules/grid/grid_gridding/nn/triangle.h
@@ -0,0 +1,288 @@
+/*****************************************************************************/
+/*                                                                           */
+/*  (triangle.h)                                                             */
+/*                                                                           */
+/*  Include file for programs that call Triangle.                            */
+/*                                                                           */
+/*  Accompanies Triangle Versions 1.3 and 1.4                                */
+/*  July 19, 1996                                                            */
+/*                                                                           */
+/*  Copyright 1996                                                           */
+/*  Jonathan Richard Shewchuk                                                */
+/*  2360 Woolsey #H                                                          */
+/*  Berkeley, California  94705-1927                                         */
+/*  jrs at cs.berkeley.edu                                                      */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  How to call Triangle from another program                                */
+/*                                                                           */
+/*                                                                           */
+/*  If you haven't read Triangle's instructions (run "triangle -h" to read   */
+/*  them), you won't understand what follows.                                */
+/*                                                                           */
+/*  Triangle must be compiled into an object file (triangle.o) with the      */
+/*  TRILIBRARY symbol defined (preferably by using the -DTRILIBRARY compiler */
+/*  switch).  The makefile included with Triangle will do this for you if    */
+/*  you run "make trilibrary".  The resulting object file can be called via  */
+/*  the procedure triangulate().                                             */
+/*                                                                           */
+/*  If the size of the object file is important to you, you may wish to      */
+/*  generate a reduced version of triangle.o.  The REDUCED symbol gets rid   */
+/*  of all features that are primarily of research interest.  Specifically,  */
+/*  the -DREDUCED switch eliminates Triangle's -i, -F, -s, and -C switches.  */
+/*  The CDT_ONLY symbol gets rid of all meshing algorithms above and beyond  */
+/*  constrained Delaunay triangulation.  Specifically, the -DCDT_ONLY switch */
+/*  eliminates Triangle's -r, -q, -a, -S, and -s switches.                   */
+/*                                                                           */
+/*  IMPORTANT:  These definitions (TRILIBRARY, REDUCED, CDT_ONLY) must be    */
+/*  made in the makefile or in triangle.c itself.  Putting these definitions */
+/*  in this file will not create the desired effect.                         */
+/*                                                                           */
+/*                                                                           */
+/*  The calling convention for triangulate() follows.                        */
+/*                                                                           */
+/*      void triangulate(triswitches, in, out, vorout)                       */
+/*      char *triswitches;                                                   */
+/*      struct triangulateio *in;                                            */
+/*      struct triangulateio *out;                                           */
+/*      struct triangulateio *vorout;                                        */
+/*                                                                           */
+/*  `triswitches' is a string containing the command line switches you wish  */
+/*  to invoke.  No initial dash is required.  Some suggestions:              */
+/*                                                                           */
+/*  - You'll probably find it convenient to use the `z' switch so that       */
+/*    points (and other items) are numbered from zero.  This simplifies      */
+/*    indexing, because the first item of any type always starts at index    */
+/*    [0] of the corresponding array, whether that item's number is zero or  */
+/*    one.                                                                   */
+/*  - You'll probably want to use the `Q' (quiet) switch in your final code, */
+/*    but you can take advantage of Triangle's printed output (including the */
+/*    `V' switch) while debugging.                                           */
+/*  - If you are not using the `q' or `a' switches, then the output points   */
+/*    will be identical to the input points, except possibly for the         */
+/*    boundary markers.  If you don't need the boundary markers, you should  */
+/*    use the `N' (no nodes output) switch to save memory.  (If you do need  */
+/*    boundary markers, but need to save memory, a good nasty trick is to    */
+/*    set out->pointlist equal to in->pointlist before calling triangulate(),*/
+/*    so that Triangle overwrites the input points with identical copies.)   */
+/*  - The `I' (no iteration numbers) and `g' (.off file output) switches     */
+/*    have no effect when Triangle is compiled with TRILIBRARY defined.      */
+/*                                                                           */
+/*  `in', `out', and `vorout' are descriptions of the input, the output,     */
+/*  and the Voronoi output.  If the `v' (Voronoi output) switch is not used, */
+/*  `vorout' may be NULL.  `in' and `out' may never be NULL.                 */
+/*                                                                           */
+/*  Certain fields of the input and output structures must be initialized,   */
+/*  as described below.                                                      */
+/*                                                                           */
+/*****************************************************************************/
+
+/*****************************************************************************/
+/*                                                                           */
+/*  The `triangulateio' structure.                                           */
+/*                                                                           */
+/*  Used to pass data into and out of the triangulate() procedure.           */
+/*                                                                           */
+/*                                                                           */
+/*  Arrays are used to store points, triangles, markers, and so forth.  In   */
+/*  all cases, the first item in any array is stored starting at index [0].  */
+/*  However, that item is item number `1' unless the `z' switch is used, in  */
+/*  which case it is item number `0'.  Hence, you may find it easier to      */
+/*  index points (and triangles in the neighbor list) if you use the `z'     */
+/*  switch.  Unless, of course, you're calling Triangle from a Fortran       */
+/*  program.                                                                 */
+/*                                                                           */
+/*  Description of fields (except the `numberof' fields, which are obvious): */
+/*                                                                           */
+/*  `pointlist':  An array of point coordinates.  The first point's x        */
+/*    coordinate is at index [0] and its y coordinate at index [1], followed */
+/*    by the coordinates of the remaining points.  Each point occupies two   */
+/*    REALs.                                                                 */
+/*  `pointattributelist':  An array of point attributes.  Each point's       */
+/*    attributes occupy `numberofpointattributes' REALs.                     */
+/*  `pointmarkerlist':  An array of point markers; one int per point.        */
+/*                                                                           */
+/*  `trianglelist':  An array of triangle corners.  The first triangle's     */
+/*    first corner is at index [0], followed by its other two corners in     */
+/*    counterclockwise order, followed by any other nodes if the triangle    */
+/*    represents a nonlinear element.  Each triangle occupies                */
+/*    `numberofcorners' ints.                                                */
+/*  `triangleattributelist':  An array of triangle attributes.  Each         */
+/*    triangle's attributes occupy `numberoftriangleattributes' REALs.       */
+/*  `trianglearealist':  An array of triangle area constraints; one REAL per */
+/*    triangle.  Input only.                                                 */
+/*  `neighborlist':  An array of triangle neighbors; three ints per          */
+/*    triangle.  Output only.                                                */
+/*                                                                           */
+/*  `segmentlist':  An array of segment endpoints.  The first segment's      */
+/*    endpoints are at indices [0] and [1], followed by the remaining        */
+/*    segments.  Two ints per segment.                                       */
+/*  `segmentmarkerlist':  An array of segment markers; one int per segment.  */
+/*                                                                           */
+/*  `holelist':  An array of holes.  The first hole's x and y coordinates    */
+/*    are at indices [0] and [1], followed by the remaining holes.  Two      */
+/*    REALs per hole.  Input only, although the pointer is copied to the     */
+/*    output structure for your convenience.                                 */
+/*                                                                           */
+/*  `regionlist':  An array of regional attributes and area constraints.     */
+/*    The first constraint's x and y coordinates are at indices [0] and [1], */
+/*    followed by the regional attribute and index [2], followed by the      */
+/*    maximum area at index [3], followed by the remaining area constraints. */
+/*    Four REALs per area constraint.  Note that each regional attribute is  */
+/*    used only if you select the `A' switch, and each area constraint is    */
+/*    used only if you select the `a' switch (with no number following), but */
+/*    omitting one of these switches does not change the memory layout.      */
+/*    Input only, although the pointer is copied to the output structure for */
+/*    your convenience.                                                      */
+/*                                                                           */
+/*  `edgelist':  An array of edge endpoints.  The first edge's endpoints are */
+/*    at indices [0] and [1], followed by the remaining edges.  Two ints per */
+/*    edge.  Output only.                                                    */
+/*  `edgemarkerlist':  An array of edge markers; one int per edge.  Output   */
+/*    only.                                                                  */
+/*  `normlist':  An array of normal vectors, used for infinite rays in       */
+/*    Voronoi diagrams.  The first normal vector's x and y magnitudes are    */
+/*    at indices [0] and [1], followed by the remaining vectors.  For each   */
+/*    finite edge in a Voronoi diagram, the normal vector written is the     */
+/*    zero vector.  Two REALs per edge.  Output only.                        */
+/*                                                                           */
+/*                                                                           */
+/*  Any input fields that Triangle will examine must be initialized.         */
+/*  Furthermore, for each output array that Triangle will write to, you      */
+/*  must either provide space by setting the appropriate pointer to point    */
+/*  to the space you want the data written to, or you must initialize the    */
+/*  pointer to NULL, which tells Triangle to allocate space for the results. */
+/*  The latter option is preferable, because Triangle always knows exactly   */
+/*  how much space to allocate.  The former option is provided mainly for    */
+/*  people who need to call Triangle from Fortran code, though it also makes */
+/*  possible some nasty space-saving tricks, like writing the output to the  */
+/*  same arrays as the input.                                                */
+/*                                                                           */
+/*  Triangle will not free() any input or output arrays, including those it  */
+/*  allocates itself; that's up to you.                                      */
+/*                                                                           */
+/*  Here's a guide to help you decide which fields you must initialize       */
+/*  before you call triangulate().                                           */
+/*                                                                           */
+/*  `in':                                                                    */
+/*                                                                           */
+/*    - `pointlist' must always point to a list of points; `numberofpoints'  */
+/*      and `numberofpointattributes' must be properly set.                  */
+/*      `pointmarkerlist' must either be set to NULL (in which case all      */
+/*      markers default to zero), or must point to a list of markers.  If    */
+/*      `numberofpointattributes' is not zero, `pointattributelist' must     */
+/*      point to a list of point attributes.                                 */
+/*    - If the `r' switch is used, `trianglelist' must point to a list of    */
+/*      triangles, and `numberoftriangles', `numberofcorners', and           */
+/*      `numberoftriangleattributes' must be properly set.  If               */
+/*      `numberoftriangleattributes' is not zero, `triangleattributelist'    */
+/*      must point to a list of triangle attributes.  If the `a' switch is   */
+/*      used (with no number following), `trianglearealist' must point to a  */
+/*      list of triangle area constraints.  `neighborlist' may be ignored.   */
+/*    - If the `p' switch is used, `segmentlist' must point to a list of     */
+/*      segments, `numberofsegments' must be properly set, and               */
+/*      `segmentmarkerlist' must either be set to NULL (in which case all    */
+/*      markers default to zero), or must point to a list of markers.        */
+/*    - If the `p' switch is used without the `r' switch, then               */
+/*      `numberofholes' and `numberofregions' must be properly set.  If      */
+/*      `numberofholes' is not zero, `holelist' must point to a list of      */
+/*      holes.  If `numberofregions' is not zero, `regionlist' must point to */
+/*      a list of region constraints.                                        */
+/*    - If the `p' switch is used, `holelist', `numberofholes',              */
+/*      `regionlist', and `numberofregions' is copied to `out'.  (You can    */
+/*      nonetheless get away with not initializing them if the `r' switch is */
+/*      used.)                                                               */
+/*    - `edgelist', `edgemarkerlist', `normlist', and `numberofedges' may be */
+/*      ignored.                                                             */
+/*                                                                           */
+/*  `out':                                                                   */
+/*                                                                           */
+/*    - `pointlist' must be initialized (NULL or pointing to memory) unless  */
+/*      the `N' switch is used.  `pointmarkerlist' must be initialized       */
+/*      unless the `N' or `B' switch is used.  If `N' is not used and        */
+/*      `in->numberofpointattributes' is not zero, `pointattributelist' must */
+/*      be initialized.                                                      */
+/*    - `trianglelist' must be initialized unless the `E' switch is used.    */
+/*      `neighborlist' must be initialized if the `n' switch is used.  If    */
+/*      the `E' switch is not used and (`in->numberofelementattributes' is   */
+/*      not zero or the `A' switch is used), `elementattributelist' must be  */
+/*      initialized.  `trianglearealist' may be ignored.                     */
+/*    - `segmentlist' must be initialized if the `p' or `c' switch is used,  */
+/*      and the `P' switch is not used.  `segmentmarkerlist' must also be    */
+/*      initialized under these circumstances unless the `B' switch is used. */
+/*    - `edgelist' must be initialized if the `e' switch is used.            */
+/*      `edgemarkerlist' must be initialized if the `e' switch is used and   */
+/*      the `B' switch is not.                                               */
+/*    - `holelist', `regionlist', `normlist', and all scalars may be ignored.*/
+/*                                                                           */
+/*  `vorout' (only needed if `v' switch is used):                            */
+/*                                                                           */
+/*    - `pointlist' must be initialized.  If `in->numberofpointattributes'   */
+/*      is not zero, `pointattributelist' must be initialized.               */
+/*      `pointmarkerlist' may be ignored.                                    */
+/*    - `edgelist' and `normlist' must both be initialized.                  */
+/*      `edgemarkerlist' may be ignored.                                     */
+/*    - Everything else may be ignored.                                      */
+/*                                                                           */
+/*  After a call to triangulate(), the valid fields of `out' and `vorout'    */
+/*  will depend, in an obvious way, on the choice of switches used.  Note    */
+/*  that when the `p' switch is used, the pointers `holelist' and            */
+/*  `regionlist' are copied from `in' to `out', but no new space is          */
+/*  allocated; be careful that you don't free() the same array twice.  On    */
+/*  the other hand, Triangle will never copy the `pointlist' pointer (or any */
+/*  others); new space is allocated for `out->pointlist', or if the `N'      */
+/*  switch is used, `out->pointlist' remains uninitialized.                  */
+/*                                                                           */
+/*  All of the meaningful `numberof' fields will be properly set; for        */
+/*  instance, `numberofedges' will represent the number of edges in the      */
+/*  triangulation whether or not the edges were written.  If segments are    */
+/*  not used, `numberofsegments' will indicate the number of boundary edges. */
+/*                                                                           */
+/*****************************************************************************/
+
+#ifdef SINGLE
+#define REAL float
+#else /* not SINGLE */
+#define REAL double
+#endif /* not SINGLE */
+
+struct triangulateio {
+  REAL *pointlist;                                               /* In / out */
+  REAL *pointattributelist;                                      /* In / out */
+  int *pointmarkerlist;                                          /* In / out */
+  int numberofpoints;                                            /* In / out */
+  int numberofpointattributes;                                   /* In / out */
+
+  int *trianglelist;                                             /* In / out */
+  REAL *triangleattributelist;                                   /* In / out */
+  REAL *trianglearealist;                                         /* In only */
+  int *neighborlist;                                             /* Out only */
+  int numberoftriangles;                                         /* In / out */
+  int numberofcorners;                                           /* In / out */
+  int numberoftriangleattributes;                                /* In / out */
+
+  int *segmentlist;                                              /* In / out */
+  int *segmentmarkerlist;                                        /* In / out */
+  int numberofsegments;                                          /* In / out */
+
+  REAL *holelist;                        /* In / pointer to array copied out */
+  int numberofholes;                                      /* In / copied out */
+
+  REAL *regionlist;                      /* In / pointer to array copied out */
+  int numberofregions;                                    /* In / copied out */
+
+  int *edgelist;                                                 /* Out only */
+  int *edgemarkerlist;            /* Not used with Voronoi diagram; out only */
+  REAL *normlist;                /* Used only with Voronoi diagram; out only */
+  int numberofedges;                                             /* Out only */
+};
+
+#ifdef ANSI_DECLARATORS
+void triangulate(char *, struct triangulateio *, struct triangulateio *,
+                 struct triangulateio *);
+#else /* not ANSI_DECLARATORS */
+void triangulate();
+#endif /* not ANSI_DECLARATORS */
diff --git a/src/modules/grid/grid_gridding/nn/version.h b/src/modules/grid/grid_gridding/nn/version.h
index 5cca36c..68d8663 100755
--- a/src/modules/grid/grid_gridding/nn/version.h
+++ b/src/modules/grid/grid_gridding/nn/version.h
@@ -1,6 +1,3 @@
-/**********************************************************
- * Version $Id: version.h 911 2011-02-14 16:38:15Z reklov_w $
- *********************************************************/
 /******************************************************************************
  *
  * File:           version.h
@@ -17,6 +14,6 @@
 #if !defined(_VERSION_H)
 #define _VERSION_H
 
-char* nn_version = "1.38";
+char* nn_version = "1.85.1";
 
 #endif
diff --git a/src/modules/grid/grid_tools/Grid_Orientation.cpp b/src/modules/grid/grid_tools/Grid_Orientation.cpp
index 0cbe717..fc8df56 100755
--- a/src/modules/grid/grid_tools/Grid_Orientation.cpp
+++ b/src/modules/grid/grid_tools/Grid_Orientation.cpp
@@ -1,5 +1,5 @@
 /**********************************************************
- * Version $Id: Grid_Orientation.cpp 2817 2016-02-23 15:16:48Z oconrad $
+ * Version $Id: Grid_Orientation.cpp 2835 2016-02-29 08:25:54Z oconrad $
  *********************************************************/
 
 ///////////////////////////////////////////////////////////
@@ -160,7 +160,7 @@ bool CGrid_Invert::On_Execute(void)
 	{
 		pGrid->Create(*Parameters("GRID")->asGrid());
 
-		pGrid->Set_Name(CSG_String::Format("%s [%s]", pGrid->Get_Name(), Parameters("METHOD")->asString()));
+		pGrid->Set_Name(CSG_String::Format("%s [%s]", pGrid->Get_Name(), _TL("Inverse")));
 	}
 
 	//-----------------------------------------------------
@@ -250,7 +250,7 @@ bool CGrid_Mirror::On_Execute(void)
 	{
 		pGrid->Create(*Parameters("GRID")->asGrid());
 
-		pGrid->Set_Name(CSG_String::Format("%s [%s]", pGrid->Get_Name(), Parameters("METHOD")->asString()));
+		pGrid->Set_Name(CSG_String::Format("%s [%s %s]", pGrid->Get_Name(), _TL("mirrored"), Parameters("METHOD")->asString()));
 	}
 
 	//-----------------------------------------------------
diff --git a/src/modules/imagery/imagery_svm/svm.cpp b/src/modules/imagery/imagery_svm/svm.cpp
new file mode 100755
index 0000000..1ecb291
--- /dev/null
+++ b/src/modules/imagery/imagery_svm/svm.cpp
@@ -0,0 +1,3089 @@
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <float.h>
+#include <string.h>
+#include <stdarg.h>
+#include <limits.h>
+#include "svm.h"
+int libsvm_version = LIBSVM_VERSION;
+typedef float Qfloat;
+typedef signed char schar;
+#ifndef min
+template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
+#endif
+#ifndef max
+template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
+#endif
+template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
+template <class S, class T> static inline void clone(T*& dst, S* src, int n)
+{
+	dst = new T[n];
+	memcpy((void *)dst,(void *)src,sizeof(T)*n);
+}
+static inline double powi(double base, int times)
+{
+	double tmp = base, ret = 1.0;
+
+	for(int t=times; t>0; t/=2)
+	{
+		if(t%2==1) ret*=tmp;
+		tmp = tmp * tmp;
+	}
+	return ret;
+}
+#define INF HUGE_VAL
+#define TAU 1e-12
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
+
+static void print_string_stdout(const char *s)
+{
+	fputs(s,stdout);
+	fflush(stdout);
+}
+static void (*svm_print_string) (const char *) = &print_string_stdout;
+#if 1
+static void info(const char *fmt,...)
+{
+	char buf[BUFSIZ];
+	va_list ap;
+	va_start(ap,fmt);
+	vsprintf(buf,fmt,ap);
+	va_end(ap);
+	(*svm_print_string)(buf);
+}
+#else
+static void info(const char *fmt,...) {}
+#endif
+
+//
+// Kernel Cache
+//
+// l is the number of total data items
+// size is the cache size limit in bytes
+//
+class Cache
+{
+public:
+	Cache(int l,long int size);
+	~Cache();
+
+	// request data [0,len)
+	// return some position p where [p,len) need to be filled
+	// (p >= len if nothing needs to be filled)
+	int get_data(const int index, Qfloat **data, int len);
+	void swap_index(int i, int j);	
+private:
+	int l;
+	long int size;
+	struct head_t
+	{
+		head_t *prev, *next;	// a circular list
+		Qfloat *data;
+		int len;		// data[0,len) is cached in this entry
+	};
+
+	head_t *head;
+	head_t lru_head;
+	void lru_delete(head_t *h);
+	void lru_insert(head_t *h);
+};
+
+Cache::Cache(int l_,long int size_):l(l_),size(size_)
+{
+	head = (head_t *)calloc(l,sizeof(head_t));	// initialized to 0
+	size /= sizeof(Qfloat);
+	size -= l * sizeof(head_t) / sizeof(Qfloat);
+	size = max(size, 2 * (long int) l);	// cache must be large enough for two columns
+	lru_head.next = lru_head.prev = &lru_head;
+}
+
+Cache::~Cache()
+{
+	for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
+		free(h->data);
+	free(head);
+}
+
+void Cache::lru_delete(head_t *h)
+{
+	// delete from current location
+	h->prev->next = h->next;
+	h->next->prev = h->prev;
+}
+
+void Cache::lru_insert(head_t *h)
+{
+	// insert to last position
+	h->next = &lru_head;
+	h->prev = lru_head.prev;
+	h->prev->next = h;
+	h->next->prev = h;
+}
+
+int Cache::get_data(const int index, Qfloat **data, int len)
+{
+	head_t *h = &head[index];
+	if(h->len) lru_delete(h);
+	int more = len - h->len;
+
+	if(more > 0)
+	{
+		// free old space
+		while(size < more)
+		{
+			head_t *old = lru_head.next;
+			lru_delete(old);
+			free(old->data);
+			size += old->len;
+			old->data = 0;
+			old->len = 0;
+		}
+
+		// allocate new space
+		h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
+		size -= more;
+		swap(h->len,len);
+	}
+
+	lru_insert(h);
+	*data = h->data;
+	return len;
+}
+
+void Cache::swap_index(int i, int j)
+{
+	if(i==j) return;
+
+	if(head[i].len) lru_delete(&head[i]);
+	if(head[j].len) lru_delete(&head[j]);
+	swap(head[i].data,head[j].data);
+	swap(head[i].len,head[j].len);
+	if(head[i].len) lru_insert(&head[i]);
+	if(head[j].len) lru_insert(&head[j]);
+
+	if(i>j) swap(i,j);
+	for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
+	{
+		if(h->len > i)
+		{
+			if(h->len > j)
+				swap(h->data[i],h->data[j]);
+			else
+			{
+				// give up
+				lru_delete(h);
+				free(h->data);
+				size += h->len;
+				h->data = 0;
+				h->len = 0;
+			}
+		}
+	}
+}
+
+//
+// Kernel evaluation
+//
+// the static method k_function is for doing single kernel evaluation
+// the constructor of Kernel prepares to calculate the l*l kernel matrix
+// the member function get_Q is for getting one column from the Q Matrix
+//
+class QMatrix {
+public:
+	virtual Qfloat *get_Q(int column, int len) const = 0;
+	virtual double *get_QD() const = 0;
+	virtual void swap_index(int i, int j) const = 0;
+	virtual ~QMatrix() {}
+};
+
+class Kernel: public QMatrix {
+public:
+	Kernel(int l, svm_node * const * x, const svm_parameter& param);
+	virtual ~Kernel();
+
+	static double k_function(const svm_node *x, const svm_node *y,
+				 const svm_parameter& param);
+	virtual Qfloat *get_Q(int column, int len) const = 0;
+	virtual double *get_QD() const = 0;
+	virtual void swap_index(int i, int j) const	// no so const...
+	{
+		swap(x[i],x[j]);
+		if(x_square) swap(x_square[i],x_square[j]);
+	}
+protected:
+
+	double (Kernel::*kernel_function)(int i, int j) const;
+
+private:
+	const svm_node **x;
+	double *x_square;
+
+	// svm_parameter
+	const int kernel_type;
+	const int degree;
+	const double gamma;
+	const double coef0;
+
+	static double dot(const svm_node *px, const svm_node *py);
+	double kernel_linear(int i, int j) const
+	{
+		return dot(x[i],x[j]);
+	}
+	double kernel_poly(int i, int j) const
+	{
+		return powi(gamma*dot(x[i],x[j])+coef0,degree);
+	}
+	double kernel_rbf(int i, int j) const
+	{
+		return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
+	}
+	double kernel_sigmoid(int i, int j) const
+	{
+		return tanh(gamma*dot(x[i],x[j])+coef0);
+	}
+	double kernel_precomputed(int i, int j) const
+	{
+		return x[i][(int)(x[j][0].value)].value;
+	}
+};
+
+Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
+:kernel_type(param.kernel_type), degree(param.degree),
+ gamma(param.gamma), coef0(param.coef0)
+{
+	switch(kernel_type)
+	{
+		case LINEAR:
+			kernel_function = &Kernel::kernel_linear;
+			break;
+		case POLY:
+			kernel_function = &Kernel::kernel_poly;
+			break;
+		case RBF:
+			kernel_function = &Kernel::kernel_rbf;
+			break;
+		case SIGMOID:
+			kernel_function = &Kernel::kernel_sigmoid;
+			break;
+		case PRECOMPUTED:
+			kernel_function = &Kernel::kernel_precomputed;
+			break;
+	}
+
+	clone(x,x_,l);
+
+	if(kernel_type == RBF)
+	{
+		x_square = new double[l];
+		for(int i=0;i<l;i++)
+			x_square[i] = dot(x[i],x[i]);
+	}
+	else
+		x_square = 0;
+}
+
+Kernel::~Kernel()
+{
+	delete[] x;
+	delete[] x_square;
+}
+
+double Kernel::dot(const svm_node *px, const svm_node *py)
+{
+	double sum = 0;
+	while(px->index != -1 && py->index != -1)
+	{
+		if(px->index == py->index)
+		{
+			sum += px->value * py->value;
+			++px;
+			++py;
+		}
+		else
+		{
+			if(px->index > py->index)
+				++py;
+			else
+				++px;
+		}			
+	}
+	return sum;
+}
+
+double Kernel::k_function(const svm_node *x, const svm_node *y,
+			  const svm_parameter& param)
+{
+	switch(param.kernel_type)
+	{
+		case LINEAR:
+			return dot(x,y);
+		case POLY:
+			return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
+		case RBF:
+		{
+			double sum = 0;
+			while(x->index != -1 && y->index !=-1)
+			{
+				if(x->index == y->index)
+				{
+					double d = x->value - y->value;
+					sum += d*d;
+					++x;
+					++y;
+				}
+				else
+				{
+					if(x->index > y->index)
+					{	
+						sum += y->value * y->value;
+						++y;
+					}
+					else
+					{
+						sum += x->value * x->value;
+						++x;
+					}
+				}
+			}
+
+			while(x->index != -1)
+			{
+				sum += x->value * x->value;
+				++x;
+			}
+
+			while(y->index != -1)
+			{
+				sum += y->value * y->value;
+				++y;
+			}
+			
+			return exp(-param.gamma*sum);
+		}
+		case SIGMOID:
+			return tanh(param.gamma*dot(x,y)+param.coef0);
+		case PRECOMPUTED:  //x: test (validation), y: SV
+			return x[(int)(y->value)].value;
+		default:
+			return 0;  // Unreachable 
+	}
+}
+
+// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
+// Solves:
+//
+//	min 0.5(\alpha^T Q \alpha) + p^T \alpha
+//
+//		y^T \alpha = \delta
+//		y_i = +1 or -1
+//		0 <= alpha_i <= Cp for y_i = 1
+//		0 <= alpha_i <= Cn for y_i = -1
+//
+// Given:
+//
+//	Q, p, y, Cp, Cn, and an initial feasible point \alpha
+//	l is the size of vectors and matrices
+//	eps is the stopping tolerance
+//
+// solution will be put in \alpha, objective value will be put in obj
+//
+class Solver {
+public:
+	Solver() {};
+	virtual ~Solver() {};
+
+	struct SolutionInfo {
+		double obj;
+		double rho;
+		double upper_bound_p;
+		double upper_bound_n;
+		double r;	// for Solver_NU
+	};
+
+	void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+		   double *alpha_, double Cp, double Cn, double eps,
+		   SolutionInfo* si, int shrinking);
+protected:
+	int active_size;
+	schar *y;
+	double *G;		// gradient of objective function
+	enum { LOWER_BOUND, UPPER_BOUND, FREE };
+	char *alpha_status;	// LOWER_BOUND, UPPER_BOUND, FREE
+	double *alpha;
+	const QMatrix *Q;
+	const double *QD;
+	double eps;
+	double Cp,Cn;
+	double *p;
+	int *active_set;
+	double *G_bar;		// gradient, if we treat free variables as 0
+	int l;
+	bool unshrink;	// XXX
+
+	double get_C(int i)
+	{
+		return (y[i] > 0)? Cp : Cn;
+	}
+	void update_alpha_status(int i)
+	{
+		if(alpha[i] >= get_C(i))
+			alpha_status[i] = UPPER_BOUND;
+		else if(alpha[i] <= 0)
+			alpha_status[i] = LOWER_BOUND;
+		else alpha_status[i] = FREE;
+	}
+	bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
+	bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
+	bool is_free(int i) { return alpha_status[i] == FREE; }
+	void swap_index(int i, int j);
+	void reconstruct_gradient();
+	virtual int select_working_set(int &i, int &j);
+	virtual double calculate_rho();
+	virtual void do_shrinking();
+private:
+	bool be_shrunk(int i, double Gmax1, double Gmax2);	
+};
+
+void Solver::swap_index(int i, int j)
+{
+	Q->swap_index(i,j);
+	swap(y[i],y[j]);
+	swap(G[i],G[j]);
+	swap(alpha_status[i],alpha_status[j]);
+	swap(alpha[i],alpha[j]);
+	swap(p[i],p[j]);
+	swap(active_set[i],active_set[j]);
+	swap(G_bar[i],G_bar[j]);
+}
+
+void Solver::reconstruct_gradient()
+{
+	// reconstruct inactive elements of G from G_bar and free variables
+
+	if(active_size == l) return;
+
+	int i,j;
+	int nr_free = 0;
+
+	for(j=active_size;j<l;j++)
+		G[j] = G_bar[j] + p[j];
+
+	for(j=0;j<active_size;j++)
+		if(is_free(j))
+			nr_free++;
+
+	if(2*nr_free < active_size)
+		info("\nWARNING: using -h 0 may be faster\n");
+
+	if (nr_free*l > 2*active_size*(l-active_size))
+	{
+		for(i=active_size;i<l;i++)
+		{
+			const Qfloat *Q_i = Q->get_Q(i,active_size);
+			for(j=0;j<active_size;j++)
+				if(is_free(j))
+					G[i] += alpha[j] * Q_i[j];
+		}
+	}
+	else
+	{
+		for(i=0;i<active_size;i++)
+			if(is_free(i))
+			{
+				const Qfloat *Q_i = Q->get_Q(i,l);
+				double alpha_i = alpha[i];
+				for(j=active_size;j<l;j++)
+					G[j] += alpha_i * Q_i[j];
+			}
+	}
+}
+
+void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+		   double *alpha_, double Cp, double Cn, double eps,
+		   SolutionInfo* si, int shrinking)
+{
+	this->l = l;
+	this->Q = &Q;
+	QD=Q.get_QD();
+	clone(p, p_,l);
+	clone(y, y_,l);
+	clone(alpha,alpha_,l);
+	this->Cp = Cp;
+	this->Cn = Cn;
+	this->eps = eps;
+	unshrink = false;
+
+	// initialize alpha_status
+	{
+		alpha_status = new char[l];
+		for(int i=0;i<l;i++)
+			update_alpha_status(i);
+	}
+
+	// initialize active set (for shrinking)
+	{
+		active_set = new int[l];
+		for(int i=0;i<l;i++)
+			active_set[i] = i;
+		active_size = l;
+	}
+
+	// initialize gradient
+	{
+		G = new double[l];
+		G_bar = new double[l];
+		int i;
+		for(i=0;i<l;i++)
+		{
+			G[i] = p[i];
+			G_bar[i] = 0;
+		}
+		for(i=0;i<l;i++)
+			if(!is_lower_bound(i))
+			{
+				const Qfloat *Q_i = Q.get_Q(i,l);
+				double alpha_i = alpha[i];
+				int j;
+				for(j=0;j<l;j++)
+					G[j] += alpha_i*Q_i[j];
+				if(is_upper_bound(i))
+					for(j=0;j<l;j++)
+						G_bar[j] += get_C(i) * Q_i[j];
+			}
+	}
+
+	// optimization step
+
+	int iter = 0;
+	int max_iter = max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l);
+	int counter = min(l,1000)+1;
+	
+	while(iter < max_iter)
+	{
+		// show progress and do shrinking
+
+		if(--counter == 0)
+		{
+			counter = min(l,1000);
+			if(shrinking) do_shrinking();
+			info(".");
+		}
+
+		int i,j;
+		if(select_working_set(i,j)!=0)
+		{
+			// reconstruct the whole gradient
+			reconstruct_gradient();
+			// reset active set size and check
+			active_size = l;
+			info("*");
+			if(select_working_set(i,j)!=0)
+				break;
+			else
+				counter = 1;	// do shrinking next iteration
+		}
+		
+		++iter;
+
+		// update alpha[i] and alpha[j], handle bounds carefully
+		
+		const Qfloat *Q_i = Q.get_Q(i,active_size);
+		const Qfloat *Q_j = Q.get_Q(j,active_size);
+
+		double C_i = get_C(i);
+		double C_j = get_C(j);
+
+		double old_alpha_i = alpha[i];
+		double old_alpha_j = alpha[j];
+
+		if(y[i]!=y[j])
+		{
+			double quad_coef = QD[i]+QD[j]+2*Q_i[j];
+			if (quad_coef <= 0)
+				quad_coef = TAU;
+			double delta = (-G[i]-G[j])/quad_coef;
+			double diff = alpha[i] - alpha[j];
+			alpha[i] += delta;
+			alpha[j] += delta;
+			
+			if(diff > 0)
+			{
+				if(alpha[j] < 0)
+				{
+					alpha[j] = 0;
+					alpha[i] = diff;
+				}
+			}
+			else
+			{
+				if(alpha[i] < 0)
+				{
+					alpha[i] = 0;
+					alpha[j] = -diff;
+				}
+			}
+			if(diff > C_i - C_j)
+			{
+				if(alpha[i] > C_i)
+				{
+					alpha[i] = C_i;
+					alpha[j] = C_i - diff;
+				}
+			}
+			else
+			{
+				if(alpha[j] > C_j)
+				{
+					alpha[j] = C_j;
+					alpha[i] = C_j + diff;
+				}
+			}
+		}
+		else
+		{
+			double quad_coef = QD[i]+QD[j]-2*Q_i[j];
+			if (quad_coef <= 0)
+				quad_coef = TAU;
+			double delta = (G[i]-G[j])/quad_coef;
+			double sum = alpha[i] + alpha[j];
+			alpha[i] -= delta;
+			alpha[j] += delta;
+
+			if(sum > C_i)
+			{
+				if(alpha[i] > C_i)
+				{
+					alpha[i] = C_i;
+					alpha[j] = sum - C_i;
+				}
+			}
+			else
+			{
+				if(alpha[j] < 0)
+				{
+					alpha[j] = 0;
+					alpha[i] = sum;
+				}
+			}
+			if(sum > C_j)
+			{
+				if(alpha[j] > C_j)
+				{
+					alpha[j] = C_j;
+					alpha[i] = sum - C_j;
+				}
+			}
+			else
+			{
+				if(alpha[i] < 0)
+				{
+					alpha[i] = 0;
+					alpha[j] = sum;
+				}
+			}
+		}
+
+		// update G
+
+		double delta_alpha_i = alpha[i] - old_alpha_i;
+		double delta_alpha_j = alpha[j] - old_alpha_j;
+		
+		for(int k=0;k<active_size;k++)
+		{
+			G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
+		}
+
+		// update alpha_status and G_bar
+
+		{
+			bool ui = is_upper_bound(i);
+			bool uj = is_upper_bound(j);
+			update_alpha_status(i);
+			update_alpha_status(j);
+			int k;
+			if(ui != is_upper_bound(i))
+			{
+				Q_i = Q.get_Q(i,l);
+				if(ui)
+					for(k=0;k<l;k++)
+						G_bar[k] -= C_i * Q_i[k];
+				else
+					for(k=0;k<l;k++)
+						G_bar[k] += C_i * Q_i[k];
+			}
+
+			if(uj != is_upper_bound(j))
+			{
+				Q_j = Q.get_Q(j,l);
+				if(uj)
+					for(k=0;k<l;k++)
+						G_bar[k] -= C_j * Q_j[k];
+				else
+					for(k=0;k<l;k++)
+						G_bar[k] += C_j * Q_j[k];
+			}
+		}
+	}
+
+	if(iter >= max_iter)
+	{
+		if(active_size < l)
+		{
+			// reconstruct the whole gradient to calculate objective value
+			reconstruct_gradient();
+			active_size = l;
+			info("*");
+		}
+		info("\nWARNING: reaching max number of iterations");
+	}
+
+	// calculate rho
+
+	si->rho = calculate_rho();
+
+	// calculate objective value
+	{
+		double v = 0;
+		int i;
+		for(i=0;i<l;i++)
+			v += alpha[i] * (G[i] + p[i]);
+
+		si->obj = v/2;
+	}
+
+	// put back the solution
+	{
+		for(int i=0;i<l;i++)
+			alpha_[active_set[i]] = alpha[i];
+	}
+
+	// juggle everything back
+	/*{
+		for(int i=0;i<l;i++)
+			while(active_set[i] != i)
+				swap_index(i,active_set[i]);
+				// or Q.swap_index(i,active_set[i]);
+	}*/
+
+	si->upper_bound_p = Cp;
+	si->upper_bound_n = Cn;
+
+	info("\noptimization finished, #iter = %d\n",iter);
+
+	delete[] p;
+	delete[] y;
+	delete[] alpha;
+	delete[] alpha_status;
+	delete[] active_set;
+	delete[] G;
+	delete[] G_bar;
+}
+
+// return 1 if already optimal, return 0 otherwise
+int Solver::select_working_set(int &out_i, int &out_j)
+{
+	// return i,j such that
+	// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+	// j: minimizes the decrease of obj value
+	//    (if quadratic coefficeint <= 0, replace it with tau)
+	//    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+	
+	double Gmax = -INF;
+	double Gmax2 = -INF;
+	int Gmax_idx = -1;
+	int Gmin_idx = -1;
+	double obj_diff_min = INF;
+
+	for(int t=0;t<active_size;t++)
+		if(y[t]==+1)	
+		{
+			if(!is_upper_bound(t))
+				if(-G[t] >= Gmax)
+				{
+					Gmax = -G[t];
+					Gmax_idx = t;
+				}
+		}
+		else
+		{
+			if(!is_lower_bound(t))
+				if(G[t] >= Gmax)
+				{
+					Gmax = G[t];
+					Gmax_idx = t;
+				}
+		}
+
+	int i = Gmax_idx;
+	const Qfloat *Q_i = NULL;
+	if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
+		Q_i = Q->get_Q(i,active_size);
+
+	for(int j=0;j<active_size;j++)
+	{
+		if(y[j]==+1)
+		{
+			if (!is_lower_bound(j))
+			{
+				double grad_diff=Gmax+G[j];
+				if (G[j] >= Gmax2)
+					Gmax2 = G[j];
+				if (grad_diff > 0)
+				{
+					double obj_diff; 
+					double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
+					if (quad_coef > 0)
+						obj_diff = -(grad_diff*grad_diff)/quad_coef;
+					else
+						obj_diff = -(grad_diff*grad_diff)/TAU;
+
+					if (obj_diff <= obj_diff_min)
+					{
+						Gmin_idx=j;
+						obj_diff_min = obj_diff;
+					}
+				}
+			}
+		}
+		else
+		{
+			if (!is_upper_bound(j))
+			{
+				double grad_diff= Gmax-G[j];
+				if (-G[j] >= Gmax2)
+					Gmax2 = -G[j];
+				if (grad_diff > 0)
+				{
+					double obj_diff; 
+					double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
+					if (quad_coef > 0)
+						obj_diff = -(grad_diff*grad_diff)/quad_coef;
+					else
+						obj_diff = -(grad_diff*grad_diff)/TAU;
+
+					if (obj_diff <= obj_diff_min)
+					{
+						Gmin_idx=j;
+						obj_diff_min = obj_diff;
+					}
+				}
+			}
+		}
+	}
+
+	if(Gmax+Gmax2 < eps)
+		return 1;
+
+	out_i = Gmax_idx;
+	out_j = Gmin_idx;
+	return 0;
+}
+
+bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
+{
+	if(is_upper_bound(i))
+	{
+		if(y[i]==+1)
+			return(-G[i] > Gmax1);
+		else
+			return(-G[i] > Gmax2);
+	}
+	else if(is_lower_bound(i))
+	{
+		if(y[i]==+1)
+			return(G[i] > Gmax2);
+		else	
+			return(G[i] > Gmax1);
+	}
+	else
+		return(false);
+}
+
+void Solver::do_shrinking()
+{
+	int i;
+	double Gmax1 = -INF;		// max { -y_i * grad(f)_i | i in I_up(\alpha) }
+	double Gmax2 = -INF;		// max { y_i * grad(f)_i | i in I_low(\alpha) }
+
+	// find maximal violating pair first
+	for(i=0;i<active_size;i++)
+	{
+		if(y[i]==+1)	
+		{
+			if(!is_upper_bound(i))	
+			{
+				if(-G[i] >= Gmax1)
+					Gmax1 = -G[i];
+			}
+			if(!is_lower_bound(i))	
+			{
+				if(G[i] >= Gmax2)
+					Gmax2 = G[i];
+			}
+		}
+		else	
+		{
+			if(!is_upper_bound(i))	
+			{
+				if(-G[i] >= Gmax2)
+					Gmax2 = -G[i];
+			}
+			if(!is_lower_bound(i))	
+			{
+				if(G[i] >= Gmax1)
+					Gmax1 = G[i];
+			}
+		}
+	}
+
+	if(unshrink == false && Gmax1 + Gmax2 <= eps*10) 
+	{
+		unshrink = true;
+		reconstruct_gradient();
+		active_size = l;
+		info("*");
+	}
+
+	for(i=0;i<active_size;i++)
+		if (be_shrunk(i, Gmax1, Gmax2))
+		{
+			active_size--;
+			while (active_size > i)
+			{
+				if (!be_shrunk(active_size, Gmax1, Gmax2))
+				{
+					swap_index(i,active_size);
+					break;
+				}
+				active_size--;
+			}
+		}
+}
+
+double Solver::calculate_rho()
+{
+	double r;
+	int nr_free = 0;
+	double ub = INF, lb = -INF, sum_free = 0;
+	for(int i=0;i<active_size;i++)
+	{
+		double yG = y[i]*G[i];
+
+		if(is_upper_bound(i))
+		{
+			if(y[i]==-1)
+				ub = min(ub,yG);
+			else
+				lb = max(lb,yG);
+		}
+		else if(is_lower_bound(i))
+		{
+			if(y[i]==+1)
+				ub = min(ub,yG);
+			else
+				lb = max(lb,yG);
+		}
+		else
+		{
+			++nr_free;
+			sum_free += yG;
+		}
+	}
+
+	if(nr_free>0)
+		r = sum_free/nr_free;
+	else
+		r = (ub+lb)/2;
+
+	return r;
+}
+
+//
+// Solver for nu-svm classification and regression
+//
+// additional constraint: e^T \alpha = constant
+//
+class Solver_NU : public Solver
+{
+public:
+	Solver_NU() {}
+	void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
+		   double *alpha, double Cp, double Cn, double eps,
+		   SolutionInfo* si, int shrinking)
+	{
+		this->si = si;
+		Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
+	}
+private:
+	SolutionInfo *si;
+	int select_working_set(int &i, int &j);
+	double calculate_rho();
+	bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
+	void do_shrinking();
+};
+
+// return 1 if already optimal, return 0 otherwise
+int Solver_NU::select_working_set(int &out_i, int &out_j)
+{
+	// return i,j such that y_i = y_j and
+	// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+	// j: minimizes the decrease of obj value
+	//    (if quadratic coefficeint <= 0, replace it with tau)
+	//    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+
+	double Gmaxp = -INF;
+	double Gmaxp2 = -INF;
+	int Gmaxp_idx = -1;
+
+	double Gmaxn = -INF;
+	double Gmaxn2 = -INF;
+	int Gmaxn_idx = -1;
+
+	int Gmin_idx = -1;
+	double obj_diff_min = INF;
+
+	for(int t=0;t<active_size;t++)
+		if(y[t]==+1)
+		{
+			if(!is_upper_bound(t))
+				if(-G[t] >= Gmaxp)
+				{
+					Gmaxp = -G[t];
+					Gmaxp_idx = t;
+				}
+		}
+		else
+		{
+			if(!is_lower_bound(t))
+				if(G[t] >= Gmaxn)
+				{
+					Gmaxn = G[t];
+					Gmaxn_idx = t;
+				}
+		}
+
+	int ip = Gmaxp_idx;
+	int in = Gmaxn_idx;
+	const Qfloat *Q_ip = NULL;
+	const Qfloat *Q_in = NULL;
+	if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
+		Q_ip = Q->get_Q(ip,active_size);
+	if(in != -1)
+		Q_in = Q->get_Q(in,active_size);
+
+	for(int j=0;j<active_size;j++)
+	{
+		if(y[j]==+1)
+		{
+			if (!is_lower_bound(j))	
+			{
+				double grad_diff=Gmaxp+G[j];
+				if (G[j] >= Gmaxp2)
+					Gmaxp2 = G[j];
+				if (grad_diff > 0)
+				{
+					double obj_diff; 
+					double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
+					if (quad_coef > 0)
+						obj_diff = -(grad_diff*grad_diff)/quad_coef;
+					else
+						obj_diff = -(grad_diff*grad_diff)/TAU;
+
+					if (obj_diff <= obj_diff_min)
+					{
+						Gmin_idx=j;
+						obj_diff_min = obj_diff;
+					}
+				}
+			}
+		}
+		else
+		{
+			if (!is_upper_bound(j))
+			{
+				double grad_diff=Gmaxn-G[j];
+				if (-G[j] >= Gmaxn2)
+					Gmaxn2 = -G[j];
+				if (grad_diff > 0)
+				{
+					double obj_diff; 
+					double quad_coef = QD[in]+QD[j]-2*Q_in[j];
+					if (quad_coef > 0)
+						obj_diff = -(grad_diff*grad_diff)/quad_coef;
+					else
+						obj_diff = -(grad_diff*grad_diff)/TAU;
+
+					if (obj_diff <= obj_diff_min)
+					{
+						Gmin_idx=j;
+						obj_diff_min = obj_diff;
+					}
+				}
+			}
+		}
+	}
+
+	if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
+		return 1;
+
+	if (y[Gmin_idx] == +1)
+		out_i = Gmaxp_idx;
+	else
+		out_i = Gmaxn_idx;
+	out_j = Gmin_idx;
+
+	return 0;
+}
+
+bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
+{
+	if(is_upper_bound(i))
+	{
+		if(y[i]==+1)
+			return(-G[i] > Gmax1);
+		else	
+			return(-G[i] > Gmax4);
+	}
+	else if(is_lower_bound(i))
+	{
+		if(y[i]==+1)
+			return(G[i] > Gmax2);
+		else	
+			return(G[i] > Gmax3);
+	}
+	else
+		return(false);
+}
+
+void Solver_NU::do_shrinking()
+{
+	double Gmax1 = -INF;	// max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
+	double Gmax2 = -INF;	// max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
+	double Gmax3 = -INF;	// max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
+	double Gmax4 = -INF;	// max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
+
+	// find maximal violating pair first
+	int i;
+	for(i=0;i<active_size;i++)
+	{
+		if(!is_upper_bound(i))
+		{
+			if(y[i]==+1)
+			{
+				if(-G[i] > Gmax1) Gmax1 = -G[i];
+			}
+			else	if(-G[i] > Gmax4) Gmax4 = -G[i];
+		}
+		if(!is_lower_bound(i))
+		{
+			if(y[i]==+1)
+			{	
+				if(G[i] > Gmax2) Gmax2 = G[i];
+			}
+			else	if(G[i] > Gmax3) Gmax3 = G[i];
+		}
+	}
+
+	if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) 
+	{
+		unshrink = true;
+		reconstruct_gradient();
+		active_size = l;
+	}
+
+	for(i=0;i<active_size;i++)
+		if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
+		{
+			active_size--;
+			while (active_size > i)
+			{
+				if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
+				{
+					swap_index(i,active_size);
+					break;
+				}
+				active_size--;
+			}
+		}
+}
+
+double Solver_NU::calculate_rho()
+{
+	int nr_free1 = 0,nr_free2 = 0;
+	double ub1 = INF, ub2 = INF;
+	double lb1 = -INF, lb2 = -INF;
+	double sum_free1 = 0, sum_free2 = 0;
+
+	for(int i=0;i<active_size;i++)
+	{
+		if(y[i]==+1)
+		{
+			if(is_upper_bound(i))
+				lb1 = max(lb1,G[i]);
+			else if(is_lower_bound(i))
+				ub1 = min(ub1,G[i]);
+			else
+			{
+				++nr_free1;
+				sum_free1 += G[i];
+			}
+		}
+		else
+		{
+			if(is_upper_bound(i))
+				lb2 = max(lb2,G[i]);
+			else if(is_lower_bound(i))
+				ub2 = min(ub2,G[i]);
+			else
+			{
+				++nr_free2;
+				sum_free2 += G[i];
+			}
+		}
+	}
+
+	double r1,r2;
+	if(nr_free1 > 0)
+		r1 = sum_free1/nr_free1;
+	else
+		r1 = (ub1+lb1)/2;
+	
+	if(nr_free2 > 0)
+		r2 = sum_free2/nr_free2;
+	else
+		r2 = (ub2+lb2)/2;
+	
+	si->r = (r1+r2)/2;
+	return (r1-r2)/2;
+}
+
+//
+// Q matrices for various formulations
+//
+class SVC_Q: public Kernel
+{ 
+public:
+	SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
+	:Kernel(prob.l, prob.x, param)
+	{
+		clone(y,y_,prob.l);
+		cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+		QD = new double[prob.l];
+		for(int i=0;i<prob.l;i++)
+			QD[i] = (this->*kernel_function)(i,i);
+	}
+	
+	Qfloat *get_Q(int i, int len) const
+	{
+		Qfloat *data;
+		int start, j;
+		if((start = cache->get_data(i,&data,len)) < len)
+		{
+			for(j=start;j<len;j++)
+				data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
+		}
+		return data;
+	}
+
+	double *get_QD() const
+	{
+		return QD;
+	}
+
+	void swap_index(int i, int j) const
+	{
+		cache->swap_index(i,j);
+		Kernel::swap_index(i,j);
+		swap(y[i],y[j]);
+		swap(QD[i],QD[j]);
+	}
+
+	~SVC_Q()
+	{
+		delete[] y;
+		delete cache;
+		delete[] QD;
+	}
+private:
+	schar *y;
+	Cache *cache;
+	double *QD;
+};
+
+class ONE_CLASS_Q: public Kernel
+{
+public:
+	ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
+	:Kernel(prob.l, prob.x, param)
+	{
+		cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+		QD = new double[prob.l];
+		for(int i=0;i<prob.l;i++)
+			QD[i] = (this->*kernel_function)(i,i);
+	}
+	
+	Qfloat *get_Q(int i, int len) const
+	{
+		Qfloat *data;
+		int start, j;
+		if((start = cache->get_data(i,&data,len)) < len)
+		{
+			for(j=start;j<len;j++)
+				data[j] = (Qfloat)(this->*kernel_function)(i,j);
+		}
+		return data;
+	}
+
+	double *get_QD() const
+	{
+		return QD;
+	}
+
+	void swap_index(int i, int j) const
+	{
+		cache->swap_index(i,j);
+		Kernel::swap_index(i,j);
+		swap(QD[i],QD[j]);
+	}
+
+	~ONE_CLASS_Q()
+	{
+		delete cache;
+		delete[] QD;
+	}
+private:
+	Cache *cache;
+	double *QD;
+};
+
+class SVR_Q: public Kernel
+{ 
+public:
+	SVR_Q(const svm_problem& prob, const svm_parameter& param)
+	:Kernel(prob.l, prob.x, param)
+	{
+		l = prob.l;
+		cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
+		QD = new double[2*l];
+		sign = new schar[2*l];
+		index = new int[2*l];
+		for(int k=0;k<l;k++)
+		{
+			sign[k] = 1;
+			sign[k+l] = -1;
+			index[k] = k;
+			index[k+l] = k;
+			QD[k] = (this->*kernel_function)(k,k);
+			QD[k+l] = QD[k];
+		}
+		buffer[0] = new Qfloat[2*l];
+		buffer[1] = new Qfloat[2*l];
+		next_buffer = 0;
+	}
+
+	void swap_index(int i, int j) const
+	{
+		swap(sign[i],sign[j]);
+		swap(index[i],index[j]);
+		swap(QD[i],QD[j]);
+	}
+	
+	Qfloat *get_Q(int i, int len) const
+	{
+		Qfloat *data;
+		int j, real_i = index[i];
+		if(cache->get_data(real_i,&data,l) < l)
+		{
+			for(j=0;j<l;j++)
+				data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
+		}
+
+		// reorder and copy
+		Qfloat *buf = buffer[next_buffer];
+		next_buffer = 1 - next_buffer;
+		schar si = sign[i];
+		for(j=0;j<len;j++)
+			buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
+		return buf;
+	}
+
+	double *get_QD() const
+	{
+		return QD;
+	}
+
+	~SVR_Q()
+	{
+		delete cache;
+		delete[] sign;
+		delete[] index;
+		delete[] buffer[0];
+		delete[] buffer[1];
+		delete[] QD;
+	}
+private:
+	int l;
+	Cache *cache;
+	schar *sign;
+	int *index;
+	mutable int next_buffer;
+	Qfloat *buffer[2];
+	double *QD;
+};
+
+//
+// construct and solve various formulations
+//
+static void solve_c_svc(
+	const svm_problem *prob, const svm_parameter* param,
+	double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
+{
+	int l = prob->l;
+	double *minus_ones = new double[l];
+	schar *y = new schar[l];
+
+	int i;
+
+	for(i=0;i<l;i++)
+	{
+		alpha[i] = 0;
+		minus_ones[i] = -1;
+		if(prob->y[i] > 0) y[i] = +1; else y[i] = -1;
+	}
+
+	Solver s;
+	s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
+		alpha, Cp, Cn, param->eps, si, param->shrinking);
+
+	double sum_alpha=0;
+	for(i=0;i<l;i++)
+		sum_alpha += alpha[i];
+
+	if (Cp==Cn)
+		info("nu = %f\n", sum_alpha/(Cp*prob->l));
+
+	for(i=0;i<l;i++)
+		alpha[i] *= y[i];
+
+	delete[] minus_ones;
+	delete[] y;
+}
+
+static void solve_nu_svc(
+	const svm_problem *prob, const svm_parameter *param,
+	double *alpha, Solver::SolutionInfo* si)
+{
+	int i;
+	int l = prob->l;
+	double nu = param->nu;
+
+	schar *y = new schar[l];
+
+	for(i=0;i<l;i++)
+		if(prob->y[i]>0)
+			y[i] = +1;
+		else
+			y[i] = -1;
+
+	double sum_pos = nu*l/2;
+	double sum_neg = nu*l/2;
+
+	for(i=0;i<l;i++)
+		if(y[i] == +1)
+		{
+			alpha[i] = min(1.0,sum_pos);
+			sum_pos -= alpha[i];
+		}
+		else
+		{
+			alpha[i] = min(1.0,sum_neg);
+			sum_neg -= alpha[i];
+		}
+
+	double *zeros = new double[l];
+
+	for(i=0;i<l;i++)
+		zeros[i] = 0;
+
+	Solver_NU s;
+	s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
+		alpha, 1.0, 1.0, param->eps, si,  param->shrinking);
+	double r = si->r;
+
+	info("C = %f\n",1/r);
+
+	for(i=0;i<l;i++)
+		alpha[i] *= y[i]/r;
+
+	si->rho /= r;
+	si->obj /= (r*r);
+	si->upper_bound_p = 1/r;
+	si->upper_bound_n = 1/r;
+
+	delete[] y;
+	delete[] zeros;
+}
+
+static void solve_one_class(
+	const svm_problem *prob, const svm_parameter *param,
+	double *alpha, Solver::SolutionInfo* si)
+{
+	int l = prob->l;
+	double *zeros = new double[l];
+	schar *ones = new schar[l];
+	int i;
+
+	int n = (int)(param->nu*prob->l);	// # of alpha's at upper bound
+
+	for(i=0;i<n;i++)
+		alpha[i] = 1;
+	if(n<prob->l)
+		alpha[n] = param->nu * prob->l - n;
+	for(i=n+1;i<l;i++)
+		alpha[i] = 0;
+
+	for(i=0;i<l;i++)
+	{
+		zeros[i] = 0;
+		ones[i] = 1;
+	}
+
+	Solver s;
+	s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
+		alpha, 1.0, 1.0, param->eps, si, param->shrinking);
+
+	delete[] zeros;
+	delete[] ones;
+}
+
+static void solve_epsilon_svr(
+	const svm_problem *prob, const svm_parameter *param,
+	double *alpha, Solver::SolutionInfo* si)
+{
+	int l = prob->l;
+	double *alpha2 = new double[2*l];
+	double *linear_term = new double[2*l];
+	schar *y = new schar[2*l];
+	int i;
+
+	for(i=0;i<l;i++)
+	{
+		alpha2[i] = 0;
+		linear_term[i] = param->p - prob->y[i];
+		y[i] = 1;
+
+		alpha2[i+l] = 0;
+		linear_term[i+l] = param->p + prob->y[i];
+		y[i+l] = -1;
+	}
+
+	Solver s;
+	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+		alpha2, param->C, param->C, param->eps, si, param->shrinking);
+
+	double sum_alpha = 0;
+	for(i=0;i<l;i++)
+	{
+		alpha[i] = alpha2[i] - alpha2[i+l];
+		sum_alpha += fabs(alpha[i]);
+	}
+	info("nu = %f\n",sum_alpha/(param->C*l));
+
+	delete[] alpha2;
+	delete[] linear_term;
+	delete[] y;
+}
+
+static void solve_nu_svr(
+	const svm_problem *prob, const svm_parameter *param,
+	double *alpha, Solver::SolutionInfo* si)
+{
+	int l = prob->l;
+	double C = param->C;
+	double *alpha2 = new double[2*l];
+	double *linear_term = new double[2*l];
+	schar *y = new schar[2*l];
+	int i;
+
+	double sum = C * param->nu * l / 2;
+	for(i=0;i<l;i++)
+	{
+		alpha2[i] = alpha2[i+l] = min(sum,C);
+		sum -= alpha2[i];
+
+		linear_term[i] = - prob->y[i];
+		y[i] = 1;
+
+		linear_term[i+l] = prob->y[i];
+		y[i+l] = -1;
+	}
+
+	Solver_NU s;
+	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+		alpha2, C, C, param->eps, si, param->shrinking);
+
+	info("epsilon = %f\n",-si->r);
+
+	for(i=0;i<l;i++)
+		alpha[i] = alpha2[i] - alpha2[i+l];
+
+	delete[] alpha2;
+	delete[] linear_term;
+	delete[] y;
+}
+
+//
+// decision_function
+//
+struct decision_function
+{
+	double *alpha;
+	double rho;	
+};
+
+static decision_function svm_train_one(
+	const svm_problem *prob, const svm_parameter *param,
+	double Cp, double Cn)
+{
+	double *alpha = Malloc(double,prob->l);
+	Solver::SolutionInfo si;
+	switch(param->svm_type)
+	{
+		case C_SVC:
+			solve_c_svc(prob,param,alpha,&si,Cp,Cn);
+			break;
+		case NU_SVC:
+			solve_nu_svc(prob,param,alpha,&si);
+			break;
+		case ONE_CLASS:
+			solve_one_class(prob,param,alpha,&si);
+			break;
+		case EPSILON_SVR:
+			solve_epsilon_svr(prob,param,alpha,&si);
+			break;
+		case NU_SVR:
+			solve_nu_svr(prob,param,alpha,&si);
+			break;
+	}
+
+	info("obj = %f, rho = %f\n",si.obj,si.rho);
+
+	// output SVs
+
+	int nSV = 0;
+	int nBSV = 0;
+	for(int i=0;i<prob->l;i++)
+	{
+		if(fabs(alpha[i]) > 0)
+		{
+			++nSV;
+			if(prob->y[i] > 0)
+			{
+				if(fabs(alpha[i]) >= si.upper_bound_p)
+					++nBSV;
+			}
+			else
+			{
+				if(fabs(alpha[i]) >= si.upper_bound_n)
+					++nBSV;
+			}
+		}
+	}
+
+	info("nSV = %d, nBSV = %d\n",nSV,nBSV);
+
+	decision_function f;
+	f.alpha = alpha;
+	f.rho = si.rho;
+	return f;
+}
+
+// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
+static void sigmoid_train(
+	int l, const double *dec_values, const double *labels, 
+	double& A, double& B)
+{
+	double prior1=0, prior0 = 0;
+	int i;
+
+	for (i=0;i<l;i++)
+		if (labels[i] > 0) prior1+=1;
+		else prior0+=1;
+	
+	int max_iter=100;	// Maximal number of iterations
+	double min_step=1e-10;	// Minimal step taken in line search
+	double sigma=1e-12;	// For numerically strict PD of Hessian
+	double eps=1e-5;
+	double hiTarget=(prior1+1.0)/(prior1+2.0);
+	double loTarget=1/(prior0+2.0);
+	double *t=Malloc(double,l);
+	double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
+	double newA,newB,newf,d1,d2;
+	int iter; 
+	
+	// Initial Point and Initial Fun Value
+	A=0.0; B=log((prior0+1.0)/(prior1+1.0));
+	double fval = 0.0;
+
+	for (i=0;i<l;i++)
+	{
+		if (labels[i]>0) t[i]=hiTarget;
+		else t[i]=loTarget;
+		fApB = dec_values[i]*A+B;
+		if (fApB>=0)
+			fval += t[i]*fApB + log(1+exp(-fApB));
+		else
+			fval += (t[i] - 1)*fApB +log(1+exp(fApB));
+	}
+	for (iter=0;iter<max_iter;iter++)
+	{
+		// Update Gradient and Hessian (use H' = H + sigma I)
+		h11=sigma; // numerically ensures strict PD
+		h22=sigma;
+		h21=0.0;g1=0.0;g2=0.0;
+		for (i=0;i<l;i++)
+		{
+			fApB = dec_values[i]*A+B;
+			if (fApB >= 0)
+			{
+				p=exp(-fApB)/(1.0+exp(-fApB));
+				q=1.0/(1.0+exp(-fApB));
+			}
+			else
+			{
+				p=1.0/(1.0+exp(fApB));
+				q=exp(fApB)/(1.0+exp(fApB));
+			}
+			d2=p*q;
+			h11+=dec_values[i]*dec_values[i]*d2;
+			h22+=d2;
+			h21+=dec_values[i]*d2;
+			d1=t[i]-p;
+			g1+=dec_values[i]*d1;
+			g2+=d1;
+		}
+
+		// Stopping Criteria
+		if (fabs(g1)<eps && fabs(g2)<eps)
+			break;
+
+		// Finding Newton direction: -inv(H') * g
+		det=h11*h22-h21*h21;
+		dA=-(h22*g1 - h21 * g2) / det;
+		dB=-(-h21*g1+ h11 * g2) / det;
+		gd=g1*dA+g2*dB;
+
+
+		stepsize = 1;		// Line Search
+		while (stepsize >= min_step)
+		{
+			newA = A + stepsize * dA;
+			newB = B + stepsize * dB;
+
+			// New function value
+			newf = 0.0;
+			for (i=0;i<l;i++)
+			{
+				fApB = dec_values[i]*newA+newB;
+				if (fApB >= 0)
+					newf += t[i]*fApB + log(1+exp(-fApB));
+				else
+					newf += (t[i] - 1)*fApB +log(1+exp(fApB));
+			}
+			// Check sufficient decrease
+			if (newf<fval+0.0001*stepsize*gd)
+			{
+				A=newA;B=newB;fval=newf;
+				break;
+			}
+			else
+				stepsize = stepsize / 2.0;
+		}
+
+		if (stepsize < min_step)
+		{
+			info("Line search fails in two-class probability estimates\n");
+			break;
+		}
+	}
+
+	if (iter>=max_iter)
+		info("Reaching maximal iterations in two-class probability estimates\n");
+	free(t);
+}
+
+static double sigmoid_predict(double decision_value, double A, double B)
+{
+	double fApB = decision_value*A+B;
+	// 1-p used later; avoid catastrophic cancellation
+	if (fApB >= 0)
+		return exp(-fApB)/(1.0+exp(-fApB));
+	else
+		return 1.0/(1+exp(fApB)) ;
+}
+
+// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
+static void multiclass_probability(int k, double **r, double *p)
+{
+	int t,j;
+	int iter = 0, max_iter=max(100,k);
+	double **Q=Malloc(double *,k);
+	double *Qp=Malloc(double,k);
+	double pQp, eps=0.005/k;
+	
+	for (t=0;t<k;t++)
+	{
+		p[t]=1.0/k;  // Valid if k = 1
+		Q[t]=Malloc(double,k);
+		Q[t][t]=0;
+		for (j=0;j<t;j++)
+		{
+			Q[t][t]+=r[j][t]*r[j][t];
+			Q[t][j]=Q[j][t];
+		}
+		for (j=t+1;j<k;j++)
+		{
+			Q[t][t]+=r[j][t]*r[j][t];
+			Q[t][j]=-r[j][t]*r[t][j];
+		}
+	}
+	for (iter=0;iter<max_iter;iter++)
+	{
+		// stopping condition, recalculate QP,pQP for numerical accuracy
+		pQp=0;
+		for (t=0;t<k;t++)
+		{
+			Qp[t]=0;
+			for (j=0;j<k;j++)
+				Qp[t]+=Q[t][j]*p[j];
+			pQp+=p[t]*Qp[t];
+		}
+		double max_error=0;
+		for (t=0;t<k;t++)
+		{
+			double error=fabs(Qp[t]-pQp);
+			if (error>max_error)
+				max_error=error;
+		}
+		if (max_error<eps) break;
+		
+		for (t=0;t<k;t++)
+		{
+			double diff=(-Qp[t]+pQp)/Q[t][t];
+			p[t]+=diff;
+			pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
+			for (j=0;j<k;j++)
+			{
+				Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
+				p[j]/=(1+diff);
+			}
+		}
+	}
+	if (iter>=max_iter)
+		info("Exceeds max_iter in multiclass_prob\n");
+	for(t=0;t<k;t++) free(Q[t]);
+	free(Q);
+	free(Qp);
+}
+
+// Cross-validation decision values for probability estimates
+static void svm_binary_svc_probability(
+	const svm_problem *prob, const svm_parameter *param,
+	double Cp, double Cn, double& probA, double& probB)
+{
+	int i;
+	int nr_fold = 5;
+	int *perm = Malloc(int,prob->l);
+	double *dec_values = Malloc(double,prob->l);
+
+	// random shuffle
+	for(i=0;i<prob->l;i++) perm[i]=i;
+	for(i=0;i<prob->l;i++)
+	{
+		int j = i+rand()%(prob->l-i);
+		swap(perm[i],perm[j]);
+	}
+	for(i=0;i<nr_fold;i++)
+	{
+		int begin = i*prob->l/nr_fold;
+		int end = (i+1)*prob->l/nr_fold;
+		int j,k;
+		struct svm_problem subprob;
+
+		subprob.l = prob->l-(end-begin);
+		subprob.x = Malloc(struct svm_node*,subprob.l);
+		subprob.y = Malloc(double,subprob.l);
+			
+		k=0;
+		for(j=0;j<begin;j++)
+		{
+			subprob.x[k] = prob->x[perm[j]];
+			subprob.y[k] = prob->y[perm[j]];
+			++k;
+		}
+		for(j=end;j<prob->l;j++)
+		{
+			subprob.x[k] = prob->x[perm[j]];
+			subprob.y[k] = prob->y[perm[j]];
+			++k;
+		}
+		int p_count=0,n_count=0;
+		for(j=0;j<k;j++)
+			if(subprob.y[j]>0)
+				p_count++;
+			else
+				n_count++;
+
+		if(p_count==0 && n_count==0)
+			for(j=begin;j<end;j++)
+				dec_values[perm[j]] = 0;
+		else if(p_count > 0 && n_count == 0)
+			for(j=begin;j<end;j++)
+				dec_values[perm[j]] = 1;
+		else if(p_count == 0 && n_count > 0)
+			for(j=begin;j<end;j++)
+				dec_values[perm[j]] = -1;
+		else
+		{
+			svm_parameter subparam = *param;
+			subparam.probability=0;
+			subparam.C=1.0;
+			subparam.nr_weight=2;
+			subparam.weight_label = Malloc(int,2);
+			subparam.weight = Malloc(double,2);
+			subparam.weight_label[0]=+1;
+			subparam.weight_label[1]=-1;
+			subparam.weight[0]=Cp;
+			subparam.weight[1]=Cn;
+			struct svm_model *submodel = svm_train(&subprob,&subparam);
+			for(j=begin;j<end;j++)
+			{
+				svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); 
+				// ensure +1 -1 order; reason not using CV subroutine
+				dec_values[perm[j]] *= submodel->label[0];
+			}		
+			svm_free_and_destroy_model(&submodel);
+			svm_destroy_param(&subparam);
+		}
+		free(subprob.x);
+		free(subprob.y);
+	}		
+	sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
+	free(dec_values);
+	free(perm);
+}
+
+// Return parameter of a Laplace distribution 
+static double svm_svr_probability(
+	const svm_problem *prob, const svm_parameter *param)
+{
+	int i;
+	int nr_fold = 5;
+	double *ymv = Malloc(double,prob->l);
+	double mae = 0;
+
+	svm_parameter newparam = *param;
+	newparam.probability = 0;
+	svm_cross_validation(prob,&newparam,nr_fold,ymv);
+	for(i=0;i<prob->l;i++)
+	{
+		ymv[i]=prob->y[i]-ymv[i];
+		mae += fabs(ymv[i]);
+	}		
+	mae /= prob->l;
+	double std=sqrt(2*mae*mae);
+	int count=0;
+	mae=0;
+	for(i=0;i<prob->l;i++)
+		if (fabs(ymv[i]) > 5*std) 
+			count=count+1;
+		else 
+			mae+=fabs(ymv[i]);
+	mae /= (prob->l-count);
+	info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
+	free(ymv);
+	return mae;
+}
+
+
+// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
+// perm, length l, must be allocated before calling this subroutine
+static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
+{
+	int l = prob->l;
+	int max_nr_class = 16;
+	int nr_class = 0;
+	int *label = Malloc(int,max_nr_class);
+	int *count = Malloc(int,max_nr_class);
+	int *data_label = Malloc(int,l);	
+	int i;
+
+	for(i=0;i<l;i++)
+	{
+		int this_label = (int)prob->y[i];
+		int j;
+		for(j=0;j<nr_class;j++)
+		{
+			if(this_label == label[j])
+			{
+				++count[j];
+				break;
+			}
+		}
+		data_label[i] = j;
+		if(j == nr_class)
+		{
+			if(nr_class == max_nr_class)
+			{
+				max_nr_class *= 2;
+				label = (int *)realloc(label,max_nr_class*sizeof(int));
+				count = (int *)realloc(count,max_nr_class*sizeof(int));
+			}
+			label[nr_class] = this_label;
+			count[nr_class] = 1;
+			++nr_class;
+		}
+	}
+
+	int *start = Malloc(int,nr_class);
+	start[0] = 0;
+	for(i=1;i<nr_class;i++)
+		start[i] = start[i-1]+count[i-1];
+	for(i=0;i<l;i++)
+	{
+		perm[start[data_label[i]]] = i;
+		++start[data_label[i]];
+	}
+	start[0] = 0;
+	for(i=1;i<nr_class;i++)
+		start[i] = start[i-1]+count[i-1];
+
+	*nr_class_ret = nr_class;
+	*label_ret = label;
+	*start_ret = start;
+	*count_ret = count;
+	free(data_label);
+}
+
+//
+// Interface functions
+//
+svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
+{
+	svm_model *model = Malloc(svm_model,1);
+	model->param = *param;
+	model->free_sv = 0;	// XXX
+
+	if(param->svm_type == ONE_CLASS ||
+	   param->svm_type == EPSILON_SVR ||
+	   param->svm_type == NU_SVR)
+	{
+		// regression or one-class-svm
+		model->nr_class = 2;
+		model->label = NULL;
+		model->nSV = NULL;
+		model->probA = NULL; model->probB = NULL;
+		model->sv_coef = Malloc(double *,1);
+
+		if(param->probability && 
+		   (param->svm_type == EPSILON_SVR ||
+		    param->svm_type == NU_SVR))
+		{
+			model->probA = Malloc(double,1);
+			model->probA[0] = svm_svr_probability(prob,param);
+		}
+
+		decision_function f = svm_train_one(prob,param,0,0);
+		model->rho = Malloc(double,1);
+		model->rho[0] = f.rho;
+
+		int nSV = 0;
+		int i;
+		for(i=0;i<prob->l;i++)
+			if(fabs(f.alpha[i]) > 0) ++nSV;
+		model->l = nSV;
+		model->SV = Malloc(svm_node *,nSV);
+		model->sv_coef[0] = Malloc(double,nSV);
+		int j = 0;
+		for(i=0;i<prob->l;i++)
+			if(fabs(f.alpha[i]) > 0)
+			{
+				model->SV[j] = prob->x[i];
+				model->sv_coef[0][j] = f.alpha[i];
+				++j;
+			}		
+
+		free(f.alpha);
+	}
+	else
+	{
+		// classification
+		int l = prob->l;
+		int nr_class;
+		int *label = NULL;
+		int *start = NULL;
+		int *count = NULL;
+		int *perm = Malloc(int,l);
+
+		// group training data of the same class
+		svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+		if(nr_class == 1) 
+			info("WARNING: training data in only one class. See README for details.\n");
+		
+		svm_node **x = Malloc(svm_node *,l);
+		int i;
+		for(i=0;i<l;i++)
+			x[i] = prob->x[perm[i]];
+
+		// calculate weighted C
+
+		double *weighted_C = Malloc(double, nr_class);
+		for(i=0;i<nr_class;i++)
+			weighted_C[i] = param->C;
+		for(i=0;i<param->nr_weight;i++)
+		{	
+			int j;
+			for(j=0;j<nr_class;j++)
+				if(param->weight_label[i] == label[j])
+					break;
+			if(j == nr_class)
+				fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
+			else
+				weighted_C[j] *= param->weight[i];
+		}
+
+		// train k*(k-1)/2 models
+		
+		bool *nonzero = Malloc(bool,l);
+		for(i=0;i<l;i++)
+			nonzero[i] = false;
+		decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
+
+		double *probA=NULL,*probB=NULL;
+		if (param->probability)
+		{
+			probA=Malloc(double,nr_class*(nr_class-1)/2);
+			probB=Malloc(double,nr_class*(nr_class-1)/2);
+		}
+
+		int p = 0;
+		for(i=0;i<nr_class;i++)
+			for(int j=i+1;j<nr_class;j++)
+			{
+				svm_problem sub_prob;
+				int si = start[i], sj = start[j];
+				int ci = count[i], cj = count[j];
+				sub_prob.l = ci+cj;
+				sub_prob.x = Malloc(svm_node *,sub_prob.l);
+				sub_prob.y = Malloc(double,sub_prob.l);
+				int k;
+				for(k=0;k<ci;k++)
+				{
+					sub_prob.x[k] = x[si+k];
+					sub_prob.y[k] = +1;
+				}
+				for(k=0;k<cj;k++)
+				{
+					sub_prob.x[ci+k] = x[sj+k];
+					sub_prob.y[ci+k] = -1;
+				}
+
+				if(param->probability)
+					svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
+
+				f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
+				for(k=0;k<ci;k++)
+					if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
+						nonzero[si+k] = true;
+				for(k=0;k<cj;k++)
+					if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
+						nonzero[sj+k] = true;
+				free(sub_prob.x);
+				free(sub_prob.y);
+				++p;
+			}
+
+		// build output
+
+		model->nr_class = nr_class;
+		
+		model->label = Malloc(int,nr_class);
+		for(i=0;i<nr_class;i++)
+			model->label[i] = label[i];
+		
+		model->rho = Malloc(double,nr_class*(nr_class-1)/2);
+		for(i=0;i<nr_class*(nr_class-1)/2;i++)
+			model->rho[i] = f[i].rho;
+
+		if(param->probability)
+		{
+			model->probA = Malloc(double,nr_class*(nr_class-1)/2);
+			model->probB = Malloc(double,nr_class*(nr_class-1)/2);
+			for(i=0;i<nr_class*(nr_class-1)/2;i++)
+			{
+				model->probA[i] = probA[i];
+				model->probB[i] = probB[i];
+			}
+		}
+		else
+		{
+			model->probA=NULL;
+			model->probB=NULL;
+		}
+
+		int total_sv = 0;
+		int *nz_count = Malloc(int,nr_class);
+		model->nSV = Malloc(int,nr_class);
+		for(i=0;i<nr_class;i++)
+		{
+			int nSV = 0;
+			for(int j=0;j<count[i];j++)
+				if(nonzero[start[i]+j])
+				{	
+					++nSV;
+					++total_sv;
+				}
+			model->nSV[i] = nSV;
+			nz_count[i] = nSV;
+		}
+		
+		info("Total nSV = %d\n",total_sv);
+
+		model->l = total_sv;
+		model->SV = Malloc(svm_node *,total_sv);
+		p = 0;
+		for(i=0;i<l;i++)
+			if(nonzero[i]) model->SV[p++] = x[i];
+
+		int *nz_start = Malloc(int,nr_class);
+		nz_start[0] = 0;
+		for(i=1;i<nr_class;i++)
+			nz_start[i] = nz_start[i-1]+nz_count[i-1];
+
+		model->sv_coef = Malloc(double *,nr_class-1);
+		for(i=0;i<nr_class-1;i++)
+			model->sv_coef[i] = Malloc(double,total_sv);
+
+		p = 0;
+		for(i=0;i<nr_class;i++)
+			for(int j=i+1;j<nr_class;j++)
+			{
+				// classifier (i,j): coefficients with
+				// i are in sv_coef[j-1][nz_start[i]...],
+				// j are in sv_coef[i][nz_start[j]...]
+
+				int si = start[i];
+				int sj = start[j];
+				int ci = count[i];
+				int cj = count[j];
+				
+				int q = nz_start[i];
+				int k;
+				for(k=0;k<ci;k++)
+					if(nonzero[si+k])
+						model->sv_coef[j-1][q++] = f[p].alpha[k];
+				q = nz_start[j];
+				for(k=0;k<cj;k++)
+					if(nonzero[sj+k])
+						model->sv_coef[i][q++] = f[p].alpha[ci+k];
+				++p;
+			}
+		
+		free(label);
+		free(probA);
+		free(probB);
+		free(count);
+		free(perm);
+		free(start);
+		free(x);
+		free(weighted_C);
+		free(nonzero);
+		for(i=0;i<nr_class*(nr_class-1)/2;i++)
+			free(f[i].alpha);
+		free(f);
+		free(nz_count);
+		free(nz_start);
+	}
+	return model;
+}
+
+// Stratified cross validation
+void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
+{
+	int i;
+	int *fold_start = Malloc(int,nr_fold+1);
+	int l = prob->l;
+	int *perm = Malloc(int,l);
+	int nr_class;
+
+	// stratified cv may not give leave-one-out rate
+	// Each class to l folds -> some folds may have zero elements
+	if((param->svm_type == C_SVC ||
+	    param->svm_type == NU_SVC) && nr_fold < l)
+	{
+		int *start = NULL;
+		int *label = NULL;
+		int *count = NULL;
+		svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+
+		// random shuffle and then data grouped by fold using the array perm
+		int *fold_count = Malloc(int,nr_fold);
+		int c;
+		int *index = Malloc(int,l);
+		for(i=0;i<l;i++)
+			index[i]=perm[i];
+		for (c=0; c<nr_class; c++) 
+			for(i=0;i<count[c];i++)
+			{
+				int j = i+rand()%(count[c]-i);
+				swap(index[start[c]+j],index[start[c]+i]);
+			}
+		for(i=0;i<nr_fold;i++)
+		{
+			fold_count[i] = 0;
+			for (c=0; c<nr_class;c++)
+				fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
+		}
+		fold_start[0]=0;
+		for (i=1;i<=nr_fold;i++)
+			fold_start[i] = fold_start[i-1]+fold_count[i-1];
+		for (c=0; c<nr_class;c++)
+			for(i=0;i<nr_fold;i++)
+			{
+				int begin = start[c]+i*count[c]/nr_fold;
+				int end = start[c]+(i+1)*count[c]/nr_fold;
+				for(int j=begin;j<end;j++)
+				{
+					perm[fold_start[i]] = index[j];
+					fold_start[i]++;
+				}
+			}
+		fold_start[0]=0;
+		for (i=1;i<=nr_fold;i++)
+			fold_start[i] = fold_start[i-1]+fold_count[i-1];
+		free(start);	
+		free(label);
+		free(count);	
+		free(index);
+		free(fold_count);
+	}
+	else
+	{
+		for(i=0;i<l;i++) perm[i]=i;
+		for(i=0;i<l;i++)
+		{
+			int j = i+rand()%(l-i);
+			swap(perm[i],perm[j]);
+		}
+		for(i=0;i<=nr_fold;i++)
+			fold_start[i]=i*l/nr_fold;
+	}
+
+	for(i=0;i<nr_fold;i++)
+	{
+		int begin = fold_start[i];
+		int end = fold_start[i+1];
+		int j,k;
+		struct svm_problem subprob;
+
+		subprob.l = l-(end-begin);
+		subprob.x = Malloc(struct svm_node*,subprob.l);
+		subprob.y = Malloc(double,subprob.l);
+			
+		k=0;
+		for(j=0;j<begin;j++)
+		{
+			subprob.x[k] = prob->x[perm[j]];
+			subprob.y[k] = prob->y[perm[j]];
+			++k;
+		}
+		for(j=end;j<l;j++)
+		{
+			subprob.x[k] = prob->x[perm[j]];
+			subprob.y[k] = prob->y[perm[j]];
+			++k;
+		}
+		struct svm_model *submodel = svm_train(&subprob,param);
+		if(param->probability && 
+		   (param->svm_type == C_SVC || param->svm_type == NU_SVC))
+		{
+			double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
+			for(j=begin;j<end;j++)
+				target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
+			free(prob_estimates);			
+		}
+		else
+			for(j=begin;j<end;j++)
+				target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
+		svm_free_and_destroy_model(&submodel);
+		free(subprob.x);
+		free(subprob.y);
+	}		
+	free(fold_start);
+	free(perm);	
+}
+
+
+int svm_get_svm_type(const svm_model *model)
+{
+	return model->param.svm_type;
+}
+
+int svm_get_nr_class(const svm_model *model)
+{
+	return model->nr_class;
+}
+
+void svm_get_labels(const svm_model *model, int* label)
+{
+	if (model->label != NULL)
+		for(int i=0;i<model->nr_class;i++)
+			label[i] = model->label[i];
+}
+
+double svm_get_svr_probability(const svm_model *model)
+{
+	if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+	    model->probA!=NULL)
+		return model->probA[0];
+	else
+	{
+		fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
+		return 0;
+	}
+}
+
+double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
+{
+	int i;
+	if(model->param.svm_type == ONE_CLASS ||
+	   model->param.svm_type == EPSILON_SVR ||
+	   model->param.svm_type == NU_SVR)
+	{
+		double *sv_coef = model->sv_coef[0];
+		double sum = 0;
+		for(i=0;i<model->l;i++)
+			sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
+		sum -= model->rho[0];
+		*dec_values = sum;
+
+		if(model->param.svm_type == ONE_CLASS)
+			return (sum>0)?1:-1;
+		else
+			return sum;
+	}
+	else
+	{
+		int nr_class = model->nr_class;
+		int l = model->l;
+		
+		double *kvalue = Malloc(double,l);
+		for(i=0;i<l;i++)
+			kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
+
+		int *start = Malloc(int,nr_class);
+		start[0] = 0;
+		for(i=1;i<nr_class;i++)
+			start[i] = start[i-1]+model->nSV[i-1];
+
+		int *vote = Malloc(int,nr_class);
+		for(i=0;i<nr_class;i++)
+			vote[i] = 0;
+
+		int p=0;
+		for(i=0;i<nr_class;i++)
+			for(int j=i+1;j<nr_class;j++)
+			{
+				double sum = 0;
+				int si = start[i];
+				int sj = start[j];
+				int ci = model->nSV[i];
+				int cj = model->nSV[j];
+				
+				int k;
+				double *coef1 = model->sv_coef[j-1];
+				double *coef2 = model->sv_coef[i];
+				for(k=0;k<ci;k++)
+					sum += coef1[si+k] * kvalue[si+k];
+				for(k=0;k<cj;k++)
+					sum += coef2[sj+k] * kvalue[sj+k];
+				sum -= model->rho[p];
+				dec_values[p] = sum;
+
+				if(dec_values[p] > 0)
+					++vote[i];
+				else
+					++vote[j];
+				p++;
+			}
+
+		int vote_max_idx = 0;
+		for(i=1;i<nr_class;i++)
+			if(vote[i] > vote[vote_max_idx])
+				vote_max_idx = i;
+
+		free(kvalue);
+		free(start);
+		free(vote);
+		return model->label[vote_max_idx];
+	}
+}
+
+double svm_predict(const svm_model *model, const svm_node *x)
+{
+	int nr_class = model->nr_class;
+	double *dec_values;
+	if(model->param.svm_type == ONE_CLASS ||
+	   model->param.svm_type == EPSILON_SVR ||
+	   model->param.svm_type == NU_SVR)
+		dec_values = Malloc(double, 1);
+	else 
+		dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+	double pred_result = svm_predict_values(model, x, dec_values);
+	free(dec_values);
+	return pred_result;
+}
+
+double svm_predict_probability(
+	const svm_model *model, const svm_node *x, double *prob_estimates)
+{
+	if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+	    model->probA!=NULL && model->probB!=NULL)
+	{
+		int i;
+		int nr_class = model->nr_class;
+		double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+		svm_predict_values(model, x, dec_values);
+
+		double min_prob=1e-7;
+		double **pairwise_prob=Malloc(double *,nr_class);
+		for(i=0;i<nr_class;i++)
+			pairwise_prob[i]=Malloc(double,nr_class);
+		int k=0;
+		for(i=0;i<nr_class;i++)
+			for(int j=i+1;j<nr_class;j++)
+			{
+				pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
+				pairwise_prob[j][i]=1-pairwise_prob[i][j];
+				k++;
+			}
+		multiclass_probability(nr_class,pairwise_prob,prob_estimates);
+
+		int prob_max_idx = 0;
+		for(i=1;i<nr_class;i++)
+			if(prob_estimates[i] > prob_estimates[prob_max_idx])
+				prob_max_idx = i;
+		for(i=0;i<nr_class;i++)
+			free(pairwise_prob[i]);
+		free(dec_values);
+		free(pairwise_prob);	     
+		return model->label[prob_max_idx];
+	}
+	else 
+		return svm_predict(model, x);
+}
+
+static const char *svm_type_table[] =
+{
+	"c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
+};
+
+static const char *kernel_type_table[]=
+{
+	"linear","polynomial","rbf","sigmoid","precomputed",NULL
+};
+
+int svm_save_model(const char *model_file_name, const svm_model *model)
+{
+	FILE *fp = fopen(model_file_name,"w");
+	if(fp==NULL) return -1;
+
+	const svm_parameter& param = model->param;
+
+	fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
+	fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
+
+	if(param.kernel_type == POLY)
+		fprintf(fp,"degree %d\n", param.degree);
+
+	if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
+		fprintf(fp,"gamma %g\n", param.gamma);
+
+	if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
+		fprintf(fp,"coef0 %g\n", param.coef0);
+
+	int nr_class = model->nr_class;
+	int l = model->l;
+	fprintf(fp, "nr_class %d\n", nr_class);
+	fprintf(fp, "total_sv %d\n",l);
+	
+	{
+		fprintf(fp, "rho");
+		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+			fprintf(fp," %g",model->rho[i]);
+		fprintf(fp, "\n");
+	}
+	
+	if(model->label)
+	{
+		fprintf(fp, "label");
+		for(int i=0;i<nr_class;i++)
+			fprintf(fp," %d",model->label[i]);
+		fprintf(fp, "\n");
+	}
+
+	if(model->probA) // regression has probA only
+	{
+		fprintf(fp, "probA");
+		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+			fprintf(fp," %g",model->probA[i]);
+		fprintf(fp, "\n");
+	}
+	if(model->probB)
+	{
+		fprintf(fp, "probB");
+		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+			fprintf(fp," %g",model->probB[i]);
+		fprintf(fp, "\n");
+	}
+
+	if(model->nSV)
+	{
+		fprintf(fp, "nr_sv");
+		for(int i=0;i<nr_class;i++)
+			fprintf(fp," %d",model->nSV[i]);
+		fprintf(fp, "\n");
+	}
+
+	fprintf(fp, "SV\n");
+	const double * const *sv_coef = model->sv_coef;
+	const svm_node * const *SV = model->SV;
+
+	for(int i=0;i<l;i++)
+	{
+		for(int j=0;j<nr_class-1;j++)
+			fprintf(fp, "%.16g ",sv_coef[j][i]);
+
+		const svm_node *p = SV[i];
+
+		if(param.kernel_type == PRECOMPUTED)
+			fprintf(fp,"0:%d ",(int)(p->value));
+		else
+			while(p->index != -1)
+			{
+				fprintf(fp,"%d:%.8g ",p->index,p->value);
+				p++;
+			}
+		fprintf(fp, "\n");
+	}
+	if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
+	else return 0;
+}
+
+static char *line = NULL;
+static int max_line_len;
+
+static char* readline(FILE *input)
+{
+	int len;
+
+	if(fgets(line,max_line_len,input) == NULL)
+		return NULL;
+
+	while(strrchr(line,'\n') == NULL)
+	{
+		max_line_len *= 2;
+		line = (char *) realloc(line,max_line_len);
+		len = (int) strlen(line);
+		if(fgets(line+len,max_line_len-len,input) == NULL)
+			break;
+	}
+	return line;
+}
+
+svm_model *svm_load_model(const char *model_file_name)
+{
+	FILE *fp = fopen(model_file_name,"rb");
+	if(fp==NULL) return NULL;
+	
+	// read parameters
+
+	svm_model *model = Malloc(svm_model,1);
+	svm_parameter& param = model->param;
+	model->rho = NULL;
+	model->probA = NULL;
+	model->probB = NULL;
+	model->label = NULL;
+	model->nSV = NULL;
+
+	char cmd[81];
+	while(1)
+	{
+		fscanf(fp,"%80s",cmd);
+
+		if(strcmp(cmd,"svm_type")==0)
+		{
+			fscanf(fp,"%80s",cmd);
+			int i;
+			for(i=0;svm_type_table[i];i++)
+			{
+				if(strcmp(svm_type_table[i],cmd)==0)
+				{
+					param.svm_type=i;
+					break;
+				}
+			}
+			if(svm_type_table[i] == NULL)
+			{
+				fprintf(stderr,"unknown svm type.\n");
+				free(model->rho);
+				free(model->label);
+				free(model->nSV);
+				free(model);
+				return NULL;
+			}
+		}
+		else if(strcmp(cmd,"kernel_type")==0)
+		{		
+			fscanf(fp,"%80s",cmd);
+			int i;
+			for(i=0;kernel_type_table[i];i++)
+			{
+				if(strcmp(kernel_type_table[i],cmd)==0)
+				{
+					param.kernel_type=i;
+					break;
+				}
+			}
+			if(kernel_type_table[i] == NULL)
+			{
+				fprintf(stderr,"unknown kernel function.\n");
+				free(model->rho);
+				free(model->label);
+				free(model->nSV);
+				free(model);
+				return NULL;
+			}
+		}
+		else if(strcmp(cmd,"degree")==0)
+			fscanf(fp,"%d",&param.degree);
+		else if(strcmp(cmd,"gamma")==0)
+			fscanf(fp,"%lf",&param.gamma);
+		else if(strcmp(cmd,"coef0")==0)
+			fscanf(fp,"%lf",&param.coef0);
+		else if(strcmp(cmd,"nr_class")==0)
+			fscanf(fp,"%d",&model->nr_class);
+		else if(strcmp(cmd,"total_sv")==0)
+			fscanf(fp,"%d",&model->l);
+		else if(strcmp(cmd,"rho")==0)
+		{
+			int n = model->nr_class * (model->nr_class-1)/2;
+			model->rho = Malloc(double,n);
+			for(int i=0;i<n;i++)
+				fscanf(fp,"%lf",&model->rho[i]);
+		}
+		else if(strcmp(cmd,"label")==0)
+		{
+			int n = model->nr_class;
+			model->label = Malloc(int,n);
+			for(int i=0;i<n;i++)
+				fscanf(fp,"%d",&model->label[i]);
+		}
+		else if(strcmp(cmd,"probA")==0)
+		{
+			int n = model->nr_class * (model->nr_class-1)/2;
+			model->probA = Malloc(double,n);
+			for(int i=0;i<n;i++)
+				fscanf(fp,"%lf",&model->probA[i]);
+		}
+		else if(strcmp(cmd,"probB")==0)
+		{
+			int n = model->nr_class * (model->nr_class-1)/2;
+			model->probB = Malloc(double,n);
+			for(int i=0;i<n;i++)
+				fscanf(fp,"%lf",&model->probB[i]);
+		}
+		else if(strcmp(cmd,"nr_sv")==0)
+		{
+			int n = model->nr_class;
+			model->nSV = Malloc(int,n);
+			for(int i=0;i<n;i++)
+				fscanf(fp,"%d",&model->nSV[i]);
+		}
+		else if(strcmp(cmd,"SV")==0)
+		{
+			while(1)
+			{
+				int c = getc(fp);
+				if(c==EOF || c=='\n') break;	
+			}
+			break;
+		}
+		else
+		{
+			fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
+			free(model->rho);
+			free(model->label);
+			free(model->nSV);
+			free(model);
+			return NULL;
+		}
+	}
+
+	// read sv_coef and SV
+
+	int elements = 0;
+	long pos = ftell(fp);
+
+	max_line_len = 1024;
+	line = Malloc(char,max_line_len);
+	char *p,*endptr,*idx,*val;
+
+	while(readline(fp)!=NULL)
+	{
+		p = strtok(line,":");
+		while(1)
+		{
+			p = strtok(NULL,":");
+			if(p == NULL)
+				break;
+			++elements;
+		}
+	}
+	elements += model->l;
+
+	fseek(fp,pos,SEEK_SET);
+
+	int m = model->nr_class - 1;
+	int l = model->l;
+	model->sv_coef = Malloc(double *,m);
+	int i;
+	for(i=0;i<m;i++)
+		model->sv_coef[i] = Malloc(double,l);
+	model->SV = Malloc(svm_node*,l);
+	svm_node *x_space = NULL;
+	if(l>0) x_space = Malloc(svm_node,elements);
+
+	int j=0;
+	for(i=0;i<l;i++)
+	{
+		readline(fp);
+		model->SV[i] = &x_space[j];
+
+		p = strtok(line, " \t");
+		model->sv_coef[0][i] = strtod(p,&endptr);
+		for(int k=1;k<m;k++)
+		{
+			p = strtok(NULL, " \t");
+			model->sv_coef[k][i] = strtod(p,&endptr);
+		}
+
+		while(1)
+		{
+			idx = strtok(NULL, ":");
+			val = strtok(NULL, " \t");
+
+			if(val == NULL)
+				break;
+			x_space[j].index = (int) strtol(idx,&endptr,10);
+			x_space[j].value = strtod(val,&endptr);
+
+			++j;
+		}
+		x_space[j++].index = -1;
+	}
+	free(line);
+
+	if (ferror(fp) != 0 || fclose(fp) != 0)
+		return NULL;
+
+	model->free_sv = 1;	// XXX
+	return model;
+}
+
+void svm_free_model_content(svm_model* model_ptr)
+{
+	if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL)
+		free((void *)(model_ptr->SV[0]));
+	if(model_ptr->sv_coef)
+	{
+		for(int i=0;i<model_ptr->nr_class-1;i++)
+			free(model_ptr->sv_coef[i]);
+	}
+
+	free(model_ptr->SV);
+	model_ptr->SV = NULL;
+
+	free(model_ptr->sv_coef);
+	model_ptr->sv_coef = NULL;
+
+	free(model_ptr->rho);
+	model_ptr->rho = NULL;
+
+	free(model_ptr->label);
+	model_ptr->label= NULL;
+
+	free(model_ptr->probA);
+	model_ptr->probA = NULL;
+
+	free(model_ptr->probB);
+	model_ptr->probB= NULL;
+
+	free(model_ptr->nSV);
+	model_ptr->nSV = NULL;
+}
+
+void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
+{
+	if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)
+	{
+		svm_free_model_content(*model_ptr_ptr);
+		free(*model_ptr_ptr);
+		*model_ptr_ptr = NULL;
+	}
+}
+
+void svm_destroy_param(svm_parameter* param)
+{
+	free(param->weight_label);
+	free(param->weight);
+}
+
+const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
+{
+	// svm_type
+
+	int svm_type = param->svm_type;
+	if(svm_type != C_SVC &&
+	   svm_type != NU_SVC &&
+	   svm_type != ONE_CLASS &&
+	   svm_type != EPSILON_SVR &&
+	   svm_type != NU_SVR)
+		return "unknown svm type";
+	
+	// kernel_type, degree
+	
+	int kernel_type = param->kernel_type;
+	if(kernel_type != LINEAR &&
+	   kernel_type != POLY &&
+	   kernel_type != RBF &&
+	   kernel_type != SIGMOID &&
+	   kernel_type != PRECOMPUTED)
+		return "unknown kernel type";
+
+	if(param->gamma < 0)
+		return "gamma < 0";
+
+	if(param->degree < 0)
+		return "degree of polynomial kernel < 0";
+
+	// cache_size,eps,C,nu,p,shrinking
+
+	if(param->cache_size <= 0)
+		return "cache_size <= 0";
+
+	if(param->eps <= 0)
+		return "eps <= 0";
+
+	if(svm_type == C_SVC ||
+	   svm_type == EPSILON_SVR ||
+	   svm_type == NU_SVR)
+		if(param->C <= 0)
+			return "C <= 0";
+
+	if(svm_type == NU_SVC ||
+	   svm_type == ONE_CLASS ||
+	   svm_type == NU_SVR)
+		if(param->nu <= 0 || param->nu > 1)
+			return "nu <= 0 or nu > 1";
+
+	if(svm_type == EPSILON_SVR)
+		if(param->p < 0)
+			return "p < 0";
+
+	if(param->shrinking != 0 &&
+	   param->shrinking != 1)
+		return "shrinking != 0 and shrinking != 1";
+
+	if(param->probability != 0 &&
+	   param->probability != 1)
+		return "probability != 0 and probability != 1";
+
+	if(param->probability == 1 &&
+	   svm_type == ONE_CLASS)
+		return "one-class SVM probability output not supported yet";
+
+
+	// check whether nu-svc is feasible
+	
+	if(svm_type == NU_SVC)
+	{
+		int l = prob->l;
+		int max_nr_class = 16;
+		int nr_class = 0;
+		int *label = Malloc(int,max_nr_class);
+		int *count = Malloc(int,max_nr_class);
+
+		int i;
+		for(i=0;i<l;i++)
+		{
+			int this_label = (int)prob->y[i];
+			int j;
+			for(j=0;j<nr_class;j++)
+				if(this_label == label[j])
+				{
+					++count[j];
+					break;
+				}
+			if(j == nr_class)
+			{
+				if(nr_class == max_nr_class)
+				{
+					max_nr_class *= 2;
+					label = (int *)realloc(label,max_nr_class*sizeof(int));
+					count = (int *)realloc(count,max_nr_class*sizeof(int));
+				}
+				label[nr_class] = this_label;
+				count[nr_class] = 1;
+				++nr_class;
+			}
+		}
+	
+		for(i=0;i<nr_class;i++)
+		{
+			int n1 = count[i];
+			for(int j=i+1;j<nr_class;j++)
+			{
+				int n2 = count[j];
+				if(param->nu*(n1+n2)/2 > min(n1,n2))
+				{
+					free(label);
+					free(count);
+					return "specified nu is infeasible";
+				}
+			}
+		}
+		free(label);
+		free(count);
+	}
+
+	return NULL;
+}
+
+int svm_check_probability_model(const svm_model *model)
+{
+	return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+		model->probA!=NULL && model->probB!=NULL) ||
+		((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+		 model->probA!=NULL);
+}
+
+void svm_set_print_string_function(void (*print_func)(const char *))
+{
+	if(print_func == NULL)
+		svm_print_string = &print_string_stdout;
+	else
+		svm_print_string = print_func;
+}
diff --git a/src/modules/imagery/imagery_svm/svm.h b/src/modules/imagery/imagery_svm/svm.h
new file mode 100755
index 0000000..dbc5e08
--- /dev/null
+++ b/src/modules/imagery/imagery_svm/svm.h
@@ -0,0 +1,101 @@
+#ifndef _LIBSVM_H
+#define _LIBSVM_H
+
+#define LIBSVM_VERSION 311
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+extern int libsvm_version;
+
+struct svm_node
+{
+	int index;
+	double value;
+};
+
+struct svm_problem
+{
+	int l;
+	double *y;
+	struct svm_node **x;
+};
+
+enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };	/* svm_type */
+enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
+
+struct svm_parameter
+{
+	int svm_type;
+	int kernel_type;
+	int degree;	/* for poly */
+	double gamma;	/* for poly/rbf/sigmoid */
+	double coef0;	/* for poly/sigmoid */
+
+	/* these are for training only */
+	double cache_size; /* in MB */
+	double eps;	/* stopping criteria */
+	double C;	/* for C_SVC, EPSILON_SVR and NU_SVR */
+	int nr_weight;		/* for C_SVC */
+	int *weight_label;	/* for C_SVC */
+	double* weight;		/* for C_SVC */
+	double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */
+	double p;	/* for EPSILON_SVR */
+	int shrinking;	/* use the shrinking heuristics */
+	int probability; /* do probability estimates */
+};
+
+//
+// svm_model
+// 
+struct svm_model
+{
+	struct svm_parameter param;	/* parameter */
+	int nr_class;		/* number of classes, = 2 in regression/one class svm */
+	int l;			/* total #SV */
+	struct svm_node **SV;		/* SVs (SV[l]) */
+	double **sv_coef;	/* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
+	double *rho;		/* constants in decision functions (rho[k*(k-1)/2]) */
+	double *probA;		/* pariwise probability information */
+	double *probB;
+
+	/* for classification only */
+
+	int *label;		/* label of each class (label[k]) */
+	int *nSV;		/* number of SVs for each class (nSV[k]) */
+				/* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
+	/* XXX */
+	int free_sv;		/* 1 if svm_model is created by svm_load_model*/
+				/* 0 if svm_model is created by svm_train */
+};
+
+struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
+void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
+
+int svm_save_model(const char *model_file_name, const struct svm_model *model);
+struct svm_model *svm_load_model(const char *model_file_name);
+
+int svm_get_svm_type(const struct svm_model *model);
+int svm_get_nr_class(const struct svm_model *model);
+void svm_get_labels(const struct svm_model *model, int *label);
+double svm_get_svr_probability(const struct svm_model *model);
+
+double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
+double svm_predict(const struct svm_model *model, const struct svm_node *x);
+double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
+
+void svm_free_model_content(struct svm_model *model_ptr);
+void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
+void svm_destroy_param(struct svm_parameter *param);
+
+const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
+int svm_check_probability_model(const struct svm_model *model);
+
+void svm_set_print_string_function(void (*print_func)(const char *));
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _LIBSVM_H */
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/cmplxpack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/cmplxpack.c
new file mode 100755
index 0000000..cea6e11
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/cmplxpack.c
@@ -0,0 +1,78 @@
+/**********************************************************
+ * Version $Id: cmplxpack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include "grib2.h"
+
+void cmplxpack(g2float *fld,g2int ndpts, g2int idrsnum,g2int *idrstmpl,
+               unsigned char *cpack, g2int *lcpack)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    cmplxpack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2004-08-27
+//
+// ABSTRACT: This subroutine packs up a data field using a complex
+//   packing algorithm as defined in the GRIB2 documention.  It
+//   supports GRIB2 complex packing templates with or without
+//   spatial differences (i.e. DRTs 5.2 and 5.3).
+//   It also fills in GRIB2 Data Representation Template 5.2 or 5.3 
+//   with the appropriate values.
+//
+// PROGRAM HISTORY LOG:
+// 2004-08-27  Gilbert
+//
+// USAGE:    cmplxpack(g2float *fld,g2int ndpts, g2int idrsnum,g2int *idrstmpl,
+//             unsigned char *cpack, g2int *lcpack)
+//   INPUT ARGUMENT LIST:
+//     fld[]    - Contains the data values to pack
+//     ndpts    - The number of data values in array fld[]
+//     idrsnum  - Data Representation Template number 5.N
+//                Must equal 2 or 3.
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.2 or 5.3
+//                [0] = Reference value - ignored on input
+//                [1] = Binary Scale Factor
+//                [2] = Decimal Scale Factor
+//                    .
+//                    .
+//                [6] = Missing value management
+//                [7] = Primary missing value
+//                [8] = Secondary missing value
+//                    .
+//                    .
+//               [16] = Order of Spatial Differencing  ( 1 or 2 )
+//                    .
+//                    .
+//
+//   OUTPUT ARGUMENT LIST: 
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.3
+//                [0] = Reference value - set by compack routine.
+//                [1] = Binary Scale Factor - unchanged from input
+//                [2] = Decimal Scale Factor - unchanged from input
+//                    .
+//                    .
+//     cpack    - The packed data field (character*1 array)
+//     lcpack   - length of packed field cpack[].
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+      
+
+      if ( idrstmpl[6] == 0 ) {       // No internal missing values
+         compack(fld,ndpts,idrsnum,idrstmpl,cpack,lcpack);
+      }
+      else if ( idrstmpl[6] == 1  ||  idrstmpl[6] == 2) {
+         misspack(fld,ndpts,idrsnum,idrstmpl,cpack,lcpack);
+      }
+      else {
+         printf("cmplxpack: Don:t recognize Missing value option.");
+         *lcpack=-1;
+      }
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/compack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/compack.c
new file mode 100755
index 0000000..841323a
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/compack.c
@@ -0,0 +1,419 @@
+/**********************************************************
+ * Version $Id: compack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdlib.h>
+#include <math.h>
+#include "grib2.h"
+
+
+void compack(g2float *fld,g2int ndpts,g2int idrsnum,g2int *idrstmpl,
+             unsigned char *cpack,g2int *lcpack)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    compack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2002-11-07
+//
+// ABSTRACT: This subroutine packs up a data field using a complex
+//   packing algorithm as defined in the GRIB2 documention.  It
+//   supports GRIB2 complex packing templates with or without
+//   spatial differences (i.e. DRTs 5.2 and 5.3).
+//   It also fills in GRIB2 Data Representation Template 5.2 or 5.3 
+//   with the appropriate values.
+//
+// PROGRAM HISTORY LOG:
+// 2002-11-07  Gilbert
+//
+// USAGE:    void compack(g2float *fld,g2int ndpts,g2int idrsnum,
+//                g2int *idrstmpl,unsigned char *cpack,g2int *lcpack)
+//
+//   INPUT ARGUMENTS:
+//     fld[]    - Contains the data values to pack
+//     ndpts    - The number of data values in array fld[]
+//     idrsnum  - Data Representation Template number 5.N
+//                Must equal 2 or 3.
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.2 or 5.3
+//                [0] = Reference value - ignored on input
+//                [1] = Binary Scale Factor
+//                [2] = Decimal Scale Factor
+//                    .
+//                    .
+//                [6] = Missing value management
+//                [7] = Primary missing value
+//                [8] = Secondary missing value
+//                    .
+//                    .
+//               [16] = Order of Spatial Differencing  ( 1 or 2 )
+//                    .
+//                    .
+//
+//   OUTPUT ARGUMENTS: 
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.3
+//                [0] = Reference value - set by compack routine.
+//                [1] = Binary Scale Factor - unchanged from input
+//                [2] = Decimal Scale Factor - unchanged from input
+//                    .
+//                    .
+//     cpack    - The packed data field
+//     lcpack   - length of packed field cpack.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:
+//
+//$$$
+{
+
+      static g2int zero=0;
+      g2int  *ifld,*gref,*glen,*gwidth;
+      g2int  *jmin, *jmax, *lbit;
+      g2int  i,j,n,nbits,imin,imax,left;
+      g2int  isd,itemp,ilmax,ngwidthref=0,nbitsgwidth=0;
+      g2int  nglenref=0,nglenlast=0,iofst,ival1,ival2;
+      g2int  minsd,nbitsd=0,maxorig,nbitorig,ngroups;
+      g2int  lg,ng,igmax,iwmax,nbitsgref;
+      g2int  glength,grpwidth,nbitsglen=0;
+      g2int  kfildo, minpk, inc, maxgrps, ibit, jbit, kbit, novref, lbitref;
+      g2int  missopt, miss1, miss2, ier;
+      g2float  bscale,dscale,rmax,rmin,temp;
+      static g2int simple_alg = 0;
+      static g2float alog2=0.69314718;       //  ln(2.0)
+      static g2int one=1;
+
+      bscale=int_power(2.0,-idrstmpl[1]);
+      dscale=int_power(10.0,idrstmpl[2]);
+//
+//  Find max and min values in the data
+//
+      rmax=fld[0];
+      rmin=fld[0];
+      for (j=1;j<ndpts;j++) {
+        if (fld[j] > rmax) rmax=fld[j];
+        if (fld[j] < rmin) rmin=fld[j];
+      }
+
+//
+//  If max and min values are not equal, pack up field.
+//  If they are equal, we have a constant field, and the reference
+//  value (rmin) is the value for each point in the field and
+//  set nbits to 0.
+//
+      if (rmin != rmax) {
+        iofst=0;
+        ifld=calloc(ndpts,sizeof(g2int));
+        gref=calloc(ndpts,sizeof(g2int));
+        gwidth=calloc(ndpts,sizeof(g2int));
+        glen=calloc(ndpts,sizeof(g2int));
+        //
+        //  Scale original data
+        //
+        if (idrstmpl[1] == 0) {        //  No binary scaling
+           imin=(g2int)rint(rmin*dscale);
+           //imax=(g2int)rint(rmax*dscale);
+           rmin=(g2float)imin;
+           for (j=0;j<ndpts;j++) 
+              ifld[j]=(g2int)rint(fld[j]*dscale)-imin;
+        }
+        else {                             //  Use binary scaling factor
+           rmin=rmin*dscale;
+           //rmax=rmax*dscale;
+           for (j=0;j<ndpts;j++) 
+             ifld[j]=(g2int)rint(((fld[j]*dscale)-rmin)*bscale);
+        }
+        //
+        //  Calculate Spatial differences, if using DRS Template 5.3
+        //
+        if (idrsnum == 3) {        // spatial differences
+           if (idrstmpl[16]!=1 && idrstmpl[16]!=2) idrstmpl[16]=1;
+           if (idrstmpl[16] == 1) {      // first order
+              ival1=ifld[0];
+              for (j=ndpts-1;j>0;j--) 
+                 ifld[j]=ifld[j]-ifld[j-1];
+              ifld[0]=0;
+           }
+           else if (idrstmpl[16] == 2) {      // second order
+              ival1=ifld[0];
+              ival2=ifld[1];
+              for (j=ndpts-1;j>1;j--) 
+                 ifld[j]=ifld[j]-(2*ifld[j-1])+ifld[j-2];
+              ifld[0]=0;
+              ifld[1]=0;
+           }
+           //
+           //  subtract min value from spatial diff field
+           //
+           isd=idrstmpl[16];
+           minsd=ifld[isd];
+           for (j=isd;j<ndpts;j++)  if ( ifld[j] < minsd ) minsd=ifld[j];
+           for (j=isd;j<ndpts;j++)  ifld[j]=ifld[j]-minsd;
+           //
+           //   find num of bits need to store minsd and add 1 extra bit
+           //   to indicate sign
+           //
+           temp=log((double)(abs(minsd)+1))/alog2;
+           nbitsd=(g2int)ceil(temp)+1;
+           //
+           //   find num of bits need to store ifld[0] ( and ifld[1]
+           //   if using 2nd order differencing )
+           //
+           maxorig=ival1;
+           if (idrstmpl[16]==2 && ival2>ival1) maxorig=ival2;
+           temp=log((double)(maxorig+1))/alog2;
+           nbitorig=(g2int)ceil(temp)+1;
+           if (nbitorig > nbitsd) nbitsd=nbitorig;
+           //   increase number of bits to even multiple of 8 ( octet )
+           if ( (nbitsd%8) != 0) nbitsd=nbitsd+(8-(nbitsd%8));
+           //
+           //  Store extra spatial differencing info into the packed
+           //  data section.
+           //
+           if (nbitsd != 0) {
+              //   pack first original value
+              if (ival1 >= 0) {
+                 sbit(cpack,&ival1,iofst,nbitsd);
+                 iofst=iofst+nbitsd;
+              }
+              else {
+                 sbit(cpack,&one,iofst,1);
+                 iofst=iofst+1;
+                 itemp=abs(ival1);
+                 sbit(cpack,&itemp,iofst,nbitsd-1);
+                 iofst=iofst+nbitsd-1;
+              }
+              if (idrstmpl[16] == 2) {
+               //  pack second original value
+                 if (ival2 >= 0) {
+                    sbit(cpack,&ival2,iofst,nbitsd);
+                    iofst=iofst+nbitsd;
+                 }
+                 else {
+                    sbit(cpack,&one,iofst,1);
+                    iofst=iofst+1;
+                    itemp=abs(ival2);
+                    sbit(cpack,&itemp,iofst,nbitsd-1);
+                    iofst=iofst+nbitsd-1;
+                 }
+              }
+              //  pack overall min of spatial differences
+              if (minsd >= 0) {
+                 sbit(cpack,&minsd,iofst,nbitsd);
+                 iofst=iofst+nbitsd;
+              }
+              else {
+                 sbit(cpack,&one,iofst,1);
+                 iofst=iofst+1;
+                 itemp=abs(minsd);
+                 sbit(cpack,&itemp,iofst,nbitsd-1);
+                 iofst=iofst+nbitsd-1;
+              }
+           }
+           //printf("SDp %ld %ld %ld %ld\n",ival1,ival2,minsd,nbitsd);
+        }     //  end of spatial diff section
+        //
+        //   Determine Groups to be used.
+        //
+        if ( simple_alg == 1 ) {
+           //  set group length to 10;  calculate number of groups
+           //  and length of last group
+           ngroups=ndpts/10;
+           for (j=0;j<ngroups;j++) glen[j]=10;
+           itemp=ndpts%10;
+           if (itemp != 0) {
+              ngroups=ngroups+1;
+              glen[ngroups-1]=itemp;
+           }
+        }
+        else {
+           // Use Dr. Glahn's algorithm for determining grouping.
+           //
+           kfildo=6;
+           minpk=10;
+           inc=1;
+           maxgrps=(ndpts/minpk)+1;
+           jmin = calloc(maxgrps,sizeof(g2int));
+           jmax = calloc(maxgrps,sizeof(g2int));
+           lbit = calloc(maxgrps,sizeof(g2int));
+           missopt=0;
+           pack_gp(&kfildo,ifld,&ndpts,&missopt,&minpk,&inc,&miss1,&miss2,
+                        jmin,jmax,lbit,glen,&maxgrps,&ngroups,&ibit,&jbit,
+                        &kbit,&novref,&lbitref,&ier);
+           //print *,'SAGier = ',ier,ibit,jbit,kbit,novref,lbitref
+           for ( ng=0; ng<ngroups; ng++) glen[ng]=glen[ng]+novref;
+           free(jmin);
+           free(jmax);
+           free(lbit);
+        }
+        //  
+        //  For each group, find the group's reference value
+        //  and the number of bits needed to hold the remaining values
+        //
+        n=0;
+        for (ng=0;ng<ngroups;ng++) {
+           //    find max and min values of group
+           gref[ng]=ifld[n];
+           imax=ifld[n];
+           j=n+1;
+           for (lg=1;lg<glen[ng];lg++) {
+              if (ifld[j] < gref[ng]) gref[ng]=ifld[j]; 
+              if (ifld[j] > imax) imax=ifld[j];
+              j++;
+           }
+           //   calc num of bits needed to hold data
+           if ( gref[ng] != imax ) {
+              temp=log((double)(imax-gref[ng]+1))/alog2;
+              gwidth[ng]=(g2int)ceil(temp);
+           }
+           else 
+              gwidth[ng]=0;
+           //   Subtract min from data
+           j=n;
+           for (lg=0;lg<glen[ng];lg++) {
+              ifld[j]=ifld[j]-gref[ng];
+              j++;
+           }
+           //   increment fld array counter
+           n=n+glen[ng];
+        }
+        //  
+        //  Find max of the group references and calc num of bits needed 
+        //  to pack each groups reference value, then
+        //  pack up group reference values
+        //
+        igmax=gref[0];
+        for (j=1;j<ngroups;j++) if (gref[j] > igmax) igmax=gref[j];
+        if (igmax != 0) {
+           temp=log((double)(igmax+1))/alog2;
+           nbitsgref=(g2int)ceil(temp);
+           sbits(cpack,gref,iofst,nbitsgref,0,ngroups);
+           itemp=nbitsgref*ngroups;
+           iofst=iofst+itemp;
+           //         Pad last octet with Zeros, if necessary,
+           if ( (itemp%8) != 0) {
+              left=8-(itemp%8);
+              sbit(cpack,&zero,iofst,left);
+              iofst=iofst+left;
+           }
+        }
+        else
+           nbitsgref=0;
+        //
+        //  Find max/min of the group widths and calc num of bits needed
+        //  to pack each groups width value, then
+        //  pack up group width values
+        //
+        iwmax=gwidth[0];
+        ngwidthref=gwidth[0];
+        for (j=1;j<ngroups;j++) {
+           if (gwidth[j] > iwmax) iwmax=gwidth[j];
+           if (gwidth[j] < ngwidthref) ngwidthref=gwidth[j];
+        }
+        if (iwmax != ngwidthref) {
+           temp=log((double)(iwmax-ngwidthref+1))/alog2;
+           nbitsgwidth=(g2int)ceil(temp);
+           for (i=0;i<ngroups;i++) 
+              gwidth[i]=gwidth[i]-ngwidthref;
+           sbits(cpack,gwidth,iofst,nbitsgwidth,0,ngroups);
+           itemp=nbitsgwidth*ngroups;
+           iofst=iofst+itemp;
+           //         Pad last octet with Zeros, if necessary,
+           if ( (itemp%8) != 0) {
+              left=8-(itemp%8);
+              sbit(cpack,&zero,iofst,left);
+              iofst=iofst+left;
+           }
+        }
+        else {
+           nbitsgwidth=0;
+           for (i=0;i<ngroups;i++) gwidth[i]=0;
+        }
+        //
+        //  Find max/min of the group lengths and calc num of bits needed
+        //  to pack each groups length value, then
+        //  pack up group length values
+        //
+        //write(77,*)'GLENS: ',(glen(j),j=1,ngroups)
+        ilmax=glen[0];
+        nglenref=glen[0];
+        for (j=1;j<ngroups-1;j++) {
+           if (glen[j] > ilmax) ilmax=glen[j];
+           if (glen[j] < nglenref) nglenref=glen[j];
+        }
+        nglenlast=glen[ngroups-1];
+        if (ilmax != nglenref) {
+           temp=log((double)(ilmax-nglenref+1))/alog2;
+           nbitsglen=(g2int)ceil(temp);
+           for (i=0;i<ngroups-1;i++)  glen[i]=glen[i]-nglenref;
+           sbits(cpack,glen,iofst,nbitsglen,0,ngroups);
+           itemp=nbitsglen*ngroups;
+           iofst=iofst+itemp;
+           //         Pad last octet with Zeros, if necessary,
+           if ( (itemp%8) != 0) {
+              left=8-(itemp%8);
+              sbit(cpack,&zero,iofst,left);
+              iofst=iofst+left;
+           }
+        }
+        else {
+           nbitsglen=0;
+           for (i=0;i<ngroups;i++) glen[i]=0;
+        }
+        //
+        //  For each group, pack data values
+        //
+        n=0;
+        for (ng=0;ng<ngroups;ng++) {
+           glength=glen[ng]+nglenref;
+           if (ng == (ngroups-1) ) glength=nglenlast;
+           grpwidth=gwidth[ng]+ngwidthref;
+           if ( grpwidth != 0 ) {
+              sbits(cpack,ifld+n,iofst,grpwidth,0,glength);
+              iofst=iofst+(grpwidth*glength);
+           }
+           n=n+glength;
+        }
+        //         Pad last octet with Zeros, if necessary,
+        if ( (iofst%8) != 0) {
+           left=8-(iofst%8);
+           sbit(cpack,&zero,iofst,left);
+           iofst=iofst+left;
+        }
+        *lcpack=iofst/8;
+        //
+        if ( ifld!=0 ) free(ifld);
+        if ( gref!=0 ) free(gref);
+        if ( gwidth!=0 ) free(gwidth);
+        if ( glen!=0 ) free(glen);
+      }
+      else {          //   Constant field ( max = min )
+        nbits=0;
+        *lcpack=0;
+        nbitsgref=0;
+        ngroups=0;
+      }
+
+//
+//  Fill in ref value and number of bits in Template 5.2
+//
+      mkieee(&rmin,idrstmpl+0,1);   // ensure reference value is IEEE format
+      idrstmpl[3]=nbitsgref;
+      idrstmpl[4]=0;         // original data were reals
+      idrstmpl[5]=1;         // general group splitting
+      idrstmpl[6]=0;         // No internal missing values
+      idrstmpl[7]=0;         // Primary missing value
+      idrstmpl[8]=0;         // secondary missing value
+      idrstmpl[9]=ngroups;          // Number of groups
+      idrstmpl[10]=ngwidthref;       // reference for group widths
+      idrstmpl[11]=nbitsgwidth;      // num bits used for group widths
+      idrstmpl[12]=nglenref;         // Reference for group lengths
+      idrstmpl[13]=1;                // length increment for group lengths
+      idrstmpl[14]=nglenlast;        // True length of last group
+      idrstmpl[15]=nbitsglen;        // num bits used for group lengths
+      if (idrsnum == 3) {
+         idrstmpl[17]=nbitsd/8;      // num bits used for extra spatial
+                                     // differencing values
+      }
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/comunpack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/comunpack.c
new file mode 100755
index 0000000..27c76c6
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/comunpack.c
@@ -0,0 +1,333 @@
+/**********************************************************
+ * Version $Id: comunpack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+
+int comunpack(unsigned char *cpack,g2int lensec,g2int idrsnum,g2int *idrstmpl,g2int ndpts,g2float *fld)
+////$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    comunpack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2002-10-29
+//
+// ABSTRACT: This subroutine unpacks a data field that was packed using a
+//   complex packing algorithm as defined in the GRIB2 documention,
+//   using info from the GRIB2 Data Representation Template 5.2 or 5.3.
+//   Supports GRIB2 complex packing templates with or without
+//   spatial differences (i.e. DRTs 5.2 and 5.3).
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-29  Gilbert
+// 2004-12-16  Gilbert  -  Added test ( provided by Arthur Taylor/MDL )
+//                         to verify that group widths and lengths are
+//                         consistent with section length.
+//
+// USAGE:    int comunpack(unsigned char *cpack,g2int lensec,g2int idrsnum,
+//                         g2int *idrstmpl, g2int ndpts,g2float *fld)
+//   INPUT ARGUMENT LIST:
+//     cpack    - pointer to the packed data field.
+//     lensec   - length of section 7 (used for error checking).
+//     idrsnum  - Data Representation Template number 5.N
+//                Must equal 2 or 3.
+//     idrstmpl - pointer to the array of values for Data Representation
+//                Template 5.2 or 5.3
+//     ndpts    - The number of data values to unpack
+//
+//   OUTPUT ARGUMENT LIST:
+//     fld      - Contains the unpacked data values.  fld must be allocated
+//                with at least ndpts*sizeof(g2float) bytes before
+//                calling this routine.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE: 
+//
+//$$$//
+{
+
+      g2int   nbitsd=0,isign;
+      g2int  j,iofst,ival1,ival2,minsd,itemp,l,k,n,non=0;
+      g2int  *ifld,*ifldmiss=0;
+      g2int  *gref,*gwidth,*glen;
+      g2int  itype,ngroups,nbitsgref,nbitsgwidth,nbitsglen;
+      g2int  msng1,msng2;
+      g2float ref,bscale,dscale,rmiss1,rmiss2;
+      g2int totBit, totLen;
+
+      //printf('IDRSTMPL: ',(idrstmpl(j),j=1,16)
+      rdieee(idrstmpl+0,&ref,1);
+//      printf("SAGTref: %f\n",ref);
+      bscale = (g2float)int_power(2.0,idrstmpl[1]);
+      dscale = (g2float)int_power(10.0,-idrstmpl[2]);
+      nbitsgref = idrstmpl[3];
+      itype = idrstmpl[4];
+      ngroups = idrstmpl[9];
+      nbitsgwidth = idrstmpl[11];
+      nbitsglen = idrstmpl[15];
+      if (idrsnum == 3)
+         nbitsd=idrstmpl[17]*8;
+
+      //   Constant field
+
+      if (ngroups == 0) {
+         for (j=0;j<ndpts;j++) fld[j]=ref;
+         return(0);
+      }
+
+      iofst=0;
+      ifld=(g2int *)calloc(ndpts,sizeof(g2int));
+      //printf("ALLOC ifld: %d %x\n",(int)ndpts,ifld);
+      gref=(g2int *)calloc(ngroups,sizeof(g2int));
+      //printf("ALLOC gref: %d %x\n",(int)ngroups,gref);
+      gwidth=(g2int *)calloc(ngroups,sizeof(g2int));
+      //printf("ALLOC gwidth: %d %x\n",(int)ngroups,gwidth);
+//
+//  Get missing values, if supplied
+//
+      if ( idrstmpl[6] == 1 ) {
+         if (itype == 0) 
+            rdieee(idrstmpl+7,&rmiss1,1);
+         else 
+            rmiss1=(g2float)idrstmpl[7];
+      }
+      if ( idrstmpl[6] == 2 ) {
+         if (itype == 0) {
+            rdieee(idrstmpl+7,&rmiss1,1);
+            rdieee(idrstmpl+8,&rmiss2,1);
+         }
+         else {
+            rmiss1=(g2float)idrstmpl[7];
+            rmiss2=(g2float)idrstmpl[8];
+         }
+      }
+      
+      //printf("RMISSs: %f %f %f \n",rmiss1,rmiss2,ref);
+// 
+//  Extract Spatial differencing values, if using DRS Template 5.3
+//
+      if (idrsnum == 3) {
+         if (nbitsd != 0) {
+              gbit(cpack,&isign,iofst,1);
+              iofst=iofst+1;
+              gbit(cpack,&ival1,iofst,nbitsd-1);
+              iofst=iofst+nbitsd-1;
+              if (isign == 1) ival1=-ival1;
+              if (idrstmpl[16] == 2) {
+                 gbit(cpack,&isign,iofst,1);
+                 iofst=iofst+1;
+                 gbit(cpack,&ival2,iofst,nbitsd-1);
+                 iofst=iofst+nbitsd-1;
+                 if (isign == 1) ival2=-ival2;
+              }
+              gbit(cpack,&isign,iofst,1);
+              iofst=iofst+1;
+              gbit(cpack,&minsd,iofst,nbitsd-1);
+              iofst=iofst+nbitsd-1;
+              if (isign == 1) minsd=-minsd;
+         }
+         else {
+              ival1=0;
+              ival2=0;
+              minsd=0;
+         }
+       //printf("SDu %ld %ld %ld %ld \n",ival1,ival2,minsd,nbitsd);
+      }
+//
+//  Extract Each Group's reference value
+//
+      //printf("SAG1: %ld %ld %ld \n",nbitsgref,ngroups,iofst);
+      if (nbitsgref != 0) {
+         gbits(cpack,gref+0,iofst,nbitsgref,0,ngroups);
+         itemp=nbitsgref*ngroups;
+         iofst=iofst+itemp;
+         if (itemp%8 != 0) iofst=iofst+(8-(itemp%8));
+      }
+      else {
+         for (j=0;j<ngroups;j++)
+              gref[j]=0;
+      }
+//
+//  Extract Each Group's bit width
+//
+      //printf("SAG2: %ld %ld %ld %ld \n",nbitsgwidth,ngroups,iofst,idrstmpl[10]);
+      if (nbitsgwidth != 0) {
+         gbits(cpack,gwidth+0,iofst,nbitsgwidth,0,ngroups);
+         itemp=nbitsgwidth*ngroups;
+         iofst=iofst+itemp;
+         if (itemp%8 != 0) iofst=iofst+(8-(itemp%8));
+      }
+      else {
+         for (j=0;j<ngroups;j++)
+                gwidth[j]=0;
+      }
+
+      for (j=0;j<ngroups;j++)
+          gwidth[j]=gwidth[j]+idrstmpl[10];
+      
+//
+//  Extract Each Group's length (number of values in each group)
+//
+      glen=(g2int *)calloc(ngroups,sizeof(g2int));
+      //printf("ALLOC glen: %d %x\n",(int)ngroups,glen);
+      //printf("SAG3: %ld %ld %ld %ld %ld \n",nbitsglen,ngroups,iofst,idrstmpl[13],idrstmpl[12]);
+      if (nbitsglen != 0) {
+         gbits(cpack,glen,iofst,nbitsglen,0,ngroups);
+         itemp=nbitsglen*ngroups;
+         iofst=iofst+itemp;
+         if (itemp%8 != 0) iofst=iofst+(8-(itemp%8));
+      }
+      else {
+         for (j=0;j<ngroups;j++)
+              glen[j]=0;
+      }
+      for (j=0;j<ngroups;j++) 
+           glen[j]=(glen[j]*idrstmpl[13])+idrstmpl[12];
+      glen[ngroups-1]=idrstmpl[14];
+//
+//  Test to see if the group widths and lengths are consistent with number of
+//  values, and length of section 7.
+//
+      totBit = 0;
+      totLen = 0;
+      for (j=0;j<ngroups;j++) {
+        totBit += (gwidth[j]*glen[j]);
+        totLen += glen[j];
+      }
+      if (totLen != ndpts) {
+        return 1;
+      }
+      if (totBit / 8. > lensec) {
+        return 1;
+      }
+//
+//  For each group, unpack data values
+//
+      if ( idrstmpl[6] == 0 ) {        // no missing values
+         n=0;
+         for (j=0;j<ngroups;j++) {
+           if (gwidth[j] != 0) {
+             gbits(cpack,ifld+n,iofst,gwidth[j],0,glen[j]);
+             for (k=0;k<glen[j];k++) {
+               ifld[n]=ifld[n]+gref[j];
+               n=n+1;
+             }
+           }
+           else {
+             for (l=n;l<n+glen[j];l++) ifld[l]=gref[j];
+             n=n+glen[j];
+           }
+           iofst=iofst+(gwidth[j]*glen[j]);
+         }
+      }
+      else if ( idrstmpl[6]==1 || idrstmpl[6]==2 ) {
+         // missing values included
+         ifldmiss=(g2int *)malloc(ndpts*sizeof(g2int));
+         //printf("ALLOC ifldmiss: %d %x\n",(int)ndpts,ifldmiss);
+         //for (j=0;j<ndpts;j++) ifldmiss[j]=0;
+         n=0;
+         non=0;
+         for (j=0;j<ngroups;j++) {
+           //printf(" SAGNGP %d %d %d %d\n",j,gwidth[j],glen[j],gref[j]);
+           if (gwidth[j] != 0) {
+             msng1=(g2int)int_power(2.0,gwidth[j])-1;
+             msng2=msng1-1;
+             gbits(cpack,ifld+n,iofst,gwidth[j],0,glen[j]);
+             iofst=iofst+(gwidth[j]*glen[j]);
+             for (k=0;k<glen[j];k++) {
+               if (ifld[n] == msng1) {
+                  ifldmiss[n]=1;
+                  //ifld[n]=0;
+               }
+               else if (idrstmpl[6]==2 && ifld[n]==msng2) {
+                  ifldmiss[n]=2;
+                  //ifld[n]=0;
+               }
+               else {
+                  ifldmiss[n]=0;
+                  ifld[non++]=ifld[n]+gref[j];
+               }
+               n++;
+             }
+           }
+           else {
+             msng1=(g2int)int_power(2.0,nbitsgref)-1;
+             msng2=msng1-1;
+             if (gref[j] == msng1) {
+                for (l=n;l<n+glen[j];l++) ifldmiss[l]=1;
+             }
+             else if (idrstmpl[6]==2 && gref[j]==msng2) {
+                for (l=n;l<n+glen[j];l++) ifldmiss[l]=2;
+             }
+             else {
+                for (l=n;l<n+glen[j];l++) ifldmiss[l]=0;
+                for (l=non;l<non+glen[j];l++) ifld[l]=gref[j];
+                non += glen[j];
+             }
+             n=n+glen[j];
+           }
+         }
+      }
+
+      if ( gref != 0 ) free(gref);
+      if ( gwidth != 0 ) free(gwidth);
+      if ( glen != 0 ) free(glen);
+//
+//  If using spatial differences, add overall min value, and
+//  sum up recursively
+//
+      //printf("SAGod: %ld %ld\n",idrsnum,idrstmpl[16]);
+      if (idrsnum == 3) {         // spatial differencing
+         if (idrstmpl[16] == 1) {      // first order
+            ifld[0]=ival1;
+            if ( idrstmpl[6] == 0 ) itemp=ndpts;        // no missing values
+            else  itemp=non;
+            for (n=1;n<itemp;n++) {
+               ifld[n]=ifld[n]+minsd;
+               ifld[n]=ifld[n]+ifld[n-1];
+            }
+         }
+         else if (idrstmpl[16] == 2) {    // second order
+            ifld[0]=ival1;
+            ifld[1]=ival2;
+            if ( idrstmpl[6] == 0 ) itemp=ndpts;        // no missing values
+            else  itemp=non;
+            for (n=2;n<itemp;n++) {
+               ifld[n]=ifld[n]+minsd;
+               ifld[n]=ifld[n]+(2*ifld[n-1])-ifld[n-2];
+            }
+         }
+      }
+//
+//  Scale data back to original form
+//
+      //printf("SAGT: %f %f %f\n",ref,bscale,dscale);
+      if ( idrstmpl[6] == 0 ) {        // no missing values
+         for (n=0;n<ndpts;n++) {
+            fld[n]=(((g2float)ifld[n]*bscale)+ref)*dscale;
+         }
+      }
+      else if ( idrstmpl[6]==1 || idrstmpl[6]==2 ) {
+         // missing values included
+         non=0;
+         for (n=0;n<ndpts;n++) {
+            if ( ifldmiss[n] == 0 ) {
+               fld[n]=(((g2float)ifld[non++]*bscale)+ref)*dscale;
+               //printf(" SAG %d %f %d %f %f %f\n",n,fld[n],ifld[non-1],bscale,ref,dscale);
+            }
+            else if ( ifldmiss[n] == 1 ) 
+               fld[n]=rmiss1;
+            else if ( ifldmiss[n] == 2 ) 
+               fld[n]=rmiss2;
+         }
+         if ( ifldmiss != 0 ) free(ifldmiss);
+      }
+
+      if ( ifld != 0 ) free(ifld);
+
+      return(0);
+      
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/dec_jpeg2000.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/dec_jpeg2000.c
new file mode 100755
index 0000000..9d76962
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/dec_jpeg2000.c
@@ -0,0 +1,147 @@
+/**********************************************************
+ * Version $Id: dec_jpeg2000.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#ifndef USE_JPEG2000
+#include "grib2.h"
+ int dec_jpeg2000(char *injpc,g2int bufsize,g2int *outfld)
+ {	return( 0 );	}
+#else   /* USE_JPEG2000 */
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "grib2.h"
+#include "jasper/jasper.h"
+#define JAS_1_700_2
+
+
+   int dec_jpeg2000(char *injpc,g2int bufsize,g2int *outfld)
+/*$$$  SUBPROGRAM DOCUMENTATION BLOCK
+*                .      .    .                                       .
+* SUBPROGRAM:    dec_jpeg2000      Decodes JPEG2000 code stream
+*   PRGMMR: Gilbert          ORG: W/NP11     DATE: 2002-12-02
+*
+* ABSTRACT: This Function decodes a JPEG2000 code stream specified in the
+*   JPEG2000 Part-1 standard (i.e., ISO/IEC 15444-1) using JasPer 
+*   Software version 1.500.4 (or 1.700.2) written by the University of British
+*   Columbia and Image Power Inc, and others.
+*   JasPer is available at http://www.ece.uvic.ca/~mdadams/jasper/.
+*
+* PROGRAM HISTORY LOG:
+* 2002-12-02  Gilbert
+*
+* USAGE:     int dec_jpeg2000(char *injpc,g2int bufsize,g2int *outfld)
+*
+*   INPUT ARGUMENTS:
+*      injpc - Input JPEG2000 code stream.
+*    bufsize - Length (in bytes) of the input JPEG2000 code stream.
+*
+*   OUTPUT ARGUMENTS:
+*     outfld - Output matrix of grayscale image values.
+*
+*   RETURN VALUES :
+*          0 = Successful decode
+*         -3 = Error decode jpeg2000 code stream.
+*         -5 = decoded image had multiple color components.
+*              Only grayscale is expected.
+*
+* REMARKS:
+*
+*      Requires JasPer Software version 1.500.4 or 1.700.2
+*
+* ATTRIBUTES:
+*   LANGUAGE: C
+*   MACHINE:  IBM SP
+*
+*$$$*/
+
+{
+    int ier;
+    g2int i,j,k;
+    jas_image_t *image=0;
+    jas_stream_t *jpcstream;
+    jas_image_cmpt_t *pcmpt;
+    char *opts=0;
+    jas_matrix_t *data;
+
+//    jas_init();
+
+    ier=0;
+//   
+//     Create jas_stream_t containing input JPEG200 codestream in memory.
+//       
+
+    jpcstream=jas_stream_memopen(injpc,bufsize);
+
+//   
+//     Decode JPEG200 codestream into jas_image_t structure.
+//       
+    image=jpc_decode(jpcstream,opts);
+    if ( image == 0 ) {
+       printf(" jpc_decode return = %d \n",ier);
+       return -3;
+    }
+    
+    pcmpt=image->cmpts_[0];
+/*
+    printf(" SAGOUT DECODE:\n");
+    printf(" tlx %d \n",image->tlx_);
+    printf(" tly %d \n",image->tly_);
+    printf(" brx %d \n",image->brx_);
+    printf(" bry %d \n",image->bry_);
+    printf(" numcmpts %d \n",image->numcmpts_);
+    printf(" maxcmpts %d \n",image->maxcmpts_);
+#ifdef JAS_1_500_4
+    printf(" colormodel %d \n",image->colormodel_);
+#endif
+#ifdef JAS_1_700_2
+    printf(" colorspace %d \n",image->clrspc_);
+#endif
+    printf(" inmem %d \n",image->inmem_);
+    printf(" COMPONENT:\n");
+    printf(" tlx %d \n",pcmpt->tlx_);
+    printf(" tly %d \n",pcmpt->tly_);
+    printf(" hstep %d \n",pcmpt->hstep_);
+    printf(" vstep %d \n",pcmpt->vstep_);
+    printf(" width %d \n",pcmpt->width_);
+    printf(" height %d \n",pcmpt->height_);
+    printf(" prec %d \n",pcmpt->prec_);
+    printf(" sgnd %d \n",pcmpt->sgnd_);
+    printf(" cps %d \n",pcmpt->cps_);
+#ifdef JAS_1_700_2
+    printf(" type %d \n",pcmpt->type_);
+#endif
+*/
+
+//   Expecting jpeg2000 image to be grayscale only.
+//   No color components.
+//
+    if (image->numcmpts_ != 1 ) {
+       printf("dec_jpeg2000: Found color image.  Grayscale expected.\n");
+       return (-5);
+    }
+
+// 
+//    Create a data matrix of grayscale image values decoded from
+//    the jpeg2000 codestream.
+//
+    data=jas_matrix_create(jas_image_height(image), jas_image_width(image));
+    jas_image_readcmpt(image,0,0,0,jas_image_width(image),
+                       jas_image_height(image),data);
+//
+//    Copy data matrix to output integer array.
+//
+    k=0;
+    for (i=0;i<pcmpt->height_;i++) 
+      for (j=0;j<pcmpt->width_;j++) 
+        outfld[k++]=data->rows_[i][j];
+//
+//     Clean up JasPer work structures.
+//
+    jas_matrix_destroy(data);
+    ier=jas_stream_close(jpcstream);
+    jas_image_destroy(image);
+
+    return 0;
+
+}
+#endif   /* USE_JPEG2000 */
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/dec_png.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/dec_png.c
new file mode 100755
index 0000000..28161af
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/dec_png.c
@@ -0,0 +1,144 @@
+/**********************************************************
+ * Version $Id: dec_png.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#ifndef USE_PNG
+#include "grib2.h"
+ int dec_png(unsigned char *pngbuf,g2int *width,g2int *height,char *cout)
+ {	return( 0 );	}
+#else   /* USE_PNG */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <png.h>
+#include "grib2.h"
+
+
+struct png_stream {
+   unsigned char *stream_ptr;     /*  location to write PNG stream  */
+   g2int stream_len;               /*  number of bytes written       */
+};
+typedef struct png_stream png_stream;
+
+void user_read_data(png_structp , png_bytep , png_uint_32 );
+
+void user_read_data(png_structp png_ptr,png_bytep data, png_uint_32 length)
+/*
+        Custom read function used so that libpng will read a PNG stream
+        from memory instead of a file on disk.
+*/
+{
+     char *ptr;
+     g2int offset;
+     png_stream *mem;
+
+     mem=(png_stream *)png_get_io_ptr(png_ptr);
+     ptr=(void *)mem->stream_ptr;
+     offset=mem->stream_len;
+/*     printf("SAGrd %ld %ld %x\n",offset,length,ptr);  */
+     memcpy(data,ptr+offset,length);
+     mem->stream_len += length;
+}
+
+
+
+int dec_png(unsigned char *pngbuf,g2int *width,g2int *height,char *cout)
+{
+    int interlace,color,compres,filter,bit_depth;
+    g2int j,k,n,bytes,clen;
+    png_structp png_ptr;
+    png_infop info_ptr,end_info;
+    png_bytepp row_pointers;
+    png_stream read_io_ptr;
+
+/*  check if stream is a valid PNG format   */
+
+    if ( png_sig_cmp(pngbuf,0,8) != 0) 
+       return (-3);
+
+/* create and initialize png_structs  */
+
+    png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, (png_voidp)NULL, 
+                                      NULL, NULL);
+    if (!png_ptr)
+       return (-1);
+
+    info_ptr = png_create_info_struct(png_ptr);
+    if (!info_ptr)
+    {
+       png_destroy_read_struct(&png_ptr,(png_infopp)NULL,(png_infopp)NULL);
+       return (-2);
+    }
+
+    end_info = png_create_info_struct(png_ptr);
+    if (!end_info)
+    {
+       png_destroy_read_struct(&png_ptr,(png_infopp)info_ptr,(png_infopp)NULL);
+       return (-2);
+    }
+
+/*     Set Error callback   */
+
+    if (setjmp(png_jmpbuf(png_ptr)))
+    {
+       png_destroy_read_struct(&png_ptr, &info_ptr,&end_info);
+       return (-3);
+    }
+
+/*    Initialize info for reading PNG stream from memory   */
+
+    read_io_ptr.stream_ptr=(png_voidp)pngbuf;
+    read_io_ptr.stream_len=0;
+
+/*    Set new custom read function    */
+
+    png_set_read_fn(png_ptr,(voidp)&read_io_ptr,(png_rw_ptr)user_read_data);
+/*     png_init_io(png_ptr, fptr);   */
+
+/*     Read and decode PNG stream   */
+
+    png_read_png(png_ptr, info_ptr, PNG_TRANSFORM_IDENTITY, NULL);
+
+/*     Get pointer to each row of image data   */
+
+    row_pointers = png_get_rows(png_ptr, info_ptr);
+
+/*     Get image info, such as size, depth, colortype, etc...   */
+
+    /*printf("SAGT:png %d %d %d\n",info_ptr->width,info_ptr->height,info_ptr->bit_depth);*/
+    (void)png_get_IHDR(png_ptr, info_ptr, (png_uint_32 *)width, (png_uint_32 *)height,
+               &bit_depth, &color, &interlace, &compres, &filter);
+
+/*     Check if image was grayscale      */
+
+/*
+    if (color != PNG_COLOR_TYPE_GRAY ) {
+       fprintf(stderr,"dec_png: Grayscale image was expected. \n");
+    }
+*/
+    if ( color == PNG_COLOR_TYPE_RGB ) {
+       bit_depth=24;
+    }
+    else if ( color == PNG_COLOR_TYPE_RGB_ALPHA ) {
+       bit_depth=32;
+    }
+/*     Copy image data to output string   */
+
+    n=0;
+    bytes=bit_depth/8;
+    clen=(*width)*bytes;
+    for (j=0;j<*height;j++) {
+      for (k=0;k<clen;k++) {
+        cout[n]=*(row_pointers[j]+k);
+        n++;
+      }
+    }
+
+/*      Clean up   */
+
+    png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
+    return 0;
+
+}
+
+#endif   /* USE_PNG */
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/drstemplates.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/drstemplates.c
new file mode 100755
index 0000000..0797645
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/drstemplates.c
@@ -0,0 +1,157 @@
+/**********************************************************
+ * Version $Id: drstemplates.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdlib.h>
+#include "grib2.h"
+#include "drstemplates.h"
+
+g2int getdrsindex(g2int number)
+/*!$$$  SUBPROGRAM DOCUMENTATION BLOCK
+!                .      .    .                                       .
+! SUBPROGRAM:    getdrsindex 
+!   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2001-06-28
+!
+! ABSTRACT: This function returns the index of specified Data 
+!   Representation Template 5.NN (NN=number) in array templates.
+!
+! PROGRAM HISTORY LOG:
+! 2001-06-28  Gilbert
+!
+! USAGE:    index=getdrsindex(number)
+!   INPUT ARGUMENT LIST:
+!     number   - NN, indicating the number of the Data Representation 
+!                Template 5.NN that is being requested.
+!
+! RETURNS:  Index of DRT 5.NN in array templates, if template exists.
+!           = -1, otherwise.
+!
+! REMARKS: None
+!
+! ATTRIBUTES:
+!   LANGUAGE: C
+!   MACHINE:  IBM SP
+!
+!$$$*/
+{
+           g2int j,getdrsindex=-1;
+
+           for (j=0;j<MAXDRSTEMP;j++) {
+              if (number == templatesdrs[j].template_num) {
+                 getdrsindex=j;
+                 return(getdrsindex);
+              }
+           }
+
+           return(getdrsindex);
+}
+
+
+template *getdrstemplate(g2int number)
+/*!$$$  SUBPROGRAM DOCUMENTATION BLOCK
+!                .      .    .                                       .
+! SUBPROGRAM:    getdrstemplate 
+!   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2000-05-11
+!
+! ABSTRACT: This subroutine returns DRS template information for a 
+!   specified Data Representation Template 5.NN.
+!   The number of entries in the template is returned along with a map
+!   of the number of octets occupied by each entry.  Also, a flag is
+!   returned to indicate whether the template would need to be extended.
+!
+! PROGRAM HISTORY LOG:
+! 2000-05-11  Gilbert
+!
+! USAGE:    new=getdrstemplate(number);
+!   INPUT ARGUMENT LIST:
+!     number   - NN, indicating the number of the Data Representation 
+!                Template 5.NN that is being requested.
+!
+!   RETURN VALUE:      
+!        - Pointer to the returned template struct. 
+!          Returns NULL pointer, if template not found.
+!
+! REMARKS: None
+!
+! ATTRIBUTES:
+!   LANGUAGE: C
+!   MACHINE:  IBM SP
+!
+!$$$*/
+{
+           g2int index;
+           template *new;
+
+           index=getdrsindex(number);
+
+           if (index != -1) {
+              new=(template *)malloc(sizeof(template));
+              new->type=5;
+              new->num=templatesdrs[index].template_num;
+              new->maplen=templatesdrs[index].mapdrslen;
+              new->needext=templatesdrs[index].needext;
+              new->map=(g2int *)templatesdrs[index].mapdrs;
+              new->extlen=0;
+              new->ext=0;        //NULL
+              return(new);
+           }
+           else {
+             printf("getdrstemplate: DRS Template 5.%d not defined.\n",(int)number);
+             return(0);        //NULL
+           }
+
+         return(0);        //NULL
+}
+
+template *extdrstemplate(g2int number,g2int *list)
+/*!$$$  SUBPROGRAM DOCUMENTATION BLOCK
+!                .      .    .                                       .
+! SUBPROGRAM:    extdrstemplate 
+!   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2000-05-11
+!
+! ABSTRACT: This subroutine generates the remaining octet map for a
+!   given Data Representation Template, if required.  Some Templates can
+!   vary depending on data values given in an earlier part of the 
+!   Template, and it is necessary to know some of the earlier entry
+!   values to generate the full octet map of the Template.
+!
+! PROGRAM HISTORY LOG:
+! 2000-05-11  Gilbert
+!
+! USAGE:    new=extdrstemplate(number,list);
+!   INPUT ARGUMENT LIST:
+!     number   - NN, indicating the number of the Data Representation 
+!                Template 5.NN that is being requested.
+!     list()   - The list of values for each entry in the 
+!                the Data Representation Template 5.NN.
+!
+!   RETURN VALUE:      
+!        - Pointer to the returned template struct. 
+!          Returns NULL pointer, if template not found.
+!
+! ATTRIBUTES:
+!   LANGUAGE: C
+!   MACHINE:  IBM SP
+!
+!$$$*/
+{
+           template *new;
+           g2int index,i;
+
+           index=getdrsindex(number);
+           if (index == -1) return(0);
+
+           new=getdrstemplate(number);
+
+           if ( ! new->needext ) return(new);
+
+           if ( number == 1 ) {
+              new->extlen=list[10]+list[12];
+              new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+              for (i=0;i<new->extlen;i++) {
+                new->ext[i]=4;
+              }
+           }
+           return(new);
+
+}
+
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/drstemplates.h b/src/modules/io/io_grid_grib2/g2clib-1.0.4/drstemplates.h
new file mode 100755
index 0000000..759c52d
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/drstemplates.h
@@ -0,0 +1,72 @@
+/**********************************************************
+ * Version $Id: drstemplates.h 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#ifndef _drstemplates_H
+#define _drstemplates_H
+#include "grib2.h"
+
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-26
+//
+// ABSTRACT: This Fortran Module contains info on all the available 
+//   GRIB2 Data Representation Templates used in Section 5 (DRS).
+//   The information decribing each template is stored in the
+//   drstemplate structure defined below.
+//
+//   Each Template has three parts: The number of entries in the template
+//   (mapdrslen);  A map of the template (mapdrs), which contains the
+//   number of octets in which to pack each of the template values; and
+//   a logical value (needext) that indicates whether the Template needs 
+//   to be extended.  In some cases the number of entries in a template 
+//   can vary depending upon values specified in the "static" part of 
+//   the template.  ( See Template 5.1 as an example )
+//
+//   NOTE:  Array mapdrs contains the number of octets in which the 
+//   corresponding template values will be stored.  A negative value in
+//   mapdrs is used to indicate that the corresponding template entry can
+//   contain negative values.  This information is used later when packing
+//   (or unpacking) the template data values.  Negative data values in GRIB
+//   are stored with the left most bit set to one, and a negative number
+//   of octets value in mapdrs[] indicates that this possibility should
+//   be considered.  The number of octets used to store the data value
+//   in this case would be the absolute value of the negative value in 
+//   mapdrs[].
+//  
+//
+///////////////////////////////////////////////////////////////////////
+
+      #define MAXDRSTEMP 9              // maximum number of templates
+      #define MAXDRSMAPLEN 200          // maximum template map length
+
+      struct drstemplate
+      {
+          g2int template_num;
+          g2int mapdrslen;
+          g2int needext;
+          g2int mapdrs[MAXDRSMAPLEN];
+      };
+
+      const struct drstemplate templatesdrs[MAXDRSTEMP] = {
+             // 5.0: Grid point data - Simple Packing
+         { 0, 5, 0, {4,-2,-2,1,1} },
+             // 5.2: Grid point data - Complex Packing
+         { 2, 16, 0, {4,-2,-2,1,1,1,1,4,4,4,1,1,4,1,4,1} },
+             // 5.3: Grid point data - Complex Packing and spatial differencing
+         { 3, 18, 0, {4,-2,-2,1,1,1,1,4,4,4,1,1,4,1,4,1,1,1} },
+             // 5.50: Spectral Data - Simple Packing
+         { 50, 5, 0, {4,-2,-2,1,4} },
+             // 5.51: Spherical Harmonics data - Complex packing 
+         { 51, 10, 0, {4,-2,-2,1,-4,2,2,2,4,1} },
+//           // 5.1: Matrix values at gridpoint - Simple packing
+//         { 1, 15, 1, {4,-2,-2,1,1,1,4,2,2,1,1,1,1,1,1} },
+             // 5.40: Grid point data - JPEG2000 encoding
+         { 40, 7, 0, {4,-2,-2,1,1,1,1} },
+             // 5.41: Grid point data - PNG encoding
+         { 41, 5, 0, {4,-2,-2,1,1} },
+             // 5.40000: Grid point data - JPEG2000 encoding
+         { 40000, 7, 0, {4,-2,-2,1,1,1,1} },
+             // 5.40010: Grid point data - PNG encoding
+         { 40010, 5, 0, {4,-2,-2,1,1} }
+      } ;
+
+
+#endif  /*  _drstemplates_H  */
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/enc_jpeg2000.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/enc_jpeg2000.c
new file mode 100755
index 0000000..c56010a
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/enc_jpeg2000.c
@@ -0,0 +1,190 @@
+/**********************************************************
+ * Version $Id: enc_jpeg2000.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#ifndef USE_JPEG2000
+#include "grib2.h"
+ int enc_jpeg2000(unsigned char *cin,g2int width,g2int height,g2int nbits,
+                 g2int ltype, g2int ratio, g2int retry, char *outjpc, 
+                 g2int jpclen)
+ {	return( 0 );	}
+#else   /* USE_JPEG2000 */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+#include "jasper/jasper.h"
+#define JAS_1_700_2
+
+
+int enc_jpeg2000(unsigned char *cin,g2int width,g2int height,g2int nbits,
+                 g2int ltype, g2int ratio, g2int retry, char *outjpc, 
+                 g2int jpclen)
+/*$$$  SUBPROGRAM DOCUMENTATION BLOCK
+*                .      .    .                                       .
+* SUBPROGRAM:    enc_jpeg2000      Encodes JPEG2000 code stream
+*   PRGMMR: Gilbert          ORG: W/NP11     DATE: 2002-12-02
+*
+* ABSTRACT: This Function encodes a grayscale image into a JPEG2000 code stream
+*   specified in the JPEG2000 Part-1 standard (i.e., ISO/IEC 15444-1) 
+*   using JasPer Software version 1.500.4 (or 1.700.2 ) written by the 
+*   University of British Columbia, Image Power Inc, and others.
+*   JasPer is available at http://www.ece.uvic.ca/~mdadams/jasper/.
+*
+* PROGRAM HISTORY LOG:
+* 2002-12-02  Gilbert
+* 2004-12-16  Gilbert - Added retry argument/option to allow option of
+*                       increasing the maximum number of guard bits to the
+*                       JPEG2000 algorithm.
+*
+* USAGE:    int enc_jpeg2000(unsigned char *cin,g2int width,g2int height,
+*                            g2int nbits, g2int ltype, g2int ratio, 
+*                            g2int retry, char *outjpc, g2int jpclen)
+*
+*   INPUT ARGUMENTS:
+*      cin   - Packed matrix of Grayscale image values to encode.
+*     width  - width of image
+*     height - height of image
+*     nbits  - depth (in bits) of image.  i.e number of bits
+*              used to hold each data value
+*    ltype   - indicator of lossless or lossy compression
+*              = 1, for lossy compression
+*              != 1, for lossless compression
+*    ratio   - target compression ratio.  (ratio:1)
+*              Used only when ltype == 1.
+*    retry   - Pointer to option type.
+*              1 = try increasing number of guard bits
+*              otherwise, no additional options
+*    jpclen  - Number of bytes allocated for new JPEG2000 code stream in
+*              outjpc.
+*
+*   INPUT ARGUMENTS:
+*     outjpc - Output encoded JPEG2000 code stream
+*
+*   RETURN VALUES :
+*        > 0 = Length in bytes of encoded JPEG2000 code stream
+*         -3 = Error decode jpeg2000 code stream.
+*         -5 = decoded image had multiple color components.
+*              Only grayscale is expected.
+*
+* REMARKS:
+*
+*      Requires JasPer Software version 1.500.4 or 1.700.2
+*
+* ATTRIBUTES:
+*   LANGUAGE: C
+*   MACHINE:  IBM SP
+*
+*$$$*/
+{
+    int ier,rwcnt;
+    jas_image_t image;
+    jas_stream_t *jpcstream,*istream;
+    jas_image_cmpt_t cmpt,*pcmpt;
+#define MAXOPTSSIZE 1024
+    char opts[MAXOPTSSIZE];
+
+/*
+    printf(" enc_jpeg2000:width %ld\n",width);
+    printf(" enc_jpeg2000:height %ld\n",height);
+    printf(" enc_jpeg2000:nbits %ld\n",nbits);
+    printf(" enc_jpeg2000:jpclen %ld\n",jpclen);
+*/
+//    jas_init();
+
+//
+//    Set lossy compression options, if requested.
+//
+    if ( ltype != 1 ) {
+       opts[0]=(char)0;
+    }
+    else {
+#ifdef _SAGA_MSW
+       sprintf(opts,"mode=real\nrate=%f",1.0/(float)ratio);
+#else
+       snprintf(opts,MAXOPTSSIZE,"mode=real\nrate=%f",1.0/(float)ratio);
+#endif	// _SAGA_MSW
+    }
+    if ( retry == 1 ) {             // option to increase number of guard bits
+       strcat(opts,"\nnumgbits=4");
+    }
+    //printf("SAGopts: %s\n",opts);
+    
+//
+//     Initialize the JasPer image structure describing the grayscale
+//     image to encode into the JPEG2000 code stream.
+//
+    image.tlx_=0;
+    image.tly_=0;
+#ifdef JAS_1_500_4 
+    image.brx_=(uint_fast32_t)width;
+    image.bry_=(uint_fast32_t)height;
+#endif 
+#ifdef JAS_1_700_2
+    image.brx_=(jas_image_coord_t)width;
+    image.bry_=(jas_image_coord_t)height;
+#endif
+    image.numcmpts_=1;
+    image.maxcmpts_=1;
+#ifdef JAS_1_500_4
+    image.colormodel_=JAS_IMAGE_CM_GRAY;         /* grayscale Image */
+#endif
+#ifdef JAS_1_700_2
+    image.clrspc_=JAS_CLRSPC_SGRAY;         /* grayscale Image */
+    image.cmprof_=0; 
+#endif
+    image.inmem_=1;
+
+    cmpt.tlx_=0;
+    cmpt.tly_=0;
+    cmpt.hstep_=1;
+    cmpt.vstep_=1;
+#ifdef JAS_1_500_4
+    cmpt.width_=(uint_fast32_t)width;
+    cmpt.height_=(uint_fast32_t)height;
+#endif
+#ifdef JAS_1_700_2
+    cmpt.width_=(jas_image_coord_t)width;
+    cmpt.height_=(jas_image_coord_t)height;
+    cmpt.type_=JAS_IMAGE_CT_COLOR(JAS_CLRSPC_CHANIND_GRAY_Y);
+#endif
+    cmpt.prec_=nbits;
+    cmpt.sgnd_=0;
+    cmpt.cps_=(nbits+7)/8;
+
+    pcmpt=&cmpt;
+    image.cmpts_=&pcmpt;
+
+//
+//    Open a JasPer stream containing the input grayscale values
+//
+    istream=jas_stream_memopen((char *)cin,height*width*cmpt.cps_);
+    cmpt.stream_=istream;
+
+//
+//    Open an output stream that will contain the encoded jpeg2000
+//    code stream.
+//
+    jpcstream=jas_stream_memopen(outjpc,(int)jpclen);
+
+//
+//     Encode image.
+//
+    ier=jpc_encode(&image,jpcstream,opts);
+    if ( ier != 0 ) {
+       printf(" jpc_encode return = %d \n",ier);
+       return -3;
+    }
+//
+//     Clean up JasPer work structures.
+//    
+    rwcnt=jpcstream->rwcnt_;
+    ier=jas_stream_close(istream);
+    ier=jas_stream_close(jpcstream);
+//
+//      Return size of jpeg2000 code stream
+//
+    return (rwcnt);
+
+}
+
+#endif   /* USE_JPEG2000 */
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/enc_png.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/enc_png.c
new file mode 100755
index 0000000..8fd7fde
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/enc_png.c
@@ -0,0 +1,138 @@
+/**********************************************************
+ * Version $Id: enc_png.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#ifndef USE_PNG
+#include "grib2.h"
+ int enc_png(char *data,g2int width,g2int height,g2int nbits,char *pngbuf)	{	return( 0 );	}
+#else   /* USE_PNG */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <png.h>
+#include "grib2.h"
+
+
+struct png_stream {
+   unsigned char *stream_ptr;     /*  location to write PNG stream  */
+   g2int stream_len;               /*  number of bytes written       */
+};
+typedef struct png_stream png_stream;
+
+void user_write_data(png_structp ,png_bytep , png_uint_32 );
+void user_flush_data(png_structp );
+
+void user_write_data(png_structp png_ptr,png_bytep data, png_uint_32 length)
+/*
+        Custom write function used to that libpng will write
+        to memory location instead of a file on disk
+*/
+{
+     unsigned char *ptr;
+     g2int offset;
+     png_stream *mem;
+
+     mem=(png_stream *)png_get_io_ptr(png_ptr);
+     ptr=mem->stream_ptr;
+     offset=mem->stream_len;
+/*     printf("SAGwr %ld %ld %x\n",offset,length,ptr);    */
+     /*for (j=offset,k=0;k<length;j++,k++) ptr[j]=data[k];*/
+     memcpy(ptr+offset,data,length);
+     mem->stream_len += length;
+}
+
+
+void user_flush_data(png_structp png_ptr)
+/*
+        Dummy Custom flush function
+*/
+{
+   int *do_nothing;
+   do_nothing=NULL;
+}
+
+
+int enc_png(char *data,g2int width,g2int height,g2int nbits,char *pngbuf)
+{
+ 
+    int color_type;
+    g2int j,bytes,pnglen,bit_depth;
+    png_structp png_ptr;
+    png_infop info_ptr;
+//    png_bytep *row_pointers[height];
+    png_bytep **row_pointers;
+    png_stream write_io_ptr;
+
+/* create and initialize png_structs  */
+
+    png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, (png_voidp)NULL, 
+                                      NULL, NULL);
+    if (!png_ptr)
+       return (-1);
+
+    info_ptr = png_create_info_struct(png_ptr);
+    if (!info_ptr)
+    {
+       png_destroy_write_struct(&png_ptr,(png_infopp)NULL);
+       return (-2);
+    }
+
+/*     Set Error callback   */
+
+    if (setjmp(png_jmpbuf(png_ptr)))
+    {
+       png_destroy_write_struct(&png_ptr, &info_ptr);
+       return (-3);
+    }
+
+/*    Initialize info for writing PNG stream to memory   */
+
+    write_io_ptr.stream_ptr=(png_voidp)pngbuf;
+    write_io_ptr.stream_len=0;
+
+/*    Set new custom write functions    */
+
+    png_set_write_fn(png_ptr,(voidp)&write_io_ptr,(png_rw_ptr)user_write_data,
+                    (png_flush_ptr)user_flush_data);
+/*    png_init_io(png_ptr, fptr);   */
+/*    png_set_compression_level(png_ptr, Z_BEST_COMPRESSION);  */
+
+/*     Set the image size, colortype, filter type, etc...      */
+
+/*    printf("SAGTsettingIHDR %d %d %d\n",width,height,bit_depth); */
+    bit_depth=nbits;
+    color_type=PNG_COLOR_TYPE_GRAY;
+    if (nbits == 24 ) {
+        bit_depth=8;
+        color_type=PNG_COLOR_TYPE_RGB;
+    }
+    else if (nbits == 32 ) {
+        bit_depth=8;
+        color_type=PNG_COLOR_TYPE_RGB_ALPHA;
+    }
+    png_set_IHDR(png_ptr, info_ptr, width, height,
+       bit_depth, color_type, PNG_INTERLACE_NONE,
+       PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
+
+/*     Put image data into the PNG info structure    */
+
+    /*bytes=bit_depth/8;*/
+    bytes=nbits/8;
+    row_pointers=malloc(height*sizeof(png_bytep));
+    for (j=0;j<height;j++) row_pointers[j]=(png_bytep *)(data+(j*width*bytes));
+    png_set_rows(png_ptr, info_ptr, (png_bytepp)row_pointers);
+
+/*     Do the PNG encoding, and write out PNG stream  */
+
+    png_write_png(png_ptr, info_ptr, PNG_TRANSFORM_IDENTITY, NULL);
+
+/*     Clean up   */
+
+    png_destroy_write_struct(&png_ptr, &info_ptr);
+    free(row_pointers);
+    pnglen=write_io_ptr.stream_len;
+    return pnglen;
+
+}
+
+#endif   /* USE_PNG */
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_addfield.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_addfield.c
new file mode 100755
index 0000000..2a3ea74
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_addfield.c
@@ -0,0 +1,513 @@
+/**********************************************************
+ * Version $Id: g2_addfield.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+g2int getdim(unsigned char *,g2int *,g2int *,g2int *);
+g2int getpoly(unsigned char *,g2int *,g2int *,g2int *);
+void simpack(g2float *, g2int, g2int *, unsigned char *, g2int *);
+void cmplxpack(g2float *, g2int, g2int, g2int *, unsigned char *, g2int *);
+void specpack(g2float *,g2int,g2int,g2int,g2int,g2int *,unsigned char *,
+              g2int *);
+#ifdef USE_PNG
+  void pngpack(g2float *,g2int,g2int,g2int *,unsigned char *,g2int *);
+#endif  /* USE_PNG */
+#ifdef USE_JPEG2000
+  void jpcpack(g2float *,g2int,g2int,g2int *,unsigned char *,g2int *);
+#endif  /* USE_JPEG2000 */
+
+
+g2int g2_addfield(unsigned char *cgrib,g2int ipdsnum,g2int *ipdstmpl,
+                g2float *coordlist,g2int numcoord,g2int idrsnum,g2int *idrstmpl,
+                g2float *fld,g2int ngrdpts,g2int ibmap,g2int *bmap)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_addfield 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-11-05
+//
+// ABSTRACT: This routine packs up Sections 4 through 7 for a given field
+//   and adds them to a GRIB2 message.  They are Product Definition Section,
+//   Data Representation Section, Bit-Map Section and Data Section, 
+//   respectively.
+//   This routine is used with routines "g2_create", "g2_addlocal", 
+//   "g2_addgrid", and "g2_gribend" to create a complete GRIB2 message.  
+//   g2_create must be called first to initialize a new GRIB2 message.
+//   Also, routine g2_addgrid must be called after g2_create and
+//   before this routine to add the appropriate grid description to
+//   the GRIB2 message.   Also, a call to g2_gribend is required to complete 
+//   GRIB2 message after all fields have been added.
+//
+// PROGRAM HISTORY LOG:
+// 2002-11-05  Gilbert
+// 2002-12-23  Gilbert  -  Added complex spherical harmonic packing
+// 2003-08-27  Gilbert  - Added support for new templates using
+//                        PNG and JPEG2000 algorithms/templates.
+// 2004-11-29  Gilbert  - JPEG2000 now allowed to use WMO Template no. 5.40
+//                        PNG now allowed to use WMO Template no. 5.41
+//                      - Added check to determine if packing algorithm failed.
+// 2005-05-10  Gilbert -  Imposed minimum size on cpack, used to hold encoded
+//                        bit string.
+//
+// USAGE:    int g2_addfield(unsigned char *cgrib,g2int ipdsnum,g2int *ipdstmpl,
+//              g2float *coordlist,g2int numcoord,g2int idrsnum,g2int *idrstmpl,
+//              g2float *fld,g2int ngrdpts,g2int ibmap,g2int *bmap)
+//   INPUT ARGUMENT LIST:
+//     cgrib    - Char array that contains the GRIB2 message to which sections
+//                4 through 7 should be added.
+//     ipdsnum  - Product Definition Template Number ( see Code Table 4.0)
+//     ipdstmpl - Contains the data values for the specified Product Definition
+//                Template ( N=ipdsnum ).  Each element of this integer 
+//                array contains an entry (in the order specified) of Product
+//                Defintion Template 4.N
+//     coordlist- Array containg floating point values intended to document
+//                the vertical discretisation associated to model data
+//                on hybrid coordinate vertical levels.
+//     numcoord - number of values in array coordlist.
+//     idrsnum  - Data Representation Template Number ( see Code Table 5.0 )
+//     idrstmpl - Contains the data values for the specified Data Representation
+//                Template ( N=idrsnum ).  Each element of this integer 
+//                array contains an entry (in the order specified) of Data
+//                Representation Template 5.N
+//                Note that some values in this template (eg. reference
+//                values, number of bits, etc...) may be changed by the
+//                data packing algorithms.
+//                Use this to specify scaling factors and order of
+//                spatial differencing, if desired.
+//     fld[]    - Array of data points to pack.
+//     ngrdpts  - Number of data points in grid.
+//                i.e.  size of fld and bmap.
+//     ibmap    - Bitmap indicator ( see Code Table 6.0 )
+//                0 = bitmap applies and is included in Section 6.
+//                1-253 = Predefined bitmap applies
+//                254 = Previously defined bitmap applies to this field
+//                255 = Bit map does not apply to this product.
+//     bmap[]   - Integer array containing bitmap to be added. ( if ibmap=0 )
+//
+//   OUTPUT ARGUMENT LIST:      
+//     cgrib    - Character array to contain the updated GRIB2 message.
+//                Must be allocated large enough to store the entire
+//                GRIB2 message.
+//
+//   RETURN VALUES:
+//     ierr     - Return code.
+//              > 0 = Current size of updated GRIB2 message
+//               -1 = GRIB message was not initialized.  Need to call
+//                    routine g2_create first.
+//               -2 = GRIB message already complete.  Cannot add new section.
+//               -3 = Sum of Section byte counts doesn't add to total byte count
+//               -4 = Previous Section was not 3 or 7.
+//               -5 = Could not find requested Product Definition Template.
+//               -6 = Section 3 (GDS) not previously defined in message
+//               -7 = Tried to use unsupported Data Representationi Template
+//               -8 = Specified use of a previously defined bitmap, but one
+//                    does not exist in the GRIB message.
+//               -9 = GDT of one of 5.50 through 5.53 required to pack field
+//                    using DRT 5.51.
+//              -10 = Error packing data field.
+//
+// REMARKS: Note that the Sections 4 through 7 can only follow
+//          Section 3 or Section 7 in a GRIB2 message.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$
+{
+      g2int ierr;
+      static unsigned char G=0x47;       // 'G'
+      static unsigned char R=0x52;       // 'R'
+      static unsigned char I=0x49;       // 'I'
+      static unsigned char B=0x42;       // 'B'
+      static unsigned char s7=0x37;   // '7'
+
+      unsigned char *cpack;
+      static g2int  zero=0,one=1,four=4,five=5,six=6,seven=7;
+      const g2int  minsize=50000;
+      g2int   iofst,ibeg,lencurr,len,nsize;
+      g2int   ilen,isecnum,i,nbits,temp,left;
+      g2int   ibmprev,j,lcpack,ioctet,newlen,ndpts;
+      g2int   lensec4,lensec5,lensec6,lensec7;
+      g2int   issec3,isprevbmap,lpos3=0,JJ,KK,MM;
+      g2int   *coordieee;
+      g2int   width,height,iscan,itemp;
+      g2float *pfld;
+      template  *mappds,*mapdrs;
+      unsigned int allones=4294967295u;
+ 
+      ierr=0;
+//
+//  Check to see if beginning of GRIB message exists
+//
+      if ( cgrib[0]!=G || cgrib[1]!=R || cgrib[2]!=I || cgrib[3]!=B ) {
+        printf("g2_addfield: GRIB not found in given message.\n");
+        printf("g2_addfield: Call to routine g2_create required to initialize GRIB messge.\n");
+        ierr=-1;
+        return(ierr);
+      }
+//
+//  Get current length of GRIB message
+//  
+      gbit(cgrib,&lencurr,96,32);
+//
+//  Check to see if GRIB message is already complete
+//  
+      if ( cgrib[lencurr-4]==s7 && cgrib[lencurr-3]==s7 &&
+           cgrib[lencurr-2]==s7 && cgrib[lencurr-1]==s7 ) {
+        printf("g2_addfield: GRIB message already complete.  Cannot add new section.\n");
+        ierr=-2;
+        return(ierr);
+      }
+//
+//  Loop through all current sections of the GRIB message to
+//  find the last section number.
+//
+      issec3=0;
+      isprevbmap=0;
+      len=16;    // length of Section 0
+      for (;;) { 
+      //    Get number and length of next section
+        iofst=len*8;
+        gbit(cgrib,&ilen,iofst,32);
+        iofst=iofst+32;
+        gbit(cgrib,&isecnum,iofst,8);
+        iofst=iofst+8;
+      //  Check if previous Section 3 exists
+        if (isecnum == 3) {
+            issec3=1;
+            lpos3=len;
+        }
+      //  Check if a previous defined bitmap exists
+        if (isecnum == 6) {
+          gbit(cgrib,&ibmprev,iofst,8);
+          iofst=iofst+8;
+          if ((ibmprev >= 0) && (ibmprev <= 253)) isprevbmap=1;
+        }
+        len=len+ilen;
+      //    Exit loop if last section reached
+        if ( len == lencurr ) break;
+      //    If byte count for each section doesn't match current
+      //    total length, then there is a problem.
+        if ( len > lencurr ) {
+          printf("g2_addfield: Section byte counts don''t add to total.\n");
+          printf("g2_addfield: Sum of section byte counts = %ld\n",len);
+          printf("g2_addfield: Total byte count in Section 0 = %ld\n",lencurr);
+          ierr=-3;
+          return(ierr);
+        }
+      }
+//
+//  Sections 4 through 7 can only be added after section 3 or 7.
+//
+      if ( (isecnum != 3) && (isecnum != 7) ) {
+        printf("g2_addfield: Sections 4-7 can only be added after Section 3 or 7.\n");
+        printf("g2_addfield: Section ',isecnum,' was the last found in given GRIB message.\n");
+        ierr=-4;
+        return(ierr);
+//
+//  Sections 4 through 7 can only be added if section 3 was previously defined.
+//
+      }
+      else if ( ! issec3) {
+        printf("g2_addfield: Sections 4-7 can only be added if Section 3 was previously included.\n");
+        printf("g2_addfield: Section 3 was not found in given GRIB message.\n");
+        printf("g2_addfield: Call to routine addgrid required to specify Grid definition.\n");
+        ierr=-6;
+        return(ierr);
+      }
+//
+//  Add Section 4  - Product Definition Section
+//
+      ibeg=lencurr*8;        //   Calculate offset for beginning of section 4
+      iofst=ibeg+32;         //   leave space for length of section
+      sbit(cgrib,&four,iofst,8);     // Store section number ( 4 )
+      iofst=iofst+8;
+      sbit(cgrib,&numcoord,iofst,16);   // Store num of coordinate values
+      iofst=iofst+16;
+      sbit(cgrib,&ipdsnum,iofst,16);    // Store Prod Def Template num.
+      iofst=iofst+16;
+      //
+      //   Get Product Definition Template
+      //
+      mappds=getpdstemplate(ipdsnum);
+      if (mappds == 0) {          // undefined template
+        ierr=-5;
+        return(ierr);
+      }
+      //
+      //   Extend the Product Definition Template, if necessary.
+      //   The number of values in a specific template may vary
+      //   depending on data specified in the "static" part of the
+      //   template.
+      //
+      if ( mappds->needext ) {
+        free(mappds);
+        mappds=extpdstemplate(ipdsnum,ipdstmpl);
+      }
+      //
+      //   Pack up each input value in array ipdstmpl into the
+      //   the appropriate number of octets, which are specified in
+      //   corresponding entries in array mappds.
+      //
+      for (i=0;i<mappds->maplen;i++) {
+        nbits=abs(mappds->map[i])*8;
+        if ( (mappds->map[i] >= 0) || (ipdstmpl[i] >= 0) )
+          sbit(cgrib,ipdstmpl+i,iofst,nbits);
+        else {
+          sbit(cgrib,&one,iofst,1);
+          temp=abs(ipdstmpl[i]);
+          sbit(cgrib,&temp,iofst+1,nbits-1);
+        }
+        iofst=iofst+nbits;
+      }
+      //  Pack template extension, if appropriate
+      j=mappds->maplen;
+      if ( mappds->needext && (mappds->extlen > 0) ) {
+         for (i=0;i<mappds->extlen;i++) {
+           nbits=abs(mappds->ext[i])*8;
+           if ( (mappds->ext[i] >= 0) || (ipdstmpl[j] >= 0) )
+             sbit(cgrib,ipdstmpl+j,iofst,nbits);
+           else {
+             sbit(cgrib,&one,iofst,1);
+             temp=abs(ipdstmpl[j]);
+             sbit(cgrib,&temp,iofst+1,nbits-1);
+           }
+           iofst=iofst+nbits;
+           j++;
+         }
+      }
+      free(mappds);
+      //
+      //   Add Optional list of vertical coordinate values
+      //   after the Product Definition Template, if necessary.
+      //
+      if ( numcoord != 0 ) {
+        coordieee=(g2int *)calloc(numcoord,sizeof(g2int));
+        mkieee(coordlist,coordieee,numcoord);
+        sbits(cgrib,coordieee,iofst,32,0,numcoord);
+        iofst=iofst+(32*numcoord);
+        free(coordieee);
+      }
+      //
+      //   Calculate length of section 4 and store it in octets
+      //   1-4 of section 4.
+      //
+      lensec4=(iofst-ibeg)/8;
+      sbit(cgrib,&lensec4,ibeg,32);
+//
+//  Pack Data using appropriate algorithm
+//
+      //
+      //   Get Data Representation Template
+      //
+      mapdrs=getdrstemplate(idrsnum);
+      if (mapdrs == 0) {
+        ierr=-5;
+        return(ierr);
+      }
+      //
+      //  contract data field, removing data at invalid grid points,
+      //  if bit-map is provided with field.
+      //
+      if ( ibmap == 0 || ibmap==254 ) {
+         pfld=(g2float *)malloc(ngrdpts*sizeof(g2float));
+         ndpts=0;
+         for (j=0;j<ngrdpts;j++) {
+             if ( bmap[j]==1 ) pfld[ndpts++]=fld[j];
+         }
+      }
+      else {
+         ndpts=ngrdpts;
+         pfld=fld;
+      }
+      nsize=ndpts*4;
+      if ( nsize < minsize ) nsize=minsize;
+      cpack=malloc(nsize);
+      if (idrsnum == 0)           //  Simple Packing
+        simpack(pfld,ndpts,idrstmpl,cpack,&lcpack);
+      else if (idrsnum==2 || idrsnum==3)           //  Complex Packing
+        cmplxpack(pfld,ndpts,idrsnum,idrstmpl,cpack,&lcpack);
+      else if (idrsnum == 50) {         //  Sperical Harmonic Simple Packing 
+        simpack(pfld+1,ndpts-1,idrstmpl,cpack,&lcpack);
+        mkieee(pfld+0,idrstmpl+4,1);  // ensure RE(0,0) value is IEEE format
+      }
+      else if (idrsnum == 51) {         //  Sperical Harmonic Complex Packing 
+        getpoly(cgrib+lpos3,&JJ,&KK,&MM);
+        if ( JJ!=0 && KK!=0 && MM!=0 )
+           specpack(pfld,ndpts,JJ,KK,MM,idrstmpl,cpack,&lcpack);
+        else {
+           printf("g2_addfield: Cannot pack DRT 5.51.\n");
+           return (-9);
+        }
+      }
+#ifdef USE_JPEG2000
+      else if (idrsnum == 40 || idrsnum == 40000) {    /*  JPEG2000 encoding  */
+        if (ibmap == 255) {
+           getdim(cgrib+lpos3,&width,&height,&iscan);
+           if ( width==0 || height==0 ) {
+              width=ndpts;
+              height=1;
+           }
+           else if ( width==allones || height==allones ) {
+              width=ndpts;
+              height=1;
+           }
+           else if ( (iscan&32) == 32) {   /* Scanning mode: bit 3  */
+              itemp=width;
+              width=height;
+              height=itemp;
+           }
+        }
+        else {
+           width=ndpts;
+           height=1;
+        }
+        lcpack=nsize;
+        jpcpack(pfld,width,height,idrstmpl,cpack,&lcpack);
+      }
+#endif  /* USE_JPEG2000 */
+#ifdef USE_PNG
+      else if (idrsnum == 41 || idrsnum == 40010) {      /*  PNG encoding   */
+        if (ibmap == 255) {
+           getdim(cgrib+lpos3,&width,&height,&iscan);
+           if ( width==0 || height==0 ) {
+              width=ndpts;
+              height=1;
+           }
+           else if ( width==allones || height==allones ) {
+              width=ndpts;
+              height=1;
+           }
+           else if ( (iscan&32) == 32) {   /* Scanning mode: bit 3  */
+              itemp=width;
+              width=height;
+              height=itemp;
+           }
+        }
+        else {
+           width=ndpts;
+           height=1;
+        }
+        pngpack(pfld,width,height,idrstmpl,cpack,&lcpack);
+      }
+#endif  /* USE_PNG */
+      else {
+        printf("g2_addfield: Data Representation Template 5.%ld not yet implemented.\n",idrsnum);
+        ierr=-7;
+        return(ierr);
+      }
+      if ( ibmap == 0 || ibmap==254 ) {      // free temp space
+         if (fld != pfld) free(pfld);
+      }
+      if ( lcpack < 0 ) {
+        if( cpack != 0 ) free(cpack);
+        ierr=-10;
+        return(ierr);
+      }
+
+//
+//  Add Section 5  - Data Representation Section
+//
+      ibeg=iofst;            //   Calculate offset for beginning of section 5
+      iofst=ibeg+32;         //   leave space for length of section
+      sbit(cgrib,&five,iofst,8);     // Store section number ( 5 )
+      iofst=iofst+8;
+      sbit(cgrib,&ndpts,iofst,32);    // Store num of actual data points
+      iofst=iofst+32;
+      sbit(cgrib,&idrsnum,iofst,16);    // Store Data Repr. Template num.
+      iofst=iofst+16;
+      //
+      //   Pack up each input value in array idrstmpl into the
+      //   the appropriate number of octets, which are specified in
+      //   corresponding entries in array mapdrs.
+      //
+      for (i=0;i<mapdrs->maplen;i++) {
+        nbits=abs(mapdrs->map[i])*8;
+        if ( (mapdrs->map[i] >= 0) || (idrstmpl[i] >= 0) )
+          sbit(cgrib,idrstmpl+i,iofst,nbits);
+        else {
+          sbit(cgrib,&one,iofst,1);
+          temp=abs(idrstmpl[i]);
+          sbit(cgrib,&temp,iofst+1,nbits-1);
+        }
+        iofst=iofst+nbits;
+      }
+      free(mapdrs);
+      //
+      //   Calculate length of section 5 and store it in octets
+      //   1-4 of section 5.
+      //
+      lensec5=(iofst-ibeg)/8;
+      sbit(cgrib,&lensec5,ibeg,32);
+
+//
+//  Add Section 6  - Bit-Map Section
+//
+      ibeg=iofst;            //   Calculate offset for beginning of section 6
+      iofst=ibeg+32;         //   leave space for length of section
+      sbit(cgrib,&six,iofst,8);     // Store section number ( 6 )
+      iofst=iofst+8;
+      sbit(cgrib,&ibmap,iofst,8);    // Store Bit Map indicator
+      iofst=iofst+8;
+      //
+      //  Store bitmap, if supplied
+      //
+      if (ibmap == 0) {
+        sbits(cgrib,bmap,iofst,1,0,ngrdpts);    // Store BitMap
+        iofst=iofst+ngrdpts;
+      }
+      //
+      //  If specifying a previously defined bit-map, make sure
+      //  one already exists in the current GRIB message.
+      //
+      if ((ibmap==254) && ( ! isprevbmap)) {
+        printf("g2_addfield: Requested previously defined bitmap,");
+        printf(" but one does not exist in the current GRIB message.\n");
+        ierr=-8;
+        return(ierr);
+      }
+      //
+      //   Calculate length of section 6 and store it in octets
+      //   1-4 of section 6.  Pad to end of octect, if necessary.
+      //
+      left=8-(iofst%8);
+      if (left != 8) {
+        sbit(cgrib,&zero,iofst,left);     // Pad with zeros to fill Octet
+        iofst=iofst+left;
+      }
+      lensec6=(iofst-ibeg)/8;
+      sbit(cgrib,&lensec6,ibeg,32);
+
+//
+//  Add Section 7  - Data Section
+//
+      ibeg=iofst;            //   Calculate offset for beginning of section 7
+      iofst=ibeg+32;        //   leave space for length of section
+      sbit(cgrib,&seven,iofst,8);    // Store section number ( 7 )
+      iofst=iofst+8;
+      //      Store Packed Binary Data values, if non-constant field
+      if (lcpack != 0) {
+        ioctet=iofst/8;
+        //cgrib(ioctet+1:ioctet+lcpack)=cpack(1:lcpack)
+        for (j=0;j<lcpack;j++) cgrib[ioctet+j]=cpack[j];
+        iofst=iofst+(8*lcpack);
+      }
+      //
+      //   Calculate length of section 7 and store it in octets
+      //   1-4 of section 7.  
+      //
+      lensec7=(iofst-ibeg)/8;
+      sbit(cgrib,&lensec7,ibeg,32);
+
+      if( cpack != 0 ) free(cpack);
+//
+//  Update current byte total of message in Section 0
+//
+      newlen=lencurr+lensec4+lensec5+lensec6+lensec7;
+      sbit(cgrib,&newlen,96,32);
+
+      return(newlen);
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_addgrid.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_addgrid.c
new file mode 100755
index 0000000..7c8a51f
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_addgrid.c
@@ -0,0 +1,246 @@
+/**********************************************************
+ * Version $Id: g2_addgrid.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+
+g2int g2_addgrid(unsigned char *cgrib,g2int *igds,g2int *igdstmpl,g2int *ideflist,g2int idefnum)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_addgrid 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-11-01
+//
+// ABSTRACT: This routine packs up a Grid Definition Section (Section 3) 
+//   and adds it to a GRIB2 message.  It is used with routines "g2_create",
+//   "g2_addlocal", "g2_addfield",
+//   and "g2_gribend" to create a complete GRIB2 message.
+//   g2_create must be called first to initialize a new GRIB2 message.
+//
+// PROGRAM HISTORY LOG:
+// 2002-11-01  Gilbert
+//
+// USAGE:    int g2_addgrid(unsigned char *cgrib,g2int *igds,g2int *igdstmpl,
+//                          g2int *ideflist,g2int idefnum)
+//   INPUT ARGUMENTS:
+//     cgrib    - Char array that contains the GRIB2 message to which
+//                section should be added.
+//     igds     - Contains information needed for GRIB Grid Definition Section 3
+//                Must be dimensioned >= 5.
+//                igds[0]=Source of grid definition (see Code Table 3.0)
+//                igds[1]=Number of grid points in the defined grid.
+//                igds[2]=Number of octets needed for each 
+//                            additional grid points definition.  
+//                            Used to define number of
+//                            points in each row ( or column ) for
+//                            non-regular grids.  
+//                            = 0, if using regular grid.
+//                igds[3]=Interpretation of list for optional points 
+//                            definition.  (Code Table 3.11)
+//                igds[4]=Grid Definition Template Number (Code Table 3.1)
+//     igdstmpl - Contains the data values for the specified Grid Definition
+//                Template ( NN=igds[4] ).  Each element of this integer 
+//                array contains an entry (in the order specified) of Grid
+//                Defintion Template 3.NN
+//     ideflist - (Used if igds[2] != 0)  This array contains the
+//                number of grid points contained in each row ( or column )
+//      idefnum - (Used if igds[2] != 0)  The number of entries
+//                in array ideflist.  i.e. number of rows ( or columns )
+//                for which optional grid points are defined.
+//
+//   OUTPUT ARGUMENTS:      
+//     cgrib    - Char array to contain the updated GRIB2 message.
+//                Must be allocated large enough to store the entire
+//                GRIB2 message.
+//
+//   RETURN VALUES:
+//     ierr     - Return code.
+//              > 0 = Current size of updated GRIB2 message
+//               -1 = GRIB message was not initialized.  Need to call
+//                    routine gribcreate first.
+//               -2 = GRIB message already complete.  Cannot add new section.
+//               -3 = Sum of Section byte counts doesn't add to total byte count
+//               -4 = Previous Section was not 1, 2 or 7.
+//               -5 = Could not find requested Grid Definition Template.
+//
+// REMARKS: Note that the Grid Def Section ( Section 3 ) can only follow
+//          Section 1, 2 or Section 7 in a GRIB2 message.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$
+{
+
+      g2int ierr;
+      static unsigned char G=0x47;       // 'G'
+      static unsigned char R=0x52;       // 'R'
+      static unsigned char I=0x49;       // 'I'
+      static unsigned char B=0x42;       // 'B'
+      static unsigned char seven=0x37;   // '7'
+
+      static g2int one=1,three=3,miss=65535;
+      g2int   lensec3,iofst,ibeg,lencurr,len;
+      g2int   i,j,temp,ilen,isecnum,nbits;
+      template *mapgrid=0;
+ 
+      ierr=0;
+//
+//  Check to see if beginning of GRIB message exists
+//
+      if ( cgrib[0]!=G || cgrib[1]!=R || cgrib[2]!=I || cgrib[3]!=B ) {
+        printf("g2_addgrid: GRIB not found in given message.\n");
+        printf("g2_addgrid: Call to routine gribcreate required to initialize GRIB messge.\n");
+        ierr=-1;
+        return(ierr);
+      }
+//
+//  Get current length of GRIB message
+//  
+      gbit(cgrib,&lencurr,96,32);
+//
+//  Check to see if GRIB message is already complete
+//  
+      if ( cgrib[lencurr-4]==seven && cgrib[lencurr-3]==seven &&
+           cgrib[lencurr-2]==seven && cgrib[lencurr-1]==seven ) {
+        printf("g2_addgrid: GRIB message already complete.  Cannot add new section.\n");
+        ierr=-2;
+        return(ierr);
+      }
+//
+//  Loop through all current sections of the GRIB message to
+//  find the last section number.
+//
+      len=16;    // length of Section 0
+      for (;;) { 
+      //    Get section number and length of next section
+        iofst=len*8;
+        gbit(cgrib,&ilen,iofst,32);
+        iofst=iofst+32;
+        gbit(cgrib,&isecnum,iofst,8);
+        len=len+ilen;
+      //    Exit loop if last section reached
+        if ( len == lencurr ) break;
+      //    If byte count for each section doesn't match current
+      //    total length, then there is a problem.
+        if ( len > lencurr ) {
+          printf("g2_addgrid: Section byte counts don''t add to total.\n");
+          printf("g2_addgrid: Sum of section byte counts = %ld\n",len);
+          printf("g2_addgrid: Total byte count in Section 0 = %ld\n",lencurr);
+          ierr=-3;
+          return(ierr);
+        }
+      }
+//
+//  Section 3 can only be added after sections 1, 2 and 7.
+//
+      if ( (isecnum!=1) && (isecnum!=2) && (isecnum!=7) ) {
+        printf("g2_addgrid: Section 3 can only be added after Section 1, 2 or 7.\n");
+        printf("g2_addgrid: Section ',isecnum,' was the last found in given GRIB message.\n");
+        ierr=-4;
+        return(ierr);
+      }
+//
+//  Add Section 3  - Grid Definition Section
+//
+      ibeg=lencurr*8;        //   Calculate offset for beginning of section 3
+      iofst=ibeg+32;         //   leave space for length of section
+      sbit(cgrib,&three,iofst,8);     // Store section number ( 3 )
+      iofst=iofst+8;
+      sbit(cgrib,igds+0,iofst,8);     // Store source of Grid def.
+      iofst=iofst+8;
+      sbit(cgrib,igds+1,iofst,32);    // Store number of data pts.
+      iofst=iofst+32;
+      sbit(cgrib,igds+2,iofst,8);     // Store number of extra octets.
+      iofst=iofst+8;
+      sbit(cgrib,igds+3,iofst,8);     // Store interp. of extra octets.
+      iofst=iofst+8;
+      //   if Octet 6 is not equal to zero, Grid Definition Template may
+      //   not be supplied.
+      if ( igds[0] == 0 )
+        sbit(cgrib,igds+4,iofst,16);  // Store Grid Def Template num.
+      else
+        sbit(cgrib,&miss,iofst,16);   // Store missing value as Grid Def Template num.
+      iofst=iofst+16;
+      //
+      //   Get Grid Definition Template
+      //
+      if (igds[0] == 0) {
+        mapgrid=getgridtemplate(igds[4]);
+        if (mapgrid == 0) {       // undefined template
+          ierr=-5;
+          return(ierr);
+        }
+        //
+        //   Extend the Grid Definition Template, if necessary.
+        //   The number of values in a specific template may vary
+        //   depending on data specified in the "static" part of the
+        //   template.
+        //
+        if ( mapgrid->needext ) {
+          free(mapgrid);
+          mapgrid=extgridtemplate(igds[4],igdstmpl);
+        }
+      }
+      //
+      //   Pack up each input value in array igdstmpl into the
+      //   the appropriate number of octets, which are specified in
+      //   corresponding entries in array mapgrid.
+      //
+      for (i=0;i<mapgrid->maplen;i++) {
+        nbits=abs(mapgrid->map[i])*8;
+        if ( (mapgrid->map[i] >= 0) || (igdstmpl[i] >= 0) )
+          sbit(cgrib,igdstmpl+i,iofst,nbits);
+        else {
+          sbit(cgrib,&one,iofst,1);
+          temp=abs(igdstmpl[i]);
+          sbit(cgrib,&temp,iofst+1,nbits-1);
+        }
+        iofst=iofst+nbits;
+      }
+      //  Pack template extension, if appropriate
+      j=mapgrid->maplen;
+      if ( mapgrid->needext && (mapgrid->extlen > 0) ) {
+         for (i=0;i<mapgrid->extlen;i++) {
+           nbits=abs(mapgrid->ext[i])*8;
+           if ( (mapgrid->ext[i] >= 0) || (igdstmpl[j] >= 0) )
+             sbit(cgrib,igdstmpl+j,iofst,nbits);
+           else {
+             sbit(cgrib,&one,iofst,1);
+             temp=abs(igdstmpl[j]);
+             sbit(cgrib,&temp,iofst+1,nbits-1);
+           }
+           iofst=iofst+nbits;
+           j++;
+         }
+      }
+      free(mapgrid);
+      //
+      //   If requested,
+      //   Insert optional list of numbers defining number of points
+      //   in each row or column.  This is used for non regular
+      //   grids.
+      //
+      if ( igds[2] != 0 ) {
+         nbits=igds[2]*8;
+         sbits(cgrib,ideflist,iofst,nbits,0,idefnum);
+         iofst=iofst+(nbits*idefnum);
+      }
+      //
+      //   Calculate length of section 3 and store it in octets
+      //   1-4 of section 3.
+      //
+      lensec3=(iofst-ibeg)/8;
+      sbit(cgrib,&lensec3,ibeg,32);
+
+//
+//  Update current byte total of message in Section 0
+//
+      lencurr+=lensec3;
+      sbit(cgrib,&lencurr,96,32);
+
+      return(lencurr);
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_addlocal.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_addlocal.c
new file mode 100755
index 0000000..97b941a
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_addlocal.c
@@ -0,0 +1,150 @@
+/**********************************************************
+ * Version $Id: g2_addlocal.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include "grib2.h"
+
+g2int g2_addlocal(unsigned char *cgrib,unsigned char *csec2,g2int lcsec2)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_addlocal 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-11-01
+//
+// ABSTRACT: This routine adds a Local Use Section (Section 2) to 
+//   a GRIB2 message.  It is used with routines "g2_create", 
+//   "g2_addgrid", "g2_addfield",
+//   and "g2_gribend" to create a complete GRIB2 message.  
+//   g2_create must be called first to initialize a new GRIB2 message.
+//
+// PROGRAM HISTORY LOG:
+// 2002-11-01  Gilbert
+//
+// USAGE:    int g2_addlocal(unsigned char *cgrib,unsigned char *csec2,
+//                           g2int lcsec2)
+//   INPUT ARGUMENTS:
+//     cgrib    - Char array that contains the GRIB2 message to which section
+//                2 should be added.
+//     csec2    - Character array containing information to be added in
+//                Section 2.
+//     lcsec2   - Number of bytes of character array csec2 to be added to
+//                Section 2.
+//
+//   OUTPUT ARGUMENT:      
+//     cgrib    - Char array to contain the updated GRIB2 message.
+//                Must be allocated large enough to store the entire
+//                GRIB2 message.
+//
+//   RETURN VALUES:
+//     ierr     - Return code.
+//              > 0 = Current size of updated GRIB2 message
+//               -1 = GRIB message was not initialized.  Need to call
+//                    routine gribcreate first.
+//               -2 = GRIB message already complete.  Cannot add new section.
+//               -3 = Sum of Section byte counts doesn't add to total byte count
+//               -4 = Previous Section was not 1 or 7.
+//
+// REMARKS: Note that the Local Use Section ( Section 2 ) can only follow
+//          Section 1 or Section 7 in a GRIB2 message.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE: 
+//
+//$$$
+{
+
+      g2int ierr; 
+      static unsigned char G=0x47;       // 'G'
+      static unsigned char R=0x52;       // 'R'
+      static unsigned char I=0x49;       // 'I'
+      static unsigned char B=0x42;       // 'B'
+      static unsigned char seven=0x37;   // '7'
+
+      static g2int two=2;
+      g2int   j,k,lensec2,iofst,ibeg,lencurr,ilen,len,istart;
+      g2int   isecnum;
+ 
+      ierr=0;
+//
+//  Check to see if beginning of GRIB message exists
+//
+      if ( cgrib[0]!=G || cgrib[1]!=R || cgrib[2]!=I || cgrib[3]!=B ) {
+        printf("g2_addlocal: GRIB not found in given message.\n");
+        printf("g2_addlocal: Call to routine g2_create required to initialize GRIB messge.\n");
+        ierr=-1;
+        return(ierr);
+      }
+//
+//  Get current length of GRIB message
+//  
+      gbit(cgrib,&lencurr,96,32);
+//
+//  Check to see if GRIB message is already complete
+//  
+      if ( cgrib[lencurr-4]==seven && cgrib[lencurr-3]==seven && 
+           cgrib[lencurr-2]==seven && cgrib[lencurr-1]==seven ) {
+        printf("g2_addlocal: GRIB message already complete.  Cannot add new section.\n");
+        ierr=-2;
+        return(ierr);
+      }
+//
+//  Loop through all current sections of the GRIB message to
+//  find the last section number.
+//
+      len=16;    // length of Section 0
+      for (;;) { 
+      //    Get section number and length of next section
+        iofst=len*8;
+        gbit(cgrib,&ilen,iofst,32);
+        iofst=iofst+32;
+        gbit(cgrib,&isecnum,iofst,8);
+        len=len+ilen;
+      //    Exit loop if last section reached
+        if ( len == lencurr ) break;
+      //    If byte count for each section doesn't match current
+      //    total length, then there is a problem.
+        if ( len > lencurr ) {
+          printf("g2_addlocal: Section byte counts don't add to total.\n");
+          printf("g2_addlocal: Sum of section byte counts = %ld\n",len);
+          printf("g2_addlocal: Total byte count in Section 0 = %ld\n",lencurr);
+          ierr=-3;
+          return(ierr);
+        }
+      }
+//
+//  Section 2 can only be added after sections 1 and 7.
+//
+      if ( (isecnum!=1) && (isecnum!=7) ) {
+        printf("g2_addlocal: Section 2 can only be added after Section 1 or Section 7.\n");
+        printf("g2_addlocal: Section %ld was the last found in given GRIB message.\n",isecnum);
+        ierr=-4;
+        return(ierr);
+      }
+//
+//  Add Section 2  - Local Use Section
+//
+      ibeg=lencurr*8;        //   Calculate offset for beginning of section 2
+      iofst=ibeg+32;         //   leave space for length of section
+      sbit(cgrib,&two,iofst,8);     // Store section number ( 2 )
+      istart=lencurr+5;
+      //cgrib(istart+1:istart+lcsec2)=csec2(1:lcsec2)
+      k=0;
+      for (j=istart;j<istart+lcsec2;j++) {
+         cgrib[j]=csec2[k++];
+      }
+      //
+      //   Calculate length of section 2 and store it in octets
+      //   1-4 of section 2.
+      //
+      lensec2=lcsec2+5;      // bytes
+      sbit(cgrib,&lensec2,ibeg,32);
+
+//
+//  Update current byte total of message in Section 0
+//
+      lencurr+=lensec2;
+      sbit(cgrib,&lencurr,96,32);
+
+      return(lencurr);
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_create.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_create.c
new file mode 100755
index 0000000..6683650
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_create.c
@@ -0,0 +1,130 @@
+/**********************************************************
+ * Version $Id: g2_create.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include "grib2.h"
+
+#define MAPSEC1LEN 13
+
+g2int g2_create(unsigned char *cgrib,g2int *listsec0,g2int *listsec1)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_create 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-31
+//
+// ABSTRACT: This routine initializes a new GRIB2 message and packs
+//   GRIB2 sections 0 (Indicator Section) and 1 (Identification Section).
+//   This routine is used with routines "g2_addlocal", "g2_addgrid", 
+//   "g2_addfield", and "g2_gribend" to create a complete GRIB2 message.  
+//   g2_create must be called first to initialize a new GRIB2 message.
+//   Also, a call to g2_gribend is required to complete GRIB2 message
+//   after all fields have been added.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-31  Gilbert
+//
+// USAGE:    int g2_create(unsigned char *cgrib,g2int *listsec0,g2int *listsec1)
+//   INPUT ARGUMENTS:
+//     cgrib    - Character array to contain the GRIB2 message
+//     listsec0 - Contains information needed for GRIB Indicator Section 0.
+//                Must be dimensioned >= 2.
+//                listsec0[0]=Discipline-GRIB Master Table Number
+//                            (see Code Table 0.0)
+//                listsec0[1]=GRIB Edition Number (currently 2)
+//     listsec1 - Contains information needed for GRIB Identification Section 1.
+//                Must be dimensioned >= 13.
+//                listsec1[0]=Id of orginating centre (Common Code Table C-1)
+//                listsec1[1]=Id of orginating sub-centre (local table)
+//                listsec1[2]=GRIB Master Tables Version Number (Code Table 1.0)
+//                listsec1[3]=GRIB Local Tables Version Number (Code Table 1.1)
+//                listsec1[4]=Significance of Reference Time (Code Table 1.2)
+//                listsec1[5]=Reference Time - Year (4 digits)
+//                listsec1[6]=Reference Time - Month
+//                listsec1[7]=Reference Time - Day
+//                listsec1[8]=Reference Time - Hour
+//                listsec1[9]=Reference Time - Minute
+//                listsec1[10]=Reference Time - Second
+//                listsec1[11]=Production status of data (Code Table 1.3)
+//                listsec1[12]=Type of processed data (Code Table 1.4)
+//
+//   OUTPUT ARGUMENTS:      
+//     cgrib    - Char array to contain the new GRIB2 message.
+//                Must be allocated large enough to store the entire
+//                GRIB2 message.
+//
+//   RETURN VALUES:
+//     ierr     - return code.
+//              > 0 = Current size of new GRIB2 message
+//               -1 = Tried to use for version other than GRIB Edition 2
+//
+// REMARKS: This routine is intended for use with routines "g2_addlocal", 
+//          "g2_addgrid", "g2_addfield", and "g2_gribend" to create a complete 
+//          GRIB2 message.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$
+{
+
+      g2int  ierr;
+      g2int   zero=0,one=1;
+      g2int   mapsec1len=MAPSEC1LEN;
+      g2int   mapsec1[MAPSEC1LEN]={ 2,2,1,1,1,2,1,1,1,1,1,1,1 };
+      g2int   i,lensec0,lensec1,iofst,ibeg,nbits,len;
+
+      ierr=0;
+//
+//  Currently handles only GRIB Edition 2.
+//  
+      if (listsec0[1] != 2) {
+        printf("g2_create: can only code GRIB edition 2.");
+        ierr=-1;
+        return (ierr);
+      }
+//
+//  Pack Section 0 - Indicator Section 
+//  ( except for total length of GRIB message )
+//
+      cgrib[0]=0x47;   // 'G'            // Beginning of GRIB message
+      cgrib[1]=0x52;   // 'R'
+      cgrib[2]=0x49;   // 'I'
+      cgrib[3]=0x42;   // 'B'
+      sbit(cgrib,&zero,32,16);           // reserved for future use
+      sbit(cgrib,listsec0+0,48,8);       // Discipline
+      sbit(cgrib,listsec0+1,56,8);       // GRIB edition number
+      lensec0=16;      // bytes (octets)
+//
+//  Pack Section 1 - Identification Section
+//
+      ibeg=lensec0*8;        //   Calculate offset for beginning of section 1
+      iofst=ibeg+32;         //   leave space for length of section
+      sbit(cgrib,&one,iofst,8);     // Store section number ( 1 )
+      iofst=iofst+8;
+      //
+      //   Pack up each input value in array listsec1 into the
+      //   the appropriate number of octets, which are specified in
+      //   corresponding entries in array mapsec1.
+      //
+      for (i=0;i<mapsec1len;i++) {
+        nbits=mapsec1[i]*8;
+        sbit(cgrib,listsec1+i,iofst,nbits);
+        iofst=iofst+nbits;
+      }
+      //
+      //   Calculate length of section 1 and store it in octets
+      //   1-4 of section 1.
+      //
+      lensec1=(iofst-ibeg)/8;
+      sbit(cgrib,&lensec1,ibeg,32);
+//
+//  Put current byte total of message into Section 0
+//
+      sbit(cgrib,&zero,64,32);
+      len=lensec0+lensec1;
+      sbit(cgrib,&len,96,32);
+
+      return (len);
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_free.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_free.c
new file mode 100755
index 0000000..0a99e4c
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_free.c
@@ -0,0 +1,47 @@
+/**********************************************************
+ * Version $Id: g2_free.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdlib.h>
+#include  "grib2.h"
+
+void g2_free(gribfield *gfld)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_free 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-28
+//
+// ABSTRACT: This routine frees up memory that was allocated for
+//   struct gribfield.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-28  Gilbert
+//
+// USAGE:    g2_free(gribfield *gfld)
+//   ARGUMENT:
+//     gfld - pointer to gribfield structure (defined in include file grib2.h)
+//            returned from routine g2_getfld.
+//
+// REMARKS:  This routine must be called to free up memory used by
+//           the decode routine, g2_getfld, when user no longer needs to
+//           reference this data.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$
+{ 
+
+      if (gfld->idsect != 0 ) free(gfld->idsect);
+      if (gfld->local != 0 ) free(gfld->local);
+      if (gfld->list_opt != 0 ) free(gfld->list_opt);
+      if (gfld->igdtmpl != 0 ) free(gfld->igdtmpl);
+      if (gfld->ipdtmpl != 0 ) free(gfld->ipdtmpl);
+      if (gfld->coord_list != 0 ) free(gfld->coord_list);
+      if (gfld->idrtmpl != 0 ) free(gfld->idrtmpl);
+      if (gfld->bmap != 0 ) free(gfld->bmap);
+      if (gfld->fld != 0 ) free(gfld->fld);
+      free(gfld);
+
+      return;
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_getfld.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_getfld.c
new file mode 100755
index 0000000..efc6897
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_getfld.c
@@ -0,0 +1,553 @@
+/**********************************************************
+ * Version $Id: g2_getfld.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+g2int g2_unpack1(unsigned char *,g2int *,g2int **,g2int *);
+g2int g2_unpack2(unsigned char *,g2int *,g2int *,unsigned char **);
+g2int g2_unpack3(unsigned char *,g2int *,g2int **,g2int **,
+                         g2int *,g2int **,g2int *);
+g2int g2_unpack4(unsigned char *,g2int *,g2int *,g2int **,
+                         g2int *,g2float **,g2int *);
+g2int g2_unpack5(unsigned char *,g2int *,g2int *,g2int *, g2int **,g2int *);
+g2int g2_unpack6(unsigned char *,g2int *,g2int ,g2int *, g2int **);
+g2int g2_unpack7(unsigned char *,g2int *,g2int ,g2int *,
+                         g2int ,g2int *,g2int ,g2float **);
+
+g2int g2_getfld(unsigned char *cgrib,g2int ifldnum,g2int unpack,g2int expand,
+                gribfield **gfld)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_getfld 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-28
+//
+// ABSTRACT: This subroutine returns all the metadata, template values, 
+//   Bit-map ( if applicable ), and the unpacked data for a given data
+//   field.  All of the information returned is stored in a gribfield
+//   structure, which is defined in file grib2.h.
+//   Users of this routine will need to include "grib2.h" in their source
+//   code that calls this routine.  Each component of the gribfield
+//   struct is also described in the OUTPUT ARGUMENTS section below.
+//
+//   Since there can be multiple data fields packed into a GRIB2
+//   message, the calling routine indicates which field is being requested
+//   with the ifldnum argument.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-28  Gilbert
+//
+// USAGE:    #include "grib2.h"
+//           int g2_getfld(unsigned char *cgrib,g2int ifldnum,g2int unpack,
+//                         g2int expand,gribfield **gfld)
+//   INPUT ARGUMENTS:
+//     cgrib    - Character pointer to the GRIB2 message
+//     ifldnum  - Specifies which field in the GRIB2 message to return.
+//     unpack   - Boolean value indicating whether to unpack bitmap/data field
+//                1 = unpack bitmap (if present) and data values
+//                0 = do not unpack bitmap and data values
+//     expand   - Boolean value indicating whether the data points should be 
+//                expanded to the correspond grid, if a bit-map is present.
+//                1 = if possible, expand data field to grid, inserting zero 
+//                    values at gridpoints that are bitmapped out. 
+//                    (SEE REMARKS2)
+//                0 = do not expand data field, leaving it an array of
+//                    consecutive data points for each "1" in the bitmap.
+//                This argument is ignored if unpack == 0 OR if the
+//                returned field does not contain a bit-map.
+//
+//   OUTPUT ARGUMENT:      
+//     gribfield gfld; - pointer to structure gribfield containing
+//                       all decoded data for the data field.
+// 
+//        gfld->version = GRIB edition number ( currently 2 )
+//        gfld->discipline = Message Discipline ( see Code Table 0.0 )
+//        gfld->idsect = Contains the entries in the Identification
+//                        Section ( Section 1 )
+//                        This element is a pointer to an array
+//                        that holds the data.
+//            gfld->idsect[0]  = Identification of originating Centre
+//                                    ( see Common Code Table C-1 )
+//                             7 - US National Weather Service
+//            gfld->idsect[1]  = Identification of originating Sub-centre
+//            gfld->idsect[2]  = GRIB Master Tables Version Number
+//                                    ( see Code Table 1.0 )
+//                             0 - Experimental
+//                             1 - Initial operational version number
+//            gfld->idsect[3]  = GRIB Local Tables Version Number
+//                                    ( see Code Table 1.1 )
+//                             0     - Local tables not used
+//                             1-254 - Number of local tables version used
+//            gfld->idsect[4]  = Significance of Reference Time (Code Table 1.2)
+//                             0 - Analysis
+//                             1 - Start of forecast
+//                             2 - Verifying time of forecast
+//                             3 - Observation time
+//            gfld->idsect[5]  = Year ( 4 digits )
+//            gfld->idsect[6]  = Month
+//            gfld->idsect[7)  = Day
+//            gfld->idsect[8]  = Hour
+//            gfld->idsect[9]  = Minute
+//            gfld->idsect[10]  = Second
+//            gfld->idsect[11]  = Production status of processed data
+//                                    ( see Code Table 1.3 )
+//                              0 - Operational products
+//                              1 - Operational test products
+//                              2 - Research products
+//                              3 - Re-analysis products
+//            gfld->idsect[12]  = Type of processed data ( see Code Table 1.4 )
+//                              0  - Analysis products
+//                              1  - Forecast products
+//                              2  - Analysis and forecast products
+//                              3  - Control forecast products
+//                              4  - Perturbed forecast products
+//                              5  - Control and perturbed forecast products
+//                              6  - Processed satellite observations
+//                              7  - Processed radar observations
+//        gfld->idsectlen = Number of elements in gfld->idsect[].
+//        gfld->local   = Pointer to character array containing contents
+//                       of Local Section 2, if included
+//        gfld->locallen = length of array gfld->local[]
+//        gfld->ifldnum = field number within GRIB message
+//        gfld->griddef = Source of grid definition (see Code Table 3.0)
+//                      0 - Specified in Code table 3.1
+//                      1 - Predetermined grid Defined by originating centre
+//        gfld->ngrdpts = Number of grid points in the defined grid.
+//        gfld->numoct_opt = Number of octets needed for each
+//                          additional grid points definition.
+//                          Used to define number of
+//                          points in each row ( or column ) for
+//                          non-regular grids.
+//                          = 0, if using regular grid.
+//        gfld->interp_opt = Interpretation of list for optional points
+//                          definition.  (Code Table 3.11)
+//        gfld->igdtnum = Grid Definition Template Number (Code Table 3.1)
+//        gfld->igdtmpl  = Contains the data values for the specified Grid
+//                         Definition Template ( NN=gfld->igdtnum ).  Each
+//                         element of this integer array contains an entry (in
+//                         the order specified) of Grid Defintion Template 3.NN
+//                         This element is a pointer to an array
+//                         that holds the data.
+//        gfld->igdtlen = Number of elements in gfld->igdtmpl[].  i.e. number of
+//                       entries in Grid Defintion Template 3.NN
+//                       ( NN=gfld->igdtnum ).
+//        gfld->list_opt  = (Used if gfld->numoct_opt .ne. 0)  This array
+//                          contains the number of grid points contained in
+//                          each row ( or column ).  (part of Section 3)
+//                          This element is a pointer to an array
+//                          that holds the data.  This pointer is nullified
+//                          if gfld->numoct_opt=0.
+//        gfld->num_opt = (Used if gfld->numoct_opt .ne. 0) 
+//                        The number of entries
+//                       in array ideflist.  i.e. number of rows ( or columns )
+//                       for which optional grid points are defined.  This value
+//                       is set to zero, if gfld->numoct_opt=0.
+//        gfdl->ipdtnum = Product Definition Template Number(see Code Table 4.0)
+//        gfld->ipdtmpl  = Contains the data values for the specified Product
+//                         Definition Template ( N=gfdl->ipdtnum ). Each element
+//                         of this integer array contains an entry (in the
+//                         order specified) of Product Defintion Template 4.N.
+//                         This element is a pointer to an array
+//                         that holds the data.
+//        gfld->ipdtlen = Number of elements in gfld->ipdtmpl[].  i.e. number of
+//                       entries in Product Defintion Template 4.N
+//                       ( N=gfdl->ipdtnum ).
+//        gfld->coord_list  = Real array containing floating point values
+//                            intended to document the vertical discretisation
+//                            associated to model data on hybrid coordinate
+//                            vertical levels.  (part of Section 4)
+//                            This element is a pointer to an array
+//                            that holds the data.
+//        gfld->num_coord = number of values in array gfld->coord_list[].
+//        gfld->ndpts = Number of data points unpacked and returned.
+//        gfld->idrtnum = Data Representation Template Number
+//                       ( see Code Table 5.0)
+//        gfld->idrtmpl  = Contains the data values for the specified Data
+//                         Representation Template ( N=gfld->idrtnum ).  Each
+//                         element of this integer array contains an entry
+//                         (in the order specified) of Product Defintion
+//                         Template 5.N.
+//                         This element is a pointer to an array
+//                         that holds the data.
+//        gfld->idrtlen = Number of elements in gfld->idrtmpl[].  i.e. number
+//                       of entries in Data Representation Template 5.N
+//                       ( N=gfld->idrtnum ).
+//        gfld->unpacked = logical value indicating whether the bitmap and
+//                        data values were unpacked.  If false,
+//                        gfld->bmap and gfld->fld pointers are nullified.
+//        gfld->expanded = Logical value indicating whether the data field 
+//                         was expanded to the grid in the case where a 
+//                         bit-map is present.  If true, the data points in
+//                         gfld->fld match the grid points and zeros were 
+//                         inserted at grid points where data was bit-mapped
+//                         out.  If false, the data values in gfld->fld were
+//                         not expanded to the grid and are just a consecutive
+//                         array of data points corresponding to each value of
+//                         "1" in gfld->bmap.
+//        gfld->ibmap = Bitmap indicator ( see Code Table 6.0 )
+//                     0 = bitmap applies and is included in Section 6.
+//                     1-253 = Predefined bitmap applies
+//                     254 = Previously defined bitmap applies to this field
+//                     255 = Bit map does not apply to this product.
+//        gfld->bmap  = integer array containing decoded bitmap,
+//                      if gfld->ibmap=0 or gfld->ibap=254.  Otherwise nullified
+//                      This element is a pointer to an array
+//                      that holds the data.
+//        gfld->fld  = Array of gfld->ndpts unpacked data points.
+//                     This element is a pointer to an array
+//                     that holds the data.
+//
+// 
+//   RETURN VALUES:
+//     ierr     - Error return code.
+//                0 = no error
+//                1 = Beginning characters "GRIB" not found.
+//                2 = GRIB message is not Edition 2.
+//                3 = The data field request number was not positive.
+//                4 = End string "7777" found, but not where expected.
+//                6 = GRIB message did not contain the requested number of
+//                    data fields.
+//                7 = End string "7777" not found at end of message.
+//                8 = Unrecognized Section encountered.
+//                9 = Data Representation Template 5.NN not yet implemented.
+//               15 = Error unpacking Section 1.
+//               16 = Error unpacking Section 2.
+//               10 = Error unpacking Section 3.
+//               11 = Error unpacking Section 4.
+//               12 = Error unpacking Section 5.
+//               13 = Error unpacking Section 6.
+//               14 = Error unpacking Section 7.
+//               17 = Previous bitmap specified, yet none exists.
+//
+// REMARKS: Note that struct gribfield is allocated by this routine and it
+//          also contains pointers to many arrays of data that were allocated
+//          during decoding.  Users are encouraged to free up this memory, 
+//          when it is no longer needed, by an explicit call to routine g2_free.
+//          EXAMPLE:
+//              #include "grib2.h"
+//              gribfield *gfld;
+//              ret=g2_getfld(cgrib,1,1,1,&gfld);
+//                ...
+//              g2_free(gfld);
+//
+//          Routine g2_info can be used to first determine
+//          how many data fields exist in a given GRIB message.
+//
+// REMARKS2: It may not always be possible to expand a bit-mapped data field.
+//           If a pre-defined bit-map is used and not included in the GRIB2
+//           message itself, this routine would not have the necessary 
+//           information to expand the data.  In this case, gfld->expanded would
+//           would be set to 0 (false), regardless of the value of input 
+//           argument expand.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$
+{
+    
+      g2int have3,have4,have5,have6,have7,ierr,jerr;
+      g2int numfld,j,n,istart,iofst,ipos;
+      g2int disc,ver,lensec0,lengrib,lensec,isecnum;
+      g2int  *igds;
+      g2int *bmpsave;
+      g2float *newfld;
+      gribfield  *lgfld;
+
+      have3=0;
+      have4=0;
+      have5=0;
+      have6=0;
+      have7=0;
+      ierr=0;
+      numfld=0;
+
+      lgfld=(gribfield *)malloc(sizeof(gribfield));
+      *gfld=lgfld;
+
+      lgfld->locallen=0;
+      lgfld->idsect=0;
+      lgfld->local=0;
+      lgfld->list_opt=0;
+      lgfld->igdtmpl=0;
+      lgfld->ipdtmpl=0;
+      lgfld->idrtmpl=0;
+      lgfld->coord_list=0;
+      lgfld->bmap=0;
+      lgfld->fld=0;
+//
+//  Check for valid request number
+//  
+      if (ifldnum <= 0) {
+        printf("g2_getfld: Request for field number must be positive.\n");
+        ierr=3;
+        return(ierr);
+      }
+//
+//  Check for beginning of GRIB message in the first 100 bytes
+//
+      istart=-1;
+      for (j=0;j<100;j++) {
+        if (cgrib[j]=='G' && cgrib[j+1]=='R' &&cgrib[j+2]=='I' && 
+            cgrib[j+3]=='B') {
+          istart=j;
+          break;
+        }
+      }
+      if (istart == -1) {
+        printf("g2_getfld:  Beginning characters GRIB not found.\n");
+        ierr=1;
+        return(ierr);
+      }
+//
+//  Unpack Section 0 - Indicator Section 
+//
+      iofst=8*(istart+6);
+      gbit(cgrib,&disc,iofst,8);     // Discipline
+      iofst=iofst+8;
+      gbit(cgrib,&ver,iofst,8);     // GRIB edition number
+      iofst=iofst+8;
+      iofst=iofst+32;
+      gbit(cgrib,&lengrib,iofst,32);        // Length of GRIB message
+      iofst=iofst+32;
+      lensec0=16;
+      ipos=istart+lensec0;
+//
+//  Currently handles only GRIB Edition 2.
+//  
+      if (ver != 2) {
+        printf("g2_getfld: can only decode GRIB edition 2.\n");
+        ierr=2;
+        return(ierr);
+      }
+//
+//  Loop through the remaining sections keeping track of the 
+//  length of each.  Also keep the latest Grid Definition Section info.
+//  Unpack the requested field number.
+//
+      for (;;) {
+        //    Check to see if we are at end of GRIB message
+        if (cgrib[ipos]=='7' && cgrib[ipos+1]=='7' && cgrib[ipos+2]=='7' && 
+            cgrib[ipos+3]=='7') {
+          ipos=ipos+4;
+          //    If end of GRIB message not where expected, issue error
+          if (ipos != (istart+lengrib)) {
+            printf("g2_getfld: '7777' found, but not where expected.\n");
+            ierr=4;
+            return(ierr);
+          }
+          break;
+        }
+        //     Get length of Section and Section number
+        iofst=(ipos-1)*8;
+        iofst=ipos*8;
+        gbit(cgrib,&lensec,iofst,32);        // Get Length of Section
+        iofst=iofst+32;
+        gbit(cgrib,&isecnum,iofst,8);         // Get Section number
+        iofst=iofst+8;
+        //printf(" lensec= %ld    secnum= %ld \n",lensec,isecnum);
+        //
+        //  Check to see if section number is valid
+        //
+        if ( isecnum<1 || isecnum>7 ) {
+          printf("g2_getfld: Unrecognized Section Encountered=%ld\n",isecnum);
+          ierr=8;
+          return(ierr);
+        }
+        //
+        //   If found Section 1, decode elements in Identification Section
+        //
+        if (isecnum == 1) {
+          iofst=iofst-40;       // reset offset to beginning of section
+          jerr=g2_unpack1(cgrib,&iofst,&lgfld->idsect,&lgfld->idsectlen);
+          if (jerr !=0 ) {
+            ierr=15;
+            return(ierr);
+          }
+        }
+        //
+        //   If found Section 2, Grab local section
+        //   Save in case this is the latest one before the requested field.
+        //
+        if (isecnum == 2) {
+          iofst=iofst-40;       // reset offset to beginning of section
+          if (lgfld->local!=0) free(lgfld->local);
+          jerr=g2_unpack2(cgrib,&iofst,&lgfld->locallen,&lgfld->local);
+          if (jerr != 0) {
+            ierr=16;
+            return(ierr);
+          }
+        }
+        //
+        //   If found Section 3, unpack the GDS info using the 
+        //   appropriate template.  Save in case this is the latest
+        //   grid before the requested field.
+        //
+        if (isecnum == 3) {
+          iofst=iofst-40;       // reset offset to beginning of section
+          if (lgfld->igdtmpl!=0) free(lgfld->igdtmpl);
+          if (lgfld->list_opt!=0) free(lgfld->list_opt);
+          jerr=g2_unpack3(cgrib,&iofst,&igds,&lgfld->igdtmpl,
+                          &lgfld->igdtlen,&lgfld->list_opt,&lgfld->num_opt);
+          if (jerr == 0) {
+            have3=1;
+            lgfld->griddef=igds[0];
+            lgfld->ngrdpts=igds[1];
+            lgfld->numoct_opt=igds[2];
+            lgfld->interp_opt=igds[3];
+            lgfld->igdtnum=igds[4];
+          }
+          else {
+            ierr=10;
+            return(ierr);
+          }
+        }
+        //
+        //   If found Section 4, check to see if this field is the
+        //   one requested.
+        //
+        if (isecnum == 4) {
+          numfld=numfld+1;
+          if (numfld == ifldnum) {
+            lgfld->discipline=disc;
+            lgfld->version=ver;
+            lgfld->ifldnum=ifldnum;
+            lgfld->unpacked=unpack;
+            lgfld->expanded=0;
+            iofst=iofst-40;       // reset offset to beginning of section
+            jerr=g2_unpack4(cgrib,&iofst,&lgfld->ipdtnum,
+                            &lgfld->ipdtmpl,&lgfld->ipdtlen,&lgfld->coord_list,
+                            &lgfld->num_coord);
+            if (jerr == 0)
+              have4=1;
+            else {
+              ierr=11;
+              return(ierr);
+            }
+          }
+        }
+        //
+        //   If found Section 5, check to see if this field is the
+        //   one requested.
+        //
+        if (isecnum == 5 && numfld == ifldnum) {
+          iofst=iofst-40;       // reset offset to beginning of section
+          jerr=g2_unpack5(cgrib,&iofst,&lgfld->ndpts,&lgfld->idrtnum,
+                          &lgfld->idrtmpl,&lgfld->idrtlen);
+          if (jerr == 0)
+            have5=1;
+          else {
+            ierr=12;
+            return(ierr);
+          }
+        }
+        //
+        //   If found Section 6, Unpack bitmap.
+        //   Save in case this is the latest
+        //   bitmap before the requested field.
+        //
+        if (isecnum == 6) {
+          if (unpack) {   // unpack bitmap
+            iofst=iofst-40;           // reset offset to beginning of section
+            bmpsave=lgfld->bmap;      // save pointer to previous bitmap
+            jerr=g2_unpack6(cgrib,&iofst,lgfld->ngrdpts,&lgfld->ibmap,
+                         &lgfld->bmap);
+            if (jerr == 0) {
+              have6=1;
+              if (lgfld->ibmap == 254)     // use previously specified bitmap
+                 if( bmpsave!=0 ) 
+                    lgfld->bmap=bmpsave;
+                 else {
+                    printf("g2_getfld: Prev bit-map specified, but none exist.\n");
+                    ierr=17;
+                    return(ierr);
+                 }
+              else                         // get rid of it
+                 if( bmpsave!=0 ) free(bmpsave);
+            }
+            else {
+              ierr=13;
+              return(ierr);
+            }
+          }
+          else {    // do not unpack bitmap
+            gbit(cgrib,&lgfld->ibmap,iofst,8);      // Get BitMap Indicator
+            have6=1;
+          }
+        }
+        //
+        //   If found Section 7, check to see if this field is the
+        //   one requested.
+        //
+        if (isecnum==7 && numfld==ifldnum && unpack) {
+          iofst=iofst-40;       // reset offset to beginning of section
+          jerr=g2_unpack7(cgrib,&iofst,lgfld->igdtnum,lgfld->igdtmpl,
+                          lgfld->idrtnum,lgfld->idrtmpl,lgfld->ndpts,
+                          &lgfld->fld);
+          if (jerr == 0) {
+            have7=1;
+            //  If bitmap is used with this field, expand data field 
+            //  to grid, if possible.
+            if ( lgfld->ibmap != 255 && lgfld->bmap != 0 ) {
+               if ( expand == 1 ) {
+                  n=0;
+                  newfld=(g2float *)calloc(lgfld->ngrdpts,sizeof(g2float));
+                  for (j=0;j<lgfld->ngrdpts;j++) {
+                      if (lgfld->bmap[j]==1) newfld[j]=lgfld->fld[n++];
+                  }
+                  free(lgfld->fld);
+                  lgfld->fld=newfld;
+                  lgfld->expanded=1;
+               }
+               else {
+                  lgfld->expanded=0;
+               }
+            }
+            else {
+               lgfld->expanded=1;
+            }
+          }
+          else {
+            printf("g2_getfld: return from g2_unpack7 = %d \n",(int)jerr);
+            ierr=14;
+            return(ierr);
+          }
+        }
+        //
+        //   Check to see if we read pass the end of the GRIB
+        //   message and missed the terminator string '7777'.
+        //
+        ipos=ipos+lensec;                // Update beginning of section pointer
+        if (ipos > (istart+lengrib)) {
+          printf("g2_getfld: '7777'  not found at end of GRIB message.\n");
+          ierr=7;
+          return(ierr);
+        }
+        //
+        //  If unpacking requested, return when all sections have been
+        //  processed
+        //
+        if (unpack && have3 && have4 && have5 && have6 && have7)
+            return(ierr);
+        //
+        //  If unpacking is not requested, return when sections 
+        //  3 through 6 have been processed
+        //
+        if ((! unpack) && have3 && have4 && have5 && have6)
+            return(ierr);
+        
+      }
+
+//
+//  If exited from above loop, the end of the GRIB message was reached
+//  before the requested field was found.
+//
+      printf("g2_getfld: GRIB message contained %ld different fields.\n",numfld);
+      printf("g2_getfld: The request was for field %ld.\n",ifldnum);
+      ierr=6;
+
+      return(ierr);
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_gribend.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_gribend.c
new file mode 100755
index 0000000..2d4c55f
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_gribend.c
@@ -0,0 +1,125 @@
+/**********************************************************
+ * Version $Id: g2_gribend.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include "grib2.h"
+
+g2int g2_gribend(unsigned char *cgrib)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_gribend 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-31
+//
+// ABSTRACT: This routine finalizes a GRIB2 message after all grids
+//   and fields have been added.  It adds the End Section ( "7777" )
+//   to the end of the GRIB message and calculates the length and stores
+//   it in the appropriate place in Section 0.
+//   This routine is used with routines "g2_create", "g2_addlocal", 
+//   "g2_addgrid", and "g2_addfield" to create a complete GRIB2 message.
+//   g2_create must be called first to initialize a new GRIB2 message.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-31  Gilbert
+//
+// USAGE:    int g2_gribend(unsigned char *cgrib)
+//   INPUT ARGUMENT:
+//     cgrib    - Char array containing all the data sections added
+//                be previous calls to g2_create, g2_addlocal, g2_addgrid,
+//                and g2_addfield.
+//
+//   OUTPUT ARGUMENTS:      
+//     cgrib    - Char array containing the finalized GRIB2 message
+//
+//   RETURN VALUES:
+//     ierr     - Return code.
+//              > 0 = Length of the final GRIB2 message in bytes.
+//               -1 = GRIB message was not initialized.  Need to call
+//                    routine g2_create first.
+//               -2 = GRIB message already complete.  
+//               -3 = Sum of Section byte counts doesn't add to total byte count
+//               -4 = Previous Section was not 7.
+//
+// REMARKS: This routine is intended for use with routines "g2_create", 
+//          "g2_addlocal", "g2_addgrid", and "g2_addfield" to create a complete 
+//          GRIB2 message.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:
+//
+//$$$
+{
+
+      g2int iofst,lencurr,len,ilen,isecnum;
+      g2int   ierr,lengrib;
+      static unsigned char G=0x47;       // 'G'
+      static unsigned char R=0x52;       // 'R'
+      static unsigned char I=0x49;       // 'I'
+      static unsigned char B=0x42;       // 'B'
+      static unsigned char seven=0x37;   // '7'
+ 
+      ierr=0;
+//
+//  Check to see if beginning of GRIB message exists
+//
+      if ( cgrib[0]!=G || cgrib[1]!=R || cgrib[2]!=I || cgrib[3]!=B ) {
+        printf("g2_gribend: GRIB not found in given message.\n");
+        ierr=-1;
+        return (ierr);
+      }
+//
+//  Get current length of GRIB message
+//  
+      gbit(cgrib,&lencurr,96,32);
+//
+//  Loop through all current sections of the GRIB message to
+//  find the last section number.
+//
+      len=16;    // Length of Section 0
+      for (;;) { 
+      //    Get number and length of next section
+        iofst=len*8;
+        gbit(cgrib,&ilen,iofst,32);
+        iofst=iofst+32;
+        gbit(cgrib,&isecnum,iofst,8);
+        len=len+ilen;
+      //    Exit loop if last section reached
+        if ( len == lencurr ) break;
+      //    If byte count for each section doesn't match current
+      //    total length, then there is a problem.
+        if ( len > lencurr ) {
+          printf("g2_gribend: Section byte counts don''t add to total.\n");
+          printf("g2_gribend: Sum of section byte counts = %d\n",(int)len);
+          printf("g2_gribend: Total byte count in Section 0 = %d\n",(int)lencurr);
+          ierr=-3;
+          return (ierr);
+        }
+      }
+//
+//  Can only add End Section (Section 8) after Section 7.
+//
+      if ( isecnum != 7 ) {
+        printf("g2_gribend: Section 8 can only be added after Section 7.\n");
+        printf("g2_gribend: Section %ld was the last found in given GRIB message.\n",isecnum);
+        ierr=-4;
+        return (ierr);
+      }
+//
+//  Add Section 8  - End Section
+//
+      //cgrib(lencurr+1:lencurr+4)=c7777
+      cgrib[lencurr]=seven;
+      cgrib[lencurr+1]=seven;
+      cgrib[lencurr+2]=seven;
+      cgrib[lencurr+3]=seven;
+
+//
+//  Update current byte total of message in Section 0
+//
+      lengrib=lencurr+4;
+      sbit(cgrib,&lengrib,96,32);
+
+      return (lengrib);
+
+}
+
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_info.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_info.c
new file mode 100755
index 0000000..fcbc49c
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_info.c
@@ -0,0 +1,193 @@
+/**********************************************************
+ * Version $Id: g2_info.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+g2int g2_info(unsigned char *cgrib,g2int *listsec0,g2int *listsec1,
+            g2int *numfields,g2int *numlocal)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_info 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-28
+//
+// ABSTRACT: This subroutine searches through a GRIB2 message and
+//   returns the number of gridded fields found in the message and
+//   the number (and maximum size) of Local Use Sections.
+//   Also various checks  are performed
+//   to see if the message is a valid GRIB2 message.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-28  Gilbert
+//
+// USAGE:   int g2_info(unsigned char *cgrib,g2int *listsec0,g2int *listsec1,
+//            g2int *numfields,g2int *numlocal)
+//   INPUT ARGUMENT:
+//     cgrib    - Character pointer to the GRIB2 message
+//
+//   OUTPUT ARGUMENTS:      
+//     listsec0 - pointer to an array containing information decoded from 
+//                GRIB Indicator Section 0.
+//                Must be allocated with >= 3 elements.
+//                listsec0[0]=Discipline-GRIB Master Table Number
+//                            (see Code Table 0.0)
+//                listsec0[1]=GRIB Edition Number (currently 2)
+//                listsec0[2]=Length of GRIB message
+//     listsec1 - pointer to an array containing information read from GRIB 
+//                Identification Section 1.
+//                Must be allocated with >= 13 elements.
+//                listsec1[0]=Id of orginating centre (Common Code Table C-1)
+//                listsec1[1]=Id of orginating sub-centre (local table)
+//                listsec1[2]=GRIB Master Tables Version Number (Code Table 1.0)
+//                listsec1[3]=GRIB Local Tables Version Number 
+//                listsec1[4]=Significance of Reference Time (Code Table 1.1)
+//                listsec1[5]=Reference Time - Year (4 digits)
+//                listsec1[6]=Reference Time - Month
+//                listsec1[7]=Reference Time - Day
+//                listsec1[8]=Reference Time - Hour
+//                listsec1[9]=Reference Time - Minute
+//                listsec1[10]=Reference Time - Second
+//                listsec1[11]=Production status of data (Code Table 1.2)
+//                listsec1[12]=Type of processed data (Code Table 1.3)
+//     numfields- The number of gridded fields found in the GRIB message.
+//                That is, the number of occurences of Sections 4 - 7.
+//     numlocal - The number of Local Use Sections ( Section 2 ) found in 
+//                the GRIB message.
+//
+//     RETURN VALUES:
+//     ierr     - Error return code.
+//                0 = no error
+//                1 = Beginning characters "GRIB" not found.
+//                2 = GRIB message is not Edition 2.
+//                3 = Could not find Section 1, where expected.
+//                4 = End string "7777" found, but not where expected.
+//                5 = End string "7777" not found at end of message.
+//                6 = Invalid section number found.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$
+{
+ 
+      g2int ierr,mapsec1len=13;
+      g2int mapsec1[13]={2,2,1,1,1,2,1,1,1,1,1,1,1};
+      g2int  i,j,istart,iofst,lengrib,lensec0,lensec1;
+      g2int ipos,isecnum,nbits,lensec;
+
+      ierr=0;
+      *numlocal=0;
+      *numfields=0;
+//
+//  Check for beginning of GRIB message in the first 100 bytes
+//
+      istart=-1;
+      for (j=0;j<100;j++) {
+        if (cgrib[j]=='G' && cgrib[j+1]=='R' &&cgrib[j+2]=='I' &&
+            cgrib[j+3]=='B') {
+          istart=j;
+          break;
+        }
+      }
+      if (istart == -1) {
+        printf("g2_info:  Beginning characters GRIB not found.");
+        ierr=1;
+        return(ierr);
+      }
+//
+//  Unpack Section 0 - Indicator Section 
+//
+      iofst=8*(istart+6);
+      gbit(cgrib,listsec0+0,iofst,8);     // Discipline
+      iofst=iofst+8;
+      gbit(cgrib,listsec0+1,iofst,8);     // GRIB edition number
+      iofst=iofst+8;
+      iofst=iofst+32;
+      gbit(cgrib,&lengrib,iofst,32);        // Length of GRIB message
+      iofst=iofst+32;
+      listsec0[2]=lengrib;
+      lensec0=16;
+      ipos=istart+lensec0;
+//
+//  Currently handles only GRIB Edition 2.
+//  
+      if (listsec0[1] != 2) {
+        printf("g2_info: can only decode GRIB edition 2.");
+        ierr=2;
+        return(ierr);
+      }
+//
+//  Unpack Section 1 - Identification Section
+//
+      gbit(cgrib,&lensec1,iofst,32);        // Length of Section 1
+      iofst=iofst+32;
+      gbit(cgrib,&isecnum,iofst,8);         // Section number ( 1 )
+      iofst=iofst+8;
+      if (isecnum != 1) {
+        printf("g2_info: Could not find section 1.");
+        ierr=3;
+        return(ierr);
+      }
+      //
+      //   Unpack each input value in array listsec1 into the
+      //   the appropriate number of octets, which are specified in
+      //   corresponding entries in array mapsec1.
+      //
+      for (i=0;i<mapsec1len;i++) {
+        nbits=mapsec1[i]*8;
+        gbit(cgrib,listsec1+i,iofst,nbits);
+        iofst=iofst+nbits;
+      }
+      ipos=ipos+lensec1;
+//
+//  Loop through the remaining sections to see if they are valid.
+//  Also count the number of times Section 2
+//  and Section 4 appear.
+//
+      for (;;) {
+        if (cgrib[ipos]=='7' && cgrib[ipos+1]=='7' && cgrib[ipos+2]=='7' &&
+            cgrib[ipos+3]=='7') {
+          ipos=ipos+4;
+          if (ipos != (istart+lengrib)) {
+            printf("g2_info: '7777' found, but not where expected.\n");
+            ierr=4;
+            return(ierr);
+          }
+          break;
+        }
+        
+        iofst=ipos*8;
+        gbit(cgrib,&lensec,iofst,32);        // Get Length of Section
+        iofst=iofst+32;
+        gbit(cgrib,&isecnum,iofst,8);         // Get Section number
+        iofst=iofst+8;
+        ipos=ipos+lensec;                 // Update beginning of section pointer
+        if (ipos > (istart+lengrib)) {
+          printf("g2_info: '7777'  not found at end of GRIB message.\n");
+          ierr=5;
+          return(ierr);
+        }
+        if ( isecnum>=2 && isecnum<=7 ) {
+           if (isecnum == 2)      // Local Section 2
+              //   increment counter for total number of local sections found
+              (*numlocal)++;
+            
+           else if (isecnum == 4)
+              //   increment counter for total number of fields found
+              (*numfields)++;
+        }
+        else {
+           printf("g2_info: Invalid section number found in GRIB message: %ld\n"                   ,isecnum);
+           ierr=6;
+           return(ierr);
+        }
+        
+      }
+
+      return(0);
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_miss.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_miss.c
new file mode 100755
index 0000000..0bf5da3
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_miss.c
@@ -0,0 +1,72 @@
+/**********************************************************
+ * Version $Id: g2_miss.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include "grib2.h"
+
+void g2_miss( gribfield *gfld, float *rmiss, int *nmiss )
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_miss 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2004-12-16
+//
+// ABSTRACT: This routine checks the Data Representation Template to see if
+// missing value management is used, and returns the missing value(s) 
+// in the data field.
+//
+// PROGRAM HISTORY LOG:
+// 2004-12-16  Gilbert
+//
+// USAGE:    g2_miss( gribfield *gfld, float *rmiss, int *nmiss )
+//                   
+//   INPUT ARGUMENT LIST:
+//     *gfld    - pointer to gribfield structure (defined in include file 
+//                   grib2.h)
+//
+//   OUTPUT ARGUMENT LIST:      
+//     rmiss    - List of the missing values used
+//     nmiss    - NUmber of the missing values included in the field
+//
+// REMARKS:  rmiss must be allocated in the calling program with enough space 
+//           hold all the missing values.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+    g2int     itype;    
+
+    /*
+     *  Missing value management currnetly only used in
+     *  DRT's 5.2 and 5.3.
+     */
+    if ( gfld->idrtnum != 2  &&  gfld->idrtnum != 3 ) {
+       *nmiss=0;
+       return;
+    }
+                                                                                
+    itype = gfld->idrtmpl[4];
+    if ( gfld->idrtmpl[6] == 1 ) {
+         *nmiss=1;
+         if (itype == 0)
+            rdieee(gfld->idrtmpl+7,rmiss+0,1);
+         else
+            rmiss[0]=(float)gfld->idrtmpl[7];
+    }
+    else if ( gfld->idrtmpl[6] == 2 ) {
+         *nmiss=2;
+         if (itype == 0) {
+            rdieee(gfld->idrtmpl+7,rmiss+0,1);
+            rdieee(gfld->idrtmpl+8,rmiss+1,1);
+         }
+         else {
+            rmiss[0]=(float)gfld->idrtmpl[7];
+            rmiss[1]=(float)gfld->idrtmpl[8];
+         }
+    }
+    else {
+       *nmiss=0;
+    }
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack1.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack1.c
new file mode 100755
index 0000000..64332f8
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack1.c
@@ -0,0 +1,102 @@
+/**********************************************************
+ * Version $Id: g2_unpack1.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+g2int g2_unpack1(unsigned char *cgrib,g2int *iofst,g2int **ids,g2int *idslen)
+/*//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_unpack1 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-29
+//
+// ABSTRACT: This subroutine unpacks Section 1 (Identification Section)
+//           as defined in GRIB Edition 2.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-29  Gilbert
+//
+// USAGE:    int g2_unpack1(unsigned char *cgrib,g2int *iofst,g2int **ids,
+//                          g2int *idslen)
+//   INPUT ARGUMENTS:
+//     cgrib    - char array containing Section 1 of the GRIB2 message
+//     iofst    - Bit offset for the beginning of Section 1 in cgrib.
+//
+//   OUTPUT ARGUMENTS:      
+//     iofst    - Bit offset at the end of Section 1, returned.
+//     ids      - address of pointer to integer array containing information 
+//                read from Section 1, the Identification section.
+//            ids[0]  = Identification of originating Centre
+//                                 ( see Common Code Table C-1 )
+//            ids[1]  = Identification of originating Sub-centre
+//            ids[2]  = GRIB Master Tables Version Number
+//                                 ( see Code Table 1.0 )
+//            ids[3]  = GRIB Local Tables Version Number
+//                                 ( see Code Table 1.1 )
+//            ids[4]  = Significance of Reference Time (Code Table 1.2)
+//            ids[5]  = Year ( 4 digits )
+//            ids[6]  = Month
+//            ids[7]  = Day
+//            ids[8]  = Hour
+//            ids[9]  = Minute
+//            ids[10]  = Second
+//            ids[11]  = Production status of processed data
+//                                 ( see Code Table 1.3 )
+//            ids[12]  = Type of processed data ( see Code Table 1.4 )
+//     idslen   - Number of elements in ids[].
+//
+//   RETURN VALUES:
+//     ierr     - Error return code.
+//                0 = no error
+//                2 = Array passed is not section 1
+//                6 = memory allocation error
+//
+// REMARKS: 
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:
+//
+//$$$
+*/
+{
+
+      g2int i,lensec,nbits,ierr,isecnum;
+      g2int mapid[13]={2,2,1,1,1,2,1,1,1,1,1,1,1};
+
+      ierr=0;
+      *idslen=13;
+      *ids=0;
+
+      gbit(cgrib,&lensec,*iofst,32);        // Get Length of Section
+      *iofst=*iofst+32;
+      gbit(cgrib,&isecnum,*iofst,8);         // Get Section Number
+      *iofst=*iofst+8;
+
+      if ( isecnum != 1 ) {
+         ierr=2;
+         *idslen=13;
+         fprintf(stderr,"g2_unpack1: Not Section 1 data.\n");
+         return(ierr);
+      }
+
+      //
+      //   Unpack each value into array ids from the
+      //   the appropriate number of octets, which are specified in
+      //   corresponding entries in array mapid.
+      //
+      *ids=(g2int *)calloc(*idslen,sizeof(g2int));
+      if (*ids == 0) {
+         ierr=6;
+         return(ierr);
+      }
+      
+      for (i=0;i<*idslen;i++) {
+        nbits=mapid[i]*8;
+        gbit(cgrib,*ids+i,*iofst,nbits);
+        *iofst=*iofst+nbits;
+      }
+      
+      return(ierr);    // End of Section 1 processing
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack2.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack2.c
new file mode 100755
index 0000000..b05cd52
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack2.c
@@ -0,0 +1,82 @@
+/**********************************************************
+ * Version $Id: g2_unpack2.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+g2int g2_unpack2(unsigned char *cgrib,g2int *iofst,g2int *lencsec2,unsigned char **csec2)
+////$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_unpack2 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-31
+//
+// ABSTRACT: This subroutine unpacks Section 2 (Local Use Section)
+//           as defined in GRIB Edition 2.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-31  Gilbert
+//
+// USAGE:    int g2_unpack2(unsigned char *cgrib,g2int *iofst,g2int *lencsec2,
+//                          unsigned char **csec2)
+//   INPUT ARGUMENT LIST:
+//     cgrib    - char array containing Section 2 of the GRIB2 message
+//     iofst    - Bit offset for the beginning of Section 2 in cgrib.
+//
+//   OUTPUT ARGUMENT LIST:      
+//     iofst    - Bit offset at the end of Section 2, returned.
+//     lencsec2 - Length (in octets) of Local Use data
+//     csec2    - Pointer to a char array containing local use data
+//
+//   RETURN VALUES:
+//     ierr     - Error return code.
+//                0 = no error
+//                2 = Array passed is not section 2
+//                6 = memory allocation error
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE: 
+//
+//$$$//
+{
+
+      g2int ierr,isecnum;
+      g2int lensec,ipos,j;
+
+      ierr=0;
+      *lencsec2=0;
+      *csec2=0;    // NULL
+
+      gbit(cgrib,&lensec,*iofst,32);        // Get Length of Section
+      *iofst=*iofst+32;
+      *lencsec2=lensec-5;
+      gbit(cgrib,&isecnum,*iofst,8);         // Get Section Number
+      *iofst=*iofst+8;
+      ipos=(*iofst/8);
+
+      if ( isecnum != 2 ) {
+         ierr=2;
+         *lencsec2=0;
+         fprintf(stderr,"g2_unpack2: Not Section 2 data.\n");
+         return(ierr);
+      }
+
+      *csec2=(unsigned char *)malloc(*lencsec2);
+      if (*csec2 == 0) {
+         ierr=6;
+         *lencsec2=0;
+         return(ierr);
+      }
+      
+      //printf(" SAGIPO %d \n",(int)ipos);
+      for (j=0;j<*lencsec2;j++) {
+         *(*csec2+j)=cgrib[ipos+j];
+      }
+      *iofst=*iofst+(*lencsec2*8);
+
+      return(ierr);    // End of Section 2 processing
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack3.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack3.c
new file mode 100755
index 0000000..aa10b92
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack3.c
@@ -0,0 +1,216 @@
+/**********************************************************
+ * Version $Id: g2_unpack3.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+
+g2int g2_unpack3(unsigned char *cgrib,g2int *iofst,g2int **igds,g2int **igdstmpl,
+                         g2int *mapgridlen,g2int **ideflist,g2int *idefnum)
+////$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_unpack3 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-31
+//
+// ABSTRACT: This routine unpacks Section 3 (Grid Definition Section)
+//           as defined in GRIB Edition 2.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-31  Gilbert
+//
+// USAGE:    int g2_unpack3(unsigned char *cgrib,g2int *iofst,g2int **igds,
+//                          g2int **igdstmpl,g2int *mapgridlen,
+//                          g2int **ideflist,g2int *idefnum)
+//   INPUT ARGUMENTS:
+//     cgrib    - Char array ontaining Section 3 of the GRIB2 message
+//     iofst    - Bit offset for the beginning of Section 3 in cgrib.
+//
+//   OUTPUT ARGUMENTS:      
+//     iofst    - Bit offset at the end of Section 3, returned.
+//     igds     - Contains information read from the appropriate GRIB Grid 
+//                Definition Section 3 for the field being returned.
+//                igds[0]=Source of grid definition (see Code Table 3.0)
+//                igds[1]=Number of grid points in the defined grid.
+//                igds[2]=Number of octets needed for each 
+//                            additional grid points definition.  
+//                            Used to define number of
+//                            points in each row ( or column ) for
+//                            non-regular grids.  
+//                            = 0, if using regular grid.
+//                igds[3]=Interpretation of list for optional points 
+//                            definition.  (Code Table 3.11)
+//                igds[4]=Grid Definition Template Number (Code Table 3.1)
+//     igdstmpl - Pointer to integer array containing the data values for 
+//                the specified Grid Definition
+//                Template ( NN=igds[4] ).  Each element of this integer 
+//                array contains an entry (in the order specified) of Grid
+//                Defintion Template 3.NN
+//     mapgridlen- Number of elements in igdstmpl[].  i.e. number of entries
+//                in Grid Defintion Template 3.NN  ( NN=igds[4] ).
+//     ideflist - (Used if igds[2] .ne. 0)  Pointer to integer array containing
+//                the number of grid points contained in each row ( or column ).
+//                (part of Section 3)
+//     idefnum  - (Used if igds[2] .ne. 0)  The number of entries
+//                in array ideflist.  i.e. number of rows ( or columns )
+//                for which optional grid points are defined.
+//     ierr     - Error return code.
+//                0 = no error
+//                2 = Not Section 3
+//                5 = "GRIB" message contains an undefined Grid Definition
+//                    Template.
+//                6 = memory allocation error
+//
+// REMARKS: 
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:
+//
+//$$$
+
+{
+      g2int ierr,i,j,nbits,isecnum;
+      g2int lensec,ibyttem=0,isign,newlen;
+      g2int *ligds,*ligdstmpl=0,*lideflist=0;
+      template *mapgrid;
+
+      ierr=0;
+      *igds=0;       // NULL
+      *igdstmpl=0;       // NULL
+      *ideflist=0;       // NULL
+
+      gbit(cgrib,&lensec,*iofst,32);        // Get Length of Section
+      *iofst=*iofst+32;
+      gbit(cgrib,&isecnum,*iofst,8);         // Get Section Number
+      *iofst=*iofst+8;
+
+      if ( isecnum != 3 ) {
+         ierr=2;
+         *idefnum=0;
+         *mapgridlen=0;
+        // fprintf(stderr,"g2_unpack3: Not Section 3 data.\n");
+         return(ierr);
+      }
+
+      ligds=(g2int *)calloc(5,sizeof(g2int));
+      *igds=ligds;
+
+      gbit(cgrib,ligds+0,*iofst,8);     // Get source of Grid def.
+      *iofst=*iofst+8;
+      gbit(cgrib,ligds+1,*iofst,32);    // Get number of grid pts.
+      *iofst=*iofst+32;
+      gbit(cgrib,ligds+2,*iofst,8);     // Get num octets for opt. list
+      *iofst=*iofst+8;
+      gbit(cgrib,ligds+3,*iofst,8);     // Get interpret. for opt. list
+      *iofst=*iofst+8;
+      gbit(cgrib,ligds+4,*iofst,16);    // Get Grid Def Template num.
+      *iofst=*iofst+16;
+
+      if (ligds[4] != 65535) {
+        //   Get Grid Definition Template
+        mapgrid=getgridtemplate(ligds[4]);
+        if (mapgrid == 0) {         // undefined template
+          ierr=5;
+          return(ierr);
+        }
+        *mapgridlen=mapgrid->maplen;
+        //
+        //   Unpack each value into array igdstmpl from the
+        //   the appropriate number of octets, which are specified in
+        //   corresponding entries in array mapgrid.
+        //
+        if (*mapgridlen > 0) {
+           ligdstmpl=0;
+           ligdstmpl=(g2int *)calloc(*mapgridlen,sizeof(g2int));
+           if (ligdstmpl == 0) {
+              ierr=6;
+              *mapgridlen=0;
+              *igdstmpl=0;    //NULL
+              if( mapgrid != 0 ) free(mapgrid);
+              return(ierr);
+           }
+           else {
+              *igdstmpl=ligdstmpl;
+           }
+        }
+        ibyttem=0;
+        for (i=0;i<*mapgridlen;i++) {
+          nbits=abs(mapgrid->map[i])*8;
+          if ( mapgrid->map[i] >= 0 ) {
+            gbit(cgrib,ligdstmpl+i,*iofst,nbits);
+          }
+          else {
+            gbit(cgrib,&isign,*iofst,1);
+            gbit(cgrib,ligdstmpl+i,*iofst+1,nbits-1);
+            if (isign == 1) ligdstmpl[i]=-1*ligdstmpl[i];
+          }
+          *iofst=*iofst+nbits;
+          ibyttem=ibyttem+abs(mapgrid->map[i]);
+        }
+        //
+        //   Check to see if the Grid Definition Template needs to be
+        //   extended.
+        //   The number of values in a specific template may vary
+        //   depending on data specified in the "static" part of the
+        //   template.
+        //
+        if ( mapgrid->needext == 1 ) {
+          free(mapgrid);
+          mapgrid=extgridtemplate(ligds[4],ligdstmpl);
+          //   Unpack the rest of the Grid Definition Template
+          newlen=mapgrid->maplen+mapgrid->extlen;
+          ligdstmpl=(g2int *)realloc(ligdstmpl,newlen*sizeof(g2int));
+          *igdstmpl=ligdstmpl;
+          j=0;
+          for (i=*mapgridlen;i<newlen;i++) {
+            nbits=abs(mapgrid->ext[j])*8;
+            if ( mapgrid->ext[j] >= 0 ) {
+              gbit(cgrib,ligdstmpl+i,*iofst,nbits);
+            }
+            else {
+              gbit(cgrib,&isign,*iofst,1);
+              gbit(cgrib,ligdstmpl+i,*iofst+1,nbits-1);
+              if (isign == 1) ligdstmpl[i]=-1*ligdstmpl[i];
+            }
+            *iofst=*iofst+nbits;
+            ibyttem=ibyttem+abs(mapgrid->ext[j]);
+            j++;
+          }
+          *mapgridlen=newlen;
+        }
+        if( mapgrid->ext != 0 ) free(mapgrid->ext);
+        if( mapgrid != 0 ) free(mapgrid);
+      }
+      else {              // No Grid Definition Template
+        *mapgridlen=0;
+        *igdstmpl=0;
+      }
+      //
+      //   Unpack optional list of numbers defining number of points
+      //   in each row or column, if included.  This is used for non regular
+      //   grids.
+      //
+      if ( ligds[2] != 0 ) {
+         nbits=ligds[2]*8;
+         *idefnum=(lensec-14-ibyttem)/ligds[2];
+         if (*idefnum > 0) lideflist=(g2int *)calloc(*idefnum,sizeof(g2int));
+         if (lideflist == 0) {
+            ierr=6;
+            *idefnum=0;
+            *ideflist=0;   //NULL
+            return(ierr);
+         }
+         else {
+            *ideflist=lideflist;
+         }
+         gbits(cgrib,lideflist,*iofst,nbits,0,*idefnum);
+         *iofst=*iofst+(nbits*(*idefnum));
+      }
+      else {
+         *idefnum=0;
+         *ideflist=0;    // NULL
+      }
+      
+      return(ierr);    // End of Section 3 processing
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack4.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack4.c
new file mode 100755
index 0000000..cc5cabf
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack4.c
@@ -0,0 +1,187 @@
+/**********************************************************
+ * Version $Id: g2_unpack4.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+
+g2int g2_unpack4(unsigned char *cgrib,g2int *iofst,g2int *ipdsnum,g2int **ipdstmpl,
+               g2int *mappdslen,g2float **coordlist,g2int *numcoord)
+////$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_unpack4 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-31
+//
+// ABSTRACT: This subroutine unpacks Section 4 (Product Definition Section)
+//           as defined in GRIB Edition 2.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-31  Gilbert
+//
+// USAGE:    int g2_unpack4(unsigned char *cgrib,g2int *iofst,g2int *ipdsnum,
+//                          g2int **ipdstmpl,g2int *mappdslen,
+//                          g2float **coordlist,g2int *numcoord)
+//   INPUT ARGUMENTS:
+//     cgrib    - Char array containing Section 4 of the GRIB2 message
+//     iofst    - Bit offset of the beginning of Section 4 in cgrib.
+//
+//   OUTPUT ARGUMENTS:      
+//     iofst    - Bit offset of the end of Section 4, returned.
+//     ipdsnum  - Product Definition Template Number ( see Code Table 4.0)
+//     ipdstmpl - Pointer to integer array containing the data values for 
+//                the specified Product Definition
+//                Template ( N=ipdsnum ).  Each element of this integer
+//                array contains an entry (in the order specified) of Product
+//                Defintion Template 4.N
+//     mappdslen- Number of elements in ipdstmpl[].  i.e. number of entries
+//                in Product Defintion Template 4.N  ( N=ipdsnum ).
+//     coordlist- Pointer to real array containing floating point values 
+//                intended to document
+//                the vertical discretisation associated to model data
+//                on hybrid coordinate vertical levels.  (part of Section 4)
+//     numcoord - number of values in array coordlist.
+//
+//   RETURN VALUES:
+//     ierr     - Error return code.
+//                0 = no error
+//                2 = Not section 4
+//                5 = "GRIB" message contains an undefined Product Definition
+//                    Template.
+//                6 = memory allocation error
+//
+// REMARKS: 
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$//
+{
+
+      g2int ierr,needext,i,j,nbits,isecnum;
+      g2int lensec,isign,newlen;
+      g2int *coordieee;
+      g2int *lipdstmpl=0;
+      g2float *lcoordlist;
+      template *mappds;
+
+      ierr=0;
+      *ipdstmpl=0;    // NULL
+      *coordlist=0;    // NULL
+
+      gbit(cgrib,&lensec,*iofst,32);        // Get Length of Section
+      *iofst=*iofst+32;
+      gbit(cgrib,&isecnum,*iofst,8);         // Get Section Number
+      *iofst=*iofst+8;
+
+      if ( isecnum != 4 ) {
+         ierr=2;
+         *numcoord=0;
+         *mappdslen=0;
+        // fprintf(stderr,"g2_unpack4: Not Section 4 data.\n");
+         return(ierr);
+      }
+
+      gbit(cgrib,numcoord,*iofst,16);    // Get num of coordinate values
+      *iofst=*iofst+16;
+      gbit(cgrib,ipdsnum,*iofst,16);    // Get Prod. Def Template num.
+      *iofst=*iofst+16;
+
+      //   Get Product Definition Template
+      mappds=getpdstemplate(*ipdsnum);
+      if (mappds == 0) {       // undefine template
+        ierr=5;
+        *mappdslen=0;
+        return(ierr);
+      }
+      *mappdslen=mappds->maplen;
+      needext=mappds->needext;
+      //
+      //   Unpack each value into array ipdstmpl from the
+      //   the appropriate number of octets, which are specified in
+      //   corresponding entries in array mappds.
+      //
+      if (*mappdslen > 0) lipdstmpl=(g2int *)calloc(*mappdslen,sizeof(g2int));
+      if (lipdstmpl == 0) {
+         ierr=6;
+         *mappdslen=0;
+         *ipdstmpl=0;     //NULL
+         if ( mappds != 0 ) free(mappds);
+         return(ierr);
+      }
+      else {
+         *ipdstmpl=lipdstmpl;
+      }
+      for (i=0;i<mappds->maplen;i++) {
+        nbits=abs(mappds->map[i])*8;
+        if ( mappds->map[i] >= 0 ) {
+          gbit(cgrib,lipdstmpl+i,*iofst,nbits);
+        }
+        else {
+          gbit(cgrib,&isign,*iofst,1);
+          gbit(cgrib,lipdstmpl+i,*iofst+1,nbits-1);
+          if (isign == 1) lipdstmpl[i]=-1*lipdstmpl[i];
+        }
+        *iofst=*iofst+nbits;
+      }
+      //
+      //   Check to see if the Product Definition Template needs to be
+      //   extended.
+      //   The number of values in a specific template may vary
+      //   depending on data specified in the "static" part of the
+      //   template.
+      //
+      if ( needext ==1 ) {
+        free(mappds);
+        mappds=extpdstemplate(*ipdsnum,lipdstmpl);
+        newlen=mappds->maplen+mappds->extlen;
+        lipdstmpl=(g2int *)realloc(lipdstmpl,newlen*sizeof(g2int));
+        *ipdstmpl=lipdstmpl;
+        //   Unpack the rest of the Product Definition Template
+        j=0;
+        for (i=*mappdslen;i<newlen;i++) {
+          nbits=abs(mappds->ext[j])*8;
+          if ( mappds->ext[j] >= 0 ) {
+            gbit(cgrib,lipdstmpl+i,*iofst,nbits);
+          }
+          else {
+            gbit(cgrib,&isign,*iofst,1);
+            gbit(cgrib,lipdstmpl+i,*iofst+1,nbits-1);
+            if (isign == 1) lipdstmpl[i]=-1*lipdstmpl[i];
+          }
+          *iofst=*iofst+nbits;
+          j++;
+        }
+        *mappdslen=newlen;
+      }
+      if( mappds->ext != 0 ) free(mappds->ext);
+      if( mappds != 0 ) free(mappds);
+      //
+      //   Get Optional list of vertical coordinate values
+      //   after the Product Definition Template, if necessary.
+      //
+      *coordlist=0;    // NULL
+      if ( *numcoord != 0 ) {
+         coordieee=(g2int *)calloc(*numcoord,sizeof(g2int));
+         lcoordlist=(g2float *)calloc(*numcoord,sizeof(g2float));
+         if (coordieee == 0 || lcoordlist == 0) {
+            ierr=6;
+            *numcoord=0;
+            *coordlist=0;    // NULL
+            if( coordieee != 0 ) free(coordieee);
+            if( lcoordlist != 0 ) free(lcoordlist);
+            return(ierr);
+         }
+         else {
+            *coordlist=lcoordlist;
+         }
+        gbits(cgrib,coordieee,*iofst,32,0,*numcoord);
+        rdieee(coordieee,*coordlist,*numcoord);
+        free(coordieee);
+        *iofst=*iofst+(32*(*numcoord));
+      }
+      
+      return(ierr);    // End of Section 4 processing
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack5.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack5.c
new file mode 100755
index 0000000..0f2f992
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack5.c
@@ -0,0 +1,154 @@
+/**********************************************************
+ * Version $Id: g2_unpack5.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+
+g2int g2_unpack5(unsigned char *cgrib,g2int *iofst,g2int *ndpts,g2int *idrsnum,
+               g2int **idrstmpl,g2int *mapdrslen)
+////$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_unpack5 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-31
+//
+// ABSTRACT: This subroutine unpacks Section 5 (Data Representation Section)
+//           as defined in GRIB Edition 2.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-31  Gilbert
+//
+// USAGE:    int g2_unpack5(unsigned char *cgrib,g2int *iofst,g2int *ndpts,
+//                          g2int *idrsnum,g2int **idrstmpl,g2int *mapdrslen)
+//   INPUT ARGUMENTS:
+//     cgrib    - char array containing Section 5 of the GRIB2 message
+//     iofst    - Bit offset for the beginning of Section 5 in cgrib.
+//
+//   OUTPUT ARGUMENTS:      
+//     iofst    - Bit offset at the end of Section 5, returned.
+//     ndpts    - Number of data points unpacked and returned.
+//     idrsnum  - Data Representation Template Number ( see Code Table 5.0)
+//     idrstmpl - Pointer to an integer array containing the data values for 
+//                the specified Data Representation
+//                Template ( N=idrsnum ).  Each element of this integer
+//                array contains an entry (in the order specified) of Data
+//                Representation Template 5.N
+//     mapdrslen- Number of elements in idrstmpl[].  i.e. number of entries
+//                in Data Representation Template 5.N  ( N=idrsnum ).
+//
+//   RETURN VALUES:
+//     ierr     - Error return code.
+//                0 = no error
+//                2 = Not Section 5
+//                6 = memory allocation error
+//                7 = "GRIB" message contains an undefined Data
+//                    Representation Template.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$//
+{
+      g2int ierr,needext,i,j,nbits,isecnum;
+      g2int lensec,isign,newlen;
+      g2int *lidrstmpl=0;
+      template *mapdrs;
+
+      ierr=0;
+      *idrstmpl=0;       //NULL
+
+      gbit(cgrib,&lensec,*iofst,32);        // Get Length of Section
+      *iofst=*iofst+32;
+      gbit(cgrib,&isecnum,*iofst,8);         // Get Section Number
+      *iofst=*iofst+8;
+
+      if ( isecnum != 5 ) {
+         ierr=2;
+         *ndpts=0;
+         *mapdrslen=0;
+        // fprintf(stderr,"g2_unpack5: Not Section 5 data.\n");
+         return(ierr);
+      }
+
+      gbit(cgrib,ndpts,*iofst,32);    // Get num of data points
+      *iofst=*iofst+32;
+      gbit(cgrib,idrsnum,*iofst,16);     // Get Data Rep Template Num.
+      *iofst=*iofst+16;
+
+      //   Gen Data Representation Template
+      mapdrs=getdrstemplate(*idrsnum);
+      if (mapdrs == 0) {
+        ierr=7;
+        *mapdrslen=0;
+        return(ierr);
+      }
+      *mapdrslen=mapdrs->maplen;
+      needext=mapdrs->needext;
+      //
+      //   Unpack each value into array ipdstmpl from the
+      //   the appropriate number of octets, which are specified in
+      //   corresponding entries in array mapdrs.
+      //
+      if (*mapdrslen > 0) lidrstmpl=(g2int *)calloc(*mapdrslen,sizeof(g2int));
+      if (lidrstmpl == 0) {
+         ierr=6;
+         *mapdrslen=0;
+         *idrstmpl=0;     //NULL
+         if ( mapdrs != 0 ) free(mapdrs);
+         return(ierr);
+      }
+      else {
+         *idrstmpl=lidrstmpl;
+      }
+      for (i=0;i<mapdrs->maplen;i++) {
+        nbits=abs(mapdrs->map[i])*8;
+        if ( mapdrs->map[i] >= 0 ) {
+          gbit(cgrib,lidrstmpl+i,*iofst,nbits);
+        }
+        else {
+          gbit(cgrib,&isign,*iofst,1);
+          gbit(cgrib,lidrstmpl+i,*iofst+1,nbits-1);
+          if (isign == 1) lidrstmpl[i]=-1*lidrstmpl[i];
+        }
+        *iofst=*iofst+nbits;
+      }
+      //
+      //   Check to see if the Data Representation Template needs to be
+      //   extended.
+      //   The number of values in a specific template may vary
+      //   depending on data specified in the "static" part of the
+      //   template.
+      //
+      if ( needext == 1 ) {
+        free(mapdrs);
+        mapdrs=extdrstemplate(*idrsnum,lidrstmpl);
+        newlen=mapdrs->maplen+mapdrs->extlen;
+        lidrstmpl=(g2int *)realloc(lidrstmpl,newlen*sizeof(g2int));
+        *idrstmpl=lidrstmpl;
+        //   Unpack the rest of the Data Representation Template
+        j=0;
+        for (i=*mapdrslen;i<newlen;i++) {
+          nbits=abs(mapdrs->ext[j])*8;
+          if ( mapdrs->ext[j] >= 0 ) {
+            gbit(cgrib,lidrstmpl+i,*iofst,nbits);
+          }
+          else {
+            gbit(cgrib,&isign,*iofst,1);
+            gbit(cgrib,lidrstmpl+i,*iofst+1,nbits-1);
+            if (isign == 1) lidrstmpl[i]=-1*lidrstmpl[i];
+          }
+          *iofst=*iofst+nbits;
+          j++;
+        }
+        *mapdrslen=newlen;
+      }
+      if( mapdrs->ext != 0 ) free(mapdrs->ext);
+      if( mapdrs != 0 ) free(mapdrs);
+
+      return(ierr);    // End of Section 5 processing
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack6.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack6.c
new file mode 100755
index 0000000..d7686e0
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack6.c
@@ -0,0 +1,100 @@
+/**********************************************************
+ * Version $Id: g2_unpack6.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+g2int g2_unpack6(unsigned char *cgrib,g2int *iofst,g2int ngpts,g2int *ibmap,
+               g2int **bmap)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_unpack6 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-31
+//
+// ABSTRACT: This subroutine unpacks Section 6 (Bit-Map Section)
+//           as defined in GRIB Edition 2.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-31  Gilbert
+//
+// USAGE:    int g2_unpack6(unsigned char *cgrib,g2int *iofst,g2int ngpts,
+//                          g2int *ibmap,g2int **bmap)
+//   INPUT ARGUMENTS:
+//     cgrib    - char array containing Section 6 of the GRIB2 message
+//     iofst    - Bit offset of the beginning of Section 6 in cgrib.
+//     ngpts    - Number of grid points specified in the bit-map
+//
+//   OUTPUT ARGUMENTS:      
+//     iofst    - Bit offset at the end of Section 6, returned.
+//     ibmap    - Bitmap indicator ( see Code Table 6.0 )
+//                0 = bitmap applies and is included in Section 6.
+//                1-253 = Predefined bitmap applies
+//                254 = Previously defined bitmap applies to this field
+//                255 = Bit map does not apply to this product.
+//     bmap     - Pointer to an integer array containing decoded bitmap. 
+//                ( if ibmap=0 )
+//
+//   RETURN VALUES:
+//     ierr     - Error return code.
+//                0 = no error
+//                2 = Not Section 6
+//                4 = Unrecognized pre-defined bit-map.
+//                6 = memory allocation error
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:
+//
+//$$$//
+{
+      g2int j,ierr,isecnum;
+      g2int *lbmap=0;
+      g2int *intbmap;
+
+      ierr=0;
+      *bmap=0;    //NULL
+
+      *iofst=*iofst+32;    // skip Length of Section
+      gbit(cgrib,&isecnum,*iofst,8);         // Get Section Number
+      *iofst=*iofst+8; 
+
+      if ( isecnum != 6 ) {
+         ierr=2;
+         fprintf(stderr,"g2_unpack6: Not Section 6 data.\n");
+         return(ierr);
+      }
+
+      gbit(cgrib,ibmap,*iofst,8);    // Get bit-map indicator
+      *iofst=*iofst+8;
+
+      if (*ibmap == 0) {               // Unpack bitmap
+         if (ngpts > 0) lbmap=(g2int *)calloc(ngpts,sizeof(g2int));
+         if (lbmap == 0) {
+            ierr=6;
+            return(ierr);
+         }
+         else {
+            *bmap=lbmap;
+         }
+         intbmap=(g2int *)calloc(ngpts,sizeof(g2int));  
+         gbits(cgrib,intbmap,*iofst,1,0,ngpts);
+         *iofst=*iofst+ngpts;
+         for (j=0;j<ngpts;j++) {
+           lbmap[j]=(g2int)intbmap[j];
+         }
+         free(intbmap);
+//      else if (*ibmap.eq.254)               ! Use previous bitmap
+//        return(ierr);
+//      else if (*ibmap.eq.255)               ! No bitmap in message
+//        bmap(1:ngpts)=.true.
+//      else {
+//        print *,'gf_unpack6: Predefined bitmap ',*ibmap,' not recognized.'
+//        ierr=4;
+      }
+      
+      return(ierr);    // End of Section 6 processing
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack7.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack7.c
new file mode 100755
index 0000000..a76ab99
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/g2_unpack7.c
@@ -0,0 +1,154 @@
+/**********************************************************
+ * Version $Id: g2_unpack7.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <string.h>
+#include "grib2.h"
+
+g2int simunpack(unsigned char *,g2int *, g2int,g2float *);
+int comunpack(unsigned char *,g2int,g2int,g2int *,g2int,g2float *);
+g2int specunpack(unsigned char *,g2int *,g2int,g2int,g2int, g2int, g2float *);
+#ifdef USE_PNG
+  g2int pngunpack(unsigned char *,g2int,g2int *,g2int, g2float *);
+#endif  /* USE_PNG */
+#ifdef USE_JPEG2000
+  g2int jpcunpack(unsigned char *,g2int,g2int *,g2int, g2float *);
+#endif  /* USE_JPEG2000 */
+
+g2int g2_unpack7(unsigned char *cgrib,g2int *iofst,g2int igdsnum,g2int *igdstmpl,
+               g2int idrsnum,g2int *idrstmpl,g2int ndpts,g2float **fld)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    g2_unpack7 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-31
+//
+// ABSTRACT: This subroutine unpacks Section 7 (Data Section)
+//           as defined in GRIB Edition 2.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-31  Gilbert
+// 2002-12-20  Gilbert - Added GDT info to arguments
+//                       and added 5.51 processing.
+// 2003-08-29  Gilbert  - Added support for new templates using
+//                        PNG and JPEG2000 algorithms/templates.
+// 2004-11-29  Gilbert  - JPEG2000 now allowed to use WMO Template no. 5.40
+//                        PNG now allowed to use WMO Template no. 5.41
+// 2004-12-16  Taylor   - Added check on comunpack return code.
+//
+// USAGE:    int g2_unpack7(unsigned char *cgrib,g2int *iofst,g2int igdsnum,
+//                          g2int *igdstmpl, g2int idrsnum,
+//                          g2int *idrstmpl, g2int ndpts,g2float **fld)
+//   INPUT ARGUMENTS:
+//     cgrib    - char array containing Section 7 of the GRIB2 message
+//     iofst    - Bit offset of the beginning of Section 7 in cgrib.
+//     igdsnum  - Grid Definition Template Number ( see Code Table 3.0)
+//                ( Only used for DRS Template 5.51 )
+//     igdstmpl - Pointer to an integer array containing the data values for
+//                the specified Grid Definition
+//                Template ( N=igdsnum ).  Each element of this integer
+//                array contains an entry (in the order specified) of Grid
+//                Definition Template 3.N
+//                ( Only used for DRS Template 5.51 )
+//     idrsnum  - Data Representation Template Number ( see Code Table 5.0)
+//     idrstmpl - Pointer to an integer array containing the data values for
+//                the specified Data Representation
+//                Template ( N=idrsnum ).  Each element of this integer
+//                array contains an entry (in the order specified) of Data
+//                Representation Template 5.N
+//     ndpts    - Number of data points unpacked and returned.
+//
+//   OUTPUT ARGUMENTS:      
+//     iofst    - Bit offset at the end of Section 7, returned.
+//     fld      - Pointer to a float array containing the unpacked data field.
+//
+//   RETURN VALUES:
+//     ierr     - Error return code.
+//                0 = no error
+//                2 = Not section 7
+//                4 = Unrecognized Data Representation Template
+//                5 = need one of GDT 3.50 through 3.53 to decode DRT 5.51
+//                6 = memory allocation error
+//                7 = corrupt section 7.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:
+//
+//$$$//
+{
+      g2int ierr,isecnum;
+      g2int ipos,lensec;
+      g2float *lfld;
+
+      ierr=0;
+      *fld=0;     //NULL
+
+      gbit(cgrib,&lensec,*iofst,32);        // Get Length of Section
+      *iofst=*iofst+32;    
+      gbit(cgrib,&isecnum,*iofst,8);         // Get Section Number
+      *iofst=*iofst+8;
+
+      if ( isecnum != 7 ) {
+         ierr=2;
+         //fprintf(stderr,"g2_unpack7: Not Section 7 data.\n");
+         return(ierr);
+      }
+
+      ipos=(*iofst/8);
+      lfld=(g2float *)calloc(ndpts,sizeof(g2float));
+      if (lfld == 0) {
+         ierr=6;
+         return(ierr);
+      }
+      else {
+         *fld=lfld;
+      }
+
+      if (idrsnum == 0) 
+        simunpack(cgrib+ipos,idrstmpl,ndpts,lfld);
+      else if (idrsnum == 2 || idrsnum == 3) {
+        if (comunpack(cgrib+ipos,lensec,idrsnum,idrstmpl,ndpts,lfld) != 0) {
+          return 7;
+        }
+      }
+      else if (idrsnum == 50) {            // Spectral Simple
+        simunpack(cgrib+ipos,idrstmpl,ndpts-1,lfld+1);
+        rdieee(idrstmpl+4,lfld+0,1);
+      }
+      else if (idrsnum == 51)              //  Spectral complex
+        if ( igdsnum>=50 && igdsnum <=53 ) 
+          specunpack(cgrib+ipos,idrstmpl,ndpts,igdstmpl[0],igdstmpl[2],igdstmpl[2],lfld);
+        else {
+          fprintf(stderr,"g2_unpack7: Cannot use GDT 3.%d to unpack Data Section 5.51.\n",(int)igdsnum);
+          ierr=5;
+          if ( lfld != 0 ) free(lfld);
+          *fld=0;     //NULL
+          return(ierr);
+        }
+#ifdef USE_JPEG2000
+      else if (idrsnum == 40 || idrsnum == 40000) {
+        jpcunpack(cgrib+ipos,lensec-5,idrstmpl,ndpts,lfld);
+        }
+#endif  /* USE_JPEG2000 */
+#ifdef USE_PNG
+      else if (idrsnum == 41 || idrsnum == 40010) {
+        pngunpack(cgrib+ipos,lensec-5,idrstmpl,ndpts,lfld);
+        }
+#endif  /* USE_PNG */
+      else {
+        fprintf(stderr,"g2_unpack7: Data Representation Template 5.%d not yet implemented.\n",(int)idrsnum);
+        ierr=4;
+        if ( lfld != 0 ) free(lfld);
+        *fld=0;     //NULL
+        return(ierr);
+      }
+
+      *iofst=*iofst+(8*lensec);
+      
+      return(ierr);    // End of Section 7 processing
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/gbits.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/gbits.c
new file mode 100755
index 0000000..a85cace
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/gbits.c
@@ -0,0 +1,127 @@
+/**********************************************************
+ * Version $Id: gbits.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include "grib2.h"
+
+void gbit(unsigned char *in,g2int *iout,g2int iskip,g2int nbyte)
+{
+      gbits(in,iout,iskip,nbyte,(g2int)0,(g2int)1);
+}
+
+void sbit(unsigned char *out,g2int *in,g2int iskip,g2int nbyte)
+{
+      sbits(out,in,iskip,nbyte,(g2int)0,(g2int)1);
+}
+
+
+void gbits(unsigned char *in,g2int *iout,g2int iskip,g2int nbyte,g2int nskip,
+           g2int n)
+/*          Get bits - unpack bits:  Extract arbitrary size values from a
+/          packed bit string, right justifying each value in the unpacked
+/          iout array.
+/           *in    = pointer to character array input
+/           *iout  = pointer to unpacked array output
+/            iskip = initial number of bits to skip
+/            nbyte = number of bits to take
+/            nskip = additional number of bits to skip on each iteration
+/            n     = number of iterations
+/ v1.1
+*/
+{
+      g2int i,tbit,bitcnt,ibit,itmp;
+      g2int nbit,index;
+      static g2int ones[]={1,3,7,15,31,63,127,255};
+
+//     nbit is the start position of the field in bits
+      nbit = iskip;
+      for (i=0;i<n;i++) {
+         bitcnt = nbyte;
+         index=nbit/8;
+         ibit=nbit%8;
+         nbit = nbit + nbyte + nskip;
+
+//        first byte
+         tbit= ( bitcnt < (8-ibit) ) ? bitcnt : 8-ibit;  // find min
+         itmp = (int)*(in+index) & ones[7-ibit];
+         if (tbit != 8-ibit) itmp >>= (8-ibit-tbit);
+         index++;
+         bitcnt = bitcnt - tbit;
+
+//        now transfer whole bytes
+         while (bitcnt >= 8) {
+             itmp = itmp<<8 | (int)*(in+index);
+             bitcnt = bitcnt - 8;
+             index++;
+         }
+
+//        get data from last byte
+         if (bitcnt > 0) {
+             itmp = ( itmp << bitcnt ) | ( ((int)*(in+index) >> (8-bitcnt)) & ones[bitcnt-1] );
+         }
+
+         *(iout+i) = itmp;
+      }
+}
+
+
+void sbits(unsigned char *out,g2int *in,g2int iskip,g2int nbyte,g2int nskip,
+           g2int n)
+/*C          Store bits - pack bits:  Put arbitrary size values into a
+/          packed bit string, taking the low order bits from each value
+/          in the unpacked array.
+/           *iout  = pointer to packed array output
+/           *in    = pointer to unpacked array input
+/            iskip = initial number of bits to skip
+/            nbyte = number of bits to pack
+/            nskip = additional number of bits to skip on each iteration
+/            n     = number of iterations
+/ v1.1
+*/
+{
+      g2int i,bitcnt,tbit,ibit,itmp,imask,itmp2,itmp3;
+      g2int nbit,index;
+      static g2int ones[]={1,3,7,15,31,63,127,255};
+
+//     number bits from zero to ...
+//     nbit is the last bit of the field to be filled
+
+      nbit = iskip + nbyte - 1;
+      for (i=0;i<n;i++) {
+         itmp = *(in+i);
+         bitcnt = nbyte;
+         index=nbit/8;
+         ibit=nbit%8;
+         nbit = nbit + nbyte + nskip;
+
+//        make byte aligned 
+         if (ibit != 7) {
+             tbit= ( bitcnt < (ibit+1) ) ? bitcnt : ibit+1;  // find min
+             imask = ones[tbit-1] << (7-ibit);
+             itmp2 = (itmp << (7-ibit)) & imask;
+             itmp3 = (int)*(out+index) & (255-imask);
+             out[index] = (unsigned char)(itmp2 | itmp3);
+             bitcnt = bitcnt - tbit;
+             itmp = itmp >> tbit;
+             index--;
+         }
+
+//        now byte aligned
+
+//        do by bytes
+         while (bitcnt >= 8) {
+             out[index] = (unsigned char)(itmp & 255);
+             itmp = itmp >> 8;
+             bitcnt = bitcnt - 8;
+             index--;
+         }
+
+//        do last byte
+
+         if (bitcnt > 0) {
+             itmp2 = itmp & ones[bitcnt-1];
+             itmp3 = (int)*(out+index) & (255-ones[bitcnt-1]);
+             out[index] = (unsigned char)(itmp2 | itmp3);
+         }
+      }
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/getdim.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/getdim.c
new file mode 100755
index 0000000..7ea9246
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/getdim.c
@@ -0,0 +1,130 @@
+/**********************************************************
+ * Version $Id: getdim.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+g2int g2_unpack3(unsigned char *,g2int *,g2int **,g2int **,
+                         g2int *,g2int **,g2int *);
+
+g2int getdim(unsigned char *csec3,g2int *width,g2int *height,g2int *iscan)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    getdim 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-12-11
+//
+// ABSTRACT: This subroutine returns the dimensions and scanning mode of 
+//   a grid definition packed in GRIB2 Grid Definition Section 3 format.
+//
+// PROGRAM HISTORY LOG:
+// 2002-12-11  Gilbert
+//
+// USAGE:    int getdim(unsigned char *csec3,g2int *width,
+//                      g2int *height, g2int *iscan)
+//   INPUT ARGUMENT LIST:
+//     csec3    - Character array that contains the packed GRIB2 GDS
+//
+//   OUTPUT ARGUMENT LIST:      
+//     width    - x (or i) dimension of the grid.
+//     height   - y (or j) dimension of the grid.
+//     iscan    - Scanning mode ( see Code Table 3.4 )
+//
+// REMARKS:  Returns width and height set to zero, if grid template
+//           not recognized.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+    
+      g2int  *igdstmpl,*list_opt;
+      g2int  *igds;
+      g2int  iofst,igdtlen,num_opt,jerr;
+
+      igdstmpl=0;
+      list_opt=0;
+      igds=0;
+      iofst=0;       // set offset to beginning of section
+      jerr= g2_unpack3(csec3,&iofst,&igds,&igdstmpl,
+                       &igdtlen,&list_opt,&num_opt);
+      if (jerr == 0) {
+         switch ( igds[4] )     //  Template number
+         {
+           case 0:    // Lat/Lon
+           case 1:
+           case 2:
+           case 3:
+           {
+              *width=igdstmpl[7];
+              *height=igdstmpl[8];
+              *iscan=igdstmpl[18];
+              break;
+           }
+           case 10:   // Mercator
+           {
+              *width=igdstmpl[7];
+              *height=igdstmpl[8];
+              *iscan=igdstmpl[15];
+              break;
+           }
+           case 20:   // Polar Stereographic
+           {
+              *width=igdstmpl[7];
+              *height=igdstmpl[8];
+              *iscan=igdstmpl[17];
+              break;
+           }
+           case 30:   // Lambert Conformal
+           {
+              *width=igdstmpl[7];
+              *height=igdstmpl[8];
+              *iscan=igdstmpl[17];
+              break;
+           }
+           case 40:   // Gaussian
+           case 41:
+           case 42:
+           case 43:
+           {
+              *width=igdstmpl[7];
+              *height=igdstmpl[8];
+              *iscan=igdstmpl[18];
+              break;
+           }
+           case 90:   // Space View/Orthographic
+           {
+              *width=igdstmpl[7];
+              *height=igdstmpl[8];
+              *iscan=igdstmpl[16];
+              break;
+           }
+           case 110:   // Equatorial Azimuthal
+           {
+              *width=igdstmpl[7];
+              *height=igdstmpl[8];
+              *iscan=igdstmpl[15];
+              break;
+           }
+           default:
+           {
+              *width=0;
+              *height=0;
+              *iscan=0;
+              break;
+           }
+         }  // end switch
+      }
+      else {
+         *width=0;
+         *height=0;
+      }
+
+      if (igds != 0) free(igds);
+      if (igdstmpl != 0) free(igdstmpl);
+      if (list_opt != 0) free(list_opt);
+
+      return 0;
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/getpoly.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/getpoly.c
new file mode 100755
index 0000000..53bca0c
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/getpoly.c
@@ -0,0 +1,83 @@
+/**********************************************************
+ * Version $Id: getpoly.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+g2int g2_unpack3(unsigned char *,g2int *,g2int **,g2int **,
+                         g2int *,g2int **,g2int *);
+
+g2int getpoly(unsigned char *csec3,g2int *jj,g2int *kk,g2int *mm)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    getpoly 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-12-11
+//
+// ABSTRACT: This subroutine returns the J, K, and M pentagonal resolution
+//   parameters specified in a GRIB Grid Definition Section used
+//   spherical harmonic coefficients using GDT 5.50 through 5.53
+//
+// PROGRAM HISTORY LOG:
+// 2002-12-11  Gilbert
+//
+// USAGE:    int getpoly(unsigned char *csec3,g2int *jj,g2int *kk,g2int *mm)
+//   INPUT ARGUMENTS:
+//     csec3    - Character array that contains the packed GRIB2 GDS
+//
+//   OUTPUT ARGUMENTS:      
+//         JJ   = J - pentagonal resolution parameter
+//         KK   = K - pentagonal resolution parameter
+//         MM   = M - pentagonal resolution parameter
+//
+// REMARKS:  Returns JJ, KK, and MM set to zero, if grid template
+//           not recognized.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+    
+      g2int   *igdstmpl,*list_opt;
+      g2int   *igds;
+      g2int   iofst,igdtlen,num_opt,jerr;
+
+      iofst=0;       // set offset to beginning of section
+      jerr=g2_unpack3(csec3,&iofst,&igds,&igdstmpl,
+                      &igdtlen,&list_opt,&num_opt);
+      if (jerr == 0) {
+         switch ( igds[4] )     //  Template number
+         {
+           case 50:     // Spherical harmonic coefficients
+           case 51:
+           case 52:
+           case 53:
+           {
+              *jj=igdstmpl[0];
+              *kk=igdstmpl[1];
+              *mm=igdstmpl[2];
+              break;
+           }
+           default:
+           {
+              *jj=0;
+              *kk=0;
+              *mm=0;
+              break;
+           }
+         }     // end switch
+      }
+      else {
+         *jj=0;
+         *kk=0;
+         *mm=0;
+      }
+        
+      if (igds != 0) free(igds);
+      if (igdstmpl != 0) free(igdstmpl);
+      if (list_opt != 0) free(list_opt);
+
+      return 0;
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/grib2.h b/src/modules/io/io_grid_grib2/g2clib-1.0.4/grib2.h
new file mode 100755
index 0000000..592db4a
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/grib2.h
@@ -0,0 +1,254 @@
+/**********************************************************
+ * Version $Id: grib2.h 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#ifndef _grib2_H
+#define _grib2_H
+#include<stdio.h>
+
+#ifdef _SAGA_MSW
+extern double rint(double x);
+#endif
+
+#define G2_VERSION "g2clib-1.0.4"
+/*                .      .    .                                       .
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-25
+//
+//   Each element of structure gribfield is defined as:
+//   
+//   gribfield gfld;
+//
+//        gfld->version = GRIB edition number ( currently 2 )
+//        gfld->discipline = Message Discipline ( see Code Table 0.0 )
+//        gfld->idsect = Contains the entries in the Identification
+//                        Section ( Section 1 )
+//                        This element is a pointer to an array
+//                        that holds the data.
+//            gfld->idsect[0]  = Identification of originating Centre
+//                                    ( see Common Code Table C-1 )
+//                             7 - US National Weather Service
+//            gfld->idsect[1]  = Identification of originating Sub-centre
+//            gfld->idsect[2]  = GRIB Master Tables Version Number
+//                                    ( see Code Table 1.0 )
+//                             0 - Experimental
+//                             1 - Initial operational version number
+//            gfld->idsect[3]  = GRIB Local Tables Version Number
+//                                    ( see Code Table 1.1 )
+//                             0     - Local tables not used
+//                             1-254 - Number of local tables version used
+//            gfld->idsect[4]  = Significance of Reference Time (Code Table 1.2)
+//                             0 - Analysis
+//                             1 - Start of forecast
+//                             2 - Verifying time of forecast
+//                             3 - Observation time
+//            gfld->idsect[5]  = Year ( 4 digits )
+//            gfld->idsect[6]  = Month
+//            gfld->idsect[7)  = Day
+//            gfld->idsect[8]  = Hour
+//            gfld->idsect[9]  = Minute
+//            gfld->idsect[10]  = Second
+//            gfld->idsect[11]  = Production status of processed data
+//                                    ( see Code Table 1.3 )
+//                              0 - Operational products
+//                              1 - Operational test products
+//                              2 - Research products
+//                              3 - Re-analysis products
+//            gfld->idsect[12]  = Type of processed data ( see Code Table 1.4 )
+//                              0  - Analysis products
+//                              1  - Forecast products
+//                              2  - Analysis and forecast products
+//                              3  - Control forecast products
+//                              4  - Perturbed forecast products
+//                              5  - Control and perturbed forecast products
+//                              6  - Processed satellite observations
+//                              7  - Processed radar observations
+//        gfld->idsectlen = Number of elements in gfld->idsect[].
+//        gfld->local   = Pointer to character array containing contents
+//                       of Local Section 2, if included
+//        gfld->locallen = length of array gfld->local[]
+//        gfld->ifldnum = field number within GRIB message
+//        gfld->griddef = Source of grid definition (see Code Table 3.0)
+//                      0 - Specified in Code table 3.1
+//                      1 - Predetermined grid Defined by originating centre
+//        gfld->ngrdpts = Number of grid points in the defined grid.
+//        gfld->numoct_opt = Number of octets needed for each
+//                          additional grid points definition.
+//                          Used to define number of
+//                          points in each row ( or column ) for
+//                          non-regular grids.
+//                          = 0, if using regular grid.
+//        gfld->interp_opt = Interpretation of list for optional points
+//                          definition.  (Code Table 3.11)
+//        gfld->igdtnum = Grid Definition Template Number (Code Table 3.1)
+//        gfld->igdtmpl  = Contains the data values for the specified Grid
+//                         Definition Template ( NN=gfld->igdtnum ).  Each
+//                         element of this integer array contains an entry (in
+//                         the order specified) of Grid Defintion Template 3.NN
+//                         This element is a pointer to an array
+//                         that holds the data.
+//        gfld->igdtlen = Number of elements in gfld->igdtmpl[].  i.e. number of
+//                       entries in Grid Defintion Template 3.NN
+//                       ( NN=gfld->igdtnum ).
+//        gfld->list_opt  = (Used if gfld->numoct_opt .ne. 0)  This array
+//                          contains the number of grid points contained in
+//                          each row ( or column ).  (part of Section 3)
+//                          This element is a pointer to an array
+//                          that holds the data.  This pointer is nullified
+//                          if gfld->numoct_opt=0.
+//        gfld->num_opt = (Used if gfld->numoct_opt .ne. 0)  The number of entries
+//                       in array ideflist.  i.e. number of rows ( or columns )
+//                       for which optional grid points are defined.  This value
+//                       is set to zero, if gfld->numoct_opt=0.
+//        gfdl->ipdtnum = Product Definition Template Number (see Code Table 4.0)
+//        gfld->ipdtmpl  = Contains the data values for the specified Product
+//                         Definition Template ( N=gfdl->ipdtnum ).  Each element
+//                         of this integer array contains an entry (in the
+//                         order specified) of Product Defintion Template 4.N.
+//                         This element is a pointer to an array
+//                         that holds the data.
+//        gfld->ipdtlen = Number of elements in gfld->ipdtmpl[].  i.e. number of
+//                       entries in Product Defintion Template 4.N
+//                       ( N=gfdl->ipdtnum ).
+//        gfld->coord_list  = Real array containing floating point values
+//                            intended to document the vertical discretisation
+//                            associated to model data on hybrid coordinate
+//                            vertical levels.  (part of Section 4)
+//                            This element is a pointer to an array
+//                            that holds the data.
+//        gfld->num_coord = number of values in array gfld->coord_list[].
+//        gfld->ndpts = Number of data points unpacked and returned.
+//        gfld->idrtnum = Data Representation Template Number
+//                       ( see Code Table 5.0)
+//        gfld->idrtmpl  = Contains the data values for the specified Data
+//                         Representation Template ( N=gfld->idrtnum ).  Each
+//                         element of this integer array contains an entry
+//                         (in the order specified) of Product Defintion
+//                         Template 5.N.
+//                         This element is a pointer to an array
+//                         that holds the data.
+//        gfld->idrtlen = Number of elements in gfld->idrtmpl[].  i.e. number
+//                       of entries in Data Representation Template 5.N
+//                       ( N=gfld->idrtnum ).
+//        gfld->unpacked = logical value indicating whether the bitmap and
+//                        data values were unpacked.  If false,
+//                        gfld->bmap and gfld->fld pointers are nullified.
+//        gfld->expanded = Logical value indicating whether the data field 
+//                         was expanded to the grid in the case where a 
+//                         bit-map is present.  If true, the data points in
+//                         gfld->fld match the grid points and zeros were 
+//                         inserted at grid points where data was bit-mapped
+//                         out.  If false, the data values in gfld->fld were
+//                         not expanded to the grid and are just a consecutive
+//                         array of data points corresponding to each value of
+//                         "1" in gfld->bmap.
+//        gfld->ibmap = Bitmap indicator ( see Code Table 6.0 )
+//                     0 = bitmap applies and is included in Section 6.
+//                     1-253 = Predefined bitmap applies
+//                     254 = Previously defined bitmap applies to this field
+//                     255 = Bit map does not apply to this product.
+//        gfld->bmap  = integer array containing decoded bitmap,
+//                      if gfld->ibmap=0 or gfld->ibap=254.  Otherwise nullified.
+//                      This element is a pointer to an array
+//                      that holds the data.
+//        gfld->fld  = Array of gfld->ndpts unpacked data points.
+//                     This element is a pointer to an array
+//                     that holds the data.
+*/
+
+#ifdef __64BIT__
+typedef int g2int;
+typedef unsigned int g2intu;
+#else
+typedef long g2int;
+typedef unsigned long g2intu;
+#endif
+typedef float g2float;
+
+struct _template {
+   g2int type;           /* 3=Grid Defintion Template.                       */
+                         /* 4=Product Defintion Template.                    */
+                         /* 5=Data Representation Template.                  */
+   g2int num;            /* template number.                                 */
+   g2int maplen;         /* number of entries in the static part             */
+                         /*                    of the template.              */
+   g2int *map;           /* num of octets of each entry in the               */
+                         /*         static part of the template.             */
+   g2int needext;        /* indicates whether or not the template needs      */
+                         /*     to be extended.                              */
+   g2int extlen;         /* number of entries in the template extension.     */
+   g2int *ext;           /* num of octets of each entry in the extension     */
+                         /*                      part of the template.       */
+};
+
+typedef struct _template _template;
+
+#define template _template
+
+struct gribfield {
+   g2int   version,discipline;
+   g2int   *idsect;
+   g2int   idsectlen;
+   unsigned char *local;
+   g2int   locallen;
+   g2int   ifldnum;
+   g2int   griddef,ngrdpts;
+   g2int   numoct_opt,interp_opt,num_opt;
+   g2int   *list_opt;
+   g2int   igdtnum,igdtlen;
+   g2int   *igdtmpl;
+   g2int   ipdtnum,ipdtlen;
+   g2int   *ipdtmpl;
+   g2int   num_coord;
+   g2float *coord_list;
+   g2int   ndpts,idrtnum,idrtlen;
+   g2int   *idrtmpl;
+   g2int   unpacked;
+   g2int   expanded;
+   g2int   ibmap;
+   g2int   *bmap;
+   g2float *fld;
+};
+
+typedef struct gribfield gribfield;
+
+
+/*  Prototypes for unpacking API  */
+void seekgb(FILE *,g2int ,g2int ,g2int *,g2int *);
+g2int g2_info(unsigned char *,g2int *,g2int *,g2int *,g2int *);
+g2int g2_getfld(unsigned char *,g2int ,g2int ,g2int ,gribfield **);
+void g2_free(gribfield *);
+
+/*  Prototypes for packing API  */
+g2int g2_create(unsigned char *,g2int *,g2int *);
+g2int g2_addlocal(unsigned char *,unsigned char *,g2int );
+g2int g2_addgrid(unsigned char *,g2int *,g2int *,g2int *,g2int ); 
+g2int g2_addfield(unsigned char *,g2int ,g2int *,
+                       g2float *,g2int ,g2int ,g2int *,
+                       g2float *,g2int ,g2int ,g2int *);
+g2int g2_gribend(unsigned char *);
+
+/*  Prototypes for supporting routines  */
+extern double int_power(double, g2int );
+extern void mkieee(g2float *,g2int *,g2int);
+void rdieee(g2int *,g2float *,g2int );
+extern _template *getpdstemplate(g2int);
+extern _template *extpdstemplate(g2int,g2int *);
+extern _template *getdrstemplate(g2int);
+extern _template *extdrstemplate(g2int,g2int *);
+extern _template *getgridtemplate(g2int);
+extern _template *extgridtemplate(g2int,g2int *);
+extern void simpack(g2float *,g2int,g2int *,unsigned char *,g2int *);
+extern void compack(g2float *,g2int,g2int,g2int *,unsigned char *,g2int *);
+void misspack(g2float *,g2int ,g2int ,g2int *, unsigned char *, g2int *);
+void gbit(unsigned char *,g2int *,g2int ,g2int );
+void sbit(unsigned char *,g2int *,g2int ,g2int );
+void gbits(unsigned char *,g2int *,g2int ,g2int ,g2int ,g2int );
+void sbits(unsigned char *,g2int *,g2int ,g2int ,g2int ,g2int );
+
+int pack_gp(g2int *, g2int *, g2int *,
+            g2int *, g2int *, g2int *, g2int *, g2int *,
+            g2int *, g2int *, g2int *, g2int *,
+            g2int *, g2int *, g2int *, g2int *, g2int *,
+            g2int *, g2int *, g2int *);
+
+#endif  /*  _grib2_H  */
+
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/gridtemplates.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/gridtemplates.c
new file mode 100755
index 0000000..bbec4ae
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/gridtemplates.c
@@ -0,0 +1,176 @@
+/**********************************************************
+ * Version $Id: gridtemplates.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdlib.h>
+#include "grib2.h"
+#include "gridtemplates.h"
+
+g2int getgridindex(g2int number)
+/*!$$$  SUBPROGRAM DOCUMENTATION BLOCK
+!                .      .    .                                       .
+! SUBPROGRAM:    getgridindex
+!   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2001-06-28
+!
+! ABSTRACT: This function returns the index of specified Grid
+!   Definition Template 3.NN (NN=number) in array templates.
+!
+! PROGRAM HISTORY LOG:
+! 2001-06-28  Gilbert
+!
+! USAGE:    index=getgridindex(number)
+!   INPUT ARGUMENT LIST:
+!     number   - NN, indicating the number of the Grid Definition
+!                Template 3.NN that is being requested.
+!
+! RETURNS:  Index of GDT 3.NN in array templates, if template exists.
+!           = -1, otherwise.
+!
+! REMARKS: None
+!
+! ATTRIBUTES:
+!   LANGUAGE: C
+!   MACHINE:  IBM SP
+!
+!$$$*/
+{
+           g2int j,getgridindex=-1;
+
+           for (j=0;j<MAXGRIDTEMP;j++) {
+              if (number == templatesgrid[j].template_num) {
+                 getgridindex=j;
+                 return(getgridindex);
+              }
+           }
+
+           return(getgridindex);
+}
+
+template *getgridtemplate(g2int number)
+/*!$$$  SUBPROGRAM DOCUMENTATION BLOCK
+!                .      .    .                                       .
+! SUBPROGRAM:    getgridtemplate 
+!   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2000-05-09
+!
+! ABSTRACT: This subroutine returns grid template information for a 
+!   specified Grid Definition Template 3.NN.
+!   The number of entries in the template is returned along with a map
+!   of the number of octets occupied by each entry.  Also, a flag is
+!   returned to indicate whether the template would need to be extended.
+!
+! PROGRAM HISTORY LOG:
+! 2000-05-09  Gilbert
+!
+! USAGE:    template *getgridtemplate(number)
+!   INPUT ARGUMENT LIST:
+!     number   - NN, indicating the number of the Grid Definition 
+!                Template 3.NN that is being requested.
+!
+!   RETURN VALUE:
+!        - Pointer to the returned template struct.
+!          Returns NULL pointer, if template not found.
+!
+! REMARKS: None
+!
+! ATTRIBUTES:
+!   LANGUAGE: C
+!   MACHINE:  IBM SP
+!
+!$$$*/
+{
+           g2int index;
+           template *new;
+
+           index=getgridindex(number);
+
+           if (index != -1) {
+              new=(template *)malloc(sizeof(template));
+              new->type=3;
+              new->num=templatesgrid[index].template_num;
+              new->maplen=templatesgrid[index].mapgridlen;
+              new->needext=templatesgrid[index].needext;
+              new->map=(g2int *)templatesgrid[index].mapgrid;
+              new->extlen=0;
+              new->ext=0;        //NULL
+              return(new);
+           }
+           else {
+             printf("getgridtemplate: GDT Template 3.%d not defined.\n",(int)number);
+             return(0);        //NULL
+           }
+
+         return(0);        //NULL
+}
+
+
+template *extgridtemplate(g2int number,g2int *list)
+/*!$$$  SUBPROGRAM DOCUMENTATION BLOCK
+!                .      .    .                                       .
+! SUBPROGRAM:    extgridtemplate 
+!   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2000-05-09
+!
+! ABSTRACT: This subroutine generates the remaining octet map for a 
+!   given Grid Definition Template, if required.  Some Templates can 
+!   vary depending on data values given in an earlier part of the 
+!   Template, and it is necessary to know some of the earlier entry
+!   values to generate the full octet map of the Template.
+!
+! PROGRAM HISTORY LOG:
+! 2000-05-09  Gilbert
+!
+! USAGE:    CALL extgridtemplate(number,list)
+!   INPUT ARGUMENT LIST:
+!     number   - NN, indicating the number of the Grid Definition 
+!                Template 3.NN that is being requested.
+!     list()   - The list of values for each entry in 
+!                the Grid Definition Template.
+!
+!   RETURN VALUE:
+!        - Pointer to the returned template struct.
+!          Returns NULL pointer, if template not found.
+!
+! ATTRIBUTES:
+!   LANGUAGE: C
+!   MACHINE:  IBM SP
+!
+!$$$*/
+{
+           template *new;
+           g2int index,i;
+
+           index=getgridindex(number);
+           if (index == -1) return(0);
+
+           new=getgridtemplate(number);
+
+           if ( ! new->needext ) return(new);
+
+           if ( number == 120 ) {
+              new->extlen=list[1]*2;
+              new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+              for (i=0;i<new->extlen;i++) {
+                 if ( i%2 == 0 ) {
+                    new->ext[i]=2;
+                 }
+                 else {
+                    new->ext[i]=-2;
+                 }
+              }
+           }
+           else if ( number == 1000 ) {
+              new->extlen=list[19];
+              new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+              for (i=0;i<new->extlen;i++) {
+                 new->ext[i]=4;
+              }
+           }
+           else if ( number == 1200 ) {
+              new->extlen=list[15];
+              new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+              for (i=0;i<new->extlen;i++) {
+                 new->ext[i]=4;
+              }
+           }
+
+           return(new);
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/gridtemplates.h b/src/modules/io/io_grid_grib2/g2clib-1.0.4/gridtemplates.h
new file mode 100755
index 0000000..7e79c1d
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/gridtemplates.h
@@ -0,0 +1,99 @@
+/**********************************************************
+ * Version $Id: gridtemplates.h 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#ifndef _gridtemplates_H
+#define _gridtemplates_H
+#include "grib2.h"
+
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2001-10-26
+//
+// ABSTRACT: This Fortran Module contains info on all the available 
+//   GRIB2 Grid Definition Templates used in Section 3 (GDS).
+//   The information decribing each template is stored in the
+//   gridtemplate structure defined below.
+//
+//   Each Template has three parts: The number of entries in the template
+//   (mapgridlen);  A map of the template (mapgrid), which contains the
+//   number of octets in which to pack each of the template values; and
+//   a logical value (needext) that indicates whether the Template needs 
+//   to be extended.  In some cases the number of entries in a template 
+//   can vary depending upon values specified in the "static" part of 
+//   the template.  ( See Template 3.120 as an example )
+//
+//   NOTE:  Array mapgrid contains the number of octets in which the 
+//   corresponding template values will be stored.  A negative value in
+//   mapgrid is used to indicate that the corresponding template entry can
+//   contain negative values.  This information is used later when packing
+//   (or unpacking) the template data values.  Negative data values in GRIB
+//   are stored with the left most bit set to one, and a negative number
+//   of octets value in mapgrid[] indicates that this possibility should
+//   be considered.  The number of octets used to store the data value
+//   in this case would be the absolute value of the negative value in 
+//   mapgrid[].
+//  
+//
+////////////////////////////////////////////////////////////////////
+
+      #define MAXGRIDTEMP 23              // maximum number of templates
+      #define MAXGRIDMAPLEN 200           // maximum template map length
+
+      struct gridtemplate
+      {
+          g2int template_num;
+          g2int mapgridlen;
+          g2int needext;
+          g2int mapgrid[MAXGRIDMAPLEN];
+      };
+
+      const struct gridtemplate templatesgrid[MAXGRIDTEMP] = {
+             // 3.0: Lat/Lon grid
+         { 0, 19, 0, {1,1,4,1,4,1,4,4,4,4,4,-4,4,1,-4,4,4,4,1} },
+             // 3.1: Rotated Lat/Lon grid
+         { 1, 22, 0, {1,1,4,1,4,1,4,4,4,4,4,-4,4,1,-4,4,4,4,1,-4,4,4} },
+             // 3.2: Stretched Lat/Lon grid
+         { 2, 22, 0, {1,1,4,1,4,1,4,4,4,4,4,-4,4,1,-4,4,4,4,1,-4,4,-4} },
+             // 3.3: Stretched & Rotated Lat/Lon grid
+         { 3, 25, 0, {1,1,4,1,4,1,4,4,4,4,4,-4,4,1,-4,4,4,4,1,-4,4,4,-4,4,-4} },
+             // 3.10: Mercator
+         {10, 19, 0, {1,1,4,1,4,1,4,4,4,-4,4,1,-4,-4,4,1,4,4,4} },
+             // 3.20: Polar Stereographic Projection
+         {20, 18, 0, {1,1,4,1,4,1,4,4,4,-4,4,1,-4,4,4,4,1,1} },
+             // 3.30: Lambert Conformal
+         {30, 22, 0, {1,1,4,1,4,1,4,4,4,-4,4,1,-4,4,4,4,1,1,-4,-4,-4,4} },
+             // 3.31: Albers equal area
+         {31, 22, 0, {1,1,4,1,4,1,4,4,4,-4,4,1,-4,4,4,4,1,1,-4,-4,-4,4} },
+             // 3.40: Guassian Lat/Lon
+         {40, 19, 0, {1,1,4,1,4,1,4,4,4,4,4,-4,4,1,-4,4,4,4,1} },
+             // 3.41: Rotated Gaussian Lat/Lon
+         {41, 22, 0, {1,1,4,1,4,1,4,4,4,4,4,-4,4,1,-4,4,4,4,1,-4,4,4} },
+             // 3.42: Stretched Gaussian Lat/Lon
+         {42, 22, 0, {1,1,4,1,4,1,4,4,4,4,4,-4,4,1,-4,4,4,4,1,-4,4,-4} },
+             // 3.43: Stretched and Rotated Gaussian Lat/Lon
+         {43, 25, 0, {1,1,4,1,4,1,4,4,4,4,4,-4,4,1,-4,4,4,4,1,-4,4,4,-4,4,-4} },
+             // 3.50: Spherical Harmonic Coefficients
+         {50, 5, 0, {4,4,4,1,1} },
+             // 3.51: Rotated Spherical Harmonic Coefficients
+         {51, 8, 0, {4,4,4,1,1,-4,4,4} },
+             // 3.52: Stretched Spherical Harmonic Coefficients
+         {52, 8, 0, {4,4,4,1,1,-4,4,-4} },
+             // 3.53: Stretched and Rotated Spherical Harmonic Coefficients
+         {53, 11, 0, {4,4,4,1,1,-4,4,4,-4,4,-4} },
+             // 3.90: Space View Perspective or orthographic
+         {90, 21, 0, {1,1,4,1,4,1,4,4,4,-4,4,1,4,4,4,4,1,4,4,4,4} },
+             // 3.100: Triangular grid based on an icosahedron
+         {100, 11, 0, {1,1,2,1,-4,4,4,1,1,1,4} },
+             // 3.110: Equatorial Azimuthal equidistant
+         {110, 16, 0, {1,1,4,1,4,1,4,4,4,-4,4,1,4,4,1,1} },
+             // 3.120: Azimuth-range projection
+         {120, 7, 1, {4,4,-4,4,4,4,1} },
+             // 3.1000: Cross Section Grid
+         {1000, 20, 1, {1,1,4,1,4,1,4,4,4,4,-4,4,1,4,4,1,2,1,1,2} },
+             // 3.1100: Hovmoller Diagram Grid
+         {1100, 28, 0, {1,1,4,1,4,1,4,4,4,4,-4,4,1,-4,4,1,4,1,-4,1,1,-4,2,1,1,1,1,1} },
+             // 3.1200: Time Section Grid
+         {1200, 16, 1, {4,1,-4,1,1,-4,2,1,1,1,1,1,2,1,1,2} }
+
+      } ;
+
+
+#endif  /*  _gridtemplates_H  */
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/int_power.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/int_power.c
new file mode 100755
index 0000000..b5fed32
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/int_power.c
@@ -0,0 +1,33 @@
+/**********************************************************
+ * Version $Id: int_power.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include "grib2.h"
+/*
+ * w. ebisuzaki
+ *
+ *  return x**y
+ *
+ *
+ *  input: double x
+ *         int y
+ */
+double int_power(double x, g2int y) {
+
+        double value;
+
+        if (y < 0) {
+                y = -y;
+                x = 1.0 / x;
+        }
+        value = 1.0;
+
+        while (y) {
+                if (y & 1) {
+                        value *= x;
+                }
+                x = x * x;
+                y >>= 1;
+        }
+        return value;
+}
+
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/jpcpack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/jpcpack.c
new file mode 100755
index 0000000..2b42039
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/jpcpack.c
@@ -0,0 +1,178 @@
+/**********************************************************
+ * Version $Id: jpcpack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdlib.h>
+#include <math.h>
+#include "grib2.h"
+
+int enc_jpeg2000(unsigned char *,g2int ,g2int ,g2int ,
+                 g2int , g2int, g2int , char *, g2int );
+
+void jpcpack(g2float *fld,g2int width,g2int height,g2int *idrstmpl,
+             unsigned char *cpack,g2int *lcpack)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    jpcpack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2003-08-17
+//
+// ABSTRACT: This subroutine packs up a data field into a JPEG2000 code stream.
+//   After the data field is scaled, and the reference value is subtracted out,
+//   it is treated as a grayscale image and passed to a JPEG2000 encoder.
+//   It also fills in GRIB2 Data Representation Template 5.40 or 5.40000 with 
+//   the appropriate values.
+//
+// PROGRAM HISTORY LOG:
+// 2003-08-17  Gilbert
+// 2004-11-92  Gilbert  - Fixed bug encountered when packing a near constant
+//                        field.
+// 2004-07-19  Gilbert - Added check on whether the jpeg2000 encoding was
+//                       successful.  If not, try again with different encoder
+//                       options.
+// 2005-05-10  Gilbert - Imposed minimum size on cpack, used to hold encoded
+//                       bit string.
+//
+// USAGE:    jpcpack(g2float *fld,g2int width,g2int height,g2int *idrstmpl,
+//                   unsigned char *cpack,g2int *lcpack);
+//   INPUT ARGUMENT LIST:
+//     fld[]    - Contains the data values to pack
+//     width    - number of points in the x direction
+//     height   - number of points in the y direction
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.40 or 5.40000
+//                [0] = Reference value - ignored on input
+//                [1] = Binary Scale Factor
+//                [2] = Decimal Scale Factor
+//                [3] = number of bits for each data value - ignored on input
+//                [4] = Original field type - currently ignored on input
+//                      Data values assumed to be reals.
+//                [5] = 0 - use lossless compression
+//                    = 1 - use lossy compression
+//                [6] = Desired compression ratio, if idrstmpl[5]=1.
+//                      Set to 255, if idrstmpl[5]=0.
+//     lcpack   - size of array cpack[]
+//
+//   OUTPUT ARGUMENT LIST: 
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.0
+//                [0] = Reference value - set by jpcpack routine.
+//                [1] = Binary Scale Factor - unchanged from input
+//                [2] = Decimal Scale Factor - unchanged from input
+//                [3] = Number of bits containing each grayscale pixel value
+//                [4] = Original field type - currently set = 0 on output.
+//                      Data values assumed to be reals.
+//                [5] = 0 - use lossless compression
+//                    = 1 - use lossy compression
+//                [6] = Desired compression ratio, if idrstmpl[5]=1
+//     cpack    - The packed data field 
+//     lcpack   - length of packed field in cpack.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+      g2int  *ifld;
+      static g2float alog2=0.69314718;       //  ln(2.0)
+      g2int  j,nbits,imin,imax,maxdif;
+      g2int  ndpts,nbytes,nsize,retry;
+      g2float  bscale,dscale,rmax,rmin,temp;
+      unsigned char *ctemp;
+      
+      ifld=0;
+      ndpts=width*height;
+      bscale=int_power(2.0,-idrstmpl[1]);
+      dscale=int_power(10.0,idrstmpl[2]);
+//
+//  Find max and min values in the data
+//
+      rmax=fld[0];
+      rmin=fld[0];
+      for (j=1;j<ndpts;j++) {
+        if (fld[j] > rmax) rmax=fld[j];
+        if (fld[j] < rmin) rmin=fld[j];
+      }
+      if (idrstmpl[1] == 0) 
+         maxdif = (g2int) (rint(rmax*dscale) - rint(rmin*dscale));
+      else
+         maxdif = (g2int)rint( (rmax-rmin)*dscale*bscale );
+//
+//  If max and min values are not equal, pack up field.
+//  If they are equal, we have a constant field, and the reference
+//  value (rmin) is the value for each point in the field and
+//  set nbits to 0.
+//
+      if ( rmin != rmax  &&  maxdif != 0 ) {
+        ifld=(g2int *)malloc(ndpts*sizeof(g2int));
+        //
+        //  Determine which algorithm to use based on user-supplied 
+        //  binary scale factor and number of bits.
+        //
+        if (idrstmpl[1] == 0) {
+           //
+           //  No binary scaling and calculate minumum number of 
+           //  bits in which the data will fit.
+           //
+           imin=(g2int)rint(rmin*dscale);
+           imax=(g2int)rint(rmax*dscale);
+           maxdif=imax-imin;
+           temp=log((double)(maxdif+1))/alog2;
+           nbits=(g2int)ceil(temp);
+           rmin=(g2float)imin;
+           //   scale data
+           for(j=0;j<ndpts;j++)
+             ifld[j]=(g2int)rint(fld[j]*dscale)-imin;
+        }
+        else {
+           //
+           //  Use binary scaling factor and calculate minumum number of 
+           //  bits in which the data will fit.
+           //
+           rmin=rmin*dscale;
+           rmax=rmax*dscale;
+           maxdif=(g2int)rint((rmax-rmin)*bscale);
+           temp=log((double)(maxdif+1))/alog2;
+           nbits=(g2int)ceil(temp);
+           //   scale data
+           for (j=0;j<ndpts;j++)
+             ifld[j]=(g2int)rint(((fld[j]*dscale)-rmin)*bscale);
+        }
+        //
+        //  Pack data into full octets, then do JPEG 2000 encode.
+        //  and calculate the length of the packed data in bytes
+        //
+        retry=0;
+        nbytes=(nbits+7)/8;
+        nsize=*lcpack;          // needed for input to enc_jpeg2000
+        ctemp=calloc(ndpts,nbytes);
+        sbits(ctemp,ifld,0,nbytes*8,0,ndpts);
+        *lcpack=(g2int)enc_jpeg2000(ctemp,width,height,nbits,idrstmpl[5],idrstmpl[6],retry,(char *)cpack,nsize);
+        if (*lcpack <= 0) {
+           printf("jpcpack: ERROR Packing JPC = %d\n",(int)*lcpack);
+           if ( *lcpack == -3 ) {
+              retry=1;
+              *lcpack=(g2int)enc_jpeg2000(ctemp,width,height,nbits,idrstmpl[5],idrstmpl[6],retry,(char *)cpack,nsize);
+              if ( *lcpack <= 0 ) printf("jpcpack: Retry Failed.\n");
+              else printf("jpcpack: Retry Successful.\n");
+           }
+        }
+        free(ctemp);
+
+      }
+      else {
+        nbits=0;
+        *lcpack=0;
+      }
+
+//
+//  Fill in ref value and number of bits in Template 5.0
+//
+      mkieee(&rmin,idrstmpl+0,1);   // ensure reference value is IEEE format
+      idrstmpl[3]=nbits;
+      idrstmpl[4]=0;         // original data were reals
+      if (idrstmpl[5] == 0) idrstmpl[6]=255;       // lossy not used
+      if (ifld != 0) free(ifld);
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/jpcunpack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/jpcunpack.c
new file mode 100755
index 0000000..7640bda
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/jpcunpack.c
@@ -0,0 +1,75 @@
+/**********************************************************
+ * Version $Id: jpcunpack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+   int dec_jpeg2000(char *,g2int ,g2int *);
+
+g2int jpcunpack(unsigned char *cpack,g2int len,g2int *idrstmpl,g2int ndpts,
+                g2float *fld)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    jpcunpack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2003-08-27
+//
+// ABSTRACT: This subroutine unpacks a data field that was packed into a 
+//   JPEG2000 code stream
+//   using info from the GRIB2 Data Representation Template 5.40 or 5.40000.
+//
+// PROGRAM HISTORY LOG:
+// 2003-08-27  Gilbert
+//
+// USAGE:    jpcunpack(unsigned char *cpack,g2int len,g2int *idrstmpl,g2int ndpts,
+//                     g2float *fld)
+//   INPUT ARGUMENT LIST:
+//     cpack    - The packed data field (character*1 array)
+//     len      - length of packed field cpack().
+//     idrstmpl - Pointer to array of values for Data Representation
+//                Template 5.40 or 5.40000
+//     ndpts    - The number of data values to unpack
+//
+//   OUTPUT ARGUMENT LIST:
+//     fld[]    - Contains the unpacked data values
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+
+      g2int  *ifld;
+      g2int  j,nbits,iret;
+      g2float  ref,bscale,dscale;
+
+      rdieee(idrstmpl+0,&ref,1);
+      bscale = int_power(2.0,idrstmpl[1]);
+      dscale = int_power(10.0,-idrstmpl[2]);
+      nbits = idrstmpl[3];
+//
+//  if nbits equals 0, we have a constant field where the reference value
+//  is the data value at each gridpoint
+//
+      if (nbits != 0) {
+
+         ifld=(g2int *)calloc(ndpts,sizeof(g2int));
+         if ( ifld == 0 ) {
+            fprintf(stderr,"Could not allocate space in jpcunpack.\n  Data field NOT upacked.\n");
+            return(1);
+         }
+         iret=(g2int)dec_jpeg2000(cpack,len,ifld);
+         for (j=0;j<ndpts;j++) {
+           fld[j]=(((g2float)ifld[j]*bscale)+ref)*dscale;
+         }
+         free(ifld);
+      }
+      else {
+         for (j=0;j<ndpts;j++) fld[j]=ref;
+      }
+
+      return(0);
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/misspack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/misspack.c
new file mode 100755
index 0000000..ff69fac
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/misspack.c
@@ -0,0 +1,535 @@
+/**********************************************************
+ * Version $Id: misspack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdlib.h>
+#include <math.h>
+#include "grib2.h"
+
+void misspack(g2float *fld,g2int ndpts,g2int idrsnum,g2int *idrstmpl,
+              unsigned char *cpack, g2int *lcpack)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    misspack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2000-06-21
+//
+// ABSTRACT: This subroutine packs up a data field using a complex
+//   packing algorithm as defined in the GRIB2 documention.  It
+//   supports GRIB2 complex packing templates with or without
+//   spatial differences (i.e. DRTs 5.2 and 5.3).
+//   It also fills in GRIB2 Data Representation Template 5.2 or 5.3 
+//   with the appropriate values.
+//   This version assumes that Missing Value Management is being used and that
+//   1 or 2 missing values appear in the data.
+//
+// PROGRAM HISTORY LOG:
+// 2000-06-21  Gilbert
+//
+// USAGE:    misspack(g2float *fld,g2int ndpts,g2int idrsnum,g2int *idrstmpl,
+//                    unsigned char *cpack, g2int *lcpack)
+//   INPUT ARGUMENT LIST:
+//     fld[]    - Contains the data values to pack
+//     ndpts    - The number of data values in array fld[]
+//     idrsnum  - Data Representation Template number 5.N
+//                Must equal 2 or 3.
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.2 or 5.3
+//                [0] = Reference value - ignored on input
+//                [1] = Binary Scale Factor
+//                [2] = Decimal Scale Factor
+//                    .
+//                    .
+//                [6] = Missing value management
+//                [7] = Primary missing value
+//                [8] = Secondary missing value
+//                    .
+//                    .
+//               [16] = Order of Spatial Differencing  ( 1 or 2 )
+//                    .
+//                    .
+//
+//   OUTPUT ARGUMENT LIST: 
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.3
+//                [0] = Reference value - set by misspack routine.
+//                [1] = Binary Scale Factor - unchanged from input
+//                [2] = Decimal Scale Factor - unchanged from input
+//                    .
+//                    .
+//     cpack    - The packed data field (character*1 array)
+//     *lcpack   - length of packed field cpack().
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$
+{
+
+      g2int  *ifld, *ifldmiss, *jfld;
+      g2int  *jmin, *jmax, *lbit;
+      static g2int zero=0;
+      g2int  *gref, *gwidth, *glen;
+      g2int  glength, grpwidth;
+      g2int  i, n, iofst, imin, ival1, ival2, isd, minsd, nbitsd;
+      g2int  nbitsgref, left, iwmax, ngwidthref, nbitsgwidth, ilmax;
+      g2int  nglenref, nglenlast, nbitsglen, ij;
+      g2int  j, missopt, nonmiss, itemp, maxorig, nbitorig, miss1, miss2;
+      g2int  ngroups, ng, num0, num1, num2;
+      g2int  imax, lg, mtemp, ier, igmax;
+      g2int  kfildo, minpk, inc, maxgrps, ibit, jbit, kbit, novref, lbitref;
+      g2float  rmissp, rmisss, bscale, dscale, rmin, temp;
+      static g2int simple_alg = 0;
+      static g2float alog2=0.69314718;       //  ln(2.0)
+      static g2int one=1;
+      
+      bscale=int_power(2.0,-idrstmpl[1]);
+      dscale=int_power(10.0,idrstmpl[2]);
+      missopt=idrstmpl[6];
+      if ( missopt != 1 && missopt != 2 ) {
+         printf("misspack: Unrecognized option.\n");
+         *lcpack=-1;
+         return;
+      }
+      else {    //  Get missing values
+         rdieee(idrstmpl+7,&rmissp,1);
+         if (missopt == 2) rdieee(idrstmpl+8,&rmisss,1);
+      }
+//
+//  Find min value of non-missing values in the data,
+//  AND set up missing value mapping of the field.
+//
+      ifldmiss = calloc(ndpts,sizeof(g2int));
+      rmin=1E+37;
+      if ( missopt ==  1 ) {        // Primary missing value only
+         for ( j=0; j<ndpts; j++) {
+           if (fld[j] == rmissp) {
+              ifldmiss[j]=1;
+           }
+           else {
+              ifldmiss[j]=0;
+              if (fld[j] < rmin) rmin=fld[j];
+           }
+         }
+      }
+      if ( missopt ==  2 ) {        // Primary and secondary missing values
+         for ( j=0; j<ndpts; j++ ) {
+           if (fld[j] == rmissp) {
+              ifldmiss[j]=1;
+           }
+           else if (fld[j] == rmisss) {
+              ifldmiss[j]=2;
+           }
+           else {
+              ifldmiss[j]=0;
+              if (fld[j] < rmin) rmin=fld[j];
+           }
+         }
+      }
+//
+//  Allocate work arrays:
+//  Note: -ifldmiss[j],j=0,ndpts-1 is a map of original field indicating 
+//         which of the original data values
+//         are primary missing (1), sencondary missing (2) or non-missing (0).
+//        -jfld[j],j=0,nonmiss-1 is a subarray of just the non-missing values 
+//         from the original field.
+//
+      //if (rmin != rmax) {
+        iofst=0;
+        ifld = calloc(ndpts,sizeof(g2int));
+        jfld = calloc(ndpts,sizeof(g2int));
+        gref = calloc(ndpts,sizeof(g2int));
+        gwidth = calloc(ndpts,sizeof(g2int));
+        glen = calloc(ndpts,sizeof(g2int));
+        //
+        //  Scale original data
+        //
+        nonmiss=0;
+        if (idrstmpl[1] == 0) {        //  No binary scaling
+           imin=(g2int)rint(rmin*dscale);
+           //imax=(g2int)rint(rmax*dscale);
+           rmin=(g2float)imin;
+           for ( j=0; j<ndpts; j++) {
+              if (ifldmiss[j] == 0) {
+                jfld[nonmiss]=(g2int)rint(fld[j]*dscale)-imin;
+                nonmiss++;
+              }
+           }
+        }
+        else {                             //  Use binary scaling factor
+           rmin=rmin*dscale;
+           //rmax=rmax*dscale;
+           for ( j=0; j<ndpts; j++ ) {
+              if (ifldmiss[j] == 0) {
+                jfld[nonmiss]=(g2int)rint(((fld[j]*dscale)-rmin)*bscale);
+                nonmiss++;
+              }
+           }
+        }
+        //
+        //  Calculate Spatial differences, if using DRS Template 5.3
+        //
+        if (idrsnum == 3) {        // spatial differences
+           if (idrstmpl[16]!=1 && idrstmpl[16]!=2) idrstmpl[16]=2;
+           if (idrstmpl[16] == 1) {      // first order
+              ival1=jfld[0];
+              for ( j=nonmiss-1; j>0; j--)
+                 jfld[j]=jfld[j]-jfld[j-1];
+              jfld[0]=0;
+           }
+           else if (idrstmpl[16] == 2) {      // second order
+              ival1=jfld[0];
+              ival2=jfld[1];
+              for ( j=nonmiss-1; j>1; j--)
+                 jfld[j]=jfld[j]-(2*jfld[j-1])+jfld[j-2];
+              jfld[0]=0;
+              jfld[1]=0;
+           }
+           //
+           //  subtract min value from spatial diff field
+           //
+           isd=idrstmpl[16];
+           minsd=jfld[isd];
+           for ( j=isd; j<nonmiss; j++ ) if ( jfld[j] < minsd ) minsd=jfld[j];
+           for ( j=isd; j<nonmiss; j++ ) jfld[j]=jfld[j]-minsd;
+           //
+           //   find num of bits need to store minsd and add 1 extra bit
+           //   to indicate sign
+           //
+           temp=log((double)(abs(minsd)+1))/alog2;
+           nbitsd=(g2int)ceil(temp)+1;
+           //
+           //   find num of bits need to store ifld[0] ( and ifld[1]
+           //   if using 2nd order differencing )
+           //
+           maxorig=ival1;
+           if (idrstmpl[16]==2 && ival2>ival1) maxorig=ival2;
+           temp=log((double)(maxorig+1))/alog2;
+           nbitorig=(g2int)ceil(temp)+1;
+           if (nbitorig > nbitsd) nbitsd=nbitorig;
+           //   increase number of bits to even multiple of 8 ( octet )
+           if ( (nbitsd%8) != 0) nbitsd=nbitsd+(8-(nbitsd%8));
+           //
+           //  Store extra spatial differencing info into the packed
+           //  data section.
+           //
+           if (nbitsd != 0) {
+              //   pack first original value
+              if (ival1 >= 0) {
+                 sbit(cpack,&ival1,iofst,nbitsd);
+                 iofst=iofst+nbitsd;
+              }
+              else {
+                 sbit(cpack,&one,iofst,1);
+                 iofst=iofst+1;
+                 itemp=abs(ival1);
+                 sbit(cpack,&itemp,iofst,nbitsd-1);
+                 iofst=iofst+nbitsd-1;
+              }
+              if (idrstmpl[16] == 2) {
+               //  pack second original value
+                 if (ival2 >= 0) {
+                    sbit(cpack,&ival2,iofst,nbitsd);
+                    iofst=iofst+nbitsd;
+                 }
+                 else {
+                    sbit(cpack,&one,iofst,1);
+                    iofst=iofst+1;
+                    itemp=abs(ival2);
+                    sbit(cpack,&itemp,iofst,nbitsd-1);
+                    iofst=iofst+nbitsd-1;
+                 }
+              }
+              //  pack overall min of spatial differences
+              if (minsd >= 0) {
+                 sbit(cpack,&minsd,iofst,nbitsd);
+                 iofst=iofst+nbitsd;
+              }
+              else {
+                 sbit(cpack,&one,iofst,1);
+                 iofst=iofst+1;
+                 itemp=abs(minsd);
+                 sbit(cpack,&itemp,iofst,nbitsd-1);
+                 iofst=iofst+nbitsd-1;
+              }
+           }
+         //print *,'SDp ',ival1,ival2,minsd,nbitsd
+        }       //  end of spatial diff section
+        //
+        //  Expand non-missing data values to original grid.
+        //
+        miss1=jfld[0];
+        for ( j=0; j<nonmiss; j++) if (jfld[j] < miss1) miss1 = jfld[j];
+        miss1--;
+        miss2=miss1-1;
+        n=0;
+        for ( j=0; j<ndpts; j++) {
+           if ( ifldmiss[j] == 0 ) {
+              ifld[j]=jfld[n];
+              n++;
+           }
+           else if ( ifldmiss[j] == 1 ) {
+              ifld[j]=miss1;
+           }
+           else if ( ifldmiss[j] == 2 ) {
+              ifld[j]=miss2;
+           }
+        }
+        //
+        //   Determine Groups to be used.
+        //
+        if ( simple_alg == 1 ) {
+           //  set group length to 10 :  calculate number of groups
+           //  and length of last group
+           ngroups=ndpts/10;
+           for (j=0;j<ngroups;j++) glen[j]=10;
+           itemp=ndpts%10;
+           if (itemp != 0) {
+              ngroups++;
+              glen[ngroups-1]=itemp;
+           }
+        }
+        else {
+           // Use Dr. Glahn's algorithm for determining grouping.
+           //
+           kfildo=6;
+           minpk=10;
+           inc=1;
+           maxgrps=(ndpts/minpk)+1;
+           jmin = calloc(maxgrps,sizeof(g2int));
+           jmax = calloc(maxgrps,sizeof(g2int));
+           lbit = calloc(maxgrps,sizeof(g2int));
+           pack_gp(&kfildo,ifld,&ndpts,&missopt,&minpk,&inc,&miss1,&miss2,
+                        jmin,jmax,lbit,glen,&maxgrps,&ngroups,&ibit,&jbit,
+                        &kbit,&novref,&lbitref,&ier);
+           //printf("SAGier = %d %d %d %d %d %d\n",ier,ibit,jbit,kbit,novref,lbitref);
+           for ( ng=0; ng<ngroups; ng++) glen[ng]=glen[ng]+novref;
+           free(jmin);
+           free(jmax);
+           free(lbit);
+        }
+        //  
+        //  For each group, find the group's reference value (min)
+        //  and the number of bits needed to hold the remaining values
+        //
+        n=0;
+        for ( ng=0; ng<ngroups; ng++) {
+           //  how many of each type?
+           num0=num1=num2=0;
+           for (j=n; j<n+glen[ng]; j++) {
+               if (ifldmiss[j] == 0 ) num0++;
+               if (ifldmiss[j] == 1 ) num1++;
+               if (ifldmiss[j] == 2 ) num2++;
+           }
+           if ( num0 == 0 ) {      // all missing values
+              if ( num1 == 0 ) {       // all secondary missing
+                gref[ng]=-2;
+                gwidth[ng]=0;
+              }
+              else if ( num2 == 0 ) {       // all primary missing
+                gref[ng]=-1;
+                gwidth[ng]=0;
+              }
+              else {                          // both primary and secondary
+                gref[ng]=0;
+                gwidth[ng]=1;
+              }
+           }
+           else {                      // contains some non-missing data
+             //    find max and min values of group
+             gref[ng]=2147483647;
+             imax=-2147483647;
+             j=n;
+             for ( lg=0; lg<glen[ng]; lg++ ) {
+                if ( ifldmiss[j] == 0 ) {
+                  if (ifld[j] < gref[ng]) gref[ng]=ifld[j];
+                  if (ifld[j] > imax) imax=ifld[j]; 
+                }
+                j++;
+             }
+             if (missopt == 1) imax=imax+1;
+             if (missopt == 2) imax=imax+2;
+             //   calc num of bits needed to hold data
+             if ( gref[ng] != imax ) {
+                temp=log((double)(imax-gref[ng]+1))/alog2;
+                gwidth[ng]=(g2int)ceil(temp);
+             }
+             else {
+                gwidth[ng]=0;
+             }
+           }
+           //   Subtract min from data
+           j=n;
+           mtemp=(g2int)int_power(2.,gwidth[ng]);
+           for ( lg=0; lg<glen[ng]; lg++ ) {
+              if (ifldmiss[j] == 0)            // non-missing
+                 ifld[j]=ifld[j]-gref[ng];
+              else if (ifldmiss[j] == 1)         // primary missing
+                 ifld[j]=mtemp-1;
+              else if (ifldmiss[j] == 2)         // secondary missing
+                 ifld[j]=mtemp-2;
+              
+              j++;
+           }
+           //   increment fld array counter
+           n=n+glen[ng];
+        }
+        //  
+        //  Find max of the group references and calc num of bits needed 
+        //  to pack each groups reference value, then
+        //  pack up group reference values
+        //
+        //printf(" GREFS: ");
+        //for (j=0;j<ngroups;j++) printf(" %d",gref[j]); printf("\n");
+        igmax=gref[0];
+        for (j=1;j<ngroups;j++) if (gref[j] > igmax) igmax=gref[j];
+        if (missopt == 1) igmax=igmax+1;
+        if (missopt == 2) igmax=igmax+2;
+        if (igmax != 0) {
+           temp=log((double)(igmax+1))/alog2;
+           nbitsgref=(g2int)ceil(temp);
+           // reset the ref values of any "missing only" groups.
+           mtemp=(g2int)int_power(2.,nbitsgref);
+           for ( j=0; j<ngroups; j++ ) {
+               if (gref[j] == -1) gref[j]=mtemp-1;
+               if (gref[j] == -2) gref[j]=mtemp-2;
+           }
+           sbits(cpack,gref,iofst,nbitsgref,0,ngroups);
+           itemp=nbitsgref*ngroups;
+           iofst=iofst+itemp;
+           //         Pad last octet with Zeros, if necessary,
+           if ( (itemp%8) != 0) {
+              left=8-(itemp%8);
+              sbit(cpack,&zero,iofst,left);
+              iofst=iofst+left;
+           }
+        }
+        else {
+           nbitsgref=0;
+        }
+        //
+        //  Find max/min of the group widths and calc num of bits needed
+        //  to pack each groups width value, then
+        //  pack up group width values
+        //
+        //write(77,*)'GWIDTHS: ',(gwidth(j),j=1,ngroups)
+        iwmax=gwidth[0];
+        ngwidthref=gwidth[0];
+        for (j=1;j<ngroups;j++) {
+           if (gwidth[j] > iwmax) iwmax=gwidth[j];
+           if (gwidth[j] < ngwidthref) ngwidthref=gwidth[j];
+        }
+        if (iwmax != ngwidthref) {
+           temp=log((double)(iwmax-ngwidthref+1))/alog2;
+           nbitsgwidth=(g2int)ceil(temp);
+           for ( i=0; i<ngroups; i++) gwidth[i]=gwidth[i]-ngwidthref;
+           sbits(cpack,gwidth,iofst,nbitsgwidth,0,ngroups);
+           itemp=nbitsgwidth*ngroups;
+           iofst=iofst+itemp;
+           //         Pad last octet with Zeros, if necessary,
+           if ( (itemp%8) != 0) {
+              left=8-(itemp%8);
+              sbit(cpack,&zero,iofst,left);
+              iofst=iofst+left;
+           }
+        }
+        else {
+           nbitsgwidth=0;
+           for (i=0;i<ngroups;i++) gwidth[i]=0;
+        }
+        //
+        //  Find max/min of the group lengths and calc num of bits needed
+        //  to pack each groups length value, then
+        //  pack up group length values
+        //
+        //printf(" GLENS: ");
+        //for (j=0;j<ngroups;j++) printf(" %d",glen[j]); printf("\n");
+        ilmax=glen[0];
+        nglenref=glen[0];
+        for (j=1;j<ngroups-1;j++) {
+           if (glen[j] > ilmax) ilmax=glen[j];
+           if (glen[j] < nglenref) nglenref=glen[j];
+        }
+        nglenlast=glen[ngroups-1];
+        if (ilmax != nglenref) {
+           temp=log((double)(ilmax-nglenref+1))/alog2;
+           nbitsglen=(g2int)ceil(temp);
+           for ( i=0; i<ngroups-1; i++) glen[i]=glen[i]-nglenref;
+           sbits(cpack,glen,iofst,nbitsglen,0,ngroups);
+           itemp=nbitsglen*ngroups;
+           iofst=iofst+itemp;
+           //         Pad last octet with Zeros, if necessary,
+           if ( (itemp%8) != 0) {
+              left=8-(itemp%8);
+              sbit(cpack,&zero,iofst,left);
+              iofst=iofst+left;
+           }
+        }
+        else {
+           nbitsglen=0;
+           for (i=0;i<ngroups;i++) glen[i]=0;
+        }
+        //
+        //  For each group, pack data values
+        //
+        //write(77,*)'IFLDS: ',(ifld(j),j=1,ndpts)
+        n=0;
+        ij=0;
+        for ( ng=0; ng<ngroups; ng++) {
+           glength=glen[ng]+nglenref;
+           if (ng == (ngroups-1) ) glength=nglenlast;
+           grpwidth=gwidth[ng]+ngwidthref;
+       //write(77,*)'NGP ',ng,grpwidth,glength,gref(ng)
+           if ( grpwidth != 0 ) {
+              sbits(cpack,ifld+n,iofst,grpwidth,0,glength);
+              iofst=iofst+(grpwidth*glength);
+           }
+       //  do kk=1,glength
+       //     ij=ij+1
+       //write(77,*)'SAG ',ij,fld(ij),ifld(ij),gref(ng),bscale,rmin,dscale
+       //  enddo
+           n=n+glength;
+        }
+        //         Pad last octet with Zeros, if necessary,
+        if ( (iofst%8) != 0) {
+           left=8-(iofst%8);
+           sbit(cpack,&zero,iofst,left);
+           iofst=iofst+left;
+        }
+        *lcpack=iofst/8;
+        //
+        if ( ifld != 0 ) free(ifld);
+        if ( jfld != 0 ) free(jfld);
+        if ( ifldmiss != 0 ) free(ifldmiss);
+        if ( gref != 0 ) free(gref);
+        if ( gwidth != 0 ) free(gwidth);
+        if ( glen != 0 ) free(glen);
+      //}
+      //else {          //   Constant field ( max = min )
+      //  nbits=0;
+      //  *lcpack=0;
+      //  nbitsgref=0;
+      //  ngroups=0;
+      //}
+
+//
+//  Fill in ref value and number of bits in Template 5.2
+//
+      mkieee(&rmin,idrstmpl+0,1);   // ensure reference value is IEEE format
+      idrstmpl[3]=nbitsgref;
+      idrstmpl[4]=0;         // original data were reals
+      idrstmpl[5]=1;         // general group splitting
+      idrstmpl[9]=ngroups;          // Number of groups
+      idrstmpl[10]=ngwidthref;       // reference for group widths
+      idrstmpl[11]=nbitsgwidth;      // num bits used for group widths
+      idrstmpl[12]=nglenref;         // Reference for group lengths
+      idrstmpl[13]=1;                // length increment for group lengths
+      idrstmpl[14]=nglenlast;        // True length of last group
+      idrstmpl[15]=nbitsglen;        // num bits used for group lengths
+      if (idrsnum == 3) {
+         idrstmpl[17]=nbitsd/8;      // num bits used for extra spatial
+                                     // differencing values
+      }
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/mkieee.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/mkieee.c
new file mode 100755
index 0000000..37fb87b
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/mkieee.c
@@ -0,0 +1,126 @@
+/**********************************************************
+ * Version $Id: mkieee.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdlib.h>
+#include <math.h>
+#include "grib2.h"
+
+
+void mkieee(g2float *a,g2int *rieee,g2int num)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    mkieee 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-29
+//
+// ABSTRACT: This subroutine stores a list of real values in 
+//   32-bit IEEE floating point format.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-29  Gilbert
+//
+// USAGE:    mkieee(g2float *a,g2int *rieee,g2int num);
+//   INPUT ARGUMENT LIST:
+//     a        - Input array of floating point values.
+//     num      - Number of floating point values to convert.
+//
+//   OUTPUT ARGUMENT LIST:      
+//     rieee    - Output array of data values in 32-bit IEEE format
+//                stored in g2int integer array.  rieee must be allocated
+//                with at least 4*num bytes of memory before calling this
+//                function.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$
+{
+
+      g2int  j,n,ieee,iexp,imant;
+      double  alog2,atemp;
+
+      static double  two23,two126;
+      static g2int test=0;
+    //g2intu msk1=0x80000000;        // 10000000000000000000000000000000 binary
+    //g2int msk2=0x7F800000;         // 01111111100000000000000000000000 binary
+    //g2int msk3=0x007FFFFF;         // 00000000011111111111111111111111 binary
+
+      if ( test == 0 ) {
+         two23=(double)int_power(2.0,23);
+         two126=(double)int_power(2.0,126);
+         test=1;
+      }
+
+      alog2=0.69314718;       //  ln(2.0)
+
+      for (j=0;j<num;j++) {
+      
+        ieee=0;
+
+        if (a[j] == 0.0) {
+          rieee[j]=ieee;
+          continue;
+        }
+        
+//
+//  Set Sign bit (bit 31 - leftmost bit)
+//
+        if (a[j] < 0.0) {
+          ieee= 1 << 31;
+          atemp=-1.0*a[j];
+        }
+        else {
+          ieee= 0 << 31;
+          atemp=a[j];
+        }
+        //printf("sign %ld %x \n",ieee,ieee);
+//
+//  Determine exponent n with base 2
+//
+        if ( atemp >= 1.0 ) {
+           n = 0;
+           while ( int_power(2.0,n+1) <= atemp ) {
+              n++;
+           }
+        }
+        else {
+           n = -1;
+           while ( int_power(2.0,n) > atemp ) {
+              n--;
+           }
+        }
+        //n=(g2int)floor(log(atemp)/alog2);
+        iexp=n+127;
+        if (n >  127) iexp=255;     // overflow
+        if (n < -127) iexp=0;
+        //printf("exp %ld %ld \n",iexp,n);
+        //      set exponent bits ( bits 30-23 )
+        ieee = ieee | ( iexp << 23 );
+//
+//  Determine Mantissa
+// 
+        if (iexp != 255) {
+          if (iexp != 0) 
+            atemp=(atemp/int_power(2.0,n))-1.0;
+          else
+            atemp=atemp*two126;
+          imant=(g2int)rint(atemp*two23);
+        }
+        else {
+          imant=0;
+        }
+        //printf("mant %ld %x \n",imant,imant);
+        //      set mantissa bits ( bits 22-0 )
+        ieee = ieee | imant;
+//
+//  Transfer IEEE bit string to rieee array
+//
+        rieee[j]=ieee;
+
+      }
+
+      return;
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/pack_gp.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/pack_gp.c
new file mode 100755
index 0000000..4cde3e2
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/pack_gp.c
@@ -0,0 +1,1450 @@
+/**********************************************************
+ * Version $Id: pack_gp.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+/* pack_gp.f -- translated by f2c (version 20031025).
+   You must link the resulting object file with libf2c:
+	on Microsoft Windows system, link with libf2c.lib;
+	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+	or, if you install libf2c.a in a standard place, with -lf2c -lm
+	-- in that order, at the end of the command line, as in
+		cc *.o -lf2c -lm
+	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+		http://www.netlib.org/f2c/libf2c.zip
+*/
+
+/*#include "f2c.h"*/
+#include <stdlib.h>
+#include "grib2.h"
+typedef g2int integer;
+typedef g2int logical;
+#define TRUE_ (1)
+#define FALSE_ (0)
+
+/* Subroutine */ int pack_gp(integer *kfildo, integer *ic, integer *nxy, 
+	integer *is523, integer *minpk, integer *inc, integer *missp, integer 
+	*misss, integer *jmin, integer *jmax, integer *lbit, integer *nov, 
+	integer *ndg, integer *lx, integer *ibit, integer *jbit, integer *
+	kbit, integer *novref, integer *lbitref, integer *ier)
+{
+    /* Initialized data */
+
+    const  integer mallow = 1073741825;   /*  MALLOW=2**30+1  */
+    static integer ifeed = 12;
+    static integer ifirst = 0;
+
+    /* System generated locals */
+    integer i__1, i__2, i__3;
+
+    /* Local variables */
+    static integer j, k, l;
+    static logical adda;
+    static integer ired, kinc, mina, maxa, minb, maxb, minc, maxc, ibxx2[31];
+    static char cfeed[1];
+    static integer nenda, nendb, ibita, ibitb, minak, minbk, maxak, maxbk, 
+	    minck, maxck, nouta, lmiss, itest, nount;
+    extern /* Subroutine */ int reduce(integer *, integer *, integer *, 
+	    integer *, integer *, integer *, integer *, integer *, integer *, 
+	    integer *, integer *, integer *, integer *);
+    static integer ibitbs, mislla, misllb, misllc, iersav, lminpk, ktotal, 
+	    kounta, kountb, kstart, mstart, mintst, maxtst, 
+	    kounts, mintstk, maxtstk;
+    integer *misslx;
+
+
+/*        FEBRUARY 1994   GLAHN   TDL   MOS-2000 */
+/*        JUNE     1995   GLAHN   MODIFIED FOR LMISS ERROR. */
+/*        JULY     1996   GLAHN   ADDED MISSS */
+/*        FEBRUARY 1997   GLAHN   REMOVED 4 REDUNDANT TESTS FOR */
+/*                                MISSP.EQ.0; INSERTED A TEST TO BETTER */
+/*                                HANDLE A STRING OF 9999'S */
+/*        FEBRUARY 1997   GLAHN   ADDED LOOPS TO ELIMINATE TEST FOR */
+/*                                MISSS WHEN MISSS = 0 */
+/*        MARCH    1997   GLAHN   CORRECTED FOR SECONDARY MISSING VALUE */
+/*        MARCH    1997   GLAHN   CORRECTED FOR USE OF LOCAL VALUE */
+/*                                OF MINPK */
+/*        MARCH    1997   GLAHN   CORRECTED FOR SECONDARY MISSING VALUE */
+/*        MARCH    1997   GLAHN   CHANGED CALCULATING NUMBER OF BITS */
+/*                                THROUGH EXPONENTS TO AN ARRAY (IMPROVED */
+/*                                OVERALL PACKING PERFORMANCE BY ABOUT */
+/*                                35 PERCENT!).  ALLOWED 0 BITS FOR */
+/*                                PACKING JMIN( ), LBIT( ), AND NOV( ). */
+/*        MAY      1997   GLAHN   A NUMBER OF CHANGES FOR EFFICIENCY. */
+/*                                MOD FUNCTIONS ELIMINATED AND ONE */
+/*                                IFTHEN ADDED.  JOUNT REMOVED. */
+/*                                RECOMPUTATION OF BITS NOT MADE UNLESS */
+/*                                NECESSARY AFTER MOVING POINTS FROM */
+/*                                ONE GROUP TO ANOTHER.  NENDB ADJUSTED */
+/*                                TO ELIMINATE POSSIBILITY OF VERY */
+/*                                SMALL GROUP AT THE END. */
+/*                                ABOUT 8 PERCENT IMPROVEMENT IN */
+/*                                OVERALL PACKING.  ISKIPA REMOVED; */
+/*                                THERE IS ALWAYS A GROUP B THAT CAN */
+/*                                BECOME GROUP A.  CONTROL ON SIZE */
+/*                                OF GROUP B (STATEMENT BELOW 150) */
+/*                                ADDED.  ADDED ADDA, AND USE */
+/*                                OF GE AND LE INSTEAD OF GT AND LT */
+/*                                IN LOOPS BETWEEN 150 AND 160. */
+/*                                IBITBS ADDED TO SHORTEN TRIPS */
+/*                                THROUGH LOOP. */
+/*        MARCH    2000   GLAHN   MODIFIED FOR GRIB2; CHANGED NAME FROM */
+/*                                PACKGP */
+/*        JANUARY  2001   GLAHN   COMMENTS; IER = 706 SUBSTITUTED FOR */
+/*                                STOPS; ADDED RETURN1; REMOVED STATEMENT */
+/*                                NUMBER 110; ADDED IER AND * RETURN */
+/*        NOVEMBER 2001   GLAHN   CHANGED SOME DIAGNOSTIC FORMATS TO */
+/*                                ALLOW PRINTING LARGER NUMBERS */
+/*        NOVEMBER 2001   GLAHN   ADDED MISSLX( ) TO PUT MAXIMUM VALUE */
+/*                                INTO JMIN( ) WHEN ALL VALUES MISSING */
+/*                                TO AGREE WITH GRIB STANDARD. */
+/*        NOVEMBER 2001   GLAHN   CHANGED TWO TESTS ON MISSP AND MISSS */
+/*                                EQ 0 TO TESTS ON IS523.  HOWEVER, */
+/*                                MISSP AND MISSS CANNOT IN GENERAL BE */
+/*                                = 0. */
+/*        NOVEMBER 2001   GLAHN   ADDED CALL TO REDUCE; DEFINED ITEST */
+/*                                BEFORE LOOPS TO REDUCE COMPUTATION; */
+/*                                STARTED LARGE GROUP WHEN ALL SAME */
+/*                                VALUE */
+/*        DECEMBER 2001   GLAHN   MODIFIED AND ADDED A FEW COMMENTS */
+/*        JANUARY  2002   GLAHN   REMOVED LOOP BEFORE 150 TO DETERMINE */
+/*                                A GROUP OF ALL SAME VALUE */
+/*        JANUARY  2002   GLAHN   CHANGED MALLOW FROM 9999999 TO 2**30+1, */
+/*                                AND MADE IT A PARAMETER */
+/*        MARCH    2002   GLAHN   ADDED NON FATAL IER = 716, 717; */
+/*                                REMOVED NENDB=NXY ABOVE 150; */
+/*                                ADDED IERSAV=0; COMMENTS */
+
+/*        PURPOSE */
+/*            DETERMINES GROUPS OF VARIABLE SIZE, BUT AT LEAST OF */
+/*            SIZE MINPK, THE ASSOCIATED MAX (JMAX( )) AND MIN (JMIN( )), */
+/*            THE NUMBER OF BITS NECESSARY TO HOLD THE VALUES IN EACH */
+/*            GROUP (LBIT( )), THE NUMBER OF VALUES IN EACH GROUP */
+/*            (NOV( )), THE NUMBER OF BITS NECESSARY TO PACK THE JMIN( ) */
+/*            VALUES (IBIT), THE NUMBER OF BITS NECESSARY TO PACK THE */
+/*            LBIT( ) VALUES (JBIT), AND THE NUMBER OF BITS NECESSARY */
+/*            TO PACK THE NOV( ) VALUES (KBIT).  THE ROUTINE IS DESIGNED */
+/*            TO DETERMINE THE GROUPS SUCH THAT A SMALL NUMBER OF BITS */
+/*            IS NECESSARY TO PACK THE DATA WITHOUT EXCESSIVE */
+/*            COMPUTATIONS.  IF ALL VALUES IN THE GROUP ARE ZERO, THE */
+/*            NUMBER OF BITS TO USE IN PACKING IS DEFINED AS ZERO WHEN */
+/*            THERE CAN BE NO MISSING VALUES; WHEN THERE CAN BE MISSING */
+/*            VALUES, THE NUMBER OF BITS MUST BE AT LEAST 1 TO HAVE */
+/*            THE CAPABILITY TO RECOGNIZE THE MISSING VALUE.  HOWEVER, */
+/*            IF ALL VALUES IN A GROUP ARE MISSING, THE NUMBER OF BITS */
+/*            NEEDED IS 0, AND THE UNPACKER RECOGNIZES THIS. */
+/*            ALL VARIABLES ARE INTEGER.  EVEN THOUGH THE GROUPS ARE */
+/*            INITIALLY OF SIZE MINPK OR LARGER, AN ADJUSTMENT BETWEEN */
+/*            TWO GROUPS (THE LOOKBACK PROCEDURE) MAY MAKE A GROUP */
+/*            SMALLER THAN MINPK.  THE CONTROL ON GROUP SIZE IS THAT */
+/*            THE SUM OF THE SIZES OF THE TWO CONSECUTIVE GROUPS, EACH OF */
+/*            SIZE MINPK OR LARGER, IS NOT DECREASED.  WHEN DETERMINING */
+/*            THE NUMBER OF BITS NECESSARY FOR PACKING, THE LARGEST */
+/*            VALUE THAT CAN BE ACCOMMODATED IN, SAY, MBITS, IS */
+/*            2**MBITS-1; THIS LARGEST VALUE (AND THE NEXT SMALLEST */
+/*            VALUE) IS RESERVED FOR THE MISSING VALUE INDICATOR (ONLY) */
+/*            WHEN IS523 NE 0.  IF THE DIMENSION NDG */
+/*            IS NOT LARGE ENOUGH TO HOLD ALL THE GROUPS, THE LOCAL VALUE */
+/*            OF MINPK IS INCREASED BY 50 PERCENT.  THIS IS REPEATED */
+/*            UNTIL NDG WILL SUFFICE.  A DIAGNOSTIC IS PRINTED WHENEVER */
+/*            THIS HAPPENS, WHICH SHOULD BE VERY RARELY.  IF IT HAPPENS */
+/*            OFTEN, NDG IN SUBROUTINE PACK SHOULD BE INCREASED AND */
+/*            A CORRESPONDING INCREASE IN SUBROUTINE UNPACK MADE. */
+/*            CONSIDERABLE CODE IS PROVIDED SO THAT NO MORE CHECKING */
+/*            FOR MISSING VALUES WITHIN LOOPS IS DONE THAN NECESSARY; */
+/*            THE ADDED EFFICIENCY OF THIS IS RELATIVELY MINOR, */
+/*            BUT DOES NO HARM.  FOR GRIB2, THE REFERENCE VALUE FOR */
+/*            THE LENGTH OF GROUPS IN NOV( ) AND FOR THE NUMBER OF */
+/*            BITS NECESSARY TO PACK GROUP VALUES ARE DETERMINED, */
+/*            AND SUBTRACTED BEFORE JBIT AND KBIT ARE DETERMINED. */
+
+/*            WHEN 1 OR MORE GROUPS ARE LARGE COMPARED TO THE OTHERS, */
+/*            THE WIDTH OF ALL GROUPS MUST BE AS LARGE AS THE LARGEST. */
+/*            A SUBROUTINE REDUCE BREAKS UP LARGE GROUPS INTO 2 OR */
+/*            MORE TO REDUCE TOTAL BITS REQUIRED.  IF REDUCE SHOULD */
+/*            ABORT, PACK_GP WILL BE EXECUTED AGAIN WITHOUT THE CALL */
+/*            TO REDUCE. */
+
+/*        DATA SET USE */
+/*           KFILDO - UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT) */
+
+/*        VARIABLES IN CALL SEQUENCE */
+/*              KFILDO = UNIT NUMBER FOR OUTPUT (PRINT) FILE.  (INPUT) */
+/*               IC( ) = ARRAY TO HOLD DATA FOR PACKING.  THE VALUES */
+/*                       DO NOT HAVE TO BE POSITIVE AT THIS POINT, BUT */
+/*                       MUST BE IN THE RANGE -2**30 TO +2**30 (THE */
+/*                       THE VALUE OF MALLOW).  THESE INTEGER VALUES */
+/*                       WILL BE RETAINED EXACTLY THROUGH PACKING AND */
+/*                       UNPACKING.  (INPUT) */
+/*                 NXY = NUMBER OF VALUES IN IC( ).  ALSO TREATED */
+/*                       AS ITS DIMENSION.  (INPUT) */
+/*              IS523  = missing value management */
+/*                       0=data contains no missing values */
+/*                       1=data contains Primary missing values */
+/*                       2=data contains Primary and secondary missing values */
+/*                       (INPUT) */
+/*               MINPK = THE MINIMUM SIZE OF EACH GROUP, EXCEPT POSSIBLY */
+/*                       THE LAST ONE.  (INPUT) */
+/*                 INC = THE NUMBER OF VALUES TO ADD TO AN ALREADY */
+/*                       EXISTING GROUP IN DETERMINING WHETHER OR NOT */
+/*                       TO START A NEW GROUP.  IDEALLY, THIS WOULD BE */
+/*                       1, BUT EACH TIME INC VALUES ARE ATTEMPTED, THE */
+/*                       MAX AND MIN OF THE NEXT MINPK VALUES MUST BE */
+/*                       FOUND.  THIS IS "A LOOP WITHIN A LOOP," AND */
+/*                       A SLIGHTLY LARGER VALUE MAY GIVE ABOUT AS GOOD */
+/*                       RESULTS WITH SLIGHTLY LESS COMPUTATIONAL TIME. */
+/*                       IF INC IS LE 0, 1 IS USED, AND A DIAGNOSTIC IS */
+/*                       OUTPUT.  NOTE:  IT IS EXPECTED THAT INC WILL */
+/*                       EQUAL 1.  THE CODE USES INC PRIMARILY IN THE */
+/*                       LOOPS STARTING AT STATEMENT 180.  IF INC */
+/*                       WERE 1, THERE WOULD NOT NEED TO BE LOOPS */
+/*                       AS SUCH.  HOWEVER, KINC (THE LOCAL VALUE OF */
+/*                       INC) IS SET GE 1 WHEN NEAR THE END OF THE DATA */
+/*                       TO FORESTALL A VERY SMALL GROUP AT THE END. */
+/*                       (INPUT) */
+/*               MISSP = WHEN MISSING POINTS CAN BE PRESENT IN THE DATA, */
+/*                       THEY WILL HAVE THE VALUE MISSP OR MISSS. */
+/*                       MISSP IS THE PRIMARY MISSING VALUE AND  MISSS */
+/*                       IS THE SECONDARY MISSING VALUE .  THESE MUST */
+/*                       NOT BE VALUES THAT WOULD OCCUR WITH SUBTRACTING */
+/*                       THE MINIMUM (REFERENCE) VALUE OR SCALING. */
+/*                       FOR EXAMPLE, MISSP = 0 WOULD NOT BE ADVISABLE. */
+/*                       (INPUT) */
+/*               MISSS = SECONDARY MISSING VALUE INDICATOR (SEE MISSP). */
+/*                       (INPUT) */
+/*             JMIN(J) = THE MINIMUM OF EACH GROUP (J=1,LX).  (OUTPUT) */
+/*             JMAX(J) = THE MAXIMUM OF EACH GROUP (J=1,LX).  THIS IS */
+/*                       NOT REALLY NEEDED, BUT SINCE THE MAX OF EACH */
+/*                       GROUP MUST BE FOUND, SAVING IT HERE IS CHEAP */
+/*                       IN CASE THE USER WANTS IT.  (OUTPUT) */
+/*             LBIT(J) = THE NUMBER OF BITS NECESSARY TO PACK EACH GROUP */
+/*                       (J=1,LX).  IT IS ASSUMED THE MINIMUM OF EACH */
+/*                       GROUP WILL BE REMOVED BEFORE PACKING, AND THE */
+/*                       VALUES TO PACK WILL, THEREFORE, ALL BE POSITIVE. */
+/*                       HOWEVER, IC( ) DOES NOT NECESSARILY CONTAIN */
+/*                       ALL POSITIVE VALUES.  IF THE OVERALL MINIMUM */
+/*                       HAS BEEN REMOVED (THE USUAL CASE), THEN IC( ) */
+/*                       WILL CONTAIN ONLY POSITIVE VALUES.  (OUTPUT) */
+/*              NOV(J) = THE NUMBER OF VALUES IN EACH GROUP (J=1,LX). */
+/*                       (OUTPUT) */
+/*                 NDG = THE DIMENSION OF JMIN( ), JMAX( ), LBIT( ), AND */
+/*                       NOV( ).  (INPUT) */
+/*                  LX = THE NUMBER OF GROUPS DETERMINED.  (OUTPUT) */
+/*                IBIT = THE NUMBER OF BITS NECESSARY TO PACK THE JMIN(J) */
+/*                       VALUES, J=1,LX.  (OUTPUT) */
+/*                JBIT = THE NUMBER OF BITS NECESSARY TO PACK THE LBIT(J) */
+/*                       VALUES, J=1,LX.  (OUTPUT) */
+/*                KBIT = THE NUMBER OF BITS NECESSARY TO PACK THE NOV(J) */
+/*                       VALUES, J=1,LX.  (OUTPUT) */
+/*              NOVREF = REFERENCE VALUE FOR NOV( ).  (OUTPUT) */
+/*             LBITREF = REFERENCE VALUE FOR LBIT( ).  (OUTPUT) */
+/*                 IER = ERROR RETURN. */
+/*                       706 = VALUE WILL NOT PACK IN 30 BITS--FATAL */
+/*                       714 = ERROR IN REDUCE--NON-FATAL */
+/*                       715 = NGP NOT LARGE ENOUGH IN REDUCE--NON-FATAL */
+/*                       716 = MINPK INCEASED--NON-FATAL */
+/*                       717 = INC SET = 1--NON-FATAL */
+/*                       (OUTPUT) */
+/*                   * = ALTERNATE RETURN WHEN IER NE 0 AND FATAL ERROR. */
+
+/*        INTERNAL VARIABLES */
+/*               CFEED = CONTAINS THE CHARACTER REPRESENTATION */
+/*                       OF A PRINTER FORM FEED. */
+/*               IFEED = CONTAINS THE INTEGER VALUE OF A PRINTER */
+/*                       FORM FEED. */
+/*                KINC = WORKING COPY OF INC.  MAY BE MODIFIED. */
+/*                MINA = MINIMUM VALUE IN GROUP A. */
+/*                MAXA = MAXIMUM VALUE IN GROUP A. */
+/*               NENDA = THE PLACE IN IC( ) WHERE GROUP A ENDS. */
+/*              KSTART = THE PLACE IN IC( ) WHERE GROUP A STARTS. */
+/*               IBITA = NUMBER OF BITS NEEDED TO HOLD VALUES IN GROUP A. */
+/*                MINB = MINIMUM VALUE IN GROUP B. */
+/*                MAXB = MAXIMUM VALUE IN GROUP B. */
+/*               NENDB = THE PLACE IN IC( ) WHERE GROUP B ENDS. */
+/*               IBITB = NUMBER OF BITS NEEDED TO HOLD VALUES IN GROUP B. */
+/*                MINC = MINIMUM VALUE IN GROUP C. */
+/*                MAXC = MAXIMUM VALUE IN GROUP C. */
+/*              KTOTAL = COUNT OF NUMBER OF VALUES IN IC( ) PROCESSED. */
+/*               NOUNT = NUMBER OF VALUES ADDED TO GROUP A. */
+/*               LMISS = 0 WHEN IS523 = 0.  WHEN PACKING INTO A */
+/*                       SPECIFIC NUMBER OF BITS, SAY MBITS, */
+/*                       THE MAXIMUM VALUE THAT CAN BE HANDLED IS */
+/*                       2**MBITS-1.  WHEN IS523 = 1, INDICATING */
+/*                       PRIMARY MISSING VALUES, THIS MAXIMUM VALUE */
+/*                       IS RESERVED TO HOLD THE PRIMARY MISSING VALUE */
+/*                       INDICATOR AND LMISS = 1.  WHEN IS523 = 2, */
+/*                       THE VALUE JUST BELOW THE MAXIMUM (I.E., */
+/*                       2**MBITS-2) IS RESERVED TO HOLD THE SECONDARY */
+/*                       MISSING VALUE INDICATOR AND LMISS = 2. */
+/*              LMINPK = LOCAL VALUE OF MINPK.  THIS WILL BE ADJUSTED */
+/*                       UPWARD WHENEVER NDG IS NOT LARGE ENOUGH TO HOLD */
+/*                       ALL THE GROUPS. */
+/*              MALLOW = THE LARGEST ALLOWABLE VALUE FOR PACKING. */
+/*              MISLLA = SET TO 1 WHEN ALL VALUES IN GROUP A ARE MISSING. */
+/*                       THIS IS USED TO DISTINGUISH BETWEEN A REAL */
+/*                       MINIMUM WHEN ALL VALUES ARE NOT MISSING */
+/*                       AND A MINIMUM THAT HAS BEEN SET TO ZERO WHEN */
+/*                       ALL VALUES ARE MISSING.  0 OTHERWISE. */
+/*                       NOTE THAT THIS DOES NOT DISTINGUISH BETWEEN */
+/*                       PRIMARY AND SECONDARY MISSINGS WHEN SECONDARY */
+/*                       MISSINGS ARE PRESENT.  THIS MEANS THAT */
+/*                       LBIT( ) WILL NOT BE ZERO WITH THE RESULTING */
+/*                       COMPRESSION EFFICIENCY WHEN SECONDARY MISSINGS */
+/*                       ARE PRESENT.  ALSO NOTE THAT A CHECK HAS BEEN */
+/*                       MADE EARLIER TO DETERMINE THAT SECONDARY */
+/*                       MISSINGS ARE REALLY THERE. */
+/*              MISLLB = SET TO 1 WHEN ALL VALUES IN GROUP B ARE MISSING. */
+/*                       THIS IS USED TO DISTINGUISH BETWEEN A REAL */
+/*                       MINIMUM WHEN ALL VALUES ARE NOT MISSING */
+/*                       AND A MINIMUM THAT HAS BEEN SET TO ZERO WHEN */
+/*                       ALL VALUES ARE MISSING.  0 OTHERWISE. */
+/*              MISLLC = PERFORMS THE SAME FUNCTION FOR GROUP C THAT */
+/*                       MISLLA AND MISLLB DO FOR GROUPS B AND C, */
+/*                       RESPECTIVELY. */
+/*            IBXX2(J) = AN ARRAY THAT WHEN THIS ROUTINE IS FIRST ENTERED */
+/*                       IS SET TO 2**J, J=0,30. IBXX2(30) = 2**30, WHICH */
+/*                       IS THE LARGEST VALUE PACKABLE, BECAUSE 2**31 */
+/*                       IS LARGER THAN THE INTEGER WORD SIZE. */
+/*              IFIRST = SET BY DATA STATEMENT TO 0.  CHANGED TO 1 ON */
+/*                       FIRST */
+/*                       ENTRY WHEN IBXX2( ) IS FILLED. */
+/*               MINAK = KEEPS TRACK OF THE LOCATION IN IC( ) WHERE THE */
+/*                       MINIMUM VALUE IN GROUP A IS LOCATED. */
+/*               MAXAK = DOES THE SAME AS MINAK, EXCEPT FOR THE MAXIMUM. */
+/*               MINBK = THE SAME AS MINAK FOR GROUP B. */
+/*               MAXBK = THE SAME AS MAXAK FOR GROUP B. */
+/*               MINCK = THE SAME AS MINAK FOR GROUP C. */
+/*               MAXCK = THE SAME AS MAXAK FOR GROUP C. */
+/*                ADDA = KEEPS TRACK WHETHER OR NOT AN ATTEMPT TO ADD */
+/*                       POINTS TO GROUP A WAS MADE.  IF SO, THEN ADDA */
+/*                       KEEPS FROM TRYING TO PUT ONE BACK INTO B. */
+/*                       (LOGICAL) */
+/*              IBITBS = KEEPS CURRENT VALUE IF IBITB SO THAT LOOP */
+/*                       ENDING AT 166 DOESN'T HAVE TO START AT */
+/*                       IBITB = 0 EVERY TIME. */
+/*           MISSLX(J) = MALLOW EXCEPT WHEN A GROUP IS ALL ONE VALUE (AND */
+/*                       LBIT(J) = 0) AND THAT VALUE IS MISSING.  IN */
+/*                       THAT CASE, MISSLX(J) IS MISSP OR MISSS.  THIS */
+/*                       GETS INSERTED INTO JMIN(J) LATER AS THE */
+/*                       MISSING INDICATOR; IT CAN'T BE PUT IN UNTIL */
+/*                       THE END, BECAUSE JMIN( ) IS USED TO CALCULATE */
+/*                       THE MAXIMUM NUMBER OF BITS (IBITS) NEEDED TO */
+/*                       PACK JMIN( ). */
+/*        1         2         3         4         5         6         7 X */
+
+/*        NON SYSTEM SUBROUTINES CALLED */
+/*           NONE */
+
+
+
+/*        MISSLX( ) was AN AUTOMATIC ARRAY. */
+    misslx = (integer *)calloc(*ndg,sizeof(integer));
+
+
+    /* Parameter adjustments */
+    --ic;
+    --nov;
+    --lbit;
+    --jmax;
+    --jmin;
+
+    /* Function Body */
+
+    *ier = 0;
+    iersav = 0;
+/*     CALL TIMPR(KFILDO,KFILDO,'START PACK_GP        ') */
+    *(unsigned char *)cfeed = (char) ifeed;
+
+    ired = 0;
+/*        IRED IS A FLAG.  WHEN ZERO, REDUCE WILL BE CALLED. */
+/*        IF REDUCE ABORTS, IRED = 1 AND IS NOT CALLED.  IN */
+/*        THIS CASE PACK_GP EXECUTES AGAIN EXCEPT FOR REDUCE. */
+
+    if (*inc <= 0) {
+	iersav = 717;
+/*        WRITE(KFILDO,101)INC */
+/* 101     FORMAT(/' ****INC ='I8,' NOT CORRECT IN PACK_GP.  1 IS USED.') */
+    }
+
+/*        THERE WILL BE A RESTART OF PACK_GP IF SUBROUTINE REDUCE */
+/*        ABORTS.  THIS SHOULD NOT HAPPEN, BUT IF IT DOES, PACK_GP */
+/*        WILL COMPLETE WITHOUT SUBROUTINE REDUCE.  A NON FATAL */
+/*        DIAGNOSTIC RETURN IS PROVIDED. */
+
+L102:
+    /*kinc = max(*inc,1);*/
+    kinc = (*inc > 1) ? *inc : 1;
+    lminpk = *minpk;
+
+/*         CALCULATE THE POWERS OF 2 THE FIRST TIME ENTERED. */
+
+    if (ifirst == 0) {
+	ifirst = 1;
+	ibxx2[0] = 1;
+
+	for (j = 1; j <= 30; ++j) {
+	    ibxx2[j] = ibxx2[j - 1] << 1;
+/* L104: */
+	}
+
+    }
+
+/*        THERE WILL BE A RESTART AT 105 IS NDG IS NOT LARGE ENOUGH. */
+/*        A NON FATAL DIAGNOSTIC RETURN IS PROVIDED. */
+
+L105:
+    kstart = 1;
+    ktotal = 0;
+    *lx = 0;
+    adda = FALSE_;
+    lmiss = 0;
+    if (*is523 == 1) {
+	lmiss = 1;
+    }
+    if (*is523 == 2) {
+	lmiss = 2;
+    }
+
+/*        ************************************* */
+
+/*        THIS SECTION COMPUTES STATISTICS FOR GROUP A.  GROUP A IS */
+/*        A GROUP OF SIZE LMINPK. */
+
+/*        ************************************* */
+
+    ibita = 0;
+    mina = mallow;
+    maxa = -mallow;
+    minak = mallow;
+    maxak = -mallow;
+
+/*        FIND THE MIN AND MAX OF GROUP A.  THIS WILL INITIALLY BE OF */
+/*        SIZE LMINPK (IF THERE ARE STILL LMINPK VALUES IN IC( )), BUT */
+/*        WILL INCREASE IN SIZE IN INCREMENTS OF INC UNTIL A NEW */
+/*        GROUP IS STARTED.  THE DEFINITION OF GROUP A IS DONE HERE */
+/*        ONLY ONCE (UPON INITIAL ENTRY), BECAUSE A GROUP B CAN ALWAYS */
+/*        BECOME A NEW GROUP A AFTER A IS PACKED, EXCEPT IF LMINPK */
+/*        HAS TO BE INCREASED BECAUSE NDG IS TOO SMALL.  THEREFORE, */
+/*        THE SEPARATE LOOPS FOR MISSING AND NON-MISSING HERE BUYS */
+/*        ALMOST NOTHING. */
+
+/* Computing MIN */
+    i__1 = kstart + lminpk - 1;
+    /*nenda = min(i__1,*nxy);*/
+    nenda = (i__1 < *nxy) ? i__1 : *nxy;
+    if (*nxy - nenda <= lminpk / 2) {
+	nenda = *nxy;
+    }
+/*        ABOVE STATEMENT GUARANTEES THE LAST GROUP IS GT LMINPK/2 BY */
+/*        MAKING THE ACTUAL GROUP LARGER.  IF A PROVISION LIKE THIS IS */
+/*        NOT INCLUDED, THERE WILL MANY TIMES BE A VERY SMALL GROUP */
+/*        AT THE END.  USE SEPARATE LOOPS FOR MISSING AND NO MISSING */
+/*        VALUES FOR EFFICIENCY. */
+
+/*        DETERMINE WHETHER THERE IS A LONG STRING OF THE SAME VALUE */
+/*        UNLESS NENDA = NXY.  THIS MAY ALLOW A LARGE GROUP A TO */
+/*        START WITH, AS WITH MISSING VALUES.   SEPARATE LOOPS FOR */
+/*        MISSING OPTIONS.  THIS SECTION IS ONLY EXECUTED ONCE, */
+/*        IN DETERMINING THE FIRST GROUP.  IT HELPS FOR AN ARRAY */
+/*        OF MOSTLY MISSING VALUES OR OF ONE VALUE, SUCH AS */
+/*        RADAR OR PRECIP DATA. */
+
+    if (nenda != *nxy && ic[kstart] == ic[kstart + 1]) {
+/*           NO NEED TO EXECUTE IF FIRST TWO VALUES ARE NOT EQUAL. */
+
+	if (*is523 == 0) {
+/*              THIS LOOP IS FOR NO MISSING VALUES. */
+
+	    i__1 = *nxy;
+	    for (k = kstart + 1; k <= i__1; ++k) {
+
+		if (ic[k] != ic[kstart]) {
+/* Computing MAX */
+		    i__2 = nenda, i__3 = k - 1;
+		    /*nenda = max(i__2,i__3);*/
+		    nenda = (i__2 > i__3) ? i__2 : i__3;
+		    goto L114;
+		}
+
+/* L111: */
+	    }
+
+	    nenda = *nxy;
+/*              FALL THROUGH THE LOOP MEANS ALL VALUES ARE THE SAME. */
+
+	} else if (*is523 == 1) {
+/*              THIS LOOP IS FOR PRIMARY MISSING VALUES ONLY. */
+
+	    i__1 = *nxy;
+	    for (k = kstart + 1; k <= i__1; ++k) {
+
+		if (ic[k] != *missp) {
+
+		    if (ic[k] != ic[kstart]) {
+/* Computing MAX */
+			i__2 = nenda, i__3 = k - 1;
+			/*nenda = max(i__2,i__3);*/
+			nenda = (i__2 > i__3) ? i__2 : i__3;
+			goto L114;
+		    }
+
+		}
+
+/* L112: */
+	    }
+
+	    nenda = *nxy;
+/*              FALL THROUGH THE LOOP MEANS ALL VALUES ARE THE SAME. */
+
+	} else {
+/*              THIS LOOP IS FOR PRIMARY AND SECONDARY MISSING VALUES. */
+
+	    i__1 = *nxy;
+	    for (k = kstart + 1; k <= i__1; ++k) {
+
+		if (ic[k] != *missp && ic[k] != *misss) {
+
+		    if (ic[k] != ic[kstart]) {
+/* Computing MAX */
+			i__2 = nenda, i__3 = k - 1;
+			/*nenda = max(i__2,i__3);*/
+			nenda = (i__2 > i__3) ? i__2 : i__3;
+			goto L114;
+		    }
+
+		}
+
+/* L113: */
+	    }
+
+	    nenda = *nxy;
+/*              FALL THROUGH THE LOOP MEANS ALL VALUES ARE THE SAME. */
+	}
+
+    }
+
+L114:
+    if (*is523 == 0) {
+
+	i__1 = nenda;
+	for (k = kstart; k <= i__1; ++k) {
+	    if (ic[k] < mina) {
+		mina = ic[k];
+		minak = k;
+	    }
+	    if (ic[k] > maxa) {
+		maxa = ic[k];
+		maxak = k;
+	    }
+/* L115: */
+	}
+
+    } else if (*is523 == 1) {
+
+	i__1 = nenda;
+	for (k = kstart; k <= i__1; ++k) {
+	    if (ic[k] == *missp) {
+		goto L117;
+	    }
+	    if (ic[k] < mina) {
+		mina = ic[k];
+		minak = k;
+	    }
+	    if (ic[k] > maxa) {
+		maxa = ic[k];
+		maxak = k;
+	    }
+L117:
+	    ;
+	}
+
+    } else {
+
+	i__1 = nenda;
+	for (k = kstart; k <= i__1; ++k) {
+	    if (ic[k] == *missp || ic[k] == *misss) {
+		goto L120;
+	    }
+	    if (ic[k] < mina) {
+		mina = ic[k];
+		minak = k;
+	    }
+	    if (ic[k] > maxa) {
+		maxa = ic[k];
+		maxak = k;
+	    }
+L120:
+	    ;
+	}
+
+    }
+
+    kounta = nenda - kstart + 1;
+
+/*        INCREMENT KTOTAL AND FIND THE BITS NEEDED TO PACK THE A GROUP. */
+
+    ktotal += kounta;
+    mislla = 0;
+    if (mina != mallow) {
+	goto L125;
+    }
+/*        ALL MISSING VALUES MUST BE ACCOMMODATED. */
+    mina = 0;
+    maxa = 0;
+    mislla = 1;
+    ibitb = 0;
+    if (*is523 != 2) {
+	goto L130;
+    }
+/*        WHEN ALL VALUES ARE MISSING AND THERE ARE NO */
+/*        SECONDARY MISSING VALUES, IBITA = 0. */
+/*        OTHERWISE, IBITA MUST BE CALCULATED. */
+
+L125:
+    itest = maxa - mina + lmiss;
+
+    for (ibita = 0; ibita <= 30; ++ibita) {
+	if (itest < ibxx2[ibita]) {
+	    goto L130;
+	}
+/* ***        THIS TEST IS THE SAME AS: */
+/* ***     IF(MAXA-MINA.LT.IBXX2(IBITA)-LMISS)GO TO 130 */
+/* L126: */
+    }
+
+/*     WRITE(KFILDO,127)MAXA,MINA */
+/* 127  FORMAT(' ****ERROR IN PACK_GP.  VALUE WILL NOT PACK IN 30 BITS.', */
+/*    1       '  MAXA ='I13,'  MINA ='I13,'.  ERROR AT 127.') */
+    *ier = 706;
+    goto L900;
+
+L130:
+
+/* ***D     WRITE(KFILDO,131)KOUNTA,KTOTAL,MINA,MAXA,IBITA,MISLLA */
+/* ***D131  FORMAT(' AT 130, KOUNTA ='I8,'  KTOTAL ='I8,'  MINA ='I8, */
+/* ***D    1       '  MAXA ='I8,'  IBITA ='I3,'  MISLLA ='I3) */
+
+L133:
+    if (ktotal >= *nxy) {
+	goto L200;
+    }
+
+/*        ************************************* */
+
+/*        THIS SECTION COMPUTES STATISTICS FOR GROUP B.  GROUP B IS A */
+/*        GROUP OF SIZE LMINPK IMMEDIATELY FOLLOWING GROUP A. */
+
+/*        ************************************* */
+
+L140:
+    minb = mallow;
+    maxb = -mallow;
+    minbk = mallow;
+    maxbk = -mallow;
+    ibitbs = 0;
+    mstart = ktotal + 1;
+
+/*        DETERMINE WHETHER THERE IS A LONG STRING OF THE SAME VALUE. */
+/*        THIS WORKS WHEN THERE ARE NO MISSING VALUES. */
+
+    nendb = 1;
+
+    if (mstart < *nxy) {
+
+	if (*is523 == 0) {
+/*              THIS LOOP IS FOR NO MISSING VALUES. */
+
+	    i__1 = *nxy;
+	    for (k = mstart + 1; k <= i__1; ++k) {
+
+		if (ic[k] != ic[mstart]) {
+		    nendb = k - 1;
+		    goto L150;
+		}
+
+/* L145: */
+	    }
+
+	    nendb = *nxy;
+/*              FALL THROUGH THE LOOP MEANS ALL REMAINING VALUES */
+/*              ARE THE SAME. */
+	}
+
+    }
+
+L150:
+/* Computing MAX */
+/* Computing MIN */
+    i__3 = ktotal + lminpk;
+    /*i__1 = nendb, i__2 = min(i__3,*nxy);*/
+    i__1 = nendb, i__2 = (i__3 < *nxy) ? i__3 : *nxy;
+    /*nendb = max(i__1,i__2);*/
+    nendb = (i__1 > i__2) ? i__1 : i__2;
+/* **** 150  NENDB=MIN(KTOTAL+LMINPK,NXY) */
+
+    if (*nxy - nendb <= lminpk / 2) {
+	nendb = *nxy;
+    }
+/*        ABOVE STATEMENT GUARANTEES THE LAST GROUP IS GT LMINPK/2 BY */
+/*        MAKING THE ACTUAL GROUP LARGER.  IF A PROVISION LIKE THIS IS */
+/*        NOT INCLUDED, THERE WILL MANY TIMES BE A VERY SMALL GROUP */
+/*        AT THE END.  USE SEPARATE LOOPS FOR MISSING AND NO MISSING */
+
+/*        USE SEPARATE LOOPS FOR MISSING AND NO MISSING VALUES */
+/*        FOR EFFICIENCY. */
+
+    if (*is523 == 0) {
+
+	i__1 = nendb;
+	for (k = mstart; k <= i__1; ++k) {
+	    if (ic[k] <= minb) {
+		minb = ic[k];
+/*              NOTE LE, NOT LT.  LT COULD BE USED BUT THEN A */
+/*              RECOMPUTE OVER THE WHOLE GROUP WOULD BE NEEDED */
+/*              MORE OFTEN.  SAME REASONING FOR GE AND OTHER */
+/*              LOOPS BELOW. */
+		minbk = k;
+	    }
+	    if (ic[k] >= maxb) {
+		maxb = ic[k];
+		maxbk = k;
+	    }
+/* L155: */
+	}
+
+    } else if (*is523 == 1) {
+
+	i__1 = nendb;
+	for (k = mstart; k <= i__1; ++k) {
+	    if (ic[k] == *missp) {
+		goto L157;
+	    }
+	    if (ic[k] <= minb) {
+		minb = ic[k];
+		minbk = k;
+	    }
+	    if (ic[k] >= maxb) {
+		maxb = ic[k];
+		maxbk = k;
+	    }
+L157:
+	    ;
+	}
+
+    } else {
+
+	i__1 = nendb;
+	for (k = mstart; k <= i__1; ++k) {
+	    if (ic[k] == *missp || ic[k] == *misss) {
+		goto L160;
+	    }
+	    if (ic[k] <= minb) {
+		minb = ic[k];
+		minbk = k;
+	    }
+	    if (ic[k] >= maxb) {
+		maxb = ic[k];
+		maxbk = k;
+	    }
+L160:
+	    ;
+	}
+
+    }
+
+    kountb = nendb - ktotal;
+    misllb = 0;
+    if (minb != mallow) {
+	goto L165;
+    }
+/*        ALL MISSING VALUES MUST BE ACCOMMODATED. */
+    minb = 0;
+    maxb = 0;
+    misllb = 1;
+    ibitb = 0;
+
+    if (*is523 != 2) {
+	goto L170;
+    }
+/*        WHEN ALL VALUES ARE MISSING AND THERE ARE NO SECONDARY */
+/*        MISSING VALUES, IBITB = 0.  OTHERWISE, IBITB MUST BE */
+/*        CALCULATED. */
+
+L165:
+    for (ibitb = ibitbs; ibitb <= 30; ++ibitb) {
+	if (maxb - minb < ibxx2[ibitb] - lmiss) {
+	    goto L170;
+	}
+/* L166: */
+    }
+
+/*     WRITE(KFILDO,167)MAXB,MINB */
+/* 167  FORMAT(' ****ERROR IN PACK_GP.  VALUE WILL NOT PACK IN 30 BITS.', */
+/*    1       '  MAXB ='I13,'  MINB ='I13,'.  ERROR AT 167.') */
+    *ier = 706;
+    goto L900;
+
+/*        COMPARE THE BITS NEEDED TO PACK GROUP B WITH THOSE NEEDED */
+/*        TO PACK GROUP A.  IF IBITB GE IBITA, TRY TO ADD TO GROUP A. */
+/*        IF NOT, TRY TO ADD A'S POINTS TO B, UNLESS ADDITION TO A */
+/*        HAS BEEN DONE.  THIS LATTER IS CONTROLLED WITH ADDA. */
+
+L170:
+
+/* ***D     WRITE(KFILDO,171)KOUNTA,KTOTAL,MINA,MAXA,IBITA,MISLLA, */
+/* ***D    1                               MINB,MAXB,IBITB,MISLLB */
+/* ***D171  FORMAT(' AT 171, KOUNTA ='I8,'  KTOTAL ='I8,'  MINA ='I8, */
+/* ***D    1       '  MAXA ='I8,'  IBITA ='I3,'  MISLLA ='I3, */
+/* ***D    2       '  MINB ='I8,'  MAXB ='I8,'  IBITB ='I3,'  MISLLB ='I3) */
+
+    if (ibitb >= ibita) {
+	goto L180;
+    }
+    if (adda) {
+	goto L200;
+    }
+
+/*        ************************************* */
+
+/*        GROUP B REQUIRES LESS BITS THAN GROUP A.  PUT AS MANY OF A'S */
+/*        POINTS INTO B AS POSSIBLE WITHOUT EXCEEDING THE NUMBER OF */
+/*        BITS NECESSARY TO PACK GROUP B. */
+
+/*        ************************************* */
+
+    kounts = kounta;
+/*        KOUNTA REFERS TO THE PRESENT GROUP A. */
+    mintst = minb;
+    maxtst = maxb;
+    mintstk = minbk;
+    maxtstk = maxbk;
+
+/*        USE SEPARATE LOOPS FOR MISSING AND NO MISSING VALUES */
+/*        FOR EFFICIENCY. */
+
+    if (*is523 == 0) {
+
+	i__1 = kstart;
+	for (k = ktotal; k >= i__1; --k) {
+/*           START WITH THE END OF THE GROUP AND WORK BACKWARDS. */
+	    if (ic[k] < minb) {
+		mintst = ic[k];
+		mintstk = k;
+	    } else if (ic[k] > maxb) {
+		maxtst = ic[k];
+		maxtstk = k;
+	    }
+	    if (maxtst - mintst >= ibxx2[ibitb]) {
+		goto L174;
+	    }
+/*           NOTE THAT FOR THIS LOOP, LMISS = 0. */
+	    minb = mintst;
+	    maxb = maxtst;
+	    minbk = mintstk;
+	    maxbk = maxtstk;
+	    --kounta;
+/*           THERE IS ONE LESS POINT NOW IN A. */
+/* L1715: */
+	}
+
+    } else if (*is523 == 1) {
+
+	i__1 = kstart;
+	for (k = ktotal; k >= i__1; --k) {
+/*           START WITH THE END OF THE GROUP AND WORK BACKWARDS. */
+	    if (ic[k] == *missp) {
+		goto L1718;
+	    }
+	    if (ic[k] < minb) {
+		mintst = ic[k];
+		mintstk = k;
+	    } else if (ic[k] > maxb) {
+		maxtst = ic[k];
+		maxtstk = k;
+	    }
+	    if (maxtst - mintst >= ibxx2[ibitb] - lmiss) {
+		goto L174;
+	    }
+/*           FOR THIS LOOP, LMISS = 1. */
+	    minb = mintst;
+	    maxb = maxtst;
+	    minbk = mintstk;
+	    maxbk = maxtstk;
+	    misllb = 0;
+/*           WHEN THE POINT IS NON MISSING, MISLLB SET = 0. */
+L1718:
+	    --kounta;
+/*           THERE IS ONE LESS POINT NOW IN A. */
+/* L1719: */
+	}
+
+    } else {
+
+	i__1 = kstart;
+	for (k = ktotal; k >= i__1; --k) {
+/*           START WITH THE END OF THE GROUP AND WORK BACKWARDS. */
+	    if (ic[k] == *missp || ic[k] == *misss) {
+		goto L1729;
+	    }
+	    if (ic[k] < minb) {
+		mintst = ic[k];
+		mintstk = k;
+	    } else if (ic[k] > maxb) {
+		maxtst = ic[k];
+		maxtstk = k;
+	    }
+	    if (maxtst - mintst >= ibxx2[ibitb] - lmiss) {
+		goto L174;
+	    }
+/*           FOR THIS LOOP, LMISS = 2. */
+	    minb = mintst;
+	    maxb = maxtst;
+	    minbk = mintstk;
+	    maxbk = maxtstk;
+	    misllb = 0;
+/*           WHEN THE POINT IS NON MISSING, MISLLB SET = 0. */
+L1729:
+	    --kounta;
+/*           THERE IS ONE LESS POINT NOW IN A. */
+/* L173: */
+	}
+
+    }
+
+/*        AT THIS POINT, KOUNTA CONTAINS THE NUMBER OF POINTS TO CLOSE */
+/*        OUT GROUP A WITH.  GROUP B NOW STARTS WITH KSTART+KOUNTA AND */
+/*        ENDS WITH NENDB.  MINB AND MAXB HAVE BEEN ADJUSTED AS */
+/*        NECESSARY TO REFLECT GROUP B (EVEN THOUGH THE NUMBER OF BITS */
+/*        NEEDED TO PACK GROUP B HAVE NOT INCREASED, THE END POINTS */
+/*        OF THE RANGE MAY HAVE). */
+
+L174:
+    if (kounta == kounts) {
+	goto L200;
+    }
+/*        ON TRANSFER, GROUP A WAS NOT CHANGED.  CLOSE IT OUT. */
+
+/*        ONE OR MORE POINTS WERE TAKEN OUT OF A.  RANGE AND IBITA */
+/*        MAY HAVE TO BE RECOMPUTED; IBITA COULD BE LESS THAN */
+/*        ORIGINALLY COMPUTED.  IN FACT, GROUP A CAN NOW CONTAIN */
+/*        ONLY ONE POINT AND BE PACKED WITH ZERO BITS */
+/*        (UNLESS MISSS NE 0). */
+
+    nouta = kounts - kounta;
+    ktotal -= nouta;
+    kountb += nouta;
+    if (nenda - nouta > minak && nenda - nouta > maxak) {
+	goto L200;
+    }
+/*        WHEN THE ABOVE TEST IS MET, THE MIN AND MAX OF THE */
+/*        CURRENT GROUP A WERE WITHIN THE OLD GROUP A, SO THE */
+/*        RANGE AND IBITA DO NOT NEED TO BE RECOMPUTED. */
+/*        NOTE THAT MINAK AND MAXAK ARE NO LONGER NEEDED. */
+    ibita = 0;
+    mina = mallow;
+    maxa = -mallow;
+
+/*        USE SEPARATE LOOPS FOR MISSING AND NO MISSING VALUES */
+/*        FOR EFFICIENCY. */
+
+    if (*is523 == 0) {
+
+	i__1 = nenda - nouta;
+	for (k = kstart; k <= i__1; ++k) {
+	    if (ic[k] < mina) {
+		mina = ic[k];
+	    }
+	    if (ic[k] > maxa) {
+		maxa = ic[k];
+	    }
+/* L1742: */
+	}
+
+    } else if (*is523 == 1) {
+
+	i__1 = nenda - nouta;
+	for (k = kstart; k <= i__1; ++k) {
+	    if (ic[k] == *missp) {
+		goto L1744;
+	    }
+	    if (ic[k] < mina) {
+		mina = ic[k];
+	    }
+	    if (ic[k] > maxa) {
+		maxa = ic[k];
+	    }
+L1744:
+	    ;
+	}
+
+    } else {
+
+	i__1 = nenda - nouta;
+	for (k = kstart; k <= i__1; ++k) {
+	    if (ic[k] == *missp || ic[k] == *misss) {
+		goto L175;
+	    }
+	    if (ic[k] < mina) {
+		mina = ic[k];
+	    }
+	    if (ic[k] > maxa) {
+		maxa = ic[k];
+	    }
+L175:
+	    ;
+	}
+
+    }
+
+    mislla = 0;
+    if (mina != mallow) {
+	goto L1750;
+    }
+/*        ALL MISSING VALUES MUST BE ACCOMMODATED. */
+    mina = 0;
+    maxa = 0;
+    mislla = 1;
+    if (*is523 != 2) {
+	goto L177;
+    }
+/*        WHEN ALL VALUES ARE MISSING AND THERE ARE NO SECONDARY */
+/*        MISSING VALUES IBITA = 0 AS ORIGINALLY SET.  OTHERWISE, */
+/*        IBITA MUST BE CALCULATED. */
+
+L1750:
+    itest = maxa - mina + lmiss;
+
+    for (ibita = 0; ibita <= 30; ++ibita) {
+	if (itest < ibxx2[ibita]) {
+	    goto L177;
+	}
+/* ***        THIS TEST IS THE SAME AS: */
+/* ***         IF(MAXA-MINA.LT.IBXX2(IBITA)-LMISS)GO TO 177 */
+/* L176: */
+    }
+
+/*     WRITE(KFILDO,1760)MAXA,MINA */
+/* 1760 FORMAT(' ****ERROR IN PACK_GP.  VALUE WILL NOT PACK IN 30 BITS.', */
+/*    1       '  MAXA ='I13,'  MINA ='I13,'.  ERROR AT 1760.') */
+    *ier = 706;
+    goto L900;
+
+L177:
+    goto L200;
+
+/*        ************************************* */
+
+/*        AT THIS POINT, GROUP B REQUIRES AS MANY BITS TO PACK AS GROUPA. */
+/*        THEREFORE, TRY TO ADD INC POINTS TO GROUP A WITHOUT INCREASING */
+/*        IBITA.  THIS AUGMENTED GROUP IS CALLED GROUP C. */
+
+/*        ************************************* */
+
+L180:
+    if (mislla == 1) {
+	minc = mallow;
+	minck = mallow;
+	maxc = -mallow;
+	maxck = -mallow;
+    } else {
+	minc = mina;
+	maxc = maxa;
+	minck = minak;
+	maxck = minak;
+    }
+
+    nount = 0;
+    if (*nxy - (ktotal + kinc) <= lminpk / 2) {
+	kinc = *nxy - ktotal;
+    }
+/*        ABOVE STATEMENT CONSTRAINS THE LAST GROUP TO BE NOT LESS THAN */
+/*        LMINPK/2 IN SIZE.  IF A PROVISION LIKE THIS IS NOT INCLUDED, */
+/*        THERE WILL MANY TIMES BE A VERY SMALL GROUP AT THE END. */
+
+/*        USE SEPARATE LOOPS FOR MISSING AND NO MISSING VALUES */
+/*        FOR EFFICIENCY.  SINCE KINC IS USUALLY 1, USING SEPARATE */
+/*        LOOPS HERE DOESN'T BUY MUCH.  A MISSING VALUE WILL ALWAYS */
+/*        TRANSFER BACK TO GROUP A. */
+
+    if (*is523 == 0) {
+
+/* Computing MIN */
+	i__2 = ktotal + kinc;
+	/*i__1 = min(i__2,*nxy);*/
+	i__1 = (i__2 < *nxy) ? i__2 : *nxy;
+	for (k = ktotal + 1; k <= i__1; ++k) {
+	    if (ic[k] < minc) {
+		minc = ic[k];
+		minck = k;
+	    }
+	    if (ic[k] > maxc) {
+		maxc = ic[k];
+		maxck = k;
+	    }
+	    ++nount;
+/* L185: */
+	}
+
+    } else if (*is523 == 1) {
+
+/* Computing MIN */
+	i__2 = ktotal + kinc;
+	/*i__1 = min(i__2,*nxy);*/
+	i__1 = (i__2 < *nxy) ? i__2 : *nxy;
+	for (k = ktotal + 1; k <= i__1; ++k) {
+	    if (ic[k] == *missp) {
+		goto L186;
+	    }
+	    if (ic[k] < minc) {
+		minc = ic[k];
+		minck = k;
+	    }
+	    if (ic[k] > maxc) {
+		maxc = ic[k];
+		maxck = k;
+	    }
+L186:
+	    ++nount;
+/* L187: */
+	}
+
+    } else {
+
+/* Computing MIN */
+	i__2 = ktotal + kinc;
+	/*i__1 = min(i__2,*nxy);*/
+	i__1 = (i__2 < *nxy) ? i__2 : *nxy;
+	for (k = ktotal + 1; k <= i__1; ++k) {
+	    if (ic[k] == *missp || ic[k] == *misss) {
+		goto L189;
+	    }
+	    if (ic[k] < minc) {
+		minc = ic[k];
+		minck = k;
+	    }
+	    if (ic[k] > maxc) {
+		maxc = ic[k];
+		maxck = k;
+	    }
+L189:
+	    ++nount;
+/* L190: */
+	}
+
+    }
+
+/* ***D     WRITE(KFILDO,191)KOUNTA,KTOTAL,MINA,MAXA,IBITA,MISLLA, */
+/* ***D    1   MINC,MAXC,NOUNT,IC(KTOTAL),IC(KTOTAL+1) */
+/* ***D191  FORMAT(' AT 191, KOUNTA ='I8,'  KTOTAL ='I8,'  MINA ='I8, */
+/* ***D    1       '  MAXA ='I8,'  IBITA ='I3,'  MISLLA ='I3, */
+/* ***D    2       '  MINC ='I8,'  MAXC ='I8, */
+/* ***D    3       '  NOUNT ='I5,'  IC(KTOTAL) ='I9,'  IC(KTOTAL+1) =',I9) */
+
+/*        IF THE NUMBER OF BITS NEEDED FOR GROUP C IS GT IBITA, */
+/*        THEN THIS GROUP A IS A GROUP TO PACK. */
+
+    if (minc == mallow) {
+	minc = mina;
+	maxc = maxa;
+	minck = minak;
+	maxck = maxak;
+	misllc = 1;
+	goto L195;
+/*           WHEN THE NEW VALUE(S) ARE MISSING, THEY CAN ALWAYS */
+/*           BE ADDED. */
+
+    } else {
+	misllc = 0;
+    }
+
+    if (maxc - minc >= ibxx2[ibita] - lmiss) {
+	goto L200;
+    }
+
+/*        THE BITS NECESSARY FOR GROUP C HAS NOT INCREASED FROM THE */
+/*        BITS NECESSARY FOR GROUP A.  ADD THIS POINT(S) TO GROUP A. */
+/*        COMPUTE THE NEXT GROUP B, ETC., UNLESS ALL POINTS HAVE BEEN */
+/*        USED. */
+
+L195:
+    ktotal += nount;
+    kounta += nount;
+    mina = minc;
+    maxa = maxc;
+    minak = minck;
+    maxak = maxck;
+    mislla = misllc;
+    adda = TRUE_;
+    if (ktotal >= *nxy) {
+	goto L200;
+    }
+
+    if (minbk > ktotal && maxbk > ktotal) {
+	mstart = nendb + 1;
+/*           THE MAX AND MIN OF GROUP B WERE NOT FROM THE POINTS */
+/*           REMOVED, SO THE WHOLE GROUP DOES NOT HAVE TO BE LOOKED */
+/*           AT TO DETERMINE THE NEW MAX AND MIN.  RATHER START */
+/*           JUST BEYOND THE OLD NENDB. */
+	ibitbs = ibitb;
+	nendb = 1;
+	goto L150;
+    } else {
+	goto L140;
+    }
+
+/*        ************************************* */
+
+/*        GROUP A IS TO BE PACKED.  STORE VALUES IN JMIN( ), JMAX( ), */
+/*        LBIT( ), AND NOV( ). */
+
+/*        ************************************* */
+
+L200:
+    ++(*lx);
+    if (*lx <= *ndg) {
+	goto L205;
+    }
+    lminpk += lminpk / 2;
+/*     WRITE(KFILDO,201)NDG,LMINPK,LX */
+/* 201  FORMAT(' ****NDG ='I5,' NOT LARGE ENOUGH.', */
+/*    1       '  LMINPK IS INCREASED TO 'I3,' FOR THIS FIELD.'/ */
+/*    2       '  LX = 'I10) */
+    iersav = 716;
+    goto L105;
+
+L205:
+    jmin[*lx] = mina;
+    jmax[*lx] = maxa;
+    lbit[*lx] = ibita;
+    nov[*lx] = kounta;
+    kstart = ktotal + 1;
+
+    if (mislla == 0) {
+	misslx[*lx - 1] = mallow;
+    } else {
+	misslx[*lx - 1] = ic[ktotal];
+/*           IC(KTOTAL) WAS THE LAST VALUE PROCESSED.  IF MISLLA NE 0, */
+/*           THIS MUST BE THE MISSING VALUE FOR THIS GROUP. */
+    }
+
+/* ***D     WRITE(KFILDO,206)MISLLA,IC(KTOTAL),KTOTAL,LX,JMIN(LX),JMAX(LX), */
+/* ***D    1                 LBIT(LX),NOV(LX),MISSLX(LX) */
+/* ***D206  FORMAT(' AT 206,  MISLLA ='I2,'  IC(KTOTAL) ='I5,'  KTOTAL ='I8, */
+/* ***D    1       '  LX ='I6,'  JMIN(LX) ='I8,'  JMAX(LX) ='I8, */
+/* ***D    2       '  LBIT(LX) ='I5,'  NOV(LX) ='I8,'  MISSLX(LX) =',I7) */
+
+    if (ktotal >= *nxy) {
+	goto L209;
+    }
+
+/*        THE NEW GROUP A WILL BE THE PREVIOUS GROUP B.  SET LIMITS, ETC. */
+
+    ibita = ibitb;
+    mina = minb;
+    maxa = maxb;
+    minak = minbk;
+    maxak = maxbk;
+    mislla = misllb;
+    nenda = nendb;
+    kounta = kountb;
+    ktotal += kounta;
+    adda = FALSE_;
+    goto L133;
+
+/*        ************************************* */
+
+/*        CALCULATE IBIT, THE NUMBER OF BITS NEEDED TO HOLD THE GROUP */
+/*        MINIMUM VALUES. */
+
+/*        ************************************* */
+
+L209:
+    *ibit = 0;
+
+    i__1 = *lx;
+    for (l = 1; l <= i__1; ++l) {
+L210:
+	if (jmin[l] < ibxx2[*ibit]) {
+	    goto L220;
+	}
+	++(*ibit);
+	goto L210;
+L220:
+	;
+    }
+
+/*        INSERT THE VALUE IN JMIN( ) TO BE USED FOR ALL MISSING */
+/*        VALUES WHEN LBIT( ) = 0.  WHEN SECONDARY MISSING */
+/*        VALUES CAN BE PRESENT, LBIT(L) WILL NOT = 0. */
+
+    if (*is523 == 1) {
+
+	i__1 = *lx;
+	for (l = 1; l <= i__1; ++l) {
+
+	    if (lbit[l] == 0) {
+
+		if (misslx[l - 1] == *missp) {
+		    jmin[l] = ibxx2[*ibit] - 1;
+		}
+
+	    }
+
+/* L226: */
+	}
+
+    }
+
+/*        ************************************* */
+
+/*        CALCULATE JBIT, THE NUMBER OF BITS NEEDED TO HOLD THE BITS */
+/*        NEEDED TO PACK THE VALUES IN THE GROUPS.  BUT FIND AND */
+/*        REMOVE THE REFERENCE VALUE FIRST. */
+
+/*        ************************************* */
+
+/*     WRITE(KFILDO,228)CFEED,LX */
+/* 228  FORMAT(A1,/' *****************************************' */
+/*    1          /' THE GROUP WIDTHS LBIT( ) FOR ',I8,' GROUPS' */
+/*    2          /' *****************************************') */
+/*     WRITE(KFILDO,229) (LBIT(J),J=1,MIN(LX,100)) */
+/* 229  FORMAT(/' '20I6) */
+
+    *lbitref = lbit[1];
+
+    i__1 = *lx;
+    for (k = 1; k <= i__1; ++k) {
+	if (lbit[k] < *lbitref) {
+	    *lbitref = lbit[k];
+	}
+/* L230: */
+    }
+
+    if (*lbitref != 0) {
+
+	i__1 = *lx;
+	for (k = 1; k <= i__1; ++k) {
+	    lbit[k] -= *lbitref;
+/* L240: */
+	}
+
+    }
+
+/*     WRITE(KFILDO,241)CFEED,LBITREF */
+/* 241  FORMAT(A1,/' *****************************************' */
+/*    1          /' THE GROUP WIDTHS LBIT( ) AFTER REMOVING REFERENCE ', */
+/*    2             I8, */
+/*    3          /' *****************************************') */
+/*     WRITE(KFILDO,242) (LBIT(J),J=1,MIN(LX,100)) */
+/* 242  FORMAT(/' '20I6) */
+
+    *jbit = 0;
+
+    i__1 = *lx;
+    for (k = 1; k <= i__1; ++k) {
+L310:
+	if (lbit[k] < ibxx2[*jbit]) {
+	    goto L320;
+	}
+	++(*jbit);
+	goto L310;
+L320:
+	;
+    }
+
+/*        ************************************* */
+
+/*        CALCULATE KBIT, THE NUMBER OF BITS NEEDED TO HOLD THE NUMBER */
+/*        OF VALUES IN THE GROUPS.  BUT FIND AND REMOVE THE */
+/*        REFERENCE FIRST. */
+
+/*        ************************************* */
+
+/*     WRITE(KFILDO,321)CFEED,LX */
+/* 321  FORMAT(A1,/' *****************************************' */
+/*    1          /' THE GROUP SIZES NOV( ) FOR ',I8,' GROUPS' */
+/*    2          /' *****************************************') */
+/*     WRITE(KFILDO,322) (NOV(J),J=1,MIN(LX,100)) */
+/* 322  FORMAT(/' '20I6) */
+
+    *novref = nov[1];
+
+    i__1 = *lx;
+    for (k = 1; k <= i__1; ++k) {
+	if (nov[k] < *novref) {
+	    *novref = nov[k];
+	}
+/* L400: */
+    }
+
+    if (*novref > 0) {
+
+	i__1 = *lx;
+	for (k = 1; k <= i__1; ++k) {
+	    nov[k] -= *novref;
+/* L405: */
+	}
+
+    }
+
+/*     WRITE(KFILDO,406)CFEED,NOVREF */
+/* 406  FORMAT(A1,/' *****************************************' */
+/*    1          /' THE GROUP SIZES NOV( ) AFTER REMOVING REFERENCE ',I8, */
+/*    2          /' *****************************************') */
+/*     WRITE(KFILDO,407) (NOV(J),J=1,MIN(LX,100)) */
+/* 407  FORMAT(/' '20I6) */
+/*     WRITE(KFILDO,408)CFEED */
+/* 408  FORMAT(A1,/' *****************************************' */
+/*    1          /' THE GROUP REFERENCES JMIN( )' */
+/*    2          /' *****************************************') */
+/*     WRITE(KFILDO,409) (JMIN(J),J=1,MIN(LX,100)) */
+/* 409  FORMAT(/' '20I6) */
+
+    *kbit = 0;
+
+    i__1 = *lx;
+    for (k = 1; k <= i__1; ++k) {
+L410:
+	if (nov[k] < ibxx2[*kbit]) {
+	    goto L420;
+	}
+	++(*kbit);
+	goto L410;
+L420:
+	;
+    }
+
+/*        DETERMINE WHETHER THE GROUP SIZES SHOULD BE REDUCED */
+/*        FOR SPACE EFFICIENCY. */
+
+    if (ired == 0) {
+	reduce(kfildo, &jmin[1], &jmax[1], &lbit[1], &nov[1], lx, ndg, ibit, 
+		jbit, kbit, novref, ibxx2, ier);
+
+	if (*ier == 714 || *ier == 715) {
+/*              REDUCE HAS ABORTED.  REEXECUTE PACK_GP WITHOUT REDUCE. */
+/*              PROVIDE FOR A NON FATAL RETURN FROM REDUCE. */
+	    iersav = *ier;
+	    ired = 1;
+	    *ier = 0;
+	    goto L102;
+	}
+
+    }
+
+    if ( misslx != 0 ) {
+         free(misslx);
+         misslx=0;
+    }
+/*     CALL TIMPR(KFILDO,KFILDO,'END   PACK_GP        ') */
+    if (iersav != 0) {
+	*ier = iersav;
+	return 0;
+    }
+
+/* 900  IF(IER.NE.0)RETURN1 */
+
+L900:
+    if ( misslx != 0 ) free(misslx);
+    return 0;
+} /* pack_gp__ */
+
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/pdstemplates.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/pdstemplates.c
new file mode 100755
index 0000000..1994206
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/pdstemplates.c
@@ -0,0 +1,271 @@
+/**********************************************************
+ * Version $Id: pdstemplates.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdlib.h>
+#include "grib2.h"
+#include "pdstemplates.h"
+
+g2int getpdsindex(g2int number)
+///$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    getpdsindex
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2001-06-28
+//
+// ABSTRACT: This function returns the index of specified Product
+//   Definition Template 4.NN (NN=number) in array templates.
+//
+// PROGRAM HISTORY LOG:
+// 2001-06-28  Gilbert
+//
+// USAGE:    index=getpdsindex(number)
+//   INPUT ARGUMENT LIST:
+//     number   - NN, indicating the number of the Product Definition
+//                Template 4.NN that is being requested.
+//
+// RETURNS:  Index of PDT 4.NN in array templates, if template exists.
+//           = -1, otherwise.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$/
+{
+           g2int j,getpdsindex=-1;
+
+           for (j=0;j<MAXPDSTEMP;j++) {
+              if (number == templatespds[j].template_num) {
+                 getpdsindex=j;
+                 return(getpdsindex);
+              }
+           }
+
+           return(getpdsindex);
+}
+
+
+template *getpdstemplate(g2int number)
+///$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    getpdstemplate 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2000-05-11
+//
+// ABSTRACT: This subroutine returns PDS template information for a 
+//   specified Product Definition Template 4.NN.
+//   The number of entries in the template is returned along with a map
+//   of the number of octets occupied by each entry.  Also, a flag is
+//   returned to indicate whether the template would need to be extended.
+//
+// PROGRAM HISTORY LOG:
+// 2000-05-11  Gilbert
+//
+// USAGE:    CALL getpdstemplate(number)
+//   INPUT ARGUMENT LIST:
+//     number   - NN, indicating the number of the Product Definition 
+//                Template 4.NN that is being requested.
+//
+//   RETURN VALUE:
+//        - Pointer to the returned template struct.
+//          Returns NULL pointer, if template not found.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$/
+{
+           g2int index;
+           template *new;
+
+           index=getpdsindex(number);
+
+           if (index != -1) {
+              new=(template *)malloc(sizeof(template));
+              new->type=4;
+              new->num=templatespds[index].template_num;
+              new->maplen=templatespds[index].mappdslen;
+              new->needext=templatespds[index].needext;
+              new->map=(g2int *)templatespds[index].mappds;
+              new->extlen=0;
+              new->ext=0;        //NULL
+              return(new);
+           }
+           else {
+             printf("getpdstemplate: PDS Template 4.%d not defined.\n",(int)number);
+             return(0);        //NULL
+           }
+
+         return(0);        //NULL
+}
+         
+        
+template *extpdstemplate(g2int number,g2int *list)
+///$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    extpdstemplate 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2000-05-11
+//
+// ABSTRACT: This subroutine generates the remaining octet map for a
+//   given Product Definition Template, if required.  Some Templates can
+//   vary depending on data values given in an earlier part of the 
+//   Template, and it is necessary to know some of the earlier entry
+//   values to generate the full octet map of the Template.
+//
+// PROGRAM HISTORY LOG:
+// 2000-05-11  Gilbert
+//
+// USAGE:    CALL extpdstemplate(number,list)
+//   INPUT ARGUMENT LIST:
+//     number   - NN, indicating the number of the Product Definition 
+//                Template 4.NN that is being requested.
+//     list()   - The list of values for each entry in the 
+//                the Product Definition Template 4.NN.
+//
+//   RETURN VALUE:
+//        - Pointer to the returned template struct.
+//          Returns NULL pointer, if template not found.
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+           template *new;
+           g2int index,i,j,k,l;
+
+           index=getpdsindex(number);
+           if (index == -1) return(0);
+
+           new=getpdstemplate(number);
+
+           if ( ! new->needext ) return(new);
+
+           if ( number == 3 ) {
+              new->extlen=list[26];
+              new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+              for (i=0;i<new->extlen;i++) {
+                 new->ext[i]=1;
+              }
+           }
+           else if ( number == 4 ) {
+              new->extlen=list[25];
+              new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+              for (i=0;i<new->extlen;i++) {
+                 new->ext[i]=1;
+              }
+           }
+           else if ( number == 8 ) {
+              if ( list[21] > 1 ) {
+                 new->extlen=(list[21]-1)*6;
+                 new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+                 for (j=2;j<=list[21];j++) {
+                    l=(j-2)*6;
+                    for (k=0;k<6;k++) {
+                       new->ext[l+k]=new->map[23+k];
+                    }
+                 }
+              }
+           }
+           else if ( number == 9 ) {
+              if ( list[28] > 1 ) {
+                 new->extlen=(list[28]-1)*6;
+                 new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+                 for (j=2;j<=list[28];j++) {
+                    l=(j-2)*6;
+                    for (k=0;k<6;k++) {
+                       new->ext[l+k]=new->map[30+k];
+                    }
+                 }
+              }
+           }
+           else if ( number == 10 ) {
+              if ( list[22] > 1 ) {
+                 new->extlen=(list[22]-1)*6;
+                 new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+                 for (j=2;j<=list[22];j++) {
+                    l=(j-2)*6;
+                    for (k=0;k<6;k++) {
+                       new->ext[l+k]=new->map[24+k];
+                    }
+                 }
+              }
+           }
+           else if ( number == 11 ) {
+              if ( list[24] > 1 ) {
+                 new->extlen=(list[24]-1)*6;
+                 new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+                 for (j=2;j<=list[24];j++) {
+                    l=(j-2)*6;
+                    for (k=0;k<6;k++) {
+                       new->ext[l+k]=new->map[26+k];
+                    }
+                 }
+              }
+           }
+           else if ( number == 12 ) {
+              if ( list[23] > 1 ) {
+                 new->extlen=(list[23]-1)*6;
+                 new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+                 for (j=2;j<=list[23];j++) {
+                    l=(j-2)*6;
+                    for (k=0;k<6;k++) {
+                       new->ext[l+k]=new->map[25+k];
+                    }
+                 }
+              }
+           }
+           else if ( number == 13 ) {
+              new->extlen=((list[37]-1)*6)+list[26];
+              new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+              if ( list[37] > 1 ) {
+                 for (j=2;j<=list[37];j++) {
+                    l=(j-2)*6;
+                    for (k=0;k<6;k++) {
+                       new->ext[l+k]=new->map[39+k];
+                    }
+                 }
+              }
+              l=(list[37]-1)*6;
+              if ( l<0 ) l=0;
+              for (i=0;i<list[26];i++) {
+                new->ext[l+i]=1;
+              }
+           }
+           else if ( number == 14 ) {
+              new->extlen=((list[36]-1)*6)+list[25];
+              new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+              if ( list[36] > 1 ) {
+                 for (j=2;j<=list[36];j++) {
+                    l=(j-2)*6;
+                    for (k=0;k<6;k++) {
+                       new->ext[l+k]=new->map[38+k];
+                    }
+                 }
+              }
+              l=(list[36]-1)*6;
+              if ( l<0 ) l=0;
+              for (i=0;i<list[25];i++) {
+                new->ext[l+i]=1;
+              }
+           }
+           else if ( number == 30 ) {
+              new->extlen=list[4]*5;
+              new->ext=(g2int *)malloc(sizeof(g2int)*new->extlen);
+              for (i=0;i<list[4];i++) {
+                 l=i*5;
+                 new->ext[l]=2;
+                 new->ext[l+1]=2;
+                 new->ext[l+2]=1;
+                 new->ext[l+3]=1;
+                 new->ext[l+4]=4;
+              }
+           }
+           return(new);
+
+}
+
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/pdstemplates.h b/src/modules/io/io_grid_grib2/g2clib-1.0.4/pdstemplates.h
new file mode 100755
index 0000000..9c10c1e
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/pdstemplates.h
@@ -0,0 +1,121 @@
+/**********************************************************
+ * Version $Id: pdstemplates.h 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#ifndef _pdstemplates_H
+#define _pdstemplates_H
+#include "grib2.h"
+
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-26
+//
+// ABSTRACT: This inculde file contains info on all the available 
+//   GRIB2 Product Definition Templates used in Section 4 (PDS).
+//   The information decribing each template is stored in the
+//   pdstemplate structure defined below.
+//
+//   Each Template has three parts: The number of entries in the template
+//   (mappdslen);  A map of the template (mappds), which contains the
+//   number of octets in which to pack each of the template values; and
+//   a logical value (needext) that indicates whether the Template needs 
+//   to be extended.  In some cases the number of entries in a template 
+//   can vary depending upon values specified in the "static" part of 
+//   the template.  ( See Template 4.3 as an example )
+//
+//   NOTE:  Array mappds contains the number of octets in which the 
+//   corresponding template values will be stored.  A negative value in
+//   mappds is used to indicate that the corresponding template entry can
+//   contain negative values.  This information is used later when packing
+//   (or unpacking) the template data values.  Negative data values in GRIB
+//   are stored with the left most bit set to one, and a negative number
+//   of octets value in mappds[] indicates that this possibility should
+//   be considered.  The number of octets used to store the data value
+//   in this case would be the absolute value of the negative value in 
+//   mappds[].
+//  
+// 2005-12-08  Gilbert  -  Allow negative scale factors and limits for
+//                         Templates 4.5 and 4.9
+//
+//$$$
+
+      #define MAXPDSTEMP 23           // maximum number of templates
+      #define MAXPDSMAPLEN 200        // maximum template map length
+
+      struct pdstemplate 
+      {
+          g2int template_num;
+          g2int mappdslen;
+          g2int needext;
+          g2int mappds[MAXPDSMAPLEN];
+      };
+
+      const struct pdstemplate templatespds[MAXPDSTEMP] = {
+             // 4.0: Analysis or Forecast at Horizontal Level/Layer
+             //      at a point in time
+         {0,15,0, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4} },
+             // 4.1: Individual Ensemble Forecast at Horizontal Level/Layer
+             //      at a point in time
+         {1,18,0, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,1,1} },
+             // 4.2: Derived Fcst based on whole Ensemble at Horiz Level/Layer
+             //      at a point in time
+         {2,17,0, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,1} },
+             // 4.3: Derived Fcst based on Ensemble cluster over rectangular
+             //      area at Horiz Level/Layer at a point in time
+         {3,31,1, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,1,1,1,1,1,1,-4,-4,4,4,1,-1,4,-1,4} },
+             // 4.4: Derived Fcst based on Ensemble cluster over circular
+             //      area at Horiz Level/Layer at a point in time
+         {4,30,1, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,1,1,1,1,1,1,-4,4,4,1,-1,4,-1,4} },
+             // 4.5: Probablility Forecast at Horiz Level/Layer
+             //      at a point in time
+         {5,22,0, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,1,1,-1,-4,-1,-4} },
+             // 4.6: Percentile Forecast at Horiz Level/Layer
+             //      at a point in time
+         {6,16,0, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1} },
+             // 4.7: Analysis or Forecast Error at Horizontal Level/Layer
+             //      at a point in time
+         {7,15,0, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4} },
+             // 4.8: Ave/Accum/etc... at Horiz Level/Layer
+             //      in a time interval
+         {8,29,1, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,2,1,1,1,1,1,1,4,1,1,1,4,1,4} },
+             // 4.9: Probablility Forecast at Horiz Level/Layer
+             //      in a time interval
+         {9,36,1, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,1,1,-1,-4,-1,-4,2,1,1,1,1,1,1,4,1,1,1,4,1,4} },
+             // 4.10: Percentile Forecast at Horiz Level/Layer
+             //       in a time interval
+         {10,30,1, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,2,1,1,1,1,1,1,4,1,1,1,4,1,4} },
+             // 4.11: Individual Ensemble Forecast at Horizontal Level/Layer
+             //       in a time interval
+         {11,32,1, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,1,1,2,1,1,1,1,1,1,4,1,1,1,4,1,4} },
+             // 4.12: Derived Fcst based on whole Ensemble at Horiz Level/Layer
+             //       in a time interval
+         {12,31,1, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,1,2,1,1,1,1,1,1,4,1,1,1,4,1,4} },
+             // 4.13: Derived Fcst based on Ensemble cluster over rectangular
+             //       area at Horiz Level/Layer in a time interval
+         {13,45,1, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,1,1,1,1,1,1,-4,-4,4,4,1,-1,4,-1,4,2,1,1,1,1,1,1,4,1,1,1,4,1,4} },
+             // 4.14: Derived Fcst based on Ensemble cluster over circular
+             //       area at Horiz Level/Layer in a time interval
+         {14,44,1, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,1,1,1,1,1,1,1,-4,4,4,1,-1,4,-1,4,2,1,1,1,1,1,1,4,1,1,1,4,1,4} },
+             // 4.20: Radar Product
+         {20,19,0, {1,1,1,1,1,-4,4,2,4,2,1,1,1,1,1,2,1,3,2} },
+             // 4.30: Satellite Product
+         {30,5,1, {1,1,1,1,1} },
+             // 4.254: CCITT IA5 Character String
+         {254,3,0, {1,1,4} },
+             // 4.1000: Cross section of analysis or forecast
+             //         at a point in time
+         {1000,9,0, {1,1,1,1,1,2,1,1,4} },
+             // 4.1001: Cross section of Ave/Accum/etc... analysis or forecast
+             //         in a time interval
+         {1001,16,0, {1,1,1,1,1,2,1,1,4,4,1,1,1,4,1,4} },
+             // 4.1001: Cross section of Ave/Accum/etc... analysis or forecast
+             //         over latitude or longitude
+         {1002,15,0, {1,1,1,1,1,2,1,1,4,1,1,1,4,4,2} },
+             // 4.1100: Hovmoller-type grid w/ no averaging or other
+             //         statistical processing
+         {1100,15,0, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4} },
+             // 4.1100: Hovmoller-type grid with averaging or other
+             //         statistical processing
+         {1101,22,0, {1,1,1,1,1,2,1,1,4,1,-1,-4,1,-1,-4,4,1,1,1,4,1,4} }
+
+      } ;
+
+
+#endif  /*  _pdstemplates_H  */
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/pngpack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/pngpack.c
new file mode 100755
index 0000000..237847c
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/pngpack.c
@@ -0,0 +1,165 @@
+/**********************************************************
+ * Version $Id: pngpack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdlib.h>
+#include <math.h>
+#include "grib2.h"
+
+int enc_png(char *,g2int ,g2int ,g2int ,char *);
+
+void pngpack(g2float *fld,g2int width,g2int height,g2int *idrstmpl,
+             unsigned char *cpack,g2int *lcpack)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    pngpack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2003-08-27
+//
+// ABSTRACT: This subroutine packs up a data field into PNG image format.
+//   After the data field is scaled, and the reference value is subtracted out,
+//   it is treated as a grayscale image and passed to a PNG encoder.
+//   It also fills in GRIB2 Data Representation Template 5.41 or 5.40010 with 
+//   the appropriate values.
+//
+// PROGRAM HISTORY LOG:
+// 2003-08-27  Gilbert
+//
+// USAGE:    pngpack(g2float *fld,g2int width,g2int height,g2int *idrstmpl,
+//                   unsigned char *cpack,g2int *lcpack);
+//   INPUT ARGUMENT LIST:
+//     fld[]    - Contains the data values to pack
+//     width    - number of points in the x direction
+//     height   - number of points in the y direction
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.41 or 5.40010
+//                [0] = Reference value - ignored on input
+//                [1] = Binary Scale Factor
+//                [2] = Decimal Scale Factor
+//                [3] = number of bits for each data value - ignored on input
+//                [4] = Original field type - currently ignored on input
+//                      Data values assumed to be reals.
+//
+//   OUTPUT ARGUMENT LIST: 
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.41 or 5.40010
+//                [0] = Reference value - set by pngpack routine.
+//                [1] = Binary Scale Factor - unchanged from input
+//                [2] = Decimal Scale Factor - unchanged from input
+//                [3] = Number of bits containing each grayscale pixel value
+//                [4] = Original field type - currently set = 0 on output.
+//                      Data values assumed to be reals.
+//     cpack    - The packed data field 
+//     lcpack   - length of packed field cpack.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+      g2int  *ifld;
+      static g2float alog2=0.69314718;       //  ln(2.0)
+      g2int  j,nbits,imin,imax,maxdif;
+      g2int  ndpts,nbytes;
+      g2float  bscale,dscale,rmax,rmin,temp;
+      unsigned char *ctemp;
+      
+      ifld=0;
+      ndpts=width*height;
+      bscale=int_power(2.0,-idrstmpl[1]);
+      dscale=int_power(10.0,idrstmpl[2]);
+//
+//  Find max and min values in the data
+//
+      rmax=fld[0];
+      rmin=fld[0];
+      for (j=1;j<ndpts;j++) {
+        if (fld[j] > rmax) rmax=fld[j];
+        if (fld[j] < rmin) rmin=fld[j];
+      }
+      maxdif = (g2int)rint( (rmax-rmin)*dscale*bscale );
+//
+//  If max and min values are not equal, pack up field.
+//  If they are equal, we have a constant field, and the reference
+//  value (rmin) is the value for each point in the field and
+//  set nbits to 0.
+//
+      if (rmin != rmax  &&  maxdif != 0 ) {
+        ifld=(g2int *)malloc(ndpts*sizeof(g2int));
+        //
+        //  Determine which algorithm to use based on user-supplied 
+        //  binary scale factor and number of bits.
+        //
+        if (idrstmpl[1] == 0) {
+           //
+           //  No binary scaling and calculate minumum number of 
+           //  bits in which the data will fit.
+           //
+           imin=(g2int)rint(rmin*dscale);
+           imax=(g2int)rint(rmax*dscale);
+           maxdif=imax-imin;
+           temp=log((double)(maxdif+1))/alog2;
+           nbits=(g2int)ceil(temp);
+           rmin=(g2float)imin;
+           //   scale data
+           for(j=0;j<ndpts;j++)
+             ifld[j]=(g2int)rint(fld[j]*dscale)-imin;
+        }
+        else {
+           //
+           //  Use binary scaling factor and calculate minumum number of 
+           //  bits in which the data will fit.
+           //
+           rmin=rmin*dscale;
+           rmax=rmax*dscale;
+           maxdif=(g2int)rint((rmax-rmin)*bscale);
+           temp=log((double)(maxdif+1))/alog2;
+           nbits=(g2int)ceil(temp);
+           //   scale data
+           for (j=0;j<ndpts;j++)
+             ifld[j]=(g2int)rint(((fld[j]*dscale)-rmin)*bscale);
+        }
+        //
+        //  Pack data into full octets, then do PNG encode.
+        //  and calculate the length of the packed data in bytes
+        //
+        if (nbits <= 8) {
+            nbits=8;
+        }
+        else if (nbits <= 16) {
+            nbits=16;
+        }
+        else if (nbits <= 24) {
+            nbits=24;
+        }
+        else {
+            nbits=32;
+        }
+        nbytes=(nbits/8)*ndpts;
+        ctemp=calloc(nbytes,1);
+        sbits(ctemp,ifld,0,nbits,0,ndpts);
+        //
+        //  Encode data into PNG Format.
+        //
+        *lcpack=(g2int)enc_png((char *)ctemp,width,height,nbits,(char *)cpack);
+        if (*lcpack <= 0) {
+           printf("pngpack: ERROR Packing PNG = %d\n",(int)*lcpack);
+        }
+        free(ctemp);
+
+      }
+      else {
+        nbits=0;
+        *lcpack=0;
+      }
+
+//
+//  Fill in ref value and number of bits in Template 5.0
+//
+      mkieee(&rmin,idrstmpl+0,1);   // ensure reference value is IEEE format
+      idrstmpl[3]=nbits;
+      idrstmpl[4]=0;         // original data were reals
+      if (ifld != 0) free(ifld);
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/pngunpack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/pngunpack.c
new file mode 100755
index 0000000..22a9ed3
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/pngunpack.c
@@ -0,0 +1,79 @@
+/**********************************************************
+ * Version $Id: pngunpack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+int dec_png(unsigned char *,g2int *,g2int *,char *);
+
+g2int pngunpack(unsigned char *cpack,g2int len,g2int *idrstmpl,g2int ndpts,
+                g2float *fld)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    pngunpack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2003-08-27
+//
+// ABSTRACT: This subroutine unpacks a data field that was packed into a 
+//   PNG image format
+//   using info from the GRIB2 Data Representation Template 5.41 or 5.40010.
+//
+// PROGRAM HISTORY LOG:
+// 2003-08-27  Gilbert
+//
+// USAGE:    pngunpack(unsigned char *cpack,g2int len,g2int *idrstmpl,g2int ndpts,
+//                     g2float *fld)
+//   INPUT ARGUMENT LIST:
+//     cpack    - The packed data field (character*1 array)
+//     len      - length of packed field cpack().
+//     idrstmpl - Pointer to array of values for Data Representation
+//                Template 5.41 or 5.40010
+//     ndpts    - The number of data values to unpack
+//
+//   OUTPUT ARGUMENT LIST:
+//     fld[]    - Contains the unpacked data values
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+
+      g2int  *ifld;
+      g2int  j,nbits,iret,width,height;
+      g2float  ref,bscale,dscale;
+      unsigned char *ctemp;
+
+      rdieee(idrstmpl+0,&ref,1);
+      bscale = int_power(2.0,idrstmpl[1]);
+      dscale = int_power(10.0,-idrstmpl[2]);
+      nbits = idrstmpl[3];
+//
+//  if nbits equals 0, we have a constant field where the reference value
+//  is the data value at each gridpoint
+//
+      if (nbits != 0) {
+
+         ifld=(g2int *)calloc(ndpts,sizeof(g2int));
+         ctemp=(unsigned char *)calloc(ndpts*4,1);
+         if ( ifld == 0 || ctemp == 0) {
+            fprintf(stderr,"Could not allocate space in jpcunpack.\n  Data field NOT upacked.\n");
+            return(1);
+         }
+         iret=(g2int)dec_png(cpack,&width,&height,ctemp);
+         gbits(ctemp,ifld,0,nbits,0,ndpts);
+         for (j=0;j<ndpts;j++) {
+           fld[j]=(((g2float)ifld[j]*bscale)+ref)*dscale;
+         }
+         free(ctemp);
+         free(ifld);
+      }
+      else {
+         for (j=0;j<ndpts;j++) fld[j]=ref;
+      }
+
+      return(0);
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/rdieee.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/rdieee.c
new file mode 100755
index 0000000..03e3771
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/rdieee.c
@@ -0,0 +1,81 @@
+/**********************************************************
+ * Version $Id: rdieee.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include "grib2.h"
+
+void rdieee(g2int *rieee,g2float *a,g2int num)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    rdieee 
+//   PRGMMR: Gilbert         ORG: W/NP11    DATE: 2002-10-25
+//
+// ABSTRACT: This subroutine reads a list of real values in 
+//   32-bit IEEE floating point format.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-25  Gilbert
+//
+// USAGE:    void rdieee(g2int *rieee,g2float *a,g2int num)
+//   INPUT ARGUMENT LIST:
+//     rieee    - g2int array of floating point values in 32-bit IEEE format.
+//     num      - Number of floating point values to convert.
+//
+//   OUTPUT ARGUMENT LIST:      
+//     a        - float array of real values.  a must be allocated with at
+//                least 4*num bytes of memory before calling this function.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+
+      g2int  j;
+      g2int  isign,iexp,imant;
+
+      g2float  sign,temp;
+      static g2float  two23,two126;
+      static g2int test=0;
+      g2intu msk1=0x80000000;        // 10000000000000000000000000000000 binary
+      g2int msk2=0x7F800000;         // 01111111100000000000000000000000 binary
+      g2int msk3=0x007FFFFF;         // 00000000011111111111111111111111 binary
+
+      if ( test == 0 ) {
+         two23=(g2float)int_power(2.0,-23);
+         two126=(g2float)int_power(2.0,-126);
+         test=1;
+      }
+
+      for (j=0;j<num;j++) {
+//
+//  Extract sign bit, exponent, and mantissa
+//
+        isign=(rieee[j]&msk1)>>31;
+        iexp=(rieee[j]&msk2)>>23;
+        imant=(rieee[j]&msk3);
+        //printf("SAGieee= %ld %ld %ld\n",isign,iexp,imant);
+
+        sign=1.0;
+        if (isign == 1) sign=-1.0;
+        
+        if ( (iexp > 0) && (iexp < 255) ) {
+          temp=(g2float)int_power(2.0,(iexp-127));
+          a[j]=sign*temp*(1.0+(two23*(g2float)imant));
+        }
+        else if ( iexp == 0 ) {
+          if ( imant != 0 )
+            a[j]=sign*two126*two23*(g2float)imant;
+          else
+            a[j]=sign*0.0;
+          
+        }
+        else if ( iexp == 255 )
+           a[j]=sign*(1E+37);
+
+
+      }
+
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/reduce.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/reduce.c
new file mode 100755
index 0000000..aafd182
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/reduce.c
@@ -0,0 +1,413 @@
+/**********************************************************
+ * Version $Id: reduce.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+/* reduce.f -- translated by f2c (version 20031025).
+   You must link the resulting object file with libf2c:
+	on Microsoft Windows system, link with libf2c.lib;
+	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+	or, if you install libf2c.a in a standard place, with -lf2c -lm
+	-- in that order, at the end of the command line, as in
+		cc *.o -lf2c -lm
+	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+		http://www.netlib.org/f2c/libf2c.zip
+*/
+
+/*#include "f2c.h"*/
+#include <stdlib.h>
+#include "grib2.h"
+typedef g2int integer;
+typedef g2float real;
+
+/* Subroutine */ int reduce(integer *kfildo, integer *jmin, integer *jmax, 
+	integer *lbit, integer *nov, integer *lx, integer *ndg, integer *ibit,
+	 integer *jbit, integer *kbit, integer *novref, integer *ibxx2, 
+	integer *ier)
+{
+    /* Initialized data */
+
+    static integer ifeed = 12;
+
+    /* System generated locals */
+    integer i__1, i__2;
+
+    /* Local variables */
+    static integer newboxtp, j, l, m, jj, lxn, left;
+    static real pimp;
+    static integer move, novl;
+    static char cfeed[1];
+    static integer nboxj[31], lxnkp, iorigb, ibxx2m1, movmin,
+	     ntotbt[31], ntotpr, newboxt;
+    integer *newbox, *newboxp;
+
+
+/*        NOVEMBER 2001   GLAHN   TDL   GRIB2 */
+/*        MARCH    2002   GLAHN   COMMENT IER = 715 */
+/*        MARCH    2002   GLAHN   MODIFIED TO ACCOMMODATE LX=1 ON ENTRY */
+
+/*        PURPOSE */
+/*            DETERMINES WHETHER THE NUMBER OF GROUPS SHOULD BE */
+/*            INCREASED IN ORDER TO REDUCE THE SIZE OF THE LARGE */
+/*            GROUPS, AND TO MAKE THAT ADJUSTMENT.  BY REDUCING THE */
+/*            SIZE OF THE LARGE GROUPS, LESS BITS MAY BE NECESSARY */
+/*            FOR PACKING THE GROUP SIZES AND ALL THE INFORMATION */
+/*            ABOUT THE GROUPS. */
+
+/*            THE REFERENCE FOR NOV( ) WAS REMOVED IN THE CALLING */
+/*            ROUTINE SO THAT KBIT COULD BE DETERMINED.  THIS */
+/*            FURNISHES A STARTING POINT FOR THE ITERATIONS IN REDUCE. */
+/*            HOWEVER, THE REFERENCE MUST BE CONSIDERED. */
+
+/*        DATA SET USE */
+/*           KFILDO - UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT) */
+
+/*        VARIABLES IN CALL SEQUENCE */
+/*              KFILDO = UNIT NUMBER FOR OUTPUT (PRINT) FILE.  (INPUT) */
+/*             JMIN(J) = THE MINIMUM OF EACH GROUP (J=1,LX).  IT IS */
+/*                       POSSIBLE AFTER SPLITTING THE GROUPS, JMIN( ) */
+/*                       WILL NOT BE THE MINIMUM OF THE NEW GROUP. */
+/*                       THIS DOESN'T MATTER; JMIN( ) IS REALLY THE */
+/*                       GROUP REFERENCE AND DOESN'T HAVE TO BE THE */
+/*                       SMALLEST VALUE.  (INPUT/OUTPUT) */
+/*             JMAX(J) = THE MAXIMUM OF EACH GROUP (J=1,LX). */
+/*                       (INPUT/OUTPUT) */
+/*             LBIT(J) = THE NUMBER OF BITS NECESSARY TO PACK EACH GROUP */
+/*                       (J=1,LX).  (INPUT/OUTPUT) */
+/*              NOV(J) = THE NUMBER OF VALUES IN EACH GROUP (J=1,LX). */
+/*                       (INPUT/OUTPUT) */
+/*                  LX = THE NUMBER OF GROUPS.  THIS WILL BE INCREASED */
+/*                       IF GROUPS ARE SPLIT.  (INPUT/OUTPUT) */
+/*                 NDG = THE DIMENSION OF JMIN( ), JMAX( ), LBIT( ), AND */
+/*                       NOV( ).  (INPUT) */
+/*                IBIT = THE NUMBER OF BITS NECESSARY TO PACK THE JMIN(J) */
+/*                       VALUES, J=1,LX.  (INPUT) */
+/*                JBIT = THE NUMBER OF BITS NECESSARY TO PACK THE LBIT(J) */
+/*                       VALUES, J=1,LX.  (INPUT) */
+/*                KBIT = THE NUMBER OF BITS NECESSARY TO PACK THE NOV(J) */
+/*                       VALUES, J=1,LX.  IF THE GROUPS ARE SPLIT, KBIT */
+/*                       IS REDUCED.  (INPUT/OUTPUT) */
+/*              NOVREF = REFERENCE VALUE FOR NOV( ).  (INPUT) */
+/*            IBXX2(J) = 2**J (J=0,30).  (INPUT) */
+/*                 IER = ERROR RETURN.  (OUTPUT) */
+/*                         0 = GOOD RETURN. */
+/*                       714 = PROBLEM IN ALGORITHM.  REDUCE ABORTED. */
+/*                       715 = NGP NOT LARGE ENOUGH.  REDUCE ABORTED. */
+/*           NTOTBT(J) = THE TOTAL BITS USED FOR THE PACKING BITS J */
+/*                       (J=1,30).  (INTERNAL) */
+/*            NBOXJ(J) = NEW BOXES NEEDED FOR THE PACKING BITS J */
+/*                       (J=1,30).  (INTERNAL) */
+/*           NEWBOX(L) = NUMBER OF NEW BOXES (GROUPS) FOR EACH ORIGINAL */
+/*                       GROUP (L=1,LX) FOR THE CURRENT J.  (AUTOMATIC) */
+/*                       (INTERNAL) */
+/*          NEWBOXP(L) = SAME AS NEWBOX( ) BUT FOR THE PREVIOUS J. */
+/*                       THIS ELIMINATES RECOMPUTATION.  (AUTOMATIC) */
+/*                       (INTERNAL) */
+/*               CFEED = CONTAINS THE CHARACTER REPRESENTATION */
+/*                       OF A PRINTER FORM FEED.  (CHARACTER) (INTERNAL) */
+/*               IFEED = CONTAINS THE INTEGER VALUE OF A PRINTER */
+/*                       FORM FEED.  (INTERNAL) */
+/*              IORIGB = THE ORIGINAL NUMBER OF BITS NECESSARY */
+/*                       FOR THE GROUP VALUES.  (INTERNAL) */
+/*        1         2         3         4         5         6         7 X */
+
+/*        NON SYSTEM SUBROUTINES CALLED */
+/*           NONE */
+
+
+/*        NEWBOX( ) AND NEWBOXP( ) were AUTOMATIC ARRAYS. */
+    newbox = (integer *)calloc(*ndg,sizeof(integer));
+    newboxp = (integer *)calloc(*ndg,sizeof(integer));
+
+    /* Parameter adjustments */
+    --nov;
+    --lbit;
+    --jmax;
+    --jmin;
+
+    /* Function Body */
+
+    *ier = 0;
+    if (*lx == 1) {
+	goto L410;
+    }
+/*        IF THERE IS ONLY ONE GROUP, RETURN. */
+
+    *(unsigned char *)cfeed = (char) ifeed;
+
+/*        INITIALIZE NUMBER OF NEW BOXES PER GROUP TO ZERO. */
+
+    i__1 = *lx;
+    for (l = 1; l <= i__1; ++l) {
+	newbox[l - 1] = 0;
+/* L110: */
+    }
+
+/*        INITIALIZE NUMBER OF TOTAL NEW BOXES PER J TO ZERO. */
+
+    for (j = 1; j <= 31; ++j) {
+	ntotbt[j - 1] = 999999999;
+	nboxj[j - 1] = 0;
+/* L112: */
+    }
+
+    iorigb = (*ibit + *jbit + *kbit) * *lx;
+/*        IBIT = BITS TO PACK THE JMIN( ). */
+/*        JBIT = BITS TO PACK THE LBIT( ). */
+/*        KBIT = BITS TO PACK THE NOV( ). */
+/*        LX = NUMBER OF GROUPS. */
+    ntotbt[*kbit - 1] = iorigb;
+/*           THIS IS THE VALUE OF TOTAL BITS FOR THE ORIGINAL LX */
+/*           GROUPS, WHICH REQUIRES KBITS TO PACK THE GROUP */
+/*           LENGHTS.  SETTING THIS HERE MAKES ONE LESS LOOPS */
+/*           NECESSARY BELOW. */
+
+/*        COMPUTE BITS NOW USED FOR THE PARAMETERS DEFINED. */
+
+/*        DETERMINE OTHER POSSIBILITES BY INCREASING LX AND DECREASING */
+/*        NOV( ) WITH VALUES GREATER THAN THRESHOLDS.  ASSUME A GROUP IS */
+/*        SPLIT INTO 2 OR MORE GROUPS SO THAT KBIT IS REDUCED WITHOUT */
+/*        CHANGING IBIT OR JBIT. */
+
+    jj = 0;
+
+/* Computing MIN */
+    i__1 = 30, i__2 = *kbit - 1;
+    /*for (j = min(i__1,i__2); j >= 2; --j) {*/
+    for (j = (i__1 < i__2) ? i__1 : i__2; j >= 2; --j) {
+/*           VALUES GE KBIT WILL NOT REQUIRE SPLITS.  ONCE THE TOTAL */
+/*           BITS START INCREASING WITH DECREASING J, STOP.  ALSO, THE */
+/*           NUMBER OF BITS REQUIRED IS KNOWN FOR KBITS = NTOTBT(KBIT). */
+
+	newboxt = 0;
+
+	i__1 = *lx;
+	for (l = 1; l <= i__1; ++l) {
+
+	    if (nov[l] < ibxx2[j]) {
+		newbox[l - 1] = 0;
+/*                 NO SPLITS OR NEW BOXES. */
+		goto L190;
+	    } else {
+		novl = nov[l];
+
+		m = (nov[l] - 1) / (ibxx2[j] - 1) + 1;
+/*                 M IS FOUND BY SOLVING THE EQUATION BELOW FOR M: */
+/*                 (NOV(L)+M-1)/M LT IBXX2(J) */
+/*                 M GT (NOV(L)-1)/(IBXX2(J)-1) */
+/*                 SET M = (NOV(L)-1)/(IBXX2(J)-1)+1 */
+L130:
+		novl = (nov[l] + m - 1) / m;
+/*                 THE +M-1 IS NECESSARY.  FOR INSTANCE, 15 WILL FIT */
+/*                 INTO A BOX 4 BITS WIDE, BUT WON'T DIVIDE INTO */
+/*                 TWO BOXES 3 BITS WIDE EACH. */
+
+		if (novl < ibxx2[j]) {
+		    goto L185;
+		} else {
+		    ++m;
+/* ***                  WRITE(KFILDO,135)L,NOV(L),NOVL,M,J,IBXX2(J) */
+/* *** 135              FORMAT(/' AT 135--L,NOV(L),NOVL,M,J,IBXX2(J)',6I10) */
+		    goto L130;
+		}
+
+/*                 THE ABOVE DO LOOP WILL NEVER COMPLETE. */
+	    }
+
+L185:
+	    newbox[l - 1] = m - 1;
+	    newboxt = newboxt + m - 1;
+L190:
+	    ;
+	}
+
+	nboxj[j - 1] = newboxt;
+	ntotpr = ntotbt[j];
+	ntotbt[j - 1] = (*ibit + *jbit) * (*lx + newboxt) + j * (*lx + 
+		newboxt);
+
+	if (ntotbt[j - 1] >= ntotpr) {
+	    jj = j + 1;
+/*              THE PLUS IS USED BECAUSE J DECREASES PER ITERATION. */
+	    goto L250;
+	} else {
+
+/*              SAVE THE TOTAL NEW BOXES AND NEWBOX( ) IN CASE THIS */
+/*              IS THE J TO USE. */
+
+	    newboxtp = newboxt;
+
+	    i__1 = *lx;
+	    for (l = 1; l <= i__1; ++l) {
+		newboxp[l - 1] = newbox[l - 1];
+/* L195: */
+	    }
+
+/*           WRITE(KFILDO,197)NEWBOXT,IBXX2(J) */
+/* 197        FORMAT(/' *****************************************' */
+/*    1             /' THE NUMBER OF NEWBOXES PER GROUP OF THE TOTAL', */
+/*    2              I10,' FOR GROUP MAXSIZE PLUS 1 ='I10 */
+/*    3             /' *****************************************') */
+/*           WRITE(KFILDO,198) (NEWBOX(L),L=1,LX) */
+/* 198        FORMAT(/' '20I6/(' '20I6)) */
+	}
+
+/* 205     WRITE(KFILDO,209)KBIT,IORIGB */
+/* 209     FORMAT(/' ORIGINAL BITS WITH KBIT OF',I5,' =',I10) */
+/*        WRITE(KFILDO,210)(N,N=2,10),(IBXX2(N),N=2,10), */
+/*    1                    (NTOTBT(N),N=2,10),(NBOXJ(N),N=2,10), */
+/*    2                    (N,N=11,20),(IBXX2(N),N=11,20), */
+/*    3                    (NTOTBT(N),N=11,20),(NBOXJ(N),N=11,20), */
+/*    4                    (N,N=21,30),(IBXX2(N),N=11,20), */
+/*    5                    (NTOTBT(N),N=21,30),(NBOXJ(N),N=21,30) */
+/* 210     FORMAT(/' THE TOTAL BYTES FOR MAXIMUM GROUP LENGTHS BY ROW'// */
+/*    1      '   J         = THE NUMBER OF BITS PER GROUP LENGTH'/ */
+/*    2      '   IBXX2(J)  = THE MAXIMUM GROUP LENGTH PLUS 1 FOR THIS J'/ */
+/*    3      '   NTOTBT(J) = THE TOTAL BITS FOR THIS J'/ */
+/*    4      '   NBOXJ(J)  = THE NEW GROUPS FOR THIS J'/ */
+/*    5      4(/10X,9I10)/4(/10I10)/4(/10I10)) */
+
+/* L200: */
+    }
+
+L250:
+    pimp = (iorigb - ntotbt[jj - 1]) / (real) iorigb * 100.f;
+/*     WRITE(KFILDO,252)PIMP,KBIT,JJ */
+/* 252  FORMAT(/' PERCENT IMPROVEMENT =',F6.1, */
+/*    1        ' BY DECREASING GROUP LENGTHS FROM',I4,' TO',I4,' BITS') */
+    if (pimp >= 2.f) {
+
+/*        WRITE(KFILDO,255)CFEED,NEWBOXTP,IBXX2(JJ) */
+/* 255     FORMAT(A1,/' *****************************************' */
+/*    1             /' THE NUMBER OF NEWBOXES PER GROUP OF THE TOTAL', */
+/*    2             I10,' FOR GROUP MAXSIZE PLUS 1 ='I10 */
+/*    2             /' *****************************************') */
+/*        WRITE(KFILDO,256) (NEWBOXP(L),L=1,LX) */
+/* 256     FORMAT(/' '20I6) */
+
+/*           ADJUST GROUP LENGTHS FOR MAXIMUM LENGTH OF JJ BITS. */
+/*           THE MIN PER GROUP AND THE NUMBER OF BITS REQUIRED */
+/*           PER GROUP ARE NOT CHANGED.  THIS MAY MEAN THAT A */
+/*           GROUP HAS A MIN (OR REFERENCE) THAT IS NOT ZERO. */
+/*           THIS SHOULD NOT MATTER TO THE UNPACKER. */
+
+	lxnkp = *lx + newboxtp;
+/*           LXNKP = THE NEW NUMBER OF BOXES */
+
+	if (lxnkp > *ndg) {
+/*              DIMENSIONS NOT LARGE ENOUGH.  PROBABLY AN ERROR */
+/*              OF SOME SORT.  ABORT. */
+/*           WRITE(KFILDO,257)NDG,LXNPK */
+/*        1         2         3         4         5         6         7 X */
+/* 257        FORMAT(/' DIMENSIONS OF JMIN, ETC. IN REDUCE =',I8, */
+/*    1              ' NOT LARGE ENOUGH FOR THE EXPANDED NUMBER OF', */
+/*    2              ' GROUPS =',I8,'.  ABORT REDUCE.') */
+	    *ier = 715;
+	    goto L410;
+/*              AN ABORT CAUSES THE CALLING PROGRAM TO REEXECUTE */
+/*              WITHOUT CALLING REDUCE. */
+	}
+
+	lxn = lxnkp;
+/*           LXN IS THE NUMBER OF THE BOX IN THE NEW SERIES BEING */
+/*           FILLED.  IT DECREASES PER ITERATION. */
+	ibxx2m1 = ibxx2[jj] - 1;
+/*           IBXX2M1 IS THE MAXIMUM NUMBER OF VALUES PER GROUP. */
+
+	for (l = *lx; l >= 1; --l) {
+
+/*              THE VALUES IS NOV( ) REPRESENT THOSE VALUES + NOVREF. */
+/*              WHEN VALUES ARE MOVED TO ANOTHER BOX, EACH VALUE */
+/*              MOVED TO A NEW BOX REPRESENTS THAT VALUE + NOVREF. */
+/*              THIS HAS TO BE CONSIDERED IN MOVING VALUES. */
+
+	    if (newboxp[l - 1] * (ibxx2m1 + *novref) + *novref > nov[l] + *
+		    novref) {
+/*                 IF THE ABOVE TEST IS MET, THEN MOVING IBXX2M1 VALUES */
+/*                 FOR ALL NEW BOXES WILL LEAVE A NEGATIVE NUMBER FOR */
+/*                 THE LAST BOX.  NOT A TOLERABLE SITUATION. */
+		movmin = (nov[l] - newboxp[l - 1] * *novref) / newboxp[l - 1];
+		left = nov[l];
+/*                 LEFT = THE NUMBER OF VALUES TO MOVE FROM THE ORIGINAL */
+/*                 BOX TO EACH NEW BOX EXCEPT THE LAST.  LEFT IS THE */
+/*                 NUMBER LEFT TO MOVE. */
+	    } else {
+		movmin = ibxx2m1;
+/*                 MOVMIN VALUES CAN BE MOVED FOR EACH NEW BOX. */
+		left = nov[l];
+/*                 LEFT IS THE NUMBER OF VALUES LEFT TO MOVE. */
+	    }
+
+	    if (newboxp[l - 1] > 0) {
+		if ((movmin + *novref) * newboxp[l - 1] + *novref <= nov[l] + 
+			*novref && (movmin + *novref) * (newboxp[l - 1] + 1) 
+			>= nov[l] + *novref) {
+		    goto L288;
+		} else {
+/* ***D                 WRITE(KFILDO,287)L,MOVMIN,NOVREF,NEWBOXP(L),NOV(L) */
+/* ***D287              FORMAT(/' AT 287 IN REDUCE--L,MOVMIN,NOVREF,', */
+/* ***D    1                    'NEWBOXP(L),NOV(L)',5I12 */
+/* ***D    2                    ' REDUCE ABORTED.') */
+/*              WRITE(KFILDO,2870) */
+/* 2870          FORMAT(/' AN ERROR IN REDUCE ALGORITHM.  ABORT REDUCE.') */
+		    *ier = 714;
+		    goto L410;
+/*                 AN ABORT CAUSES THE CALLING PROGRAM TO REEXECUTE */
+/*                 WITHOUT CALLING REDUCE. */
+		}
+
+	    }
+
+L288:
+	    i__1 = newboxp[l - 1] + 1;
+	    for (j = 1; j <= i__1; ++j) {
+		/*move = min(movmin,left);*/
+		move = (movmin < left) ? movmin : left;
+		jmin[lxn] = jmin[l];
+		jmax[lxn] = jmax[l];
+		lbit[lxn] = lbit[l];
+		nov[lxn] = move;
+		--lxn;
+		left -= move + *novref;
+/*                 THE MOVE OF MOVE VALUES REALLY REPRESENTS A MOVE OF */
+/*                 MOVE + NOVREF VALUES. */
+/* L290: */
+	    }
+
+	    if (left != -(*novref)) {
+/* ***               WRITE(KFILDO,292)L,LXN,MOVE,LXNKP,IBXX2(JJ),LEFT,NOV(L), */
+/* ***     1                          MOVMIN */
+/* *** 292           FORMAT(' AT 292 IN REDUCE--L,LXN,MOVE,LXNKP,', */
+/* ***     1                'IBXX2(JJ),LEFT,NOV(L),MOVMIN'/8I12) */
+	    }
+
+/* L300: */
+	}
+
+	*lx = lxnkp;
+/*           LX IS NOW THE NEW NUMBER OF GROUPS. */
+	*kbit = jj;
+/*           KBIT IS NOW THE NEW NUMBER OF BITS REQUIRED FOR PACKING */
+/*           GROUP LENGHTS. */
+    }
+
+/*     WRITE(KFILDO,406)CFEED,LX */
+/* 406  FORMAT(A1,/' *****************************************' */
+/*    1          /' THE GROUP SIZES NOV( ) AFTER REDUCTION IN SIZE', */
+/*    2           ' FOR'I10,' GROUPS', */
+/*    3          /' *****************************************') */
+/*     WRITE(KFILDO,407) (NOV(J),J=1,LX) */
+/* 407  FORMAT(/' '20I6) */
+/*     WRITE(KFILDO,408)CFEED,LX */
+/* 408  FORMAT(A1,/' *****************************************' */
+/*    1          /' THE GROUP MINIMA JMIN( ) AFTER REDUCTION IN SIZE', */
+/*    2           ' FOR'I10,' GROUPS', */
+/*    3          /' *****************************************') */
+/*     WRITE(KFILDO,409) (JMIN(J),J=1,LX) */
+/* 409  FORMAT(/' '20I6) */
+
+L410:
+    if ( newbox != 0 ) free(newbox);
+    if ( newboxp != 0 ) free(newboxp);
+    return 0;
+} /* reduce_ */
+
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/seekgb.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/seekgb.c
new file mode 100755
index 0000000..61ba019
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/seekgb.c
@@ -0,0 +1,83 @@
+/**********************************************************
+ * Version $Id: seekgb.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+void seekgb(FILE *lugb,g2int iseek,g2int mseek,g2int *lskip,g2int *lgrib)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//
+// SUBPROGRAM: seekgb         Searches a file for the next GRIB message.
+//   PRGMMR: Gilbert          ORG: W/NP11      DATE: 2002-10-28
+//
+// ABSTRACT: This subprogram searches a file for the next GRIB Message.
+//   The search is done starting at byte offset iseek of the file referenced 
+//   by lugb for mseek bytes at a time.
+//   If found, the starting position and length of the message are returned
+//   in lskip and lgrib, respectively.
+//   The search is terminated when an EOF or I/O error is encountered.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-28  GILBERT   Modified from Iredell's skgb subroutine
+//
+// USAGE:    seekgb(FILE *lugb,g2int iseek,g2int mseek,int *lskip,int *lgrib)
+//   INPUT ARGUMENTS:
+//     lugb       - FILE pointer for the file to search.  File must be
+//                  opened before this routine is called.
+//     iseek      - number of bytes in the file to skip before search
+//     mseek      - number of bytes to search at a time
+//   OUTPUT ARGUMENTS:
+//     lskip      - number of bytes to skip from the beggining of the file
+//                  to where the GRIB message starts
+//     lgrib      - number of bytes in message (set to 0, if no message found)
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//
+//$$$
+{
+      g2int  ret;
+      g2int k,k4,ipos,nread,lim,start,vers,end,lengrib;
+      unsigned char *cbuf;
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+      *lgrib=0;
+      cbuf=(unsigned char *)malloc(mseek);
+      nread=mseek;
+      ipos=iseek;
+
+// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+//  LOOP UNTIL GRIB MESSAGE IS FOUND
+
+      while (*lgrib==0 && nread==mseek) {
+
+//  READ PARTIAL SECTION
+
+        ret=fseek(lugb,ipos,SEEK_SET);
+        nread=fread(cbuf,sizeof(unsigned char),mseek,lugb);
+        lim=nread-8;
+
+//  LOOK FOR 'GRIB...' IN PARTIAL SECTION
+
+        for (k=0;k<lim;k++) {
+          gbit(cbuf,&start,(k+0)*8,4*8);
+          gbit(cbuf,&vers,(k+7)*8,1*8);
+          if (start==1196575042 && (vers==1 || vers==2)) {
+//  LOOK FOR '7777' AT END OF GRIB MESSAGE
+            if (vers == 1) gbit(cbuf,&lengrib,(k+4)*8,3*8);
+            if (vers == 2) gbit(cbuf,&lengrib,(k+12)*8,4*8);
+            ret=fseek(lugb,ipos+k+lengrib-4,SEEK_SET);
+            k4=fread(&end,sizeof(g2int),1,lugb);
+            if (k4 == 1 && end == 926365495) {      //GRIB message found
+                *lskip=ipos+k;
+                *lgrib=lengrib;
+                break;
+            }
+          }
+        }
+        ipos=ipos+lim;
+      }
+
+      free(cbuf);
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/simpack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/simpack.c
new file mode 100755
index 0000000..8908310
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/simpack.c
@@ -0,0 +1,184 @@
+/**********************************************************
+ * Version $Id: simpack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdlib.h>
+#include <math.h>
+#include "grib2.h"
+
+
+void simpack(g2float *fld,g2int ndpts,g2int *idrstmpl,unsigned char *cpack,g2int *lcpack)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    simpack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2002-11-06
+//
+// ABSTRACT: This subroutine packs up a data field using the simple
+//   packing algorithm as defined in the GRIB2 documention.  It
+//   also fills in GRIB2 Data Representation Template 5.0 with the
+//   appropriate values.
+//
+// PROGRAM HISTORY LOG:
+// 2002-11-06  Gilbert
+//
+// USAGE:    CALL simpack(fld,ndpts,idrstmpl,cpack,lcpack)
+//   INPUT ARGUMENT LIST:
+//     fld[]    - Contains the data values to pack
+//     ndpts    - The number of data values in array fld[]
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.0
+//                [0] = Reference value - ignored on input
+//                [1] = Binary Scale Factor
+//                [2] = Decimal Scale Factor
+//                [3] = Number of bits used to pack data, if value is
+//                      > 0 and  <= 31.
+//                      If this input value is 0 or outside above range
+//                      then the num of bits is calculated based on given 
+//                      data and scale factors.
+//                [4] = Original field type - currently ignored on input
+//                      Data values assumed to be reals.
+//
+//   OUTPUT ARGUMENT LIST: 
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.0
+//                [0] = Reference value - set by simpack routine.
+//                [1] = Binary Scale Factor - unchanged from input
+//                [2] = Decimal Scale Factor - unchanged from input
+//                [3] = Number of bits used to pack data, unchanged from 
+//                      input if value is between 0 and 31.
+//                      If this input value is 0 or outside above range
+//                      then the num of bits is calculated based on given 
+//                      data and scale factors.
+//                [4] = Original field type - currently set = 0 on output.
+//                      Data values assumed to be reals.
+//     cpack    - The packed data field
+//     lcpack   - length of packed field starting at cpack.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$
+{
+
+      static g2int zero=0;
+      g2int  *ifld;
+      g2int  j,nbits,imin,imax,maxdif,nbittot,left;
+      g2float  bscale,dscale,rmax,rmin,temp;
+      double maxnum;
+      static g2float alog2=0.69314718;       //  ln(2.0)
+      
+      bscale=int_power(2.0,-idrstmpl[1]);
+      dscale=int_power(10.0,idrstmpl[2]);
+      if (idrstmpl[3] <= 0 || idrstmpl[3] > 31)
+         nbits=0;
+      else
+         nbits=idrstmpl[3];
+//
+//  Find max and min values in the data
+//
+      rmax=fld[0];
+      rmin=fld[0];
+      for (j=1;j<ndpts;j++) {
+        if (fld[j] > rmax) rmax=fld[j];
+        if (fld[j] < rmin) rmin=fld[j];
+      }
+     
+      ifld=calloc(ndpts,sizeof(g2int));
+//
+//  If max and min values are not equal, pack up field.
+//  If they are equal, we have a constant field, and the reference
+//  value (rmin) is the value for each point in the field and
+//  set nbits to 0.
+//
+      if (rmin != rmax) {
+        //
+        //  Determine which algorithm to use based on user-supplied 
+        //  binary scale factor and number of bits.
+        //
+        if (nbits==0 && idrstmpl[1]==0) {
+           //
+           //  No binary scaling and calculate minumum number of 
+           //  bits in which the data will fit.
+           //
+           imin=(g2int)rint(rmin*dscale);
+           imax=(g2int)rint(rmax*dscale);
+           maxdif=imax-imin;
+           temp=log((double)(maxdif+1))/alog2;
+           nbits=(g2int)ceil(temp);
+           rmin=(g2float)imin;
+           //   scale data
+           for(j=0;j<ndpts;j++)
+             ifld[j]=(g2int)rint(fld[j]*dscale)-imin;
+        }
+        else if (nbits!=0 && idrstmpl[1]==0) {
+           //
+           //  Use minimum number of bits specified by user and
+           //  adjust binary scaling factor to accomodate data.
+           //
+           rmin=rmin*dscale;
+           rmax=rmax*dscale;
+           maxnum=int_power(2.0,nbits)-1;
+           temp=log(maxnum/(rmax-rmin))/alog2;
+           idrstmpl[1]=(g2int)ceil(-1.0*temp);
+           bscale=int_power(2.0,-idrstmpl[1]);
+           //   scale data
+           for (j=0;j<ndpts;j++)
+             ifld[j]=(g2int)rint(((fld[j]*dscale)-rmin)*bscale);
+        }
+        else if (nbits==0 && idrstmpl[1]!=0) {
+           //
+           //  Use binary scaling factor and calculate minumum number of 
+           //  bits in which the data will fit.
+           //
+           rmin=rmin*dscale;
+           rmax=rmax*dscale;
+           maxdif=(g2int)rint((rmax-rmin)*bscale);
+           temp=log((double)(maxdif+1))/alog2;
+           nbits=(g2int)ceil(temp);
+           //   scale data
+           for (j=0;j<ndpts;j++)
+             ifld[j]=(g2int)rint(((fld[j]*dscale)-rmin)*bscale);
+        }
+        else if (nbits!=0 && idrstmpl[1]!=0) {
+           //
+           //  Use binary scaling factor and use minumum number of 
+           //  bits specified by user.   Dangerous - may loose
+           //  information if binary scale factor and nbits not set
+           //  properly by user.
+           //
+           rmin=rmin*dscale;
+           //   scale data
+           for (j=0;j<ndpts;j++)
+             ifld[j]=(g2int)rint(((fld[j]*dscale)-rmin)*bscale);
+        }
+        //
+        //  Pack data, Pad last octet with Zeros, if necessary,
+        //  and calculate the length of the packed data in bytes
+        //
+        sbits(cpack,ifld+0,0,nbits,0,ndpts);
+        nbittot=nbits*ndpts;
+        left=8-(nbittot%8);
+        if (left != 8) {
+          sbit(cpack,&zero,nbittot,left);   // Pad with zeros to fill Octet
+          nbittot=nbittot+left;
+        }
+        *lcpack=nbittot/8;
+      }
+      else {
+        nbits=0;
+        *lcpack=0;
+      }
+
+//
+//  Fill in ref value and number of bits in Template 5.0
+//
+      //printf("SAGmkieee %f\n",rmin);
+      mkieee(&rmin,idrstmpl+0,1);   // ensure reference value is IEEE format
+      //printf("SAGmkieee %ld\n",idrstmpl[0]);
+      idrstmpl[3]=nbits;
+      idrstmpl[4]=0;         // original data were reals
+
+      free(ifld);
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/simunpack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/simunpack.c
new file mode 100755
index 0000000..7582052
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/simunpack.c
@@ -0,0 +1,79 @@
+/**********************************************************
+ * Version $Id: simunpack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include "grib2.h"
+
+
+g2int simunpack(unsigned char *cpack,g2int *idrstmpl,g2int ndpts,g2float *fld)
+////$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    simunpack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2002-10-29
+//
+// ABSTRACT: This subroutine unpacks a data field that was packed using a 
+//   simple packing algorithm as defined in the GRIB2 documention,
+//   using info from the GRIB2 Data Representation Template 5.0.
+//
+// PROGRAM HISTORY LOG:
+// 2002-10-29  Gilbert
+//
+// USAGE:    int simunpack(unsigned char *cpack,g2int *idrstmpl,g2int ndpts,
+//                         g2float *fld)
+//   INPUT ARGUMENT LIST:
+//     cpack    - pointer to the packed data field.
+//     idrstmpl - pointer to the array of values for Data Representation
+//                Template 5.0
+//     ndpts    - The number of data values to unpack
+//
+//   OUTPUT ARGUMENT LIST:
+//     fld      - Contains the unpacked data values.  fld must be allocated
+//                with at least ndpts*sizeof(g2float) bytes before
+//                calling this routine.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$//
+{
+
+      g2int  *ifld;
+      g2int  j,nbits,itype;
+      g2float ref,bscale,dscale;
+
+      
+      rdieee(idrstmpl+0,&ref,1);
+      bscale = int_power(2.0,idrstmpl[1]);
+      dscale = int_power(10.0,-idrstmpl[2]);
+      nbits = idrstmpl[3];
+      itype = idrstmpl[4];
+
+      ifld=(g2int *)calloc(ndpts,sizeof(g2int));
+      if ( ifld == 0 ) {
+         fprintf(stderr,"Could not allocate space in simunpack.\n  Data field NOT upacked.\n");
+         return(1);
+      }
+      
+//
+//  if nbits equals 0, we have a constant field where the reference value
+//  is the data value at each gridpoint
+//
+      if (nbits != 0) {
+         gbits(cpack,ifld,0,nbits,0,ndpts);
+         for (j=0;j<ndpts;j++) {
+           fld[j]=(((g2float)ifld[j]*bscale)+ref)*dscale;
+         }
+      }
+      else {
+         for (j=0;j<ndpts;j++) {
+           fld[j]=ref;
+         }
+      }
+
+      free(ifld);
+      return(0);
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/specpack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/specpack.c
new file mode 100755
index 0000000..317c947
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/specpack.c
@@ -0,0 +1,131 @@
+/**********************************************************
+ * Version $Id: specpack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include "grib2.h"
+
+
+void specpack(g2float *fld,g2int ndpts,g2int JJ,g2int KK,g2int MM,
+              g2int *idrstmpl,unsigned char *cpack,g2int *lcpack)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    specpack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2002-12-19
+//
+// ABSTRACT: This subroutine packs a spectral data field using the complex
+//   packing algorithm for spherical harmonic data as 
+//   defined in the GRIB2 Data Representation Template 5.51.
+//
+// PROGRAM HISTORY LOG:
+// 2002-12-19  Gilbert
+//
+// USAGE:    void specpack(g2float *fld,g2int ndpts,g2int JJ,g2int KK,g2int MM,
+//                        g2int *idrstmpl,insigned char *cpack,g2int *lcpack)
+//   INPUT ARGUMENT LIST:
+//     fld[]    - Contains the packed data values
+//     ndpts    - The number of data values to pack
+//     JJ       - J - pentagonal resolution parameter
+//     KK       - K - pentagonal resolution parameter
+//     MM       - M - pentagonal resolution parameter
+//     idrstmpl - Contains the array of values for Data Representation
+//                Template 5.51
+//
+//   OUTPUT ARGUMENT LIST:
+//     cpack    - The packed data field (character*1 array)
+//     lcpack   - length of packed field cpack().
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  IBM SP
+//
+//$$$
+{
+
+      g2int    *ifld,tmplsim[5];
+      g2float  bscale,dscale,*unpk,*tfld;
+      g2float  *pscale,tscale;
+      g2int    Js,Ks,Ms,Ts,Ns,inc,incu,incp,n,Nm,m,ipos;
+
+      bscale = int_power(2.0,-idrstmpl[1]);
+      dscale = int_power(10.0,idrstmpl[2]);
+      Js=idrstmpl[5];
+      Ks=idrstmpl[6];
+      Ms=idrstmpl[7];
+      Ts=idrstmpl[8];
+
+//
+//   Calculate Laplacian scaling factors for each possible wave number.
+//
+      pscale=(g2float *)malloc((JJ+MM)*sizeof(g2float));
+      tscale=(g2float)idrstmpl[4]*1E-6;
+      for (n=Js;n<=JJ+MM;n++)
+           pscale[n]=pow((g2float)(n*(n+1)),tscale);
+//
+//   Separate spectral coeffs into two lists; one to contain unpacked
+//   values within the sub-spectrum Js, Ks, Ms, and the other with values 
+//   outside of the sub-spectrum to be packed.
+//
+      tfld=(g2float *)malloc(ndpts*sizeof(g2float));
+      unpk=(g2float *)malloc(ndpts*sizeof(g2float));
+      ifld=(g2int *)malloc(ndpts*sizeof(g2int));
+      inc=0;
+      incu=0;
+      incp=0;
+      for (m=0;m<=MM;m++) {
+         Nm=JJ;      // triangular or trapezoidal
+         if ( KK == JJ+MM ) Nm=JJ+m;          // rhombodial
+         Ns=Js;      // triangular or trapezoidal
+         if ( Ks == Js+Ms ) Ns=Js+m;          // rhombodial
+         for (n=m;n<=Nm;n++) {
+            if (n<=Ns && m<=Ms) {       // save unpacked value
+               unpk[incu++]=fld[inc++];         // real part
+               unpk[incu++]=fld[inc++];     // imaginary part
+            }
+            else {                       // Save value to be packed and scale
+                                         // Laplacian scale factor
+               tfld[incp++]=fld[inc++]*pscale[n];      // real part
+               tfld[incp++]=fld[inc++]*pscale[n];      // imaginary part
+            }
+         }
+      }
+
+      free(pscale);
+
+      if (incu != Ts) {
+         printf("specpack: Incorrect number of unpacked values %d given:\n",(int)Ts);
+         printf("specpack: Resetting idrstmpl[8] to %d\n",(int)incu);
+         Ts=incu;
+      }
+//
+//  Add unpacked values to the packed data array in 32-bit IEEE format
+//
+      mkieee(unpk,(g2int *)cpack,Ts);
+      ipos=4*Ts;
+//
+//  Scale and pack the rest of the coefficients
+// 
+      tmplsim[1]=idrstmpl[1];
+      tmplsim[2]=idrstmpl[2];
+      tmplsim[3]=idrstmpl[3];
+      simpack(tfld,ndpts-Ts,tmplsim,cpack+ipos,lcpack);
+      *lcpack=(*lcpack)+ipos;
+//
+//  Fill in Template 5.51
+//
+      idrstmpl[0]=tmplsim[0];
+      idrstmpl[1]=tmplsim[1];
+      idrstmpl[2]=tmplsim[2];
+      idrstmpl[3]=tmplsim[3];
+      idrstmpl[8]=Ts;
+      idrstmpl[9]=1;         // Unpacked spectral data is 32-bit IEEE
+
+      free(tfld);
+      free(unpk);
+      free(ifld);
+
+      return;
+}
diff --git a/src/modules/io/io_grid_grib2/g2clib-1.0.4/specunpack.c b/src/modules/io/io_grid_grib2/g2clib-1.0.4/specunpack.c
new file mode 100755
index 0000000..07d1ffa
--- /dev/null
+++ b/src/modules/io/io_grid_grib2/g2clib-1.0.4/specunpack.c
@@ -0,0 +1,118 @@
+/**********************************************************
+ * Version $Id: specunpack.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include "grib2.h"
+
+
+g2int specunpack(unsigned char *cpack,g2int *idrstmpl,g2int ndpts,g2int JJ,
+               g2int KK, g2int MM, g2float *fld)
+//$$$  SUBPROGRAM DOCUMENTATION BLOCK
+//                .      .    .                                       .
+// SUBPROGRAM:    specunpack
+//   PRGMMR: Gilbert          ORG: W/NP11    DATE: 2000-06-21
+//
+// ABSTRACT: This subroutine unpacks a spectral data field that was packed 
+//   using the complex packing algorithm for spherical harmonic data as 
+//   defined in the GRIB2 documention,
+//   using info from the GRIB2 Data Representation Template 5.51.
+//
+// PROGRAM HISTORY LOG:
+// 2000-06-21  Gilbert
+//
+// USAGE:    int specunpack(unsigned char *cpack,g2int *idrstmpl,
+//                          g2int ndpts,g2int JJ,g2int KK,g2int MM,g2float *fld)
+//   INPUT ARGUMENT LIST:
+//     cpack    - pointer to the packed data field.
+//     idrstmpl - pointer to the array of values for Data Representation
+//                Template 5.51
+//     ndpts    - The number of data values to unpack (real and imaginary parts)
+//     JJ       - J - pentagonal resolution parameter
+//     KK       - K - pentagonal resolution parameter
+//     MM       - M - pentagonal resolution parameter
+//
+//   OUTPUT ARGUMENT LIST:
+//     fld()    - Contains the unpacked data values.   fld must be allocated
+//                with at least ndpts*sizeof(g2float) bytes before
+//                calling this routine.
+//
+// REMARKS: None
+//
+// ATTRIBUTES:
+//   LANGUAGE: C
+//   MACHINE:  
+//
+//$$$
+{
+
+      g2int  *ifld,j,iofst,nbits;
+      g2float  ref,bscale,dscale,*unpk;
+      g2float  *pscale,tscale;
+      g2int   Js,Ks,Ms,Ts,Ns,Nm,n,m;
+      g2int   inc,incu,incp;
+
+      rdieee(idrstmpl+0,&ref,1);
+      bscale = int_power(2.0,idrstmpl[1]);
+      dscale = int_power(10.0,-idrstmpl[2]);
+      nbits = idrstmpl[3];
+      Js=idrstmpl[5];
+      Ks=idrstmpl[6];
+      Ms=idrstmpl[7];
+      Ts=idrstmpl[8];
+
+      if (idrstmpl[9] == 1) {           // unpacked floats are 32-bit IEEE
+
+         unpk=(g2float *)malloc(ndpts*sizeof(g2float));
+         ifld=(g2int *)malloc(ndpts*sizeof(g2int));
+
+         gbits(cpack,ifld,0,32,0,Ts);
+         iofst=32*Ts;
+         rdieee(ifld,unpk,Ts);          // read IEEE unpacked floats
+         gbits(cpack,ifld,iofst,nbits,0,ndpts-Ts);  // unpack scaled data
+//
+//   Calculate Laplacian scaling factors for each possible wave number.
+//
+         pscale=(g2float *)malloc((JJ+MM+1)*sizeof(g2float));
+         tscale=(g2float)idrstmpl[4]*1E-6;
+         for (n=Js;n<=JJ+MM;n++) 
+              pscale[n]=pow((g2float)(n*(n+1)),-tscale);
+//
+//   Assemble spectral coeffs back to original order.
+//
+         inc=0;
+         incu=0;
+         incp=0;
+         for (m=0;m<=MM;m++) {
+            Nm=JJ;      // triangular or trapezoidal
+            if ( KK == JJ+MM ) Nm=JJ+m;          // rhombodial
+            Ns=Js;      // triangular or trapezoidal
+            if ( Ks == Js+Ms ) Ns=Js+m;          // rhombodial
+            for (n=m;n<=Nm;n++) {
+               if (n<=Ns && m<=Ms) {    // grab unpacked value
+                  fld[inc++]=unpk[incu++];         // real part
+                  fld[inc++]=unpk[incu++];     // imaginary part
+               }
+               else {                       // Calc coeff from packed value
+                  fld[inc++]=(((g2float)ifld[incp++]*bscale)+ref)*
+                            dscale*pscale[n];          // real part
+                  fld[inc++]=(((g2float)ifld[incp++]*bscale)+ref)*
+                            dscale*pscale[n];          // imaginary part
+               }
+            }
+         }
+
+         free(pscale);
+         free(unpk);
+         free(ifld);
+
+      }
+      else {
+         printf("specunpack: Cannot handle 64 or 128-bit floats.\n");
+         for (j=0;j<ndpts;j++) fld[j]=0.0;
+         return -3;
+      }
+
+      return 0;
+}
diff --git a/src/modules/simulation/sim_fire_spreading/fireLib.c b/src/modules/simulation/sim_fire_spreading/fireLib.c
new file mode 100755
index 0000000..53b16a0
--- /dev/null
+++ b/src/modules/simulation/sim_fire_spreading/fireLib.c
@@ -0,0 +1,1817 @@
+/**********************************************************
+ * Version $Id: fireLib.c 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+/*
+ *******************************************************************************
+ *
+ *  fireLib.c
+ *
+ *  Description
+ *      Library of BEHAVE (Andrews 1986) fire behavior algorithms
+ *      encapsulated and optimized for fire behavior simulation.
+ *
+ *  Legalities
+ *      Copyright (c) 1996 Collin D. Bevins.
+ *      See the file "license.txt" for information on usage and
+ *      redistribution of this file, and for a DISCLAIMER OF ALL WARRANTIES.
+ *
+ *  Naming Conventions
+ *      All function names begin with "Fire_".
+ *      All fuel model and behavior parameter access macros begin with "Fuel_".
+ *      All fuel catalog parameter access macros begin with "FuelCat_".
+ *
+ *  Functions
+ *      There are 8 functions to create and destroy fuel models and catalogs:
+ *
+ *          Fire_FuelCatalogCreate(name, maxModels)
+ *              Creates a new fuel catalog capable of holding maxModels.
+ *
+ *          Fire_FuelCatalogCreateStandard(name, maxModels)
+ *              Creates a new fuel catalog capable of holding maxModels,
+ *              and fills models 0-13 with standard fire behavior models.
+ *
+ *          Fire_FuelModelCreate(catalog, model, name, desc, depth, mext,
+ *                  adjust, maxParticles)
+ *              Adds or replaces a fuel model in the catalog.  The model will
+ *              accept up to maxParticles particles.
+ *
+ *          Fire_FuelModelExists(catalog, model)
+ *              Returns 1 if model exists within the catalog.
+ *
+ *          Fire_FuelParticleAdd(catalog, model, live, load, savr, dens, heat,
+ *                  stot, seff)
+ *              Adds a fuel particle to a fuel model.
+ *
+ *          Fire_FlameLengthTable ( catalog, flameClasses, flameStep )
+ *              Creates a flame length look-up table containing flameClasses
+ *              number of classes, with each class spanning "flameStep"
+ *              feet of flame length.  Creating a flame length table can
+ *              significantly improve performance at the expense of user
+ *              specified precision.
+ *
+ *          Fire_FuelModelDestroy(catalog, model)
+ *              Destroys the model within the catalog.
+ *
+ *          Fire_FuelCatalogDestroy(catalog)
+ *              Destroys the catalog and all models within it.
+ *
+ *      There are 5 functions to process data within fuel models:
+ *
+ *          Fire_FuelCombustion(catalog, model)
+ *              Computes all the fuel-dependent model variables.
+ *              Called only once for each fuel model.
+ *              Called automatically by Fire_SpreadNoWindNoSlope().
+ *
+ *          Fire_SpreadNoWindNoSlope(catalog, model, moisture[6])
+ *              Determines reaction intensity, heat per unit area, and the
+ *              no-wind no-slope spread rate.
+ *
+ *          Fire_SpreadWindSlopeMax(catalog, model, windFpm, windDeg, slope,
+ *                  aspectDeg)
+ *              Determines maximum spread rate and azimuth of maximum spread
+ *              based upon input parameters and results of the most recent
+ *              call to Fire_SpreadNoWindNoSlope() for this model.
+ *
+ *          Fire_SpreadAtAzimuth(catalog, model, azimuth, doWhich)
+ *              Determines the spread rate in the specified azimuth based
+ *              upon the results of the most recent call to
+ *              Fire_SpreadWindSlopeMax() for this model.  The "doWhich"
+ *              parameter is the result of ORing the constants FIRE_BYRAMS,
+ *              FIRE_FLAME, and FIRE_SCORCH to request computation of the
+ *              associated fire variables.
+ *
+ *          Fire_FlameScorch(catalog, model, doWhich)
+ *              Determines the flame length and/or scorch height based upon
+ *              the most recent call to Fire_SpreadAtAzimuth().
+ *
+ *  History
+ *      1996/09/04  Version 1.0.0 release.
+ *      1999/03/05  Fixed NNFL07 live SAVR from 1500 to 1550.
+ *
+ *******************************************************************************
+ */
+
+#include "fireLib.h"
+
+#ifndef M_PI
+#define M_PI 3.14159
+#endif
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_FuelCombustion()
+ *
+ *  Description
+ *      Calculates and stores all the fuel-dependent combustion variables.
+ *
+ *  Side Effects
+ *      All combustion varaiables are reclaculated for the model.
+ *      All behavior and environment variables are reset to zero.
+ *
+ *  Function Returns
+ *      FIRE_STATUS_OK or FIRE_STATUS_ERROR.
+ *      Return status and error text are stored in the Fire Catalog's buffers.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_FuelCombustion (FuelCatalogPtr catalog, size_t model )
+    //FuelCatalogPtr catalog;     /* FuelCatalogData instance pointer           */
+    //size_t         model;       /* fuel model id number         [0-maxModels] */
+{
+    size_t particle, size, life;
+
+    double sizeClassAreaWtg[FIRE_LIFE_CATS][FIRE_SIZE_CLASSES];
+    double lifeLoad[FIRE_LIFE_CATS];
+    double lifeArea[FIRE_LIFE_CATS];
+    double lifeSavr[FIRE_LIFE_CATS];
+    double lifeHeat[FIRE_LIFE_CATS];
+    double lifeSeff[FIRE_LIFE_CATS];
+    double lifeEtaS[FIRE_LIFE_CATS];
+
+    double totalArea;
+    double fineLive;
+    double beta;
+    double betaOpt;
+    double sigma;
+    double ratio;
+    double aa;
+    double sigma15;
+    double gammaMax;
+    double gamma;
+    double c;
+    double e;
+
+    /* Validate catalog and fuel model existence. */
+    assert(catalog!= NULL && FuelCat_MagicCookie(catalog)==FIRE_CATALOG_MAGIC);
+    if ( ! Fire_FuelModelExists(catalog,model) )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FuelCombustion(): el modelo de combustible %d no existe en el cat�logo de combuestibles \"%s\".",
+            model, FuelCat_Name(catalog));
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* Initialize the model's fuel particle dependent variables. */
+    for ( particle=0; particle<Fuel_Particles(catalog,model); particle++ )
+    {
+        Fuel_AreaWtg(catalog,model,particle)     = 0.;
+        Fuel_SizeAreaWtg(catalog,model,particle) = 0.;
+        Fuel_Moisture(catalog,model,particle)    = 0.;
+    }
+
+    /* Initialize the model's fuel combustion variables. */
+    /* The following are calculated by this function. */
+    Fuel_FineDead(catalog,model)        = 0.0;
+    Fuel_LiveMextFactor(catalog,model)  = 0.0;
+    Fuel_BulkDensity(catalog,model)     = 0.0;
+    Fuel_ResidenceTime(catalog,model)   = 0.0;
+    Fuel_PropFlux(catalog,model)        = 0.0;
+    Fuel_SlopeK(catalog,model)          = 0.0;
+    Fuel_WindB(catalog,model)           = 0.0;
+    Fuel_WindE(catalog,model)           = 0.0;
+    Fuel_WindK(catalog,model)           = 0.0;
+
+    for (life=0; life<FIRE_LIFE_CATS; life++)
+    {
+        Fuel_LifeAreaWtg(catalog,model,life) = 0.;
+        Fuel_LifeRxFactor(catalog,model,life) = 0.;
+        lifeLoad[life] = 0.;
+        lifeArea[life] = 0.;
+        lifeSavr[life] = 0.;
+        lifeHeat[life] = 0.;
+        lifeEtaS[life] = 0.;
+        lifeSeff[life] = 0.;
+        for ( size=0; size<FIRE_SIZE_CLASSES; size++ )
+            sizeClassAreaWtg[life][size] = 0.;
+    }
+
+    /* Initialize the model's fire behavior variables. */
+    /* These are calculated by Fire_SpreadNoWindNoSlope(). */
+    Fuel_Spread0(catalog,model)         = 0.;
+    Fuel_RxIntensity(catalog,model)     = 0.;
+    Fuel_HeatPerUnitArea(catalog,model) = 0.;
+
+    /* Initialize the model's fire behavior variables. */
+    /* These are calculated by Fire_SpreadWindSlopeMax(). */
+    Fuel_SpreadMax(catalog,model)       = 0.;
+    Fuel_AzimuthMax(catalog,model)      = 0.;
+    Fuel_EffectiveWind(catalog,model)   = 0.;
+    Fuel_PhiSlope(catalog,model)        = 0.;
+    Fuel_PhiWind(catalog,model)         = 0.;
+    Fuel_PhiEffWind(catalog,model)      = 0.;
+    Fuel_LwRatio(catalog,model)         = 1.;
+    Fuel_Eccentricity(catalog,model)    = 0.;
+    Fuel_WindLimit(catalog,model)       = 0;
+
+    /* Initialize the model's fire behavior variables. */
+    /* These are calculated by Fire_SpreadAtAzimuth(). */
+    Fuel_SpreadAny(catalog,model)       = 0.;
+    Fuel_AzimuthAny(catalog,model)      = 0.;
+    Fuel_ByramsIntensity(catalog,model) = 0.;
+    Fuel_FlameLength(catalog,model)     = 0.;
+    Fuel_ScorchHeight(catalog,model)    = 0.;
+
+    /* Initialize the model's environmental variables. */
+    Fuel_WindSpeed(catalog,model) = 0.;
+    Fuel_WindDir(catalog,model)   = 0.;
+    Fuel_Slope(catalog,model)     = 0.;
+    Fuel_Aspect(catalog,model)    = 0.;
+    for ( size=0; size<FIRE_MCLASSES; size++ )
+        Fuel_EnvMoisture(catalog,model,size) = 0.;
+
+    /* Initialize the model's combustion flag. */
+    Fuel_CombustionFlag(catalog,model) = 1;
+
+    /* If the model has no particles, we're all done. */
+    if ( Fuel_Particles(catalog,model) <= 0 )
+        return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+
+    /* Initialize local fuel bed and combustion variables. */
+    beta = betaOpt = sigma = ratio = aa = sigma15 = 0.;
+    gamma = gammaMax = c = e = fineLive = totalArea = 0.;
+
+    /* Accumulate surface areas by life category for the entire fuel bed. */
+    for ( particle=0; particle<Fuel_Particles(catalog,model); particle++ )
+    {
+        life = Fuel_Live(catalog,model,particle);
+        lifeArea[life] += Fuel_SurfaceArea(catalog,model,particle);
+        totalArea      += Fuel_SurfaceArea(catalog,model,particle);
+    }
+
+    /* If no surface area, we're all done. */
+    if ( totalArea <= Smidgen )
+        return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+
+    /* Surface area wtg factor for each particle within its life category */
+    /* and within its size class category (used to weight loading). */
+    for ( particle=0; particle<Fuel_Particles(catalog,model); particle++ )
+    {
+        life = Fuel_Live(catalog,model,particle);
+        if ( lifeArea[life] > Smidgen )
+        {
+            Fuel_AreaWtg(catalog,model,particle) =
+                Fuel_SurfaceArea(catalog,model,particle) / lifeArea[life];
+
+            size = Fuel_SizeClass(catalog,model,particle);
+            sizeClassAreaWtg[life][size] +=
+                Fuel_AreaWtg(catalog,model,particle);
+        }
+    }
+
+    /* Assign size class surface area weights to each particle. */
+    for ( particle=0; particle<Fuel_Particles(catalog,model); particle++ )
+    {
+        life = Fuel_Live(catalog,model,particle);
+        size = Fuel_SizeClass(catalog,model,particle);
+        Fuel_SizeAreaWtg(catalog,model,particle) = sizeClassAreaWtg[life][size];
+    }
+
+    /* Derive life category surface area weighting factors. */
+    for ( life=0; life<FIRE_LIFE_CATS; life++ )
+        Fuel_LifeAreaWtg(catalog,model,life) = lifeArea[life] / totalArea;
+
+    /* Accumulate life category weighted load, heat, savr, and seff. */
+    for ( particle=0; particle<Fuel_Particles(catalog,model); particle++ )
+    {
+        life = Fuel_Live(catalog,model,particle);
+
+        lifeLoad[life] += Fuel_SizeAreaWtg(catalog,model,particle)
+                        * Fuel_Load(catalog,model,particle)
+                        * (1. - Fuel_SiTotal(catalog,model,particle));
+
+        lifeSavr[life] += Fuel_AreaWtg(catalog,model,particle)
+                        * Fuel_Savr(catalog,model,particle);
+
+        lifeHeat[life] += Fuel_AreaWtg(catalog,model,particle)
+                        * Fuel_Heat(catalog,model,particle);
+
+        lifeSeff[life] += Fuel_AreaWtg(catalog,model,particle)
+                        * Fuel_SiEffective(catalog,model,particle);
+
+        Fuel_BulkDensity(catalog,model) += Fuel_Load(catalog,model,particle);
+
+        if ( Fuel_Density(catalog,model,particle) > Smidgen )
+            beta += Fuel_Load(catalog,model,particle)
+                  / Fuel_Density(catalog,model,particle);
+    }
+
+    /* Accumulate life category contribution to reaction intensity. */
+    for ( life=0; life<FIRE_LIFE_CATS; life++ )
+    {
+        sigma += Fuel_LifeAreaWtg(catalog,model,life) * lifeSavr[life];
+
+        lifeEtaS[life] = 1.;
+        if (lifeSeff[life] > 0.)
+        {
+            if ( (lifeEtaS[life] = 0.174 / pow(lifeSeff[life], 0.19)) > 1.0 )
+                lifeEtaS[life] = 1.0;
+        }
+
+        Fuel_LifeRxFactor(catalog,model,life) =
+            lifeLoad[life] * lifeHeat[life] * lifeEtaS[life];
+    }
+
+    /* Fuel model residence time */
+    Fuel_ResidenceTime(catalog,model) = 384. / sigma;
+
+    /* Fuel model bulk density */
+    if ( Fuel_Depth(catalog,model) > Smidgen )
+    {
+        Fuel_BulkDensity(catalog,model) /= Fuel_Depth(catalog,model);
+        beta /= Fuel_Depth(catalog,model);
+    }
+
+    /* Propagating flux depends upon sigma and beta only. */
+    Fuel_PropFlux(catalog,model) =
+        exp((0.792 + 0.681*sqrt(sigma)) * (beta+0.1)) / (192.+0.2595*sigma);
+
+    /* Gamma */
+    betaOpt   = 3.348 / (pow(sigma, 0.8189));
+    ratio     = beta / betaOpt;
+    aa        = 133. / (pow(sigma, 0.7913));
+    sigma15   = pow(sigma, 1.5);
+    gammaMax  = sigma15 / (495. + 0.0594*sigma15);
+    gamma     = gammaMax * pow(ratio, aa) * exp(aa * (1.-ratio));
+
+    /* Factor gamma into life category reaction intensity contribution. */
+    for ( life=0; life<FIRE_LIFE_CATS; life++ )
+        Fuel_LifeRxFactor(catalog,model,life) *= gamma;
+
+    /* Slope and wind intermediates constants for the fuel model. */
+    Fuel_SlopeK(catalog,model) = 5.275 * pow(beta, -0.3);
+    Fuel_WindB(catalog,model)  = 0.02526 * pow(sigma, 0.54);
+
+    c = 7.47 * exp(-0.133 * pow(sigma, 0.55));
+    e = 0.715 * exp(-0.000359 * sigma);
+    Fuel_WindK(catalog,model) = c * pow(ratio, -e);
+    Fuel_WindE(catalog,model) = pow(ratio, e) / c;
+
+    /* If no live fuel, we're done. */
+    if ( lifeLoad[FIRE_LIFE_LIVE] < Smidgen )
+        return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+
+    /*  Fine dead fuel and fine live fuel factors. */
+    for ( particle=0; particle<Fuel_Particles(catalog,model); particle++ )
+    {
+        if ( Fuel_Live(catalog,model,particle) )
+            fineLive
+                  += Fuel_Load(catalog,model,particle)
+                   * exp(-500. / Fuel_Savr(catalog,model,particle));
+        else
+            Fuel_FineDead(catalog,model)
+                  += Fuel_Load(catalog,model,particle)
+                   * Fuel_SigmaFactor(catalog,model,particle);
+    }
+
+    /* Live fuel extinction moisture factor. */
+    if ( fineLive > Smidgen )
+        Fuel_LiveMextFactor(catalog,model)
+            = 2.9 * Fuel_FineDead(catalog,model) / fineLive;
+
+    /* That's all, folks!. */
+    return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_SpreadNoWindNoSlope()
+ *
+ *  Description
+ *      Calculates the fire reaction intensity and no-wind, no-slope spread
+ *      rate given the fuel model, combustion, and moisture regime inputs.
+ *
+ *  Side Effects
+ *      Updates the following fire behavior variables:
+ *          Fuel_RxIntensity(catalog,model).
+ *          Fuel_HeatPerUnitArea(catalog,model).
+ *          Fuel_Spread0(catalog,model).
+ *          Fuel_SpreadMax(catalog,model)  = Fuel_Spread0(catalog,model)
+ *          Fuel_SpreadAny(catalog,model)  = Fuel_Spread0(catalog,model)
+ *          Fuel_AzimuthAny(catalog,model) = 0.
+ *          Fuel_AzimuthMax(catalog,model) = 0.
+ *
+ *  Function Returns
+ *      FIRE_STATUS_OK or FIRE_STATUS_ERROR.
+ *      Return status and error text are stored in the Fire Catalog's buffers.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_SpreadNoWindNoSlope ( FuelCatalogPtr catalog, size_t model, double moisture[FIRE_MCLASSES] )
+   // FuelCatalogPtr catalog;     /* FuelCatalogData instance pointer           */
+   // size_t  model;              /* fuel model number            [0-maxModels] */
+   // double  moisture[FIRE_MCLASSES]; /* array of fuel moistures   (fractions) */
+{
+    size_t mclass, particle, life, nlive;
+    double wfmd;
+    double rbQig;
+    double fdmois;
+    double qig;
+    double ratio;
+    double lifeMoisture[FIRE_LIFE_CATS];
+    double lifeEtaM[FIRE_LIFE_CATS];
+    double lifeMext[FIRE_LIFE_CATS];
+
+    static size_t TimeLagClass[FIRE_SIZE_CLASSES] = {0, 0, 1, 1, 2, 2};
+
+    /* Validate the catalog and fuel model. */
+    assert(catalog!= NULL && FuelCat_MagicCookie(catalog)==FIRE_CATALOG_MAGIC);
+    if ( ! Fire_FuelModelExists(catalog,model) )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_SpreadNoWindNoSlope(): el modelo de combustible %d no existe en el cat�logo de combustibles \"%s\".",
+            model, FuelCat_Name(catalog));
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /*  Check if we must recalculate combustion intermediates. */
+    if ( ! Fuel_CombustionFlag(catalog,model) )
+    {
+        Fire_FuelCombustion(catalog,model);
+    }
+
+    /* Otherwise check if the moisture environment has changed. */
+    else
+    {
+        for ( mclass=0; mclass<FIRE_MCLASSES; mclass++ )
+            if ( ! Equal(moisture[mclass],Fuel_EnvMoisture(catalog,model,mclass)) )
+                break;
+
+        /* If no change in fuel moisture, no more computation is needed. */
+        if ( mclass == FIRE_MCLASSES )
+            return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+    }
+
+    /* Store the new moistures in the fuel's environmental moisture array. */
+    for ( mclass=0; mclass<FIRE_MCLASSES; mclass++ )
+        Fuel_EnvMoisture(catalog,model,mclass) = moisture[mclass];
+
+    /* Initialize the model's fire behavior variables. */
+    /* These are calculated by this function. */
+    Fuel_Spread0(catalog,model)         = 0.;
+    Fuel_RxIntensity(catalog,model)     = 0.;
+    Fuel_HeatPerUnitArea(catalog,model) = 0.;
+
+    /* Initialize the model's fire behavior variables. */
+    /* These are calculated by Fire_SpreadWindSlopeMax(). */
+    Fuel_SpreadMax(catalog,model)       = 0.;
+    Fuel_AzimuthMax(catalog,model)      = 0.;
+
+    /* Initialize the model's fire behavior variables. */
+    /* These are calculated by Fire_SpreadAtAzimuth(). */
+    Fuel_SpreadAny(catalog,model)       = 0.;
+    Fuel_AzimuthAny(catalog,model)      = 0.;
+    Fuel_ByramsIntensity(catalog,model) = 0.;
+    Fuel_FlameLength(catalog,model)     = 0.;
+    Fuel_ScorchHeight(catalog,model)    = 0.;
+
+    /* If no fuel particles, return. */
+    if (Fuel_Particles(catalog,model) <= 0)
+        return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+
+    /* Initialize local variables. */
+    wfmd = fdmois = rbQig = 0.;
+    for ( life=0; life<FIRE_LIFE_CATS; life++ )
+    {
+        lifeMoisture[life] = 0.;
+        lifeEtaM[life] = 0.;
+        lifeMext[life] = 0.;
+    }
+
+    /* Assign particle moistures based upon their size class. */
+    nlive = 0;
+    for ( particle=0; particle<Fuel_Particles(catalog,model); particle++ )
+    {
+        /* if this is a dead fuel, accumulate its wtd fuel moisture. */
+        if ( Fuel_Live(catalog,model,particle) == FIRE_LIFE_DEAD )
+        {
+            mclass = TimeLagClass[Fuel_SizeClass(catalog,model,particle)];
+            wfmd += moisture[mclass]
+                  * Fuel_SigmaFactor(catalog,model,particle)
+                  * Fuel_Load(catalog,model,particle);
+        }
+        else
+        {
+            nlive++;
+            mclass = (Fuel_Type(catalog,model,particle) == FIRE_TYPE_HERB) ?
+                FIRE_MCLASS_HERB : FIRE_MCLASS_WOOD;
+        }
+
+        /* Assign this particle the fuel moisture for its size class. */
+        Fuel_Moisture(catalog,model,particle) = moisture[mclass];
+    }
+
+    /* Compute live fuel extinction moisture. */
+    if ( nlive )
+    {
+        fdmois = ( Fuel_FineDead(catalog,model) > Smidgen ) ?
+            (wfmd / Fuel_FineDead(catalog,model)) : 0.;
+
+        lifeMext[FIRE_LIFE_LIVE]
+            = ((Fuel_LiveMextFactor(catalog,model)
+            * (1.0 - fdmois/Fuel_Mext(catalog,model))) - 0.226);
+
+        if ( lifeMext[FIRE_LIFE_LIVE] < Fuel_Mext(catalog,model) )
+            lifeMext[FIRE_LIFE_LIVE] = Fuel_Mext(catalog,model);
+    }
+
+    /* Dead fuel extinction moisture is a fuel model input. */
+    lifeMext[FIRE_LIFE_DEAD] = Fuel_Mext(catalog,model);
+
+    /* Compute category weighted moisture and accumulate the rbQig. */
+    for (particle=0; particle<Fuel_Particles(catalog,model); particle++)
+    {
+        qig = 250. + 1116. * Fuel_Moisture(catalog,model,particle);
+
+        life = Fuel_Live(catalog,model,particle);
+
+        lifeMoisture[life] += Fuel_AreaWtg(catalog,model,particle)
+                            * Fuel_Moisture(catalog,model,particle);
+
+        rbQig += qig
+               * Fuel_AreaWtg(catalog,model,particle)
+               * Fuel_LifeAreaWtg(catalog,model,life)
+               * Fuel_SigmaFactor(catalog,model,particle);
+    }
+
+    /* Complete the rbQig calculation. */
+    rbQig *= Fuel_BulkDensity(catalog,model);
+
+    /*  Compute moisture damping coeff by life class, and combine with the */
+    /*  life class's rx factor to get the total reaction intensity. */
+    for (life=0; life<FIRE_LIFE_CATS; life++)
+    {
+        ratio = 0.;
+        if ( lifeMext[life] > Smidgen )
+        {
+            ratio = lifeMoisture[life] / lifeMext[life];
+            lifeEtaM[life] =
+                1.0 - 2.59*ratio + 5.11*ratio*ratio - 3.52*ratio*ratio*ratio;
+        }
+
+        /* If category moisture exceeds category extinction moisture, */
+        /* the damping coefficient is zero. */
+        if ( lifeMoisture[life] >= lifeMext[life] )
+            lifeEtaM[life] = 0.;
+
+        /* Accumulate total reaction intensity. */
+        Fuel_RxIntensity(catalog,model)
+            += Fuel_LifeRxFactor(catalog,model,life)
+             * lifeEtaM[life];
+    }
+
+    /* Calculate heat per unit area from rx intensity and residence time. */
+    Fuel_HeatPerUnitArea(catalog,model)
+        = Fuel_RxIntensity(catalog,model)
+        * Fuel_ResidenceTime(catalog,model);
+
+    /* Calculate no-wind, no-slope spread rate. */
+    Fuel_Spread0(catalog,model)
+        = (rbQig > Smidgen)
+        ? Fuel_RxIntensity(catalog,model) * Fuel_PropFlux(catalog,model) / rbQig
+        : 0.;
+
+    /* Re-initialize spread in maximum and any azimuth to no wind-no slope. */
+    Fuel_SpreadMax(catalog,model) = Fuel_Spread0(catalog,model);
+    Fuel_SpreadAny(catalog,model) = Fuel_Spread0(catalog,model);
+    Fuel_AzimuthMax(catalog,model) = Fuel_AzimuthAny(catalog,model) = 0.;
+
+    return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_SpreadWindSlopeMax()
+ *
+ *  Description
+ *      Calculates maximum fire spread rate and direction under the given
+ *      wind-slope conditions.  Results depend only upon:
+ *      - no wind-slope spread rate
+ *      - wind speed and direction
+ *      - aspect and slope
+ *
+ *  Side Effects
+ *      Updates the following variables:
+ *          Fuel_Slope()                      = slope;
+ *          Fuel_PhiSlope().
+ *          Fuel_Wind()                       = windFpm;
+ *          Fuel_PhiWind().
+ *          Fuel_Aspect(catalog,model)        = aspect;
+ *          Fuel_WindDir(catalog,model)       = windDeg;
+ *          Fuel_PhiEffWind(catalog,model)    = phiEw;
+ *          Fuel_EffectiveWind(catalog,model) = effectiveWind;
+ *          Fuel_WindLimit(catalog,model)     = windLimit;
+ *          Fuel_SpreadMax(catalog,model)     = spreadMax;
+ *          Fuel_AzimuthMax(catalog,model)    = azimuthMax;
+ *          Fuel_LwRatio(catalog,model)       = lwRatio;
+ *          Fuel_Eccentricity(catalog,model)  = eccentricity;
+ *
+ *      Resets Fire_SpreadAtAzimuth() variables:
+ *          Fuel_SpreadAny(catalog,model)       = spreadMax;
+ *          Fuel_AzimuthAny(catalog,model)      = azimuthMax;
+ *          Fuel_ByramsIntensity(catalog,model) = 0.;
+ *          Fuel_FlameLength(catalog,model)     = 0.;
+ *          Fuel_ScorchHeight(catalog,model)    = 0.;
+ *
+ *      Previous Fire_SpreadAtAzimiuth() results become obsolete for this model.
+ *
+ *  Function Returns
+ *      FIRE_STATUS_OK or FIRE_STATUS_ERROR.
+ *      Return status and error text are stored in the Fire Catalog's buffers.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_SpreadWindSlopeMax ( FuelCatalogPtr catalog, size_t model, double windFpm, double windDeg, double slope, double aspect )
+   // FuelCatalogPtr catalog;     /* FuelCatalogData instance pointer           */
+   // size_t  model;              /* fuel model number            [0-maxModels] */
+   // double  windFpm;            /* wind speed                        (ft/min) */
+   // double  windDeg;            /* wind bearing vector      (compass degrees) */
+   // double  slope;              /* slope                         (rise/reach) */
+   // double  aspect;             /* aspect (downslope)   azimuth (compass deg) */
+{
+    double upslope, azimuthMax, phiEw;
+    double splitDeg, splitRad;
+    double slpRate, wndRate, rv, spreadMax;
+    double x, y, al, a;
+    double maxWind, effectiveWind, lwRatio, eccentricity;
+    size_t doEffectiveWind, checkWindLimit, windLimit;
+
+    /* Validate the catalog and fuel model. */
+    assert(catalog!= NULL && FuelCat_MagicCookie(catalog)==FIRE_CATALOG_MAGIC);
+    if ( ! Fire_FuelModelExists(catalog,model) )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_SpreadMax(): el modelo de combustible %d no existe en el cat�logo de combustibles \"%s\".",
+            model, FuelCat_Name(catalog));
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* Recalculate slope factors ONLY if different from previous model input. */
+    if ( ! Equal(Fuel_Slope(catalog,model),slope) )
+    {
+        Fuel_PhiSlope(catalog,model) =
+            Fuel_SlopeK(catalog,model) * slope * slope;
+        Fuel_Slope(catalog,model) = slope;
+    }
+
+    /* Recalculate wind factors ONLY if different from previous model input. */
+    if ( ! Equal(Fuel_WindSpeed(catalog,model),windFpm) )
+    {
+        Fuel_PhiWind(catalog,model) = (windFpm < Smidgen) ? 0. :
+            Fuel_WindK(catalog,model) * pow(windFpm, Fuel_WindB(catalog,model));
+        Fuel_WindSpeed(catalog,model) = windFpm;
+    }
+
+    /* Combine wind and slope factors. */
+    phiEw = Fuel_PhiSlope(catalog,model) + Fuel_PhiWind(catalog,model);
+    windLimit = 0;
+    lwRatio = 1.;
+    eccentricity = 0.;
+    upslope = (aspect>=180.) ? aspect-180. : aspect+180.;
+
+    /* Situation 1: no fire spread or reaction intensity. */
+    if ( Fuel_Spread0(catalog,model) < Smidgen )
+    {
+        spreadMax = 0.;
+        azimuthMax = 0;
+        /* There IS an effective wind even if there is no fire. */
+        doEffectiveWind = 1;
+        /* But since BEHAVE doesn't calculate effective wind when no spread. */
+        /* we wont either. */
+        effectiveWind = 0.;
+        doEffectiveWind = 0;
+        checkWindLimit = 0;
+    }
+
+    /* Situation 2: no wind and no wind */
+    else if ( phiEw < Smidgen )
+    {
+        phiEw = 0.;
+        effectiveWind = 0.;
+        doEffectiveWind = 0;
+        spreadMax = Fuel_Spread0(catalog,model);
+        azimuthMax = 0;
+        checkWindLimit = 0;
+    }
+
+    /* Situation 3: wind with no slope. */
+    else if ( slope < Smidgen )
+    {
+        effectiveWind = windFpm;
+        doEffectiveWind = 0;
+        spreadMax = Fuel_Spread0(catalog,model) * (1. + phiEw);
+        azimuthMax = windDeg;
+        checkWindLimit = 1;
+    }
+
+    /* Situation 4: slope with no wind. */
+    else if ( windFpm < Smidgen )
+    {
+        doEffectiveWind = 1;
+        spreadMax = Fuel_Spread0(catalog,model) * (1. + phiEw);
+        azimuthMax = upslope;
+        checkWindLimit = 1;
+    }
+
+    /* Situation 5: wind blows upslope. */
+    else if ( Equal(upslope,windDeg) )
+    {
+        doEffectiveWind = 1;
+        spreadMax = Fuel_Spread0(catalog,model) * (1. + phiEw);
+        azimuthMax = upslope;
+        checkWindLimit = 1;
+    }
+
+    /* Situation 6: wind blows cross slope. */
+    else
+    {
+        /* Recalculate spread rate in the optimal direction. */
+        splitDeg = (upslope<=windDeg) ? windDeg-upslope : 360.-upslope+windDeg;
+        splitRad = DegreesToRadians(splitDeg);
+        slpRate  = Fuel_Spread0(catalog,model) * Fuel_PhiSlope(catalog,model);
+        wndRate  = Fuel_Spread0(catalog,model) * Fuel_PhiWind(catalog,model);
+        x        = slpRate + wndRate * cos(splitRad);
+        y        = wndRate * sin(splitRad);
+        rv       = sqrt(x*x + y*y);
+        spreadMax= Fuel_Spread0(catalog,model) + rv;
+
+        /* Recalculate phiEw in the optimal direction. */
+        phiEw    = spreadMax / Fuel_Spread0(catalog,model) - 1.0;
+        doEffectiveWind = (phiEw > Smidgen) ? 1 : 0;
+        checkWindLimit = 1;
+
+        /* Recalculate direction of maximum spread in azimuth degrees. */
+        al = asin(fabs(y) / rv);
+        if ( x >= 0. )
+            a = (y >= 0.) ? al          : M_PI + M_PI - al;
+        else
+            a = (y >= 0.) ? (M_PI - al) : (M_PI + al);
+
+        splitDeg = RadiansToDegrees(a);
+        if ( (azimuthMax = upslope + splitDeg) > 360. )
+            azimuthMax -= 360.;
+    }
+
+    /* Recalculate effective wind speed based upon phiEw. */
+    if ( doEffectiveWind )
+        effectiveWind = pow( (phiEw * Fuel_WindE(catalog,model)),
+                             (1. / Fuel_WindB(catalog,model)) );
+
+    /* If effective wind exceeds maximum wind, scale back spread & phiEw. */
+    if ( checkWindLimit )
+    {
+        maxWind = 0.9 * Fuel_RxIntensity(catalog,model);
+        if ( effectiveWind > maxWind )
+        {
+            phiEw = (maxWind < Smidgen) ? 0. :
+                Fuel_WindK(catalog,model) * pow(maxWind, Fuel_WindB(catalog,model));
+
+            spreadMax = Fuel_Spread0(catalog,model) * (1. + phiEw);
+            effectiveWind = maxWind;
+            windLimit = 1;
+        }
+    }
+
+    /* Determine fire ellipse parameters from the effective wind speed. */
+    /* = 1. + 0.25 * (Fuel_EffectiveWind(catalog,model) / 88.0); */
+    if ( effectiveWind > Smidgen )
+    {
+        lwRatio = 1. + 0.002840909 * effectiveWind;
+        eccentricity = sqrt(lwRatio * lwRatio - 1.0) / lwRatio;
+    }
+
+    /* Store the results. */
+    Fuel_Aspect(catalog,model)       = aspect;
+    Fuel_WindDir(catalog,model)      = windDeg;
+    Fuel_PhiEffWind(catalog,model)   = phiEw;
+    Fuel_EffectiveWind(catalog,model)= effectiveWind;
+    Fuel_WindLimit(catalog,model)    = windLimit;
+    Fuel_SpreadMax(catalog,model)    = Fuel_SpreadAny(catalog,model)  = spreadMax;
+    Fuel_AzimuthMax(catalog,model)   = Fuel_AzimuthAny(catalog,model) = azimuthMax;
+    Fuel_LwRatio(catalog,model)      = lwRatio;
+    Fuel_Eccentricity(catalog,model) = eccentricity;
+
+    /* Initialize behavior variables updated by Fire_SpreadAtAzimuth(). */
+    Fuel_ByramsIntensity(catalog,model) = 0.;
+    Fuel_FlameLength(catalog,model)     = 0.;
+    Fuel_ScorchHeight(catalog,model)    = 0.;
+
+    return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_SpreadAtAzimuth()
+ *
+ *  Description
+ *      Calculates fire spread rate in a specified direction and optionally
+ *      calculates the fireline intensity, flame length, and scorch height
+ *      along the fire spread vector.
+ *
+ *  Side Effects
+ *      The following variables are updated:
+ *          Fuel_SpreadAny(catalog,model)
+ *          Fuel_AzimuthAny(catalog,model) == azimuth;
+ *          Fuel_ByramsIntensity(catalog,model) is updated if FIRE_BYRAMS.
+ *          Fuel_FlameLength(catalog,model) is updated if FIRE_FLAME.
+ *          Fuel_ScorchHeight(catalog,model) is updated if FIRE_SCORCH.
+ *  Notes
+ *      The calculations depend upon the most recent calls to
+ *      Fire_SpreadNoWindNoSlope() and Fire_SpreadWindSlopeMax() for this model.
+ *
+ *      The input azimuth is the degrees clockwise from north.
+ *
+ *  Function Returns
+ *      FIRE_STATUS_OK or FIRE_STATUS_ERROR.
+ *      Return status and error text are stored in the Fire Catalog's buffers.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_SpreadAtAzimuth ( FuelCatalogPtr catalog, size_t model, double azimuth, size_t which )
+   // FuelCatalogPtr catalog;     /* FuelCatalogData instance pointer           */
+   // size_t  model;              /* fuel model number            [0-maxModels] */
+   // double  azimuth;            /* fire spread azimuth     (deg from upslope) */
+   // size_t  which;      /* FIRE_NONE | FIRE_BYRAMS | FIRE_FLAME | FIRE_SCORCH */
+{
+    double dir;
+    double radians;
+    double byrams;
+    double mph;
+    size_t lo, hi, mid, n;
+
+    /* Validate catalog and the fuel model. */
+    assert(catalog!= NULL && FuelCat_MagicCookie(catalog)==FIRE_CATALOG_MAGIC);
+    if ( ! Fire_FuelModelExists(catalog,model) )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_SpreadAtAzimuth(): el modelo de combustible %d no existe en el cat�logo de combustibles \"%s\".",
+            model, FuelCat_Name(catalog));
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* Situation 1: no fire or reaction intensity, so no Byrams or flame. */
+    if ( Fuel_SpreadMax(catalog,model) < Smidgen )
+        return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+
+    /* Situation 2: phiEw is zero OR azimuth is in the max spread direction */
+    if ( Fuel_PhiEffWind(catalog,model) < Smidgen
+      || Equal(Fuel_AzimuthMax(catalog,model),azimuth) )
+    {
+        Fuel_SpreadAny(catalog,model) = Fuel_SpreadMax(catalog,model);
+    }
+
+    /* Situation 3: wind and/or slope and azimuth not in max spread direction */
+    else
+    {
+        /* Angle between maximum spread azimuth and requested azimuth. */
+        if ( (dir = fabs(Fuel_AzimuthMax(catalog,model) - azimuth)) > 180. )
+            dir = 360. - dir;
+        radians = DegreesToRadians(dir);
+
+        /* Calculate the fire spread rate in this azimuth. */
+        Fuel_SpreadAny(catalog,model)
+            = Fuel_SpreadMax(catalog,model)
+            * (1. - Fuel_Eccentricity(catalog,model))
+            / (1. - Fuel_Eccentricity(catalog,model) * cos(radians));
+    }
+    Fuel_AzimuthAny(catalog,model) = azimuth;
+
+    /* Additional fire behavior outputs. */
+    if ( which )
+    {
+        /* Must compute Byram's if any of the three are requested. */
+        byrams = Fuel_ResidenceTime(catalog,model)
+               * Fuel_SpreadAny(catalog,model)
+               * Fuel_RxIntensity(catalog,model)
+               / 60.;
+
+        /* Byrams intensity is requested. */
+        if ( which & FIRE_BYRAMS )
+            Fuel_ByramsIntensity(catalog,model) = byrams;
+
+        /* Flame length is requested. */
+        if ( (which & FIRE_FLAME) )
+        {
+            if ( byrams < Smidgen )
+            {
+                Fuel_FlameLength(catalog,model) = 0.;
+            }
+            else
+            {
+                /* Use lookup table if it exists & includes this intensity. */
+                if ( (n = FuelCat_FlameClasses(catalog)) > 0
+                  && FuelCat_FlameArray(catalog)[n-1] > byrams )
+                {
+                    hi = n-1;
+                    lo = 0;
+                    do {
+                        mid = lo + (hi-lo)/2;
+                        if ( FuelCat_FlameArray(catalog)[mid] > byrams )
+                            hi = mid;
+                        else
+                            lo = mid + 1;
+                    } while (lo != hi);
+                    Fuel_FlameLength(catalog,model) =
+                        FuelCat_FlameStep(catalog) * (lo+1);
+                }
+                /* otherwise compute flame length from scratch. */
+                else
+                {
+                    Fuel_FlameLength(catalog,model) = 0.45 * pow(byrams, 0.46);
+                }
+            }
+        }
+
+        /* Scorch height is requested. */
+        if ( (which & FIRE_SCORCH) )
+        {
+            if ( byrams < Smidgen )
+            {
+                Fuel_ScorchHeight(catalog,model) = 0.;
+            }
+            else
+            {
+                mph = Fuel_WindSpeed(catalog,model) / 88.;
+                Fuel_ScorchHeight(catalog,model) =
+                    pow(byrams, 1.166667) / sqrt(byrams + (mph * mph * mph));
+            /*  Fuel_ScorchHeight(catalog,model) *= (63. / (140. - temp_f) ); */
+            }
+        }
+    }
+
+    return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_FlameScorch()
+ *
+ *  Description
+ *      Calculates the flame length and/or scorch height for the current
+ *      Byram's intensity and azimuth (as determined by the most recent
+ *      call to Fire_SpreadAtAzimuth()).
+ *      Uses the Flame Length Table if it exists.
+ *      Offers a method of getting flame length if Fire_SpreadAtAzimuth()
+ *      is not calculating it.
+ *
+ *  Side Effects
+ *      The following variables are updated:
+ *          Fuel_FlameLength(catalog,model) is updated.
+ *          Fuel_ScorchHeight(catalog,model)
+ *  Notes
+ *      The calculations depend upon the most recent calls to
+ *      Fire_SpreadNoWindNoSlope(), Fire_SpreadWindSlopeMax(), and
+ *      Fire_SpreadAtAzimuth() for this model.
+ *
+ *  Function Returns
+ *      FIRE_STATUS_OK or FIRE_STATUS_ERROR.
+ *      Return status and error text are stored in the Fire Catalog's buffers.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_FlameScorch ( FuelCatalogPtr catalog, size_t model, size_t which )
+   // FuelCatalogPtr catalog;     /* FuelCatalogData instance pointer           */
+   // size_t  model;              /* fuel model number            [0-maxModels] */
+   // size_t  which;      /* FIRE_NONE | FIRE_BYRAMS | FIRE_FLAME | FIRE_SCORCH */
+{
+    double byrams;
+    double mph;
+    size_t lo, hi, mid, n;
+
+    /* Validate catalog and the fuel model. */
+    assert(catalog!= NULL && FuelCat_MagicCookie(catalog)==FIRE_CATALOG_MAGIC);
+    if ( ! Fire_FuelModelExists(catalog,model) )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FlameScorch(): el modelo de combustible %d no existe en el cat�logo de combustibles \"%s\".",
+            model, FuelCat_Name(catalog));
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    byrams = Fuel_ResidenceTime(catalog,model)
+           * Fuel_SpreadAny(catalog,model)
+           * Fuel_RxIntensity(catalog,model)
+           / 60.;
+
+    /* Flame length is requested. */
+    if ( (which & FIRE_FLAME) )
+    {
+        if ( byrams < Smidgen )
+        {
+            Fuel_FlameLength(catalog,model) = 0.;
+        }
+        else
+        {
+            /* Use lookup table if it exists & includes this intensity. */
+            if ( (n = FuelCat_FlameClasses(catalog)) > 0
+              && FuelCat_FlameArray(catalog)[n-1] > byrams )
+            {
+                hi = n-1;
+                lo = 0;
+                do {
+                    mid = lo + (hi-lo)/2;
+                    if ( FuelCat_FlameArray(catalog)[mid] > byrams )
+                        hi = mid;
+                    else
+                        lo = mid + 1;
+                } while (lo != hi);
+                Fuel_FlameLength(catalog,model) =
+                    FuelCat_FlameStep(catalog) * (lo+1);
+            }
+            /* otherwise compute flame length from scratch. */
+            else
+            {
+                Fuel_FlameLength(catalog,model) = 0.45 * pow(byrams, 0.46);
+            }
+        }
+    }
+
+    /* Scorch height is requested. */
+    if ( (which & FIRE_SCORCH) )
+    {
+        if ( byrams < Smidgen )
+        {
+            Fuel_ScorchHeight(catalog,model) = 0.;
+        }
+        else
+        {
+            mph = Fuel_WindSpeed(catalog,model) / 88.;
+            Fuel_ScorchHeight(catalog,model) =
+                pow(byrams, 1.166667) / sqrt(byrams + (mph * mph * mph));
+        /*  Fuel_ScorchHeight(catalog,model) *= (63. / (140. - temp_f) ); */
+        }
+    }
+
+    return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_FlameLengthTable()
+ *
+ *  Description
+ *      Creates a flame length lookup table containing "flameClasses" classes
+ *      with each class spanning "flameStep" feet.
+ *
+ *  Discussion
+ *      Since flame length is strictly an output variable (e.g., it is never
+ *      used as the basis for subsequent computations), we can usually afford
+ *      to round it to some precision that makes sense to fire managers.
+ *      Usually this will be in 1 foot or perhaps 6 inch increments.  The call
+ *
+ *
+ *      creates a flame length table for flame lengths of 1 through 500 feet.
+ *
+ *      Fire_SpreadAtAzimuth() uses the flame table (if one is defined for the
+ *      catalog) to avoid using the costly pow() function for highly iterative
+ *      flame length calculations, saving a considerable amount of processing
+ *      time.  Fire_SpreadAtAzimuth() will still use the pow() function to
+ *      compute flame length if (1) a flame length table is not defined,
+ *      (2) the fireline intensity exceeds the upper limit of the currently
+ *      defined flame length table, or (3) the flame length table becomes
+ *      undefined by a Fire_FlameLengthTable(catalog, 0, 0.) call.
+ *
+ *
+ *  Examples
+ *      Fire_FlameLengthTable(catalog, 200, 1.0);
+ *          Creates a table for flame lengths of 1 through 200 feet in 1-foot
+ *          intervals.  Any previously defined flame length table for this
+ *          fuel catalog is destroyed.
+ *
+ *      Fire_FlameLengthTable(catalog, 500, 0.5);
+ *          Creates a table for flame lengths of 0.5 through 250 feet in 6-inch
+ *          intervals.  ANy previously defined flame length table for this
+ *          fuel catalog is destroyed.
+ *
+ *      Fire_FlameLengthTable(catalog, 0, 0.);
+ *          Destroys any existing flame length table for this catalog, and
+ *          forces actual flame length computation using pow() function.
+ *
+ *  Side Effects
+ *      If a flame length table currently exists, it is destroyed, and the
+ *      FuelCat_FlameArray(), FuelCat_FlameClasses(), and
+ *      FuelCat_FlameStep() are set to NULL, 0, and 0.0, respectively.
+ *
+ *      If fireClasses > 0, allocates a flame length table and fills it with
+ *      the fireline intensity associated with the upper limit of each flame
+ *      length class.  The FuelCat_FlameArray(), FuelCat_FlameClasses(), and
+ *      FuelCat_FlameStep() are then updated.
+ *
+ *  Function Returns
+ *      FIRE_STATUS_OK or FIRE_STATUS_ERROR.
+ *      Return status and error text are stored in the Fire Catalog's buffers.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_FlameLengthTable ( FuelCatalogPtr catalog, size_t flameClasses, double flameStep )
+   // FuelCatalogPtr catalog;     /* FuelCatalogData instance pointer           */
+   // size_t  flameClasses;       /* number of flame length classes             */
+   // double  flameStep;          /* flame length step value per class          */
+{
+    double power, flame;
+    size_t i;
+
+    /* Validate the catalog. */
+    assert(catalog!= NULL && FuelCat_MagicCookie(catalog)==FIRE_CATALOG_MAGIC);
+
+    /* If a flame table already exists, destroy it. */
+    if ( FuelCat_FlameArray(catalog) )
+    {
+        free(FuelCat_FlameArray(catalog));
+        FuelCat_FlameArray(catalog)   = NULL;
+        FuelCat_FlameClasses(catalog) = 0;
+        FuelCat_FlameStep(catalog)    = 0.0;
+    }
+
+    /* If flameClasses is zero, simply return. */
+    if ( flameClasses == 0 )
+        return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+
+    /* Otherwise create a new flame table. */
+    if ( (FuelCat_FlameArray(catalog) = (double *)
+        calloc(flameClasses, sizeof(double))) == NULL )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FlameLengthTable(): imposible asignar tabla de longitud de llama con %d clases de %f pies.",
+            flameClasses, flameStep);
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* Fill the array. */
+    power = 1. / .46;
+    for ( i=0; i<flameClasses; i++ )
+    {
+        flame = flameStep * (i+1);
+        FuelCat_FlameArray(catalog)[i] = pow((flame / .45), power);
+    }
+    FuelCat_FlameClasses(catalog) = flameClasses;
+    FuelCat_FlameStep(catalog)    = flameStep;
+
+    return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_FuelCatalogCreate()
+ *
+ *  Description
+ *      Creates a new fuel model catalog capable of holding fuel models with
+ *      id's in the range [0..maxModel].
+ *      The catalog is filled by subsequent calls to Fire_FuelModelCreate().
+ *
+ *  Side Effects
+ *      Allocates a new FuelCatalogData structure.
+ *      Allocates an error text buffer for the catalog.
+ *      Allocates a name for the catalog.
+ *      Allocates an array of pointers to FuelData structures (the FuelData
+ *      structures themselves are allocated by Fire_FuelModelCreate() and
+ *      their pointers are stored here).
+ *
+ *  Notes
+ *      The FuelCatalog contains a dynamically-allocated array of pointers
+ *      to FuelData blocks.  These pointers are initially NULL and are
+ *      subsequently assigned by Fire_FuelModelCreate().  The array provides
+ *      the programmer with a means of directly accessing fuel models via
+ *      their model number, which is handy when simulating fire growth.
+ *
+ *  Function Returns
+ *      While most FireLib functions return a status code, this one returns
+ *      a pointer to the new FuelCatalogData on success or NULL if unable
+ *      to allocate any of the dynamic structures.
+ *
+ *******************************************************************************
+ */
+
+FuelCatalogPtr
+Fire_FuelCatalogCreate ( char *name, size_t maxModels )
+   // char  *name;                /* FuelCatalogData instance name */
+   // size_t maxModels;           /* maximum modelId allowed in this catalog */
+{
+    FuelCatalogPtr catalog;
+    static char *blank = {""};
+
+    /* Catch a NULL name. */
+    if ( name == NULL )
+        name = blank;
+
+    /* Allocate the FireCatalogData structure. */
+    if ( (catalog = (FuelCatalogPtr) malloc(sizeof(FuelCatalogData))) == NULL )
+    {
+        fprintf(stderr,
+            "Fire_FuelCatalogCreate(): imposible asignar el objeto \"%s\" del cat�logo de combustibles.\n",
+            name);
+        return (NULL);
+    }
+
+    /* Assign the magic cookie right away. */
+    FuelCat_MagicCookie(catalog) = FIRE_CATALOG_MAGIC;
+
+    /* Allocate and store the catalog instance name. */
+    if ( (FuelCat_Name(catalog) = strdup(name)) == NULL )
+    {
+        fprintf(stderr,
+            "Fire_FuelCatalogCreate(): imposible duplicar el nombre \"%s\" del cat�logo de combustibles.\n",
+            name);
+        free(catalog);
+        return (NULL);
+    }
+
+    /* Allocate the FireCatalogData error message buffer. */
+    if ( (FuelCat_Error(catalog) =
+        (char *) calloc(FIRE_ERROR_BUFFER_SIZE, sizeof(char))) == NULL )
+    {
+        fprintf(stderr,
+            "Fire_FuelCatalogCreate(): imposible asignar el bufer de error  \"%s\" del cat�logo de combustibles.\n",
+            name);
+        free(FuelCat_Name(catalog));
+        free(catalog);
+        return (NULL);
+    }
+    FuelCat_Status(catalog) = FIRE_STATUS_ERROR;
+
+    /* Allocate a FuelModelPtr array to handle models [0..maxModels]. */
+    maxModels++;
+    FuelCat_MaxModels(catalog) = maxModels;
+    if ( (FuelCat_ModelArray(catalog) = (FuelModelPtr *)
+        calloc(FuelCat_MaxModels(catalog), sizeof(FuelModelPtr))) == NULL )
+    {
+        fprintf(stderr,
+            "Fire_FuelCatalogCreate(): imposible asignar \"%s\" con %d modelos de combustible del cat�logo de combustibles.\n",
+            name, maxModels);
+        free(FuelCat_Error(catalog));
+        free(FuelCat_Name(catalog));
+        free(catalog);
+        return (NULL);
+    }
+
+    /* Initialize variables and return ptr to this instance. */
+    FuelCat_FlameArray(catalog)   = NULL;
+    FuelCat_FlameClasses(catalog) = 0;
+    FuelCat_FlameStep(catalog)    = 0.0;
+    FuelCat_Status(catalog)       = FIRE_STATUS_OK;
+    return (catalog);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_FuelCatalogCreateStandard()
+ *
+ *  Description
+ *      Creates a new fuel model catalog capable of holding fuel models with
+ *      id's in the range [0..maxModel].
+ *      The catalog is then filled with the 13 standard fire behavior fuel
+ *      models.  Other models may be added by subsequent calls to
+ *      Fire_FuelModelCreate().
+ *
+ *  Side Effects
+ *      Allocates a new FuelCatalogData structure.
+ *      Fills the catalog with standard fuels models 0-13.
+ *
+ *  Function Returns
+ *      While most FireLib functions return a status code, this one returns
+ *      a pointer to the new FuelCatalogData on success, or NULL if unable
+ *      to allocate any of the dynamic structures.
+ *
+ *******************************************************************************
+ */
+
+FuelCatalogPtr
+Fire_FuelCatalogCreateStandard (char *name, size_t maxModels )
+   // char  *name;                /* FuelCatalogData instance name */
+   // size_t maxModels;           /* maximum modelId allowed in this catalog */
+{
+    FuelCatalogPtr catalog;
+    double stot, seff, heat, dens, adjust;
+    size_t m, p;
+
+    /* Fuel model definitions. */
+    typedef struct {
+        char *name; double depth; double mext; size_t maxParticles; char *desc;
+    } StandardModels;
+
+    StandardModels M[14] = {
+        {"NoFuel", 0.1, 0.01, 0, "No Combustible Fuel" },
+        {"NFFL01", 1.0, 0.12, 1, "Short Grass (1 ft)" },
+        {"NFFL02", 1.0, 0.15, 4, "Timber (grass & understory)" },
+        {"NFFL03", 2.5, 0.25, 1, "Tall Grass (2.5 ft)" },
+        {"NFFL04", 6.0, 0.20, 4, "Chaparral (6 ft)" },
+        {"NFFL05", 2.0, 0.20, 3, "Brush (2 ft)" },
+        {"NFFL06", 2.5, 0.25, 3, "Dormant Brush & Hardwood Slash" },
+        {"NFFL07", 2.5, 0.40, 4, "Southern Rough" },
+        {"NFFL08", 0.2, 0.30, 3, "Closed Timber Litter" },
+        {"NFFL09", 0.2, 0.25, 3, "Hardwood Litter" },
+        {"NFFL10", 1.0, 0.25, 4, "Timber (litter & understory)" },
+        {"NFFL11", 1.0, 0.15, 3, "Light Logging Slash" },
+        {"NFFL12", 2.3, 0.20, 3, "Medium Logging Slash" },
+        {"NFFL13", 3.0, 0.25, 3, "Heavy Logging Slash" }
+    };
+
+    /* Fuel particle definitions. */
+    typedef struct {
+        size_t model; size_t type; double load; double savr;
+    } StandardParticle;
+
+    static StandardParticle P[39] = {
+        { 1, FIRE_TYPE_DEAD, 0.0340, 3500.},
+        { 2, FIRE_TYPE_DEAD, 0.0920, 3000.},
+        { 2, FIRE_TYPE_DEAD, 0.0460, 109.},
+        { 2, FIRE_TYPE_DEAD, 0.0230, 30.},
+        { 2, FIRE_TYPE_HERB, 0.0230, 1500.},
+        { 3, FIRE_TYPE_DEAD, 0.1380, 1500.},
+        { 4, FIRE_TYPE_DEAD, 0.2300, 2000.},
+        { 4, FIRE_TYPE_DEAD, 0.1840, 109.},
+        { 4, FIRE_TYPE_DEAD, 0.0920, 30.},
+        { 4, FIRE_TYPE_WOOD, 0.2300, 1500.},
+        { 5, FIRE_TYPE_DEAD, 0.0460, 2000.},
+        { 5, FIRE_TYPE_DEAD, 0.0230, 109.},
+        { 5, FIRE_TYPE_WOOD, 0.0920, 1500.},
+        { 6, FIRE_TYPE_DEAD, 0.0690, 1750.},
+        { 6, FIRE_TYPE_DEAD, 0.1150, 109.},
+        { 6, FIRE_TYPE_DEAD, 0.0920, 30.},
+        { 7, FIRE_TYPE_DEAD, 0.0520, 1750.},
+        { 7, FIRE_TYPE_DEAD, 0.0860, 109.},
+        { 7, FIRE_TYPE_DEAD, 0.0690, 30.},
+        { 7, FIRE_TYPE_WOOD, 0.0170, 1550.},
+        { 8, FIRE_TYPE_DEAD, 0.0690, 2000.},
+        { 8, FIRE_TYPE_DEAD, 0.0460, 109.},
+        { 8, FIRE_TYPE_DEAD, 0.1150, 30.},
+        { 9, FIRE_TYPE_DEAD, 0.1340, 2500.},
+        { 9, FIRE_TYPE_DEAD, 0.0190, 109.},
+        { 9, FIRE_TYPE_DEAD, 0.0070, 30.},
+        {10, FIRE_TYPE_DEAD, 0.1380, 2000.},
+        {10, FIRE_TYPE_DEAD, 0.0920, 109.},
+        {10, FIRE_TYPE_DEAD, 0.2300, 30.},
+        {10, FIRE_TYPE_WOOD, 0.0920, 1500.},
+        {11, FIRE_TYPE_DEAD, 0.0690, 1500.},
+        {11, FIRE_TYPE_DEAD, 0.2070, 109.},
+        {11, FIRE_TYPE_DEAD, 0.2530, 30.},
+        {12, FIRE_TYPE_DEAD, 0.1840, 1500.},
+        {12, FIRE_TYPE_DEAD, 0.6440, 109.},
+        {12, FIRE_TYPE_DEAD, 0.7590, 30.},
+        {13, FIRE_TYPE_DEAD, 0.3220, 1500.},
+        {13, FIRE_TYPE_DEAD, 1.0580, 109.},
+        {13, FIRE_TYPE_DEAD, 1.2880, 30.},
+    };
+
+    /* First, create the catalog. */
+    if ( maxModels < 13 )
+        maxModels = 13;
+    if ( (catalog = Fire_FuelCatalogCreate(name, maxModels)) == NULL )
+        return (NULL);
+
+    /* Second, create all 14 models. */
+    adjust = 1.0;
+    for ( m=0; m<14; m++ )
+    {
+        if ( Fire_FuelModelCreate(catalog, m, M[m].name, M[m].desc, M[m].depth,
+            M[m].mext, adjust, M[m].maxParticles) != FIRE_STATUS_OK )
+        {
+            fprintf(stderr, "%s\n", FuelCat_Error(catalog));
+            Fire_FuelCatalogDestroy(catalog);
+            return (NULL);
+        }
+    }
+
+    /* Finally, add all the fuel particles. */
+    stot   = 0.0555;
+    seff   = 0.0100;
+    heat   = 8000.0;
+    dens   = 32.0;
+    for ( p=0; p<39; p++ )
+    {
+        if ( Fire_FuelParticleAdd(catalog, P[p].model, P[p].type, P[p].load,
+            P[p].savr, dens, heat, stot, seff) != FIRE_STATUS_OK )
+        {
+            fprintf(stderr, "%s\n", FuelCat_Error(catalog));
+            Fire_FuelCatalogDestroy(catalog);
+            return (NULL);
+        }
+    }
+
+    return (catalog);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_FuelCatalogDestroy()
+ *
+ *  Description
+ *      Destroys the fuel catalog and all its associated models and particles.
+ *
+ *  Side Effects
+ *      Destroys all FuelData instances belonging to the catalog.
+ *      Frees the array of pointers to FuelData structures.
+ *      Frees the catalog name.
+ *      Frees the catalog error text buffer.
+ *      Frees the FuelCatalog instance.
+ *
+ *  Function Returns
+ *      FIRE_STATUS_OK or FIRE_STATUS_ERROR.
+ *      Return status and error text are stored in the Fire Catalog's buffers.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_FuelCatalogDestroy ( FuelCatalogPtr catalog )
+   // FuelCatalogPtr catalog;     /* FuelCatalogData instance to destroy. */
+{
+    size_t model;
+
+    /* Validate the catalog. */
+    assert(catalog!=NULL && FuelCat_MagicCookie(catalog)==FIRE_CATALOG_MAGIC);
+
+    /* First destroy all the fuel models in this catalog. */
+    /* The free the catalog's array of FuelData pointers. */
+    if ( FuelCat_ModelArray(catalog) )
+    {
+        for ( model=0; model <= FuelCat_MaxModels(catalog); model++ )
+        {
+            if ( FuelCat_ModelPtr(catalog,model) )
+                Fire_FuelModelDestroy(catalog, model);
+        }
+        free(FuelCat_ModelArray(catalog));
+        FuelCat_ModelArray(catalog) = NULL;
+    }
+
+    /* Next destroy the flame length table. */
+    if ( FuelCat_FlameArray(catalog) )
+    {
+        free(FuelCat_FlameArray(catalog));
+        FuelCat_FlameArray(catalog)   = NULL;
+        FuelCat_FlameClasses(catalog) = 0;
+        FuelCat_FlameStep(catalog)    = 0.0;
+    }
+
+    /* Then free the name and error buffer for this FuelCatalogData instance. */
+    if ( FuelCat_Error(catalog) )
+    {
+        free(FuelCat_Error(catalog));
+        FuelCat_Error(catalog) = NULL;
+    }
+
+    if ( FuelCat_Name(catalog) )
+    {
+        free(FuelCat_Name(catalog));
+        FuelCat_Name(catalog) = NULL;
+    }
+
+    /* Finally,free the FuelCatalogData instance and return. */
+    free(catalog);
+
+    return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_FuelModelCreate()
+ *
+ *  Description
+ *      Creates a new fuel model able to hold maxParticles fuel particles.
+ *      Fuel particles are subsequently added by Fire_FuelParticleAdd().
+ *
+ *  Side Effects
+ *      Any existing fuel model with modelId in the Fuel Catalog is destroyed.
+ *      Allocates the fuel model's FuelData block.
+ *      Allocates the fuel model's name string.
+ *      Allocates the fuel model's description string.
+ *      Allocates the fuel model's fuel particle pointer array of maxParticles
+ *      (the FuelParticleData blocks are actually allocated within
+ *      Fire_FuelparticleAdd() and thier pointers stored in this array).
+ *      The fuel model's address is stored in the fuel catalog's pointer array.
+ *
+ *  Function Returns
+ *      FIRE_STATUS_OK or FIRE_STATUS_ERROR.
+ *      Return status and error text are stored in the Fire Catalog's buffers.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_FuelModelCreate (FuelCatalogPtr catalog, size_t model, char *name, char *desc, double depth, double mext, double adjust, size_t maxParticles)
+   // FuelCatalogPtr catalog;     /* FuelCatalogData instance */
+   // size_t  model;              /* fuel model number            [0-maxModels] */
+   // char   *name;               /* short name */
+   // char   *desc;               /* longer description */
+   // double  depth;              /* bed depth                             (ft) */
+   // double  mext;               /* moisture of extinction                (dl) */
+   // double  adjust;             /* spread adjustment factor              (dl) */
+   // size_t  maxParticles;       /* maximum number of fuel model particles     */
+{
+    static char *blank = {""};
+    size_t particle;
+
+    /* Validate the catalog. */
+    assert(catalog!= NULL && FuelCat_MagicCookie(catalog)==FIRE_CATALOG_MAGIC);
+
+    /* Make sure model id is within range. */
+    if ( model > FuelCat_MaxModels(catalog) )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FuelModelCreate(): fuel model \"%s\" number %d exceeds fuel catalog \"%s\" range [0..%d].",
+            name, model, FuelCat_Name(catalog), FuelCat_MaxModels(catalog));
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* Validate depth and mext. */
+    if ( depth < Smidgen )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FuelModelCreate(): el modelo de combustible \"%s\" n�mero %d de ancho %5.4f es demasiado peque�o.",
+            name, model, depth);
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    if ( mext < Smidgen )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FuelModelCreate(): el modelo de combustible \"%s\" n�mero %d de humedad de extinci�n %5.4f es demasiado peque�o.",
+            name, model, mext);
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* If this model already exists, delete it. */
+    if ( FuelCat_ModelPtr(catalog,model) )
+        Fire_FuelModelDestroy(catalog, model);
+
+    /* Allocate the model's FuelData structure. */
+    if ( maxParticles < 1 )
+        maxParticles = 1;
+    if ( (FuelCat_ModelPtr(catalog,model) =
+                (FuelModelPtr) calloc(1, sizeof(FuelModelData))) == NULL
+      || (Fuel_ParticleArray(catalog,model) =
+                (PartPtr *) calloc(maxParticles, sizeof(PartPtr))) == NULL )
+    {
+        Fire_FuelModelDestroy(catalog, model);
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FuelModelCreate(): imposible asignar el modelos de combustible \"%s\" n�mero %d para el cat�logo de combustibles \"%s\".",
+            name, model, FuelCat_Name(catalog));
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* Catch NULL names and descriptions. */
+    if ( name == NULL )
+        name = blank;
+    if ( desc == NULL )
+        desc = blank;
+
+    /* Store remaining attributes. */
+    Fuel_Model(catalog,model)            = model;
+    Fuel_Depth(catalog,model)            = depth;
+    Fuel_Mext(catalog,model)             = mext;
+    Fuel_SpreadAdjustment(catalog,model) = adjust;
+    Fuel_Name(catalog,model)             = strdup(name);
+    Fuel_Desc(catalog,model)             = strdup(desc);
+    Fuel_CombustionFlag(catalog,model)   = 0;
+    Fuel_MaxParticles(catalog,model)     = maxParticles;
+    Fuel_Particles(catalog,model)        = 0;
+    for ( particle=0; particle<Fuel_MaxParticles(catalog,model); particle++ )
+        Fuel_ParticlePtr(catalog,model,particle) = NULL;
+
+    return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_FuelModelDestroy()
+ *
+ *  Description
+ *      Deletes the specified fuel model.
+ *      Note: this is one of only 3 functions that use the modelId instead
+ *      of a FuelData pointer to identify the model.
+ *
+ *  Side Effects
+ *      Free's all fuel particles added to the fuel model.
+ *      Free's the fuel particle pointer array.
+ *      Free's the fuel model's name.
+ *      Free's the fuel model's description.
+ *      Free's the fuel model's FuelData block.
+ *      Sets the Fuel Catalog's pointer for this fuel model to NULL.
+ *
+ *  Function Returns
+ *      FIRE_STATUS_OK or FIRE_STATUS_ERROR.
+ *      Return status and error text are stored in the Fire Catalog's buffers.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_FuelModelDestroy ( FuelCatalogPtr catalog, size_t model )
+   // FuelCatalogPtr catalog;     /* FuelCatalogData instance pointer           */
+   // size_t         model;       /* fuel model id number         [0-maxModels] */
+{
+    size_t particle;
+
+    /* Validate the catalog. */
+    assert(catalog!= NULL && FuelCat_MagicCookie(catalog)==FIRE_CATALOG_MAGIC);
+
+    /* Make sure model id is within range and exists. */
+    if ( ! Fire_FuelModelExists(catalog,model) )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FuelModelDestroy(): el modelo de combustible %d no existe en el cat�logo de combustibles \"%s\".",
+            model, FuelCat_Name(catalog));
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* Free all the fuel model particles and their pointer array. */
+    if ( Fuel_ParticleArray(catalog,model) )
+    {
+        for (particle=0; particle<Fuel_MaxParticles(catalog,model); particle++)
+        {
+            if ( Fuel_ParticlePtr(catalog,model,particle) )
+            {
+                free(Fuel_ParticlePtr(catalog,model,particle));
+                Fuel_ParticlePtr(catalog,model,particle) = NULL;
+            }
+        }
+        free(Fuel_ParticleArray(catalog,model));
+        Fuel_ParticleArray(catalog,model) = NULL;
+    }
+
+    /* Free the fuel model name and description. */
+    if ( Fuel_Name(catalog,model) )
+    {
+        free(Fuel_Name(catalog,model));
+        Fuel_Name(catalog,model) = NULL;
+    }
+
+    if ( Fuel_Desc(catalog,model) )
+    {
+        free(Fuel_Desc(catalog,model));
+        Fuel_Desc(catalog,model) = NULL;
+    }
+
+    /* Now free the FuelData instance and reset its catalog entry. */
+    free(FuelCat_ModelPtr(catalog,model));
+    FuelCat_ModelPtr(catalog,model) = NULL;
+
+    return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_FuelModelExists()
+ *
+ *  Description
+ *      Performs a sanity check to make sure the catalog pointer is valid
+ *      and the fuel model number is within range and exists.
+ *
+ *  Side Effects
+ *      None.
+ *
+ *  Function Returns
+ *      1 if "model" exists, 0 if it is undefined.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_FuelModelExists ( FuelCatalogPtr catalog, size_t model )
+   // FuelCatalogPtr catalog;     /* FuelCatalogData instance pointer           */
+   // size_t         model;       /* fuel model id number         [0-maxModels] */
+{
+    /* Validate the model number. */
+    if ( model > FuelCat_MaxModels(catalog)
+      || ! FuelCat_ModelPtr(catalog,model) )
+        return (int) 0;
+
+    return (int) 1;
+}
+
+/*
+ *******************************************************************************
+ *
+ *  Fire_FuelParticleAdd()
+ *
+ *  Description
+ *      Adds a fuel particle to the specified fuel model.
+ *
+ *  Side Effects
+ *      A FuelParticleData is allocated and appended to the model's array.
+ *      The fuel model's particle counter is incremented.
+ *      The fuel model's combustion flag set to 0.
+ *
+ *  Function Returns
+ *      FIRE_STATUS_OK or FIRE_STATUS_ERROR.
+ *      Return status and error text are stored in the Fire Catalog's buffers.
+ *
+ *******************************************************************************
+ */
+
+int
+Fire_FuelParticleAdd ( FuelCatalogPtr catalog, size_t model, size_t type, double load, double savr, double dens, double heat, double stot, double seff )
+   // FuelCatalogPtr catalog;     /* FuelCatalogData instance pointer           */
+   // size_t  model;              /* fuel model id number         [0-maxModels] */
+   // size_t  type;               /* FIRE_TYPE_DEAD, _TYPE_HERB, or _TYPE_WOOD  */
+   // double  load;               /* fuel load                        (lbs/ft2) */
+   // double  savr;               /* surface-area-to-volume ratio     (ft2/ft3) */
+   // double  dens;               /* density                          (lbs/ft3) */
+   // double  heat;               /* heat of combustion               (btus/lb) */
+   // double  stot;               /* total silica content               (lb/lb) */
+   // double  seff;               /* effective silica content           (lb/lb) */
+{
+    static double Size_boundary[FIRE_SIZE_CLASSES] =
+        {1200., 192., 96., 48., 16., 0.};
+    size_t particle, size;
+
+    /* Validate the catalog. */
+    assert(catalog!= NULL && FuelCat_MagicCookie(catalog)==FIRE_CATALOG_MAGIC);
+
+    /* Validate the fuel model. */
+    if ( ! Fire_FuelModelExists(catalog,model) )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FuelParticleAdd(): el modelo de combustible %d no existe en el cat�logo de combustibles \"%s\".",
+            model, FuelCat_Name(catalog));
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* Validate the "type" parameter. */
+    if ( type != FIRE_TYPE_DEAD
+      && type != FIRE_TYPE_HERB
+      && type != FIRE_TYPE_WOOD )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FuelParticleAdd(): el modelo de combustible %d de tipo de valor (arg #3) no es FIRE_TYPE_DEAD, FIRE_TYPE_HERB, o FIRE_TYPE_WOOD.",
+            model);
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* Allocate a new FuelParticle */
+    particle = Fuel_Particles(catalog,model);
+    if ( (Fuel_ParticlePtr(catalog,model,particle) =
+        (PartPtr) calloc(1, sizeof(FuelParticleData))) == NULL )
+    {
+        sprintf(FuelCat_Error(catalog),
+            "Fire_FuelParticleAdd(): imposible asignar la part�cula de combustible al modelo de combustible \"%s\" n�mero %d en el cat�logo de combustibles \"%s\".",
+            Fuel_Name(catalog,model), model, FuelCat_Name(catalog));
+        return (FuelCat_Status(catalog) = FIRE_STATUS_ERROR);
+    }
+
+    /* Store the input particle attributes. */
+    Fuel_Type(catalog,model,particle)       = type;
+    Fuel_Load(catalog,model,particle)       = load;
+    Fuel_Savr(catalog,model,particle)       = savr;
+    Fuel_Density(catalog,model,particle)    = dens;
+    Fuel_Heat(catalog,model,particle)       = heat;
+    Fuel_SiTotal(catalog,model,particle)    = stot;
+    Fuel_SiEffective(catalog,model,particle)= seff;
+
+    /* Fuel life category. */
+    Fuel_Live(catalog,model,particle) =
+        (type==FIRE_TYPE_DEAD) ? FIRE_LIFE_DEAD : FIRE_LIFE_LIVE;
+
+    /* Fuel particle surface area. */
+    Fuel_SurfaceArea(catalog,model,particle) =
+        (dens > Smidgen) ? load * savr / dens : 0.;
+
+    /* Particle SAVR exponent factor. */
+    Fuel_SigmaFactor(catalog,model,particle) =
+        (savr > Smidgen) ? exp(-138. / savr) : 0.;
+
+    /* Particle size class. */
+    for ( size=0; savr < Size_boundary[size]; size++ )
+        /* NOTHING */ ;
+    Fuel_SizeClass(catalog,model,particle) = size;
+
+    /* Initialize particle attributes that are bed & environ dependent. */
+    Fuel_AreaWtg(catalog,model,particle)     = 0.;
+    Fuel_SizeAreaWtg(catalog,model,particle) = 0.;
+    Fuel_Moisture(catalog,model,particle)    = 0.;
+
+    /* Increment the fuel model's particle counter and reset it flag. */
+    Fuel_Particles(catalog,model)++;
+    Fuel_CombustionFlag(catalog,model) = 0;
+
+    return (FuelCat_Status(catalog) = FIRE_STATUS_OK);
+}
+
+/*
+ *******************************************************************************
+ * End of fireLib.c
+ *******************************************************************************
+ */
diff --git a/src/modules/simulation/sim_fire_spreading/fireLib.h b/src/modules/simulation/sim_fire_spreading/fireLib.h
new file mode 100755
index 0000000..8effef1
--- /dev/null
+++ b/src/modules/simulation/sim_fire_spreading/fireLib.h
@@ -0,0 +1,551 @@
+/**********************************************************
+ * Version $Id: fireLib.h 911 2011-02-14 16:38:15Z reklov_w $
+ *********************************************************/
+/*
+ *******************************************************************************
+ *
+ *  fireLib.h
+ *
+ *  Description
+ *      Library of BEHAVE (Andrews 1986) fire behavior algorithms
+ *      encapsulated and optimized for fire behavior simulation.
+ *
+ *  Legalities
+ *      Copyright (c) 1996 Collin D. Bevins.
+ *      See the file "license.txt" for information on usage and
+ *      redistribution of this file, and for a DISCLAIMER OF ALL WARRANTIES.
+ *
+ *  Description
+ *      This header file describes the externally-visible facilities of
+ *      the Fire Behavior Library C API.
+ *
+ *      This file really needs to be split into public and private portions.
+ *
+ *  History
+ *      1996/09/04  Version 1.0.0 release.
+ *      1999/03/05  Fixed NNFL07 live SAVR from 1500 to 1550.
+ *
+ *******************************************************************************
+ */
+
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+#include <assert.h>
+
+#ifndef _FIRE_LIB
+#define _FIRE_LIB 1
+
+#define FIRELIB_VERSION "1.0"
+#define FIRELIB_MAJOR_VERSION 1
+#define FIRELIB_MINOR_VERSION 0
+#define FIRELIB_PATCH_LEVEL   1
+
+/*
+ *------------------------------------------------------------------------------
+ * Definitions that allow this header file to be used either with or
+ * without ANSI C features like function prototypes.
+ *------------------------------------------------------------------------------
+ */
+
+#undef _ANSI_ARGS_
+#undef CONST
+#if ((defined(__STDC__) || defined(SABER)) && !defined(NO_PROTOTYPE)) || defined(__cplusplus)
+#   define _USING_PROTOTYPES_ 1
+#   define _ANSI_ARGS_(x)       x
+#   define CONST const
+#   ifdef __cplusplus
+#       define VARARGS(first) (first, ...)
+#   else
+#       define VARARGS(first) ()
+#   endif
+#else
+#   define _ANSI_ARGS_(x)       ()
+#   define CONST
+#endif
+
+#ifdef __cplusplus
+#   define EXTERN extern "C"
+#else
+#   define EXTERN extern
+#endif
+
+/*
+ *------------------------------------------------------------------------------
+ * Macro to use instead of "void" for arguments that must have type "void *"
+ * in ANSI C;  maps them to type "char *" in non-ANSI systems.
+ *------------------------------------------------------------------------------
+ */
+
+#ifndef VOID
+#   ifdef __STDC__
+#       define VOID void
+#   else
+#       define VOID char
+#   endif
+#endif
+
+/*
+ *------------------------------------------------------------------------------
+ *  Macro pseudo functions.
+ *------------------------------------------------------------------------------
+ */
+
+#define Smidgen                 (0.000001)
+#define DegreesToRadians(x)     ((x)*0.017453293)
+#define RadiansToDegrees(x)     ((x)*57.29577951)
+#define IsZero(x)               (fabs(x)<Smidgen)
+#define Equal(x,y)              (fabs((x)-(y))<Smidgen)
+
+/*
+ *------------------------------------------------------------------------------
+ * Firelib return status codes.
+ *------------------------------------------------------------------------------
+ */
+
+#define  FIRE_STATUS_OK         (0)
+#define  FIRE_STATUS_ERROR      (-1)
+#define  FIRE_STATUS_EOF        (1)
+
+/*
+ *------------------------------------------------------------------------------
+ *  Fuel moisture and mass weighting classes.
+ *------------------------------------------------------------------------------
+ */
+
+#define  FIRE_LIFE_CATS     (2) /* Number of fuel particle life categories */
+#define  FIRE_LIFE_DEAD     (0)
+#define  FIRE_LIFE_LIVE     (1)
+
+#define  FIRE_SIZE_CLASSES  (6) /* Number of mass weighting classes. */
+
+#define  FIRE_MCLASSES      (6) /* Number of fuel moisture classes. */
+#define  FIRE_MCLASS_1HR    (0)
+#define  FIRE_MCLASS_10HR   (1)
+#define  FIRE_MCLASS_100HR  (2)
+#define  FIRE_MCLASS_1000HR (3)
+#define  FIRE_MCLASS_HERB   (4)
+#define  FIRE_MCLASS_WOOD   (5)
+

+/*
+ *------------------------------------------------------------------------------
+ *  FuelParticleData structure: fuel particle input and intermediate attributes.
+ *------------------------------------------------------------------------------
+ */
+
+typedef struct fuelParticleDataStruct
+{
+    /* INPUT */
+    double load;                /* fuel loading                     (lb/sqft) */
+    double savr;                /* surface area-to-volume ratio        (1/ft) */
+    double dens;                /* particle density                 (lb/cuft) */
+    double heat;                /* heat of combustion                (BTU/lb) */
+    double stot;                /* total silica content        (fraction odw) */
+    double seff;                /* effective silica content    (fraction odw) */
+    /* PARTICLE_DEPENDENT */
+    double area;                /* surface area */
+    double sigma;               /* exp(-138./sigma)                      (dl) */
+    /* MODEL-DEPENDENT */
+    double awtg;                /* surface area derived weighting factor (dl) */
+    double gwtg;                /* size class area weighting factor */
+    /* ENVIRONMENT-DEPENDENT */
+    double mois;                /* particle moisture content       (fraction) */
+    size_t live;                /* life category 0=dead, 1=live               */
+    size_t type;                /* type category 0=dead, 1=herb, 2=live woody */
+    size_t sizeClass;           /* fuel moisture size class                   */
+} FuelParticleData, *FuelParticlePtr, *PartPtr;
+
+#define FIRE_TYPE_DEAD   (1)
+#define FIRE_TYPE_HERB   (2)
+#define FIRE_TYPE_WOOD   (3)
+
+/* FuelParticleData structure access macros. */
+
+#define Fuel_Live(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->live)
+
+#define Fuel_Type(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->type)
+
+#define Fuel_SizeClass(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->sizeClass)
+
+#define Fuel_Load(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->load)
+
+#define Fuel_Savr(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->savr)
+
+#define Fuel_Heat(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->heat)
+
+#define Fuel_Density(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->dens)
+
+#define Fuel_SiTotal(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->stot)
+
+#define Fuel_SiEffective(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->seff)
+
+#define Fuel_SurfaceArea(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->area)
+
+#define Fuel_AreaWtg(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->awtg)
+
+#define Fuel_SizeAreaWtg(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->gwtg)
+
+#define Fuel_SigmaFactor(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->sigma)
+
+#define Fuel_Moisture(catalog,model,particle) \
+                ((catalog)->modelPtr[(model)]->partPtr[(particle)]->mois)
+

+/*
+ *------------------------------------------------------------------------------
+ *  FuelModelData structure: fuel model bed input attributes.
+ *------------------------------------------------------------------------------
+ */
+
+typedef struct fuelModelDataStruct
+{
+    /* Input variables. */
+    size_t modelId;             /* fuel model number                          */
+    size_t combustion;          /* 0 if combustion not yet calculated         */
+    size_t maxParticles;        /* maximum number of FuelParticles            */
+    size_t particles;           /* current number of FuelParticles            */
+    PartPtr *partPtr;           /* array of pointers to Fuel Particles        */
+    char  *name;                /* fuel model short name                      */
+    char  *desc;                /* fuel model description text                */
+    char  *reserved1;           /* used for alignment                         */
+    double depth;               /* fuel bed depth                        (ft) */
+    double mext;                /* dead fuel extinction moisture   (fraction) */
+    double adjust;              /* spread rate adjustment factor         (dl) */
+    /* Combustion intermediates. */
+    double awtg[2];             /* dead & live fuel area weighting factors    */
+    double rxFactor[2];         /* dead and live fuel rx factors              */
+    double fineDead;            /* fine dead fuel ratio                       */
+    double liveFactor;          /* live fuel moisture extinction factor       */
+    double rhob;                /* fuel bed bulk density                      */
+    double taur;                /* residence time                       (min) */
+    double propFlux;            /* propagating flux ratio                     */
+    double slopeK;              /* slope parameter 'k'                        */
+    double windB;               /* wind parameter 'b'                         */
+    double windE;               /* wind parameter (ratio**e/c)                */
+    double windK;               /* wind parameter (c * ratio**-e)             */
+    /* Current environment. */
+    double moisture[FIRE_MCLASSES]; /* array of fuel moistures (fraction odw) */
+    double windFpm;             /* wind speed                        (ft/min) */
+    double windDeg;             /* wind vector         (degrees from upslope) */
+    double slope;               /* slope                         (rise/reach) */
+    double aspect;              /* aspect (downslope) azimuth  (compass degs) */
+    /* Updated by Fire_SpreadNoWindNoSlope() */
+    double rxInt;               /* reaction intensity          (BTU/sqft/min) */
+    double spread0;             /* no-wind, no-slope spread rate     (ft/min) */
+    double hpua;                /* heat per unit area              (BTU/sqft) */
+    /* Updated by Fire_SpreadWindSlopeMax() */
+    double spreadMax;           /* spread in direction of max spread (ft/min) */
+    double azimuthMax;          /* direction of maximum spread      (degrees) */
+    double effWind;             /* effective windspeed                        */
+    double lwRatio;             /* length-to-width ratio for eff windspeed    */
+    double eccentricity;        /* eccentricity of ellipse for eff windspeed  */
+    double phiW;                /* wind factor                                */
+    double phiS;                /* slope factor                               */
+    double phiEw;               /* combined wind-slope factor                 */
+    size_t wLimit;              /* wind limit 0=not reached, 1=reached        */
+    size_t reserved2;           /* used for alignment                         */
+    /* Updated by Fire_SpreadAtAzimuth() */
+    double spreadAny;           /* spread rate at arbitrary azimuth  (ft/min) */
+    double azimuthAny;          /* direction of arbitrary spread    (degrees) */
+    double byrams;              /* fireline intensity              (BTU/ft/s) */
+    double flame;               /* flame length                          (ft) */
+    double scorch;              /* scorch height                         (ft) */
+} FuelModelData, *FuelModelPtr;
+
+/* Fuel model input variable macros. */
+#define Fuel_Model(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->modelId)
+
+#define Fuel_Name(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->name)
+
+#define Fuel_Desc(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->desc)
+
+#define Fuel_Depth(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->depth)
+
+#define Fuel_Mext(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->mext)
+
+#define Fuel_SpreadAdjustment(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->adjust)
+
+#define Fuel_CombustionFlag(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->combustion)
+
+#define Fuel_MaxParticles(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->maxParticles)
+
+#define Fuel_Particles(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->particles)
+
+#define Fuel_ParticleArray(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->partPtr)
+
+#define Fuel_ParticlePtr(catalog,model,particle) \
+                    ((catalog)->modelPtr[(model)]->partPtr[(particle)])
+
+/* Fuel model combustion intermediates macros. */
+#define Fuel_LifeAreaWtg(catalog,model,life) \
+                    ((catalog)->modelPtr[(model)]->awtg[(life)])
+
+#define Fuel_LifeRxFactor(catalog,model,life) \
+                    ((catalog)->modelPtr[(model)]->rxFactor[(life)])
+
+#define Fuel_FineDead(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->fineDead)
+
+#define Fuel_LiveMextFactor(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->liveFactor)
+
+#define Fuel_BulkDensity(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->rhob)
+
+#define Fuel_ResidenceTime(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->taur)
+
+#define Fuel_PropFlux(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->propFlux)
+
+#define Fuel_SlopeK(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->slopeK)
+
+#define Fuel_WindB(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->windB)
+
+#define Fuel_WindE(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->windE)
+
+#define Fuel_WindK(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->windK)
+
+/* Fuel model fire behavior variable macros. */
+#define Fuel_RxIntensity(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->rxInt)
+
+#define Fuel_Spread0(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->spread0)
+
+#define Fuel_HeatPerUnitArea(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->hpua)
+
+#define Fuel_SpreadMax(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->spreadMax)
+
+#define Fuel_AzimuthMax(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->azimuthMax)
+
+#define Fuel_SpreadAny(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->spreadAny)
+
+#define Fuel_AzimuthAny(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->azimuthAny)
+
+#define Fuel_EffectiveWind(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->effWind)
+
+#define Fuel_LwRatio(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->lwRatio)
+
+#define Fuel_Eccentricity(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->eccentricity)
+
+#define Fuel_PhiWind(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->phiW)
+
+#define Fuel_PhiSlope(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->phiS)
+
+#define Fuel_PhiEffWind(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->phiEw)
+
+#define Fuel_WindLimit(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->wLimit)
+
+#define Fuel_ByramsIntensity(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->byrams)
+
+#define Fuel_FlameLength(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->flame)
+
+#define Fuel_ScorchHeight(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->scorch)
+
+/* Fuel model environment variable macros. */
+#define Fuel_EnvMoisture(catalog,model,mclass) \
+                    ((catalog)->modelPtr[(model)]->moisture[(mclass)])
+
+#define Fuel_WindSpeed(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->windFpm)
+
+#define Fuel_WindDir(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->windDeg)
+
+#define Fuel_Slope(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->slope)
+
+#define Fuel_Aspect(catalog,model) \
+                    ((catalog)->modelPtr[(model)]->aspect)
+

+/*
+ *------------------------------------------------------------------------------
+ *  FuelCatData structure; provides a complete fuel catalog.
+ *------------------------------------------------------------------------------
+ */
+
+#define FIRE_CATALOG_MAGIC      (19520904L)
+#define FIRE_ERROR_BUFFER_SIZE  (1024)
+
+typedef struct fuelCatalogStruct
+{
+    long      magicCookie;      /* magic cookie for sanity checking           */
+    int       status;           /* return status of most recent call          */
+    size_t    maxModels;        /* maximum number of models in this catalog   */
+    size_t    flameClasses;     /* size of the flame length array             */
+    char         *name;         /* name for this catalog instance             */
+    char         *error;        /* error message buffer                       */
+    FuelModelPtr *modelPtr;     /* array of ModelPtr[maxModels+1]             */
+    double       *flamePtr;     /* flame length lookup array                  */
+    double        flameStep;    /* size of each flame length table class (ft) */
+} FuelCatalogData, *FuelCatalogPtr;
+
+#define FuelCat_MagicCookie(catalog)    (catalog->magicCookie)
+#define FuelCat_MaxModels(catalog)      (catalog->maxModels)
+#define FuelCat_Status(catalog)         (catalog->status)
+#define FuelCat_FlameClasses(catalog)   (catalog->flameClasses)
+#define FuelCat_FlameStep(catalog)      (catalog->flameStep)
+#define FuelCat_FlameArray(catalog)     (catalog->flamePtr)
+#define FuelCat_Name(catalog)           (catalog->name)
+#define FuelCat_Error(catalog)          (catalog->error)
+#define FuelCat_ModelArray(catalog)     (catalog->modelPtr)
+#define FuelCat_ModelPtr(catalog,model) (catalog->modelPtr[model])
+

+/*
+ *------------------------------------------------------------------------------
+ *  Function prototypes for fire behavior computations.
+ *------------------------------------------------------------------------------
+ */
+
+#define FIRE_NONE       (0)
+#define FIRE_BYRAMS     (1)
+#define FIRE_FLAME      (2)
+#define FIRE_SCORCH     (4)
+
+EXTERN int Fire_FlameScorch _ANSI_ARGS_((
+    FuelCatalogPtr catalog,     /* FuelCatalogData instance pointer           */
+    size_t  model,              /* fuel model number            [0-maxModels] */
+    size_t  doWhich     /* FIRE_NONE | FIRE_BYRAMS | FIRE_FLAME | FIRE_SCORCH */
+    )) ;
+
+EXTERN int Fire_FuelCombustion _ANSI_ARGS_((
+    FuelCatalogPtr catalog,     /* FuelCatalogData instance pointer           */
+    size_t  model               /* fuel model number            [0-maxModels] */
+    )) ;
+
+EXTERN int Fire_SpreadNoWindNoSlope _ANSI_ARGS_((
+    FuelCatalogPtr catalog,     /* FuelCatalogData instance pointer           */
+    size_t  model,              /* fuel model number            [0-maxModels] */
+    double  moisture[FIRE_MCLASSES]  /* array of fuel moistures   (fractions) */
+    )) ;
+
+EXTERN int Fire_SpreadWindSlopeMax _ANSI_ARGS_((
+    FuelCatalogPtr catalog,     /* FuelCatalogData instance pointer           */
+    size_t  model,              /* fuel model number            [0-maxModels] */
+    double  windFpm,            /* wind speed                        (ft/min) */
+    double  windDeg,            /* wind bearing vector         (compass degs) */
+    double  slope,              /* slope                         (rise/reach) */
+    double  aspect              /* aspect (downslope) azimuth  (compass degs) */
+    )) ;
+
+EXTERN int Fire_SpreadAtAzimuth _ANSI_ARGS_((
+    FuelCatalogPtr catalog,     /* FuelCatalogData instance pointer           */
+    size_t  model,              /* fuel model number            [0-maxModels] */
+    double  azimuth,            /* fire spread azimuth     (deg from upslope) */
+    size_t  doWhich     /* FIRE_NONE | FIRE_BYRAMS | FIRE_FLAME | FIRE_SCORCH */
+    )) ;
+
+/*
+ *------------------------------------------------------------------------------
+ *  Function prototypes for creating and destroying fuel catalogs, fuel models,
+ *  fuel particles, and flame length tables.
+ *------------------------------------------------------------------------------
+ */
+
+EXTERN int Fire_FlameLengthTable _ANSI_ARGS_((
+    FuelCatalogPtr catalog,     /* FuelCatalogData instance pointer           */
+    size_t  flameClasses,       /* number of flame length classes             */
+    double  flameStep           /* flame length step value per class          */
+    )) ;
+
+EXTERN FuelCatalogPtr Fire_FuelCatalogCreate _ANSI_ARGS_((
+    char  *name,                /* FuelCatalogData instance name              */
+    size_t maxModels            /* maximum modelId allowed in this catalog    */
+    )) ;
+
+EXTERN FuelCatalogPtr Fire_FuelCatalogCreateStandard _ANSI_ARGS_((
+    char  *name,                /* FuelCatalogData instance name              */
+    size_t maxModels            /* maximum modelId allowed in this catalog    */
+    )) ;
+
+EXTERN int Fire_FuelCatalogDestroy _ANSI_ARGS_((
+    FuelCatalogPtr catalog      /* FuelCatalogData instance pointer           */
+    )) ;
+
+EXTERN int Fire_FuelModelCreate _ANSI_ARGS_((
+    FuelCatalogPtr catalog,     /* FuelCatalogData instance                   */
+    size_t  model,              /* fuel model number            [0-maxModels] */
+    char   *name,               /* short name                                 */
+    char   *desc,               /* longer description                         */
+    double  depth,              /* bed depth                             (ft) */
+    double  mext,               /* moisture of extinction                (dl) */
+    double  adjust,             /* spread adjustment factor              (dl) */
+    size_t  maxParticles        /* maximum number of fuel model particles     */
+    )) ;
+
+EXTERN int Fire_FuelModelDestroy _ANSI_ARGS_((
+    FuelCatalogPtr catalog,     /* FuelCatalogData instance pointer           */
+    size_t         model        /* fuel model id number         [0-maxModels] */
+    )) ;
+
+EXTERN int Fire_FuelModelExists _ANSI_ARGS_((
+    FuelCatalogPtr catalog,     /* FuelCatalogData instance pointer           */
+    size_t         model        /* fuel model id number         [0-maxModels] */
+    )) ;
+
+EXTERN int Fire_FuelParticleAdd _ANSI_ARGS_((
+    FuelCatalogPtr catalog,     /* FuelCatalogData instance pointer           */
+    size_t  model,              /* fuel model id number         [0-maxModels] */
+    size_t  type,               /* FIRE_TYPE_DEAD, _TYPE_HERB, or _TYPE_WOOD  */
+    double  load,               /* fuel load                        (lbs/ft2) */
+    double  savr,               /* surface-area-to-volume ratio     (ft2/ft3) */
+    double  dens,               /* density                          (lbs/ft3) */
+    double  heat,               /* heat of combustion               (btus/lb) */
+    double  stot,               /* total silica content               (lb/lb) */
+    double  seff                /* effective silica content           (lb/lb) */
+    )) ;
+
+#ifdef NEED_STRDUP
+char *strdup ( const char *str ) ;
+#endif
+
+#endif
+
+/*
+ *******************************************************************************
+ * End of fireLib.h
+ *******************************************************************************
+ */
diff --git a/src/modules/simulation/sim_hydrology/diffusion_gradient_concentration.cpp b/src/modules/simulation/sim_hydrology/diffusion_gradient_concentration.cpp
index 998ac1e..4c063e4 100755
--- a/src/modules/simulation/sim_hydrology/diffusion_gradient_concentration.cpp
+++ b/src/modules/simulation/sim_hydrology/diffusion_gradient_concentration.cpp
@@ -62,13 +62,12 @@
 ///////////////////////////////////////////////////////////
 
 //---------------------------------------------------------
-#define MASK_LAND	0
 #define MASK_LAKE	1
 #define MASK_INLET	2
 #define MASK_OUTLET	3
 
 //---------------------------------------------------------
-CSG_String	Description	= _TW(
+static const CSG_String	Description	= _TW(
 	"Cellular automata are simple computational operators, but despite their simplicity, "
 	"they allow the simulation of highly complex processes. This tool has been created to "
 	"apply the concept of cellular automata to simulate diffusion and flow processes in "
@@ -79,14 +78,12 @@ CSG_String	Description	= _TW(
 	"Values of mask grid are expected to be 1 for water area, 2 for inlet, 3 for outlet and "
 	"0 for non water.\n"
 	"\n"
-	"\nReferences:\n"
-	"<ul><li>"
-	"Heinrich, R. / Conrad, O. (2008): "
-	"Diffusion, Flow and Concentration Gradient Simulation with SAGA GIS using Cellular Automata Methods. "
-	"In: B�hner, J. / Blaschke / T., Montanarella, L. [Eds.]: SAGA � Seconds Out. "
-	"Hamburger Beitr�ge zur Physischen Geographie und Landschafts�kologie, Vol.19, p59-70. "
-	"<a href=\"http://downloads.sourceforge.net/saga-gis/hbpl19_07.pdf\">online</a> "
-	"</li></ul>"
+	"References:\n<ul>"
+	"<li>Heinrich, R. / Conrad, O. (2008):"
+	" Diffusion, Flow and Concentration Gradient Simulation with SAGA GIS using Cellular Automata Methods."
+	" In: Boehner, J. / Blaschke, T. / Montanarella, L. [Eds.]:"
+	" SAGA - Seconds Out. Hamburger Beitraege zur Physischen Geographie und Landschaftsoekologie, Vol.19, p59-70,"
+	" <a href=\"http://downloads.sourceforge.net/saga-gis/hbpl19_07.pdf\">online</a>.</li></ul>\n"
 );
 
 
@@ -171,7 +168,14 @@ bool CSim_Diffusion_Gradient::On_Execute(void)
 //---------------------------------------------------------
 inline bool CSim_Diffusion_Gradient::is_Lake(int x, int y)
 {
-	return( m_pMask->Get_System().is_InGrid(x, y) && m_pMask->asInt(x, y) != MASK_LAND );
+	if( is_InGrid(x, y) )
+	{
+		int	Mask	= m_pMask->asInt(x, y);
+
+		return( Mask == MASK_LAKE || Mask == MASK_INLET || Mask == MASK_OUTLET );
+	}
+
+	return( false );
 }
 
 
diff --git a/src/modules/terrain_analysis/ta_compound/TA_Standard.cpp b/src/modules/terrain_analysis/ta_compound/TA_Standard.cpp
index e509a0f..67c55a6 100755
--- a/src/modules/terrain_analysis/ta_compound/TA_Standard.cpp
+++ b/src/modules/terrain_analysis/ta_compound/TA_Standard.cpp
@@ -91,7 +91,7 @@ CTA_Standard::CTA_Standard(void)
 	Parameters.Add_Grid  (NULL, "VCURV"      , _TL("Profile Curvature"         ), _TL(""), PARAMETER_OUTPUT);
 	Parameters.Add_Grid  (NULL, "CONVERGENCE", _TL("Convergence Index"         ), _TL(""), PARAMETER_OUTPUT);
 	Parameters.Add_Grid  (NULL, "SINKS"      , _TL("Closed Depressions"        ), _TL(""), PARAMETER_OUTPUT);
-	Parameters.Add_Grid  (NULL, "CAREA"      , _TL("Total Catchment Area"      ), _TL(""), PARAMETER_OUTPUT);
+	Parameters.Add_Grid  (NULL, "FLOW"       , _TL("Total Catchment Area"      ), _TL(""), PARAMETER_OUTPUT);
 	Parameters.Add_Grid  (NULL, "WETNESS"    , _TL("Topographic Wetness Index" ), _TL(""), PARAMETER_OUTPUT);
 	Parameters.Add_Grid  (NULL, "LSFACTOR"   , _TL("LS-Factor"                 ), _TL(""), PARAMETER_OUTPUT);
 	Parameters.Add_Shapes(NULL, "CHANNELS"   , _TL("Channel Network"           ), _TL(""), PARAMETER_OUTPUT, SHAPE_TYPE_Line);
@@ -177,14 +177,14 @@ bool CTA_Standard::On_Execute(void)
 	//-----------------------------------------------------
 	SG_RUN_MODULE_ExitOnError("ta_hydrology"       , 0,
 			SG_MODULE_PARAMETER_SET("ELEVATION"    , &DEMP)	// << preprocessed DEM
-		&&	SG_MODULE_PARAMETER_SET("CAREA"        , Parameters("CAREA"))
+		&&	SG_MODULE_PARAMETER_SET("FLOW"         , Parameters("FLOW"))
 		&&	SG_MODULE_PARAMETER_SET("METHOD"       , 4)		// MFD
 	)
 
 	//-----------------------------------------------------
 	SG_RUN_MODULE_ExitOnError("ta_hydrology"       , 19,
 			SG_MODULE_PARAMETER_SET("DEM"          , &DEMP)
-		&&	SG_MODULE_PARAMETER_SET("TCA"          , Parameters("CAREA"))
+		&&	SG_MODULE_PARAMETER_SET("TCA"          , Parameters("FLOW"))
 		&&	SG_MODULE_PARAMETER_SET("WIDTH"        , &TMP2)
 		&&	SG_MODULE_PARAMETER_SET("SCA"          , &TMP1)	// >> specific catchment area
 		&&	SG_MODULE_PARAMETER_SET("METHOD"       , 1)
@@ -224,20 +224,19 @@ bool CTA_Standard::On_Execute(void)
 	)
 
 	//-----------------------------------------------------
-	SG_RUN_MODULE_ExitOnError("grid_tools"         , 19,	// grid orientation
-			SG_MODULE_PARAMETER_SET("INPUT"        , &DEMP)
-		&&	SG_MODULE_PARAMETER_SET("RESULT"       , &TMP1)
-		&&	SG_MODULE_PARAMETER_SET("METHOD"       , 3)	// invert
+	SG_RUN_MODULE_ExitOnError("grid_tools"         , 34,	// invert grid
+			SG_MODULE_PARAMETER_SET("GRID"         , &DEMP)
+		&&	SG_MODULE_PARAMETER_SET("INVERSE"      , &TMP1)
 	)
 
-	SG_RUN_MODULE_ExitOnError("ta_channels"        , 6,	// strahler order
+	SG_RUN_MODULE_ExitOnError("ta_channels"        ,  6,	// strahler order
 			SG_MODULE_PARAMETER_SET("DEM"          , &TMP1)
 		&&	SG_MODULE_PARAMETER_SET("STRAHLER"     , &TMP2)
 	)
 
 	TMP2.Set_NoData_Value_Range(0, 4);
 
-	SG_RUN_MODULE_ExitOnError("ta_channels"        , 3,	// vertical channel network distance
+	SG_RUN_MODULE_ExitOnError("ta_channels"        ,  3,	// vertical channel network distance
 			SG_MODULE_PARAMETER_SET("ELEVATION"    , &TMP1)
 		&&	SG_MODULE_PARAMETER_SET("CHANNELS"     , &TMP2)
 		&&	SG_MODULE_PARAMETER_SET("DISTANCE"     , Parameters("VALL_DEPTH"))
@@ -245,7 +244,7 @@ bool CTA_Standard::On_Execute(void)
 
 	Parameters("VALL_DEPTH")->asGrid()->Set_Name(_TL("Valley Depth"));
 
-	SG_RUN_MODULE_ExitOnError("grid_calculus"      , 1,	// grid calculator
+	SG_RUN_MODULE_ExitOnError("grid_calculus"      ,  1,	// grid calculator
 			SG_MODULE_PARAMETER_SET("RESULT"       , Parameters("RSP"))
 		&&	SG_MODULE_PARAMETER_SET("FORMULA"      , SG_T("g1 / (g1 + g2)"))
 		&&	SG_MODULE_PARAMETER_SET("NAME"         , _TL("Relative Slope Position"))
diff --git a/src/modules/terrain_analysis/ta_hydrology/Flow_AreaDownslope.cpp b/src/modules/terrain_analysis/ta_hydrology/Flow_AreaDownslope.cpp
index f849606..06140a9 100755
--- a/src/modules/terrain_analysis/ta_hydrology/Flow_AreaDownslope.cpp
+++ b/src/modules/terrain_analysis/ta_hydrology/Flow_AreaDownslope.cpp
@@ -270,9 +270,9 @@ bool CFlow_AreaDownslope::On_Execute(void)
 
 			pFlow->Get_System()->Assign(Parameters("ELEVATION")->asGrid()->Get_System());
 
-			pParameters->Get_Parameter("ELEVATION")	->Set_Value(Parameters("ELEVATION")	->asGrid());
-			pParameters->Get_Parameter("SINKROUTE")	->Set_Value(Parameters("SINKROUTE")	->asGrid());
-			pParameters->Get_Parameter("CAREA")		->Set_Value(Parameters("AREA")		->asGrid());
+			pParameters->Get_Parameter("ELEVATION")->Set_Value(Parameters("ELEVATION")->asGrid());
+			pParameters->Get_Parameter("SINKROUTE")->Set_Value(Parameters("SINKROUTE")->asGrid());
+			pParameters->Get_Parameter("FLOW"     )->Set_Value(Parameters("AREA"     )->asGrid());
 		}
 	}
 
diff --git a/src/modules/terrain_analysis/ta_slope_stability/WETNESS_01.cpp b/src/modules/terrain_analysis/ta_slope_stability/WETNESS_01.cpp
index 7d8576e..79b477a 100755
--- a/src/modules/terrain_analysis/ta_slope_stability/WETNESS_01.cpp
+++ b/src/modules/terrain_analysis/ta_slope_stability/WETNESS_01.cpp
@@ -1,5 +1,5 @@
 /**********************************************************
- * Version $Id: WETNESS_01.cpp 2231 2014-09-15 14:47:01Z oconrad $
+ * Version $Id: WETNESS_01.cpp 2834 2016-02-29 08:06:28Z oconrad $
  *********************************************************/
 
 ///////////////////////////////////////////////////////////
@@ -256,7 +256,7 @@ bool CWETNESS::On_Execute(void)
 
 		RUN_MODULE("ta_hydrology"			, 0,
 				SET_PARAMETER("ELEVATION"	, &DEM)
-			&&	SET_PARAMETER("CAREA"		, pB)
+			&&	SET_PARAMETER("FLOW"		, pB)
 			&&	SET_PARAMETER("METHOD"		, Parameters("METHOD"))
 		)
 	}
@@ -264,7 +264,7 @@ bool CWETNESS::On_Execute(void)
 	{
 		RUN_MODULE("ta_hydrology"			, 0,
 				SET_PARAMETER("ELEVATION"	, pDEM)
-			&&	SET_PARAMETER("CAREA"		, pB)
+			&&	SET_PARAMETER("FLOW"		, pB)
 			&&	SET_PARAMETER("METHOD"		, Parameters("METHOD"))
 		)
 	}
diff --git a/src/saga_core/saga_api/saga_api.h b/src/saga_core/saga_api/saga_api.h
index 90a8784..bc3e14e 100755
--- a/src/saga_core/saga_api/saga_api.h
+++ b/src/saga_core/saga_api/saga_api.h
@@ -128,8 +128,8 @@
 //---------------------------------------------------------
 #define SAGA_MAJOR_VERSION		2
 #define SAGA_MINOR_VERSION		2
-#define SAGA_RELEASE_NUMBER		4
-#define SAGA_VERSION			SG_T("2.2.4")
+#define SAGA_RELEASE_NUMBER		5
+#define SAGA_VERSION			SG_T("2.2.5")
 
 
 ///////////////////////////////////////////////////////////
diff --git a/src/saga_core/saga_cmd/saga_cmd.cpp b/src/saga_core/saga_cmd/saga_cmd.cpp
index 5f93258..e931355 100755
--- a/src/saga_core/saga_cmd/saga_cmd.cpp
+++ b/src/saga_core/saga_cmd/saga_cmd.cpp
@@ -1,5 +1,5 @@
 /**********************************************************
- * Version $Id: saga_cmd.cpp 2821 2016-02-24 09:21:06Z oconrad $
+ * Version $Id: saga_cmd.cpp 2834 2016-02-29 08:06:28Z oconrad $
  *********************************************************/
 
 ///////////////////////////////////////////////////////////
@@ -824,7 +824,7 @@ void		Create_Example	(void)
 		"saga_cmd %%FLAGS%% ta_preprocessor      2 -DEM=dem.sgrd -DEM_PREPROC=dem.sgrd\n"
 		"saga_cmd %%FLAGS%% ta_lighting          0 -ELEVATION=dem.sgrd -SHADE=shade.sgrd -METHOD=0 -AZIMUTH=-45 -DECLINATION=45\n"
 		"saga_cmd %%FLAGS%% ta_morphometry       0 -ELEVATION=dem.sgrd -SLOPE=slope.sgrd -ASPECT=aspect.sgrd -C_CROS=hcurv.sgrd -C_LONG=vcurv.sgrd\n"
-		"saga_cmd %%FLAGS%% ta_hydrology         0 -ELEVATION=dem.sgrd -CAREA=carea.sgrd\n"
+		"saga_cmd %%FLAGS%% ta_hydrology         0 -ELEVATION=dem.sgrd -FLOW=flow.sgrd\n"
 		"\n"
 		"ECHO ____________________________\n"
 		"ECHO run saga cmd script\n"
diff --git a/src/saga_core/saga_gui/res/saga.bra.txt b/src/saga_core/saga_gui/res/saga.bra.txt
index dcb95c0..a5d3d71 100755
--- a/src/saga_core/saga_gui/res/saga.bra.txt
+++ b/src/saga_core/saga_gui/res/saga.bra.txt
@@ -2998,6 +2998,7 @@ TEXT	TRANSLATION
 "Minimum Temperature"	"Temperatura M�nima"
 "Minimum Threshold"	"Limite m�nimo"
 "Minimum Value"	"Valor m�nimo"
+"Minimum Weight"	""
 "Minimum and maximum of attribute range []."	"M�nimo e m�ximo de gama atributo []."
 "Minimum and maximum x-coordinate of AOI."	"M�nimos e m�ximos coordenada x da AOI."
 "Minimum and maximum y-coordinate of AOI."	"M�nimo e m�ximo coordenada y AOI."
@@ -3211,6 +3212,7 @@ TEXT	TRANSLATION
 "Node"	"N�"
 "Nodes"	"N�s"
 "Non-Linear Module"	"M�dulo n�o-linear "
+"Non-Sibsonian"	""
 "None"	"Nenhum"
 "Normal"	"Normal"
 "Normal Updating"	"Atualiza��o normal"
@@ -6019,7 +6021,6 @@ TEXT	TRANSLATION
 "create model from training areas"	"criar modelo de �reas de forma��o"
 "created from history"	"criado a partir do hist�rico"
 "creating batch file example"	"criando exemplo de arquivo em lotes"
-"creating interpolator"	"criando interpolator"
 "creating tool documentation files"	"cria��o de arquivos de documenta��o de ferramentas"
 "cross"	"atravessar"
 "cubic convolution"	"convolu��o c�bica"
@@ -6222,6 +6223,7 @@ TEXT	TRANSLATION
 "grid"	"grade"
 "grid cell size"	"tamanho da c�lula da grade"
 "grid cells"	"c�lulas da grade"
+"grid cells array creation"	""
 "grid has been dropped"	"a grade foi descartada"
 "grid list"	"lista de grades"
 "grid name"	"nome da grade"
@@ -6360,6 +6362,7 @@ TEXT	TRANSLATION
 "least squares fitted plane (Horn 1981, Costa-Cabral & Burgess 1996)"	"least squares fitted plane (Horn 1981, Costa-Cabral & Burgess 1996)"
 "leave one out"	"deixar um fora"
 "left"	"esquerda"
+"less than 3 valid points"	""
 "less than two classes in model"	"menos de duas classes no modelo"
 "less than two polygons in layer, nothing to do!"	"menos de dois pol�gonos na camada, nada a fazer!"
 "level"	"n�vel"
@@ -6462,6 +6465,7 @@ TEXT	TRANSLATION
 "minimum x value"	"valor m�nimo x"
 "minimum y value"	"valor m�nimo y"
 "minutes"	"minutos"
+"mirrored"	""
 "missing icon tags"	"�cone de marcas faltando"
 "missing operand"	"operando em falta"
 "missing tool chain tags"	"etiquetas faltando na cadeia de ferramentas"
@@ -6766,6 +6770,7 @@ TEXT	TRANSLATION
 "resolution has to be greater than zero"	"a resolu��o tem de ser maior que zero"
 "restore from file"	"restaurar a partir do arquivo"
 "restore model from file"	"modelo de restaura��o de arquivo"
+"restricts extrapolation by assigning minimal allowed weight for a vertex (normally \"	""
 "return"	"retorno"
 "rgb coded raster map to be draped"	"rgb mapa raster codificado para ser envolto"
 "rgb coded values"	"valores rgb codificados"
@@ -6942,7 +6947,6 @@ TEXT	TRANSLATION
 "transaction started"	"transa��o iniciada"
 "triangle (down)"	"tri�ngulo (para baixo)"
 "triangle (up)"	"tri�ngulo (para cima)"
-"triangulating"	"triangula��o"
 "trying to drop table"	"tentando largar tabela"
 "type -h or --help for further information"	"escreva -h ou --help para mais informa��es"
 "unable to create file."	"incapaz de criar arquivo."
diff --git a/src/saga_core/saga_gui/res/saga.ger.txt b/src/saga_core/saga_gui/res/saga.ger.txt
index bc8a8ef..aabe138 100755
--- a/src/saga_core/saga_gui/res/saga.ger.txt
+++ b/src/saga_core/saga_gui/res/saga.ger.txt
@@ -2998,6 +2998,7 @@ TEXT	TRANSLATION
 "Minimum Temperature"	""
 "Minimum Threshold"	""
 "Minimum Value"	"minimaler Wert"
+"Minimum Weight"	""
 "Minimum and maximum of attribute range []."	""
 "Minimum and maximum x-coordinate of AOI."	""
 "Minimum and maximum y-coordinate of AOI."	""
@@ -3211,6 +3212,7 @@ TEXT	TRANSLATION
 "Node"	"Knoten"
 "Nodes"	"Knoten"
 "Non-Linear Module"	"Nichtlineare Module"
+"Non-Sibsonian"	""
 "None"	"Nichts"
 "Normal"	""
 "Normal Updating"	""
@@ -6019,7 +6021,6 @@ TEXT	TRANSLATION
 "create model from training areas"	""
 "created from history"	""
 "creating batch file example"	"erzeuge Batch-Datei als Beispiel"
-"creating interpolator"	"erzeuge Interpolator"
 "creating tool documentation files"	"Erstelle Dateien zur Werkzeugdokumentation"
 "cross"	"Kreuz"
 "cubic convolution"	""
@@ -6222,6 +6223,7 @@ TEXT	TRANSLATION
 "grid"	"Raster"
 "grid cell size"	"Gr��e rasterzelle"
 "grid cells"	"Rasterzellen"
+"grid cells array creation"	""
 "grid has been dropped"	""
 "grid list"	"Liste Raster"
 "grid name"	"Name Raster"
@@ -6360,6 +6362,7 @@ TEXT	TRANSLATION
 "least squares fitted plane (Horn 1981, Costa-Cabral & Burgess 1996)"	""
 "leave one out"	""
 "left"	"links"
+"less than 3 valid points"	""
 "less than two classes in model"	""
 "less than two polygons in layer, nothing to do!"	""
 "level"	"Level"
@@ -6462,6 +6465,7 @@ TEXT	TRANSLATION
 "minimum x value"	"minimaler x-Wert"
 "minimum y value"	"minimaler y-Wert"
 "minutes"	"Minuten"
+"mirrored"	""
 "missing icon tags"	""
 "missing operand"	"fehlender Operand"
 "missing tool chain tags"	""
@@ -6766,6 +6770,7 @@ TEXT	TRANSLATION
 "resolution has to be greater than zero"	"Die Aufl�sung muss gr��er als null sein"
 "restore from file"	""
 "restore model from file"	""
+"restricts extrapolation by assigning minimal allowed weight for a vertex (normally \"	""
 "return"	"return"
 "rgb coded raster map to be draped"	""
 "rgb coded values"	""
@@ -6942,7 +6947,6 @@ TEXT	TRANSLATION
 "transaction started"	""
 "triangle (down)"	"Dreieck (Spitze abw�rts)"
 "triangle (up)"	"Dreieck (Spitze aufw�rts)"
-"triangulating"	"trianguliert"
 "trying to drop table"	"Versuche Tabelle zuzuweisen"
 "type -h or --help for further information"	"f�r weitere Informationen -h oder -help eingeben"
 "unable to create file."	"Datei konnte nicht erzeugt werden."
diff --git a/src/saga_core/saga_gui/res/saga.lng.txt b/src/saga_core/saga_gui/res/saga.lng.txt
index 3a10208..c841dd7 100755
--- a/src/saga_core/saga_gui/res/saga.lng.txt
+++ b/src/saga_core/saga_gui/res/saga.lng.txt
@@ -2998,6 +2998,7 @@ TEXT	TRANSLATION
 "Minimum Temperature"	""
 "Minimum Threshold"	""
 "Minimum Value"	""
+"Minimum Weight"	""
 "Minimum and maximum of attribute range []."	""
 "Minimum and maximum x-coordinate of AOI."	""
 "Minimum and maximum y-coordinate of AOI."	""
@@ -3211,6 +3212,7 @@ TEXT	TRANSLATION
 "Node"	""
 "Nodes"	""
 "Non-Linear Module"	""
+"Non-Sibsonian"	""
 "None"	""
 "Normal"	""
 "Normal Updating"	""
@@ -6019,7 +6021,6 @@ TEXT	TRANSLATION
 "create model from training areas"	""
 "created from history"	""
 "creating batch file example"	""
-"creating interpolator"	""
 "creating tool documentation files"	""
 "cross"	""
 "cubic convolution"	""
@@ -6222,6 +6223,7 @@ TEXT	TRANSLATION
 "grid"	""
 "grid cell size"	""
 "grid cells"	""
+"grid cells array creation"	""
 "grid has been dropped"	""
 "grid list"	""
 "grid name"	""
@@ -6360,6 +6362,7 @@ TEXT	TRANSLATION
 "least squares fitted plane (Horn 1981, Costa-Cabral & Burgess 1996)"	""
 "leave one out"	""
 "left"	""
+"less than 3 valid points"	""
 "less than two classes in model"	""
 "less than two polygons in layer, nothing to do!"	""
 "level"	""
@@ -6462,6 +6465,7 @@ TEXT	TRANSLATION
 "minimum x value"	""
 "minimum y value"	""
 "minutes"	""
+"mirrored"	""
 "missing icon tags"	""
 "missing operand"	""
 "missing tool chain tags"	""
@@ -6766,6 +6770,7 @@ TEXT	TRANSLATION
 "resolution has to be greater than zero"	""
 "restore from file"	""
 "restore model from file"	""
+"restricts extrapolation by assigning minimal allowed weight for a vertex (normally \"-1\" or so; lower values correspond to lower reliability; \"0\" means no extrapolation)"	""
 "return"	""
 "rgb coded raster map to be draped"	""
 "rgb coded values"	""
@@ -6942,7 +6947,6 @@ TEXT	TRANSLATION
 "transaction started"	""
 "triangle (down)"	""
 "triangle (up)"	""
-"triangulating"	""
 "trying to drop table"	""
 "type -h or --help for further information"	""
 "unable to create file."	""
diff --git a/src/saga_core/saga_gui/wksp_base_control.cpp b/src/saga_core/saga_gui/wksp_base_control.cpp
index 93e0796..7008d32 100755
--- a/src/saga_core/saga_gui/wksp_base_control.cpp
+++ b/src/saga_core/saga_gui/wksp_base_control.cpp
@@ -1,5 +1,5 @@
 /**********************************************************
- * Version $Id: wksp_base_control.cpp 2800 2016-02-18 17:06:22Z oconrad $
+ * Version $Id: wksp_base_control.cpp 2833 2016-02-26 12:30:52Z oconrad $
  *********************************************************/
 	
 ///////////////////////////////////////////////////////////
@@ -483,33 +483,11 @@ bool CWKSP_Base_Control::_Del_Active(bool bSilent)
 		return( false );
 	}
 
-	if( GetWindowStyle() & wxTR_MULTIPLE )
-	{
-		wxArrayTreeItemIds	IDs;
-
-		if( GetSelections(IDs) > 0 && (bSilent || DLG_Message_Confirm(ID_DLG_DELETE)) && (m_pManager->Get_Type() != WKSP_ITEM_Data_Manager || g_pData->Save_Modified_Sel()) )
-		{
-			UnselectAll();
-
-			for(size_t i=0; i<IDs.GetCount(); i++)
-			{
-				if( IDs[i].IsOk() )
-				{
-					_Del_Item((CWKSP_Base_Item *)GetItemData(IDs[i]), true);
-				}
-			}
+	wxTreeItemId	ID	= GetSelection();
 
-			SetFocus();
-		}
-	}
-	else
+	if( ID.IsOk() )
 	{
-		wxTreeItemId	ID	= GetSelection();
-
-		if( ID.IsOk() )
-		{
-			_Del_Item((CWKSP_Base_Item *)GetItemData(ID), bSilent);
-		}
+		_Del_Item((CWKSP_Base_Item *)GetItemData(ID), bSilent);
 	}
 
 	return( true );
diff --git a/src/saga_core/saga_gui/wksp_base_control.h b/src/saga_core/saga_gui/wksp_base_control.h
index fc01960..2a1056f 100755
--- a/src/saga_core/saga_gui/wksp_base_control.h
+++ b/src/saga_core/saga_gui/wksp_base_control.h
@@ -1,5 +1,5 @@
 /**********************************************************
- * Version $Id: wksp_base_control.h 2800 2016-02-18 17:06:22Z oconrad $
+ * Version $Id: wksp_base_control.h 2833 2016-02-26 12:30:52Z oconrad $
  *********************************************************/
 
 ///////////////////////////////////////////////////////////
@@ -120,7 +120,7 @@ protected:
 	bool						_Del_Item			(class CWKSP_Base_Item *pItem, bool bSilent);
 	bool						_Del_Item_Confirm	(class CWKSP_Base_Item *pItem);
 
-	bool						_Del_Active			(bool bSilent);
+	virtual bool				_Del_Active			(bool bSilent);
 
 	bool						_Show_Active		(void);
 
diff --git a/src/saga_core/saga_gui/wksp_base_item.cpp b/src/saga_core/saga_gui/wksp_base_item.cpp
index 1a465e5..628d70f 100755
--- a/src/saga_core/saga_gui/wksp_base_item.cpp
+++ b/src/saga_core/saga_gui/wksp_base_item.cpp
@@ -1,5 +1,5 @@
 /**********************************************************
- * Version $Id: wksp_base_item.cpp 2792 2016-02-16 16:50:35Z oconrad $
+ * Version $Id: wksp_base_item.cpp 2833 2016-02-26 12:30:52Z oconrad $
  *********************************************************/
 
 ///////////////////////////////////////////////////////////
@@ -282,13 +282,17 @@ int CWKSP_Base_Item::Parameter_Callback(CSG_Parameter *pParameter, int Flags)
 {
 	if( pParameter && pParameter->Get_Owner() && pParameter->Get_Owner()->Get_Owner() )
 	{
-		return ((CWKSP_Base_Item *)pParameter->Get_Owner()->Get_Owner())->
-			On_Parameter_Changed(pParameter->Get_Owner(), pParameter, Flags);
+		CWKSP_Base_Item	*pItem	= (CWKSP_Base_Item *)pParameter->Get_Owner()->Get_Owner();
+
+		if( pItem->GetId().IsOk() )
+		{
+			return( pItem->On_Parameter_Changed(pParameter->Get_Owner(), pParameter, Flags) );
+		}
 	}
 
 	if( g_pACTIVE )
 	{
-		return g_pACTIVE->Get_Parameters()->Update_Parameters(pParameter->Get_Owner(), false);
+		return( g_pACTIVE->Get_Parameters()->Update_Parameters(pParameter->Get_Owner(), false) );
 	}
 
 	return( 0 );
diff --git a/src/saga_core/saga_gui/wksp_data_control.cpp b/src/saga_core/saga_gui/wksp_data_control.cpp
index 82cddcf..cba4c93 100755
--- a/src/saga_core/saga_gui/wksp_data_control.cpp
+++ b/src/saga_core/saga_gui/wksp_data_control.cpp
@@ -1,5 +1,5 @@
 /**********************************************************
- * Version $Id: wksp_data_control.cpp 2800 2016-02-18 17:06:22Z oconrad $
+ * Version $Id: wksp_data_control.cpp 2833 2016-02-26 12:30:52Z oconrad $
  *********************************************************/
 	
 ///////////////////////////////////////////////////////////
@@ -69,6 +69,7 @@
 #include "res_commands.h"
 #include "res_controls.h"
 #include "res_images.h"
+#include "res_dialogs.h"
 
 #include "active.h"
 
@@ -362,6 +363,44 @@ bool CWKSP_Data_Control::Set_Item_Selected(CWKSP_Base_Item *pItem, bool bKeepMul
 	return( true );
 }
 
+//---------------------------------------------------------
+bool CWKSP_Data_Control::_Del_Active(bool bSilent)
+{
+	wxArrayTreeItemIds	IDs;
+
+	if( GetSelections(IDs) == 0 )
+	{
+		return( true );
+	}
+
+	if( !bSilent && !DLG_Message_Confirm(ID_DLG_DELETE) && !g_pData->Save_Modified_Sel() )
+	{
+		return( false );
+	}
+
+	m_bUpdate_Selection	= true;
+
+	UnselectAll();
+
+	g_pACTIVE->Set_Active(NULL);
+
+	for(size_t i=0; i<IDs.GetCount(); i++)
+	{
+		if( IDs[i].IsOk() )
+		{
+			_Del_Item((CWKSP_Base_Item *)GetItemData(IDs[i]), true);
+		}
+	}
+
+	m_bUpdate_Selection	= false;
+
+	Get_Manager()->MultiSelect_Check();
+
+	SetFocus();
+
+	return( true );
+}
+
 
 ///////////////////////////////////////////////////////////
 //														 //
diff --git a/src/saga_core/saga_gui/wksp_data_control.h b/src/saga_core/saga_gui/wksp_data_control.h
index b93deaa..58b40ac 100755
--- a/src/saga_core/saga_gui/wksp_data_control.h
+++ b/src/saga_core/saga_gui/wksp_data_control.h
@@ -1,5 +1,5 @@
 /**********************************************************
- * Version $Id: wksp_data_control.h 2800 2016-02-18 17:06:22Z oconrad $
+ * Version $Id: wksp_data_control.h 2833 2016-02-26 12:30:52Z oconrad $
  *********************************************************/
 
 ///////////////////////////////////////////////////////////
@@ -101,11 +101,13 @@ public:
 	virtual bool				Set_Item_Selected	(class CWKSP_Base_Item *pItem, bool bKeepMultipleSelection = false);
 
 
-private:
+protected:
 
 	bool						m_bUpdate_Selection;
 
 
+	virtual bool				_Del_Active			(bool bSilent);
+
 	int							_Get_Image_ID		(class CWKSP_Base_Item *pItem);
 
 
diff --git a/src/scripting/helper/make_saga_release.bat b/src/scripting/helper/make_saga_release.bat
index e9ccc36..832353b 100755
--- a/src/scripting/helper/make_saga_release.bat
+++ b/src/scripting/helper/make_saga_release.bat
@@ -3,7 +3,7 @@
 REM ___________________________________
 SET SAGA_VER_MAJOR=2
 SET SAGA_VER_MINOR=2
-SET SAGA_VER_RELEASE=4
+SET SAGA_VER_RELEASE=5
 
 SET SAGA_VERSION=saga_%SAGA_VER_MAJOR%.%SAGA_VER_MINOR%.%SAGA_VER_RELEASE%
 SET SVN__VERSION=%SAGA_VER_MAJOR%-%SAGA_VER_MINOR%-%SAGA_VER_RELEASE%

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-grass/saga.git



More information about the Pkg-grass-devel mailing list