[proj4js] 04/08: Imported Upstream version 2.3.13

Sebastiaan Couwenberg sebastic at moszumanska.debian.org
Fri Mar 11 12:57:29 UTC 2016


This is an automated email from the git hooks/post-receive script.

sebastic pushed a commit to branch master
in repository proj4js.

commit 17b8e39862a3cb738bb88461893814a1fc737395
Author: Bas Couwenberg <sebastic at xs4all.nl>
Date:   Fri Mar 11 13:46:39 2016 +0100

    Imported Upstream version 2.3.13
---
 README.md         |   20 +-
 bower.json        |    2 +-
 component.json    |    2 +-
 dist/.gitignore   |    0
 dist/proj4-src.js | 5486 -----------------------------------------------------
 lib/Point.js      |    7 +-
 lib/datum.js      |    4 +-
 package.json      |    8 +-
 8 files changed, 21 insertions(+), 5508 deletions(-)

diff --git a/README.md b/README.md
index ddd827c..3bb37fe 100644
--- a/README.md
+++ b/README.md
@@ -15,7 +15,7 @@ jam install proj4
 component install proj4js/proj4js
 ```
 
-or just manually grab the file `proj4.js` from the [latest release](https://github.com/proj4js/proj4js/releases).
+or just manually grab the file `proj4.js` from the [latest release](https://github.com/proj4js/proj4js/releases)'s `dist/` folder.
 
 if you do not want to download anything, Proj4js is also hosted on [cdnjs](http://www.cdnjs.com/libraries/proj4js) for direct use in your browser applications.
 
@@ -89,7 +89,7 @@ proj4.defs([
 ]);
 ```
 
-you can then do 
+you can then do
 
 ```js
 proj4('EPSG:4326');
@@ -112,7 +112,7 @@ proj4.defs can also be used to define a named alias:
 
 ```javascript
 proj4.defs('urn:x-ogc:def:crs:EPSG:4326', proj4.defs('EPSG:4326'));
-``` 
+```
 
 ## Developing
 to set up build tools make sure you have node and grunt-cli installed and then run `npm install`
@@ -120,7 +120,7 @@ to set up build tools make sure you have node and grunt-cli installed and then r
 to do the complete build and browser tests run
 
 ```bash
-grunt
+node_modules/.bin/grunt
 ```
 
 to run node tests run
@@ -132,22 +132,22 @@ npm test
 to run node tests with coverage run
 
 ```bash
-node test --coverage
+npm test --coverage
 ```
 
-to create a build with only default projections (latlon and Mercator) run 
+to create a build with only default projections (latlon and Mercator) run
 
 ```bash
-grunt build
+node_modules/.bin/grunt build
 ```
 
 to create a build with only custom projections include a comma separated list of projections codes (the file name in 'lib/projections' without the '.js') after a colon, e.g.
 
 ```bash
-grunt build:tmerc
+node_modules/.bin/grunt build:tmerc
 #includes transverse Mercator
-grunt build:lcc
+node_modules/.bin/grunt build:lcc
 #includes lambert conformal conic
-grunt build:omerc,moll
+node_modules/.bin/grunt build:omerc,moll
 #includes oblique Mercator and Mollweide
 ```
diff --git a/bower.json b/bower.json
index d21e9ed..f38b327 100644
--- a/bower.json
+++ b/bower.json
@@ -1,6 +1,6 @@
 {
   "name": "proj4",
-  "version": "2.3.11-alpha",
+  "version": "2.3.13-alpha",
   "description": "Proj4js is a JavaScript library to transform point coordinates from one coordinate system to another, including datum transformations.",
   "homepage": "https://github.com/proj4js/proj4js",
   "main": "dist/proj4.js",
diff --git a/component.json b/component.json
index 36a6ce6..bd5415f 100644
--- a/component.json
+++ b/component.json
@@ -1,6 +1,6 @@
 {
   "name": "proj4",
-  "version": "2.3.11-alpha",
+  "version": "2.3.13-alpha",
   "description": "Proj4js is a JavaScript library to transform point coordinates from one coordinate system to another, including datum transformations.",
   "repo": "proj4js/proj4js",
   "keywords": [
diff --git a/dist/.gitignore b/dist/.gitignore
new file mode 100644
index 0000000..e69de29
diff --git a/dist/proj4-src.js b/dist/proj4-src.js
deleted file mode 100644
index d5312b5..0000000
--- a/dist/proj4-src.js
+++ /dev/null
@@ -1,5486 +0,0 @@
-!function(e){if("object"==typeof exports)module.exports=e();else if("function"==typeof define&&define.amd)define(e);else{var f;"undefined"!=typeof window?f=window:"undefined"!=typeof global?f=global:"undefined"!=typeof self&&(f=self),f.proj4=e()}}(function(){var define,module,exports;return (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);throw new Error("Cannot find module '"+o+"'")}var f=n[o]={e [...]
-var mgrs = _dereq_('mgrs');
-
-function Point(x, y, z) {
-  if (!(this instanceof Point)) {
-    return new Point(x, y, z);
-  }
-  if (Array.isArray(x)) {
-    this.x = x[0];
-    this.y = x[1];
-    this.z = x[2] || 0.0;
-  }else if(typeof x === 'object'){
-    this.x = x.x;
-    this.y = x.y;
-    this.z = x.z || 0.0;
-  } else if (typeof x === 'string' && typeof y === 'undefined') {
-    var coords = x.split(',');
-    this.x = parseFloat(coords[0], 10);
-    this.y = parseFloat(coords[1], 10);
-    this.z = parseFloat(coords[2], 10) || 0.0;
-  }
-  else {
-    this.x = x;
-    this.y = y;
-    this.z = z || 0.0;
-  }
-  console.warn('proj4.Point will be removed in version 3, use proj4.toPoint');
-}
-
-Point.fromMGRS = function(mgrsStr) {
-  return new Point(mgrs.toPoint(mgrsStr));
-};
-Point.prototype.toMGRS = function(accuracy) {
-  return mgrs.forward([this.x, this.y], accuracy);
-};
-module.exports = Point;
-},{"mgrs":67}],2:[function(_dereq_,module,exports){
-var parseCode = _dereq_("./parseCode");
-var extend = _dereq_('./extend');
-var projections = _dereq_('./projections');
-var deriveConstants = _dereq_('./deriveConstants');
-
-function Projection(srsCode,callback) {
-  if (!(this instanceof Projection)) {
-    return new Projection(srsCode);
-  }
-  callback = callback || function(error){
-    if(error){
-      throw error;
-    }
-  };
-  var json = parseCode(srsCode);
-  if(typeof json !== 'object'){
-    callback(srsCode);
-    return;
-  }
-  var modifiedJSON = deriveConstants(json);
-  var ourProj = Projection.projections.get(modifiedJSON.projName);
-  if(ourProj){
-    extend(this, modifiedJSON);
-    extend(this, ourProj);
-    this.init();
-    callback(null, this);
-  }else{
-    callback(srsCode);
-  }
-}
-Projection.projections = projections;
-Projection.projections.start();
-module.exports = Projection;
-
-},{"./deriveConstants":33,"./extend":34,"./parseCode":37,"./projections":39}],3:[function(_dereq_,module,exports){
-module.exports = function(crs, denorm, point) {
-  var xin = point.x,
-    yin = point.y,
-    zin = point.z || 0.0;
-  var v, t, i;
-  for (i = 0; i < 3; i++) {
-    if (denorm && i === 2 && point.z === undefined) {
-      continue;
-    }
-    if (i === 0) {
-      v = xin;
-      t = 'x';
-    }
-    else if (i === 1) {
-      v = yin;
-      t = 'y';
-    }
-    else {
-      v = zin;
-      t = 'z';
-    }
-    switch (crs.axis[i]) {
-    case 'e':
-      point[t] = v;
-      break;
-    case 'w':
-      point[t] = -v;
-      break;
-    case 'n':
-      point[t] = v;
-      break;
-    case 's':
-      point[t] = -v;
-      break;
-    case 'u':
-      if (point[t] !== undefined) {
-        point.z = v;
-      }
-      break;
-    case 'd':
-      if (point[t] !== undefined) {
-        point.z = -v;
-      }
-      break;
-    default:
-      //console.log("ERROR: unknow axis ("+crs.axis[i]+") - check definition of "+crs.projName);
-      return null;
-    }
-  }
-  return point;
-};
-
-},{}],4:[function(_dereq_,module,exports){
-var HALF_PI = Math.PI/2;
-var sign = _dereq_('./sign');
-
-module.exports = function(x) {
-  return (Math.abs(x) < HALF_PI) ? x : (x - (sign(x) * Math.PI));
-};
-},{"./sign":21}],5:[function(_dereq_,module,exports){
-var TWO_PI = Math.PI * 2;
-// SPI is slightly greater than Math.PI, so values that exceed the -180..180
-// degree range by a tiny amount don't get wrapped. This prevents points that
-// have drifted from their original location along the 180th meridian (due to
-// floating point error) from changing their sign.
-var SPI = 3.14159265359;
-var sign = _dereq_('./sign');
-
-module.exports = function(x) {
-  return (Math.abs(x) <= SPI) ? x : (x - (sign(x) * TWO_PI));
-};
-},{"./sign":21}],6:[function(_dereq_,module,exports){
-module.exports = function(x) {
-  if (Math.abs(x) > 1) {
-    x = (x > 1) ? 1 : -1;
-  }
-  return Math.asin(x);
-};
-},{}],7:[function(_dereq_,module,exports){
-module.exports = function(x) {
-  return (1 - 0.25 * x * (1 + x / 16 * (3 + 1.25 * x)));
-};
-},{}],8:[function(_dereq_,module,exports){
-module.exports = function(x) {
-  return (0.375 * x * (1 + 0.25 * x * (1 + 0.46875 * x)));
-};
-},{}],9:[function(_dereq_,module,exports){
-module.exports = function(x) {
-  return (0.05859375 * x * x * (1 + 0.75 * x));
-};
-},{}],10:[function(_dereq_,module,exports){
-module.exports = function(x) {
-  return (x * x * x * (35 / 3072));
-};
-},{}],11:[function(_dereq_,module,exports){
-module.exports = function(a, e, sinphi) {
-  var temp = e * sinphi;
-  return a / Math.sqrt(1 - temp * temp);
-};
-},{}],12:[function(_dereq_,module,exports){
-module.exports = function(ml, e0, e1, e2, e3) {
-  var phi;
-  var dphi;
-
-  phi = ml / e0;
-  for (var i = 0; i < 15; i++) {
-    dphi = (ml - (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi))) / (e0 - 2 * e1 * Math.cos(2 * phi) + 4 * e2 * Math.cos(4 * phi) - 6 * e3 * Math.cos(6 * phi));
-    phi += dphi;
-    if (Math.abs(dphi) <= 0.0000000001) {
-      return phi;
-    }
-  }
-
-  //..reportError("IMLFN-CONV:Latitude failed to converge after 15 iterations");
-  return NaN;
-};
-},{}],13:[function(_dereq_,module,exports){
-var HALF_PI = Math.PI/2;
-
-module.exports = function(eccent, q) {
-  var temp = 1 - (1 - eccent * eccent) / (2 * eccent) * Math.log((1 - eccent) / (1 + eccent));
-  if (Math.abs(Math.abs(q) - temp) < 1.0E-6) {
-    if (q < 0) {
-      return (-1 * HALF_PI);
-    }
-    else {
-      return HALF_PI;
-    }
-  }
-  //var phi = 0.5* q/(1-eccent*eccent);
-  var phi = Math.asin(0.5 * q);
-  var dphi;
-  var sin_phi;
-  var cos_phi;
-  var con;
-  for (var i = 0; i < 30; i++) {
-    sin_phi = Math.sin(phi);
-    cos_phi = Math.cos(phi);
-    con = eccent * sin_phi;
-    dphi = Math.pow(1 - con * con, 2) / (2 * cos_phi) * (q / (1 - eccent * eccent) - sin_phi / (1 - con * con) + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
-    phi += dphi;
-    if (Math.abs(dphi) <= 0.0000000001) {
-      return phi;
-    }
-  }
-
-  //console.log("IQSFN-CONV:Latitude failed to converge after 30 iterations");
-  return NaN;
-};
-},{}],14:[function(_dereq_,module,exports){
-module.exports = function(e0, e1, e2, e3, phi) {
-  return (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi));
-};
-},{}],15:[function(_dereq_,module,exports){
-module.exports = function(eccent, sinphi, cosphi) {
-  var con = eccent * sinphi;
-  return cosphi / (Math.sqrt(1 - con * con));
-};
-},{}],16:[function(_dereq_,module,exports){
-var HALF_PI = Math.PI/2;
-module.exports = function(eccent, ts) {
-  var eccnth = 0.5 * eccent;
-  var con, dphi;
-  var phi = HALF_PI - 2 * Math.atan(ts);
-  for (var i = 0; i <= 15; i++) {
-    con = eccent * Math.sin(phi);
-    dphi = HALF_PI - 2 * Math.atan(ts * (Math.pow(((1 - con) / (1 + con)), eccnth))) - phi;
-    phi += dphi;
-    if (Math.abs(dphi) <= 0.0000000001) {
-      return phi;
-    }
-  }
-  //console.log("phi2z has NoConvergence");
-  return -9999;
-};
-},{}],17:[function(_dereq_,module,exports){
-var C00 = 1;
-var C02 = 0.25;
-var C04 = 0.046875;
-var C06 = 0.01953125;
-var C08 = 0.01068115234375;
-var C22 = 0.75;
-var C44 = 0.46875;
-var C46 = 0.01302083333333333333;
-var C48 = 0.00712076822916666666;
-var C66 = 0.36458333333333333333;
-var C68 = 0.00569661458333333333;
-var C88 = 0.3076171875;
-
-module.exports = function(es) {
-  var en = [];
-  en[0] = C00 - es * (C02 + es * (C04 + es * (C06 + es * C08)));
-  en[1] = es * (C22 - es * (C04 + es * (C06 + es * C08)));
-  var t = es * es;
-  en[2] = t * (C44 - es * (C46 + es * C48));
-  t *= es;
-  en[3] = t * (C66 - es * C68);
-  en[4] = t * es * C88;
-  return en;
-};
-},{}],18:[function(_dereq_,module,exports){
-var pj_mlfn = _dereq_("./pj_mlfn");
-var EPSLN = 1.0e-10;
-var MAX_ITER = 20;
-module.exports = function(arg, es, en) {
-  var k = 1 / (1 - es);
-  var phi = arg;
-  for (var i = MAX_ITER; i; --i) { /* rarely goes over 2 iterations */
-    var s = Math.sin(phi);
-    var t = 1 - es * s * s;
-    //t = this.pj_mlfn(phi, s, Math.cos(phi), en) - arg;
-    //phi -= t * (t * Math.sqrt(t)) * k;
-    t = (pj_mlfn(phi, s, Math.cos(phi), en) - arg) * (t * Math.sqrt(t)) * k;
-    phi -= t;
-    if (Math.abs(t) < EPSLN) {
-      return phi;
-    }
-  }
-  //..reportError("cass:pj_inv_mlfn: Convergence error");
-  return phi;
-};
-},{"./pj_mlfn":19}],19:[function(_dereq_,module,exports){
-module.exports = function(phi, sphi, cphi, en) {
-  cphi *= sphi;
-  sphi *= sphi;
-  return (en[0] * phi - cphi * (en[1] + sphi * (en[2] + sphi * (en[3] + sphi * en[4]))));
-};
-},{}],20:[function(_dereq_,module,exports){
-module.exports = function(eccent, sinphi) {
-  var con;
-  if (eccent > 1.0e-7) {
-    con = eccent * sinphi;
-    return ((1 - eccent * eccent) * (sinphi / (1 - con * con) - (0.5 / eccent) * Math.log((1 - con) / (1 + con))));
-  }
-  else {
-    return (2 * sinphi);
-  }
-};
-},{}],21:[function(_dereq_,module,exports){
-module.exports = function(x) {
-  return x<0 ? -1 : 1;
-};
-},{}],22:[function(_dereq_,module,exports){
-module.exports = function(esinp, exp) {
-  return (Math.pow((1 - esinp) / (1 + esinp), exp));
-};
-},{}],23:[function(_dereq_,module,exports){
-module.exports = function (array){
-  var out = {
-    x: array[0],
-    y: array[1]
-  };
-  if (array.length>2) {
-    out.z = array[2];
-  }
-  if (array.length>3) {
-    out.m = array[3];
-  }
-  return out;
-};
-},{}],24:[function(_dereq_,module,exports){
-var HALF_PI = Math.PI/2;
-
-module.exports = function(eccent, phi, sinphi) {
-  var con = eccent * sinphi;
-  var com = 0.5 * eccent;
-  con = Math.pow(((1 - con) / (1 + con)), com);
-  return (Math.tan(0.5 * (HALF_PI - phi)) / con);
-};
-},{}],25:[function(_dereq_,module,exports){
-exports.wgs84 = {
-  towgs84: "0,0,0",
-  ellipse: "WGS84",
-  datumName: "WGS84"
-};
-exports.ch1903 = {
-  towgs84: "674.374,15.056,405.346",
-  ellipse: "bessel",
-  datumName: "swiss"
-};
-exports.ggrs87 = {
-  towgs84: "-199.87,74.79,246.62",
-  ellipse: "GRS80",
-  datumName: "Greek_Geodetic_Reference_System_1987"
-};
-exports.nad83 = {
-  towgs84: "0,0,0",
-  ellipse: "GRS80",
-  datumName: "North_American_Datum_1983"
-};
-exports.nad27 = {
-  nadgrids: "@conus, at alaska, at ntv2_0.gsb, at ntv1_can.dat",
-  ellipse: "clrk66",
-  datumName: "North_American_Datum_1927"
-};
-exports.potsdam = {
-  towgs84: "606.0,23.0,413.0",
-  ellipse: "bessel",
-  datumName: "Potsdam Rauenberg 1950 DHDN"
-};
-exports.carthage = {
-  towgs84: "-263.0,6.0,431.0",
-  ellipse: "clark80",
-  datumName: "Carthage 1934 Tunisia"
-};
-exports.hermannskogel = {
-  towgs84: "653.0,-212.0,449.0",
-  ellipse: "bessel",
-  datumName: "Hermannskogel"
-};
-exports.ire65 = {
-  towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15",
-  ellipse: "mod_airy",
-  datumName: "Ireland 1965"
-};
-exports.rassadiran = {
-  towgs84: "-133.63,-157.5,-158.62",
-  ellipse: "intl",
-  datumName: "Rassadiran"
-};
-exports.nzgd49 = {
-  towgs84: "59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993",
-  ellipse: "intl",
-  datumName: "New Zealand Geodetic Datum 1949"
-};
-exports.osgb36 = {
-  towgs84: "446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894",
-  ellipse: "airy",
-  datumName: "Airy 1830"
-};
-exports.s_jtsk = {
-  towgs84: "589,76,480",
-  ellipse: 'bessel',
-  datumName: 'S-JTSK (Ferro)'
-};
-exports.beduaram = {
-  towgs84: '-106,-87,188',
-  ellipse: 'clrk80',
-  datumName: 'Beduaram'
-};
-exports.gunung_segara = {
-  towgs84: '-403,684,41',
-  ellipse: 'bessel',
-  datumName: 'Gunung Segara Jakarta'
-};
-exports.rnb72 = {
-  towgs84: "106.869,-52.2978,103.724,-0.33657,0.456955,-1.84218,1",
-  ellipse: "intl",
-  datumName: "Reseau National Belge 1972"
-};
-},{}],26:[function(_dereq_,module,exports){
-exports.MERIT = {
-  a: 6378137.0,
-  rf: 298.257,
-  ellipseName: "MERIT 1983"
-};
-exports.SGS85 = {
-  a: 6378136.0,
-  rf: 298.257,
-  ellipseName: "Soviet Geodetic System 85"
-};
-exports.GRS80 = {
-  a: 6378137.0,
-  rf: 298.257222101,
-  ellipseName: "GRS 1980(IUGG, 1980)"
-};
-exports.IAU76 = {
-  a: 6378140.0,
-  rf: 298.257,
-  ellipseName: "IAU 1976"
-};
-exports.airy = {
-  a: 6377563.396,
-  b: 6356256.910,
-  ellipseName: "Airy 1830"
-};
-exports.APL4 = {
-  a: 6378137,
-  rf: 298.25,
-  ellipseName: "Appl. Physics. 1965"
-};
-exports.NWL9D = {
-  a: 6378145.0,
-  rf: 298.25,
-  ellipseName: "Naval Weapons Lab., 1965"
-};
-exports.mod_airy = {
-  a: 6377340.189,
-  b: 6356034.446,
-  ellipseName: "Modified Airy"
-};
-exports.andrae = {
-  a: 6377104.43,
-  rf: 300.0,
-  ellipseName: "Andrae 1876 (Den., Iclnd.)"
-};
-exports.aust_SA = {
-  a: 6378160.0,
-  rf: 298.25,
-  ellipseName: "Australian Natl & S. Amer. 1969"
-};
-exports.GRS67 = {
-  a: 6378160.0,
-  rf: 298.2471674270,
-  ellipseName: "GRS 67(IUGG 1967)"
-};
-exports.bessel = {
-  a: 6377397.155,
-  rf: 299.1528128,
-  ellipseName: "Bessel 1841"
-};
-exports.bess_nam = {
-  a: 6377483.865,
-  rf: 299.1528128,
-  ellipseName: "Bessel 1841 (Namibia)"
-};
-exports.clrk66 = {
-  a: 6378206.4,
-  b: 6356583.8,
-  ellipseName: "Clarke 1866"
-};
-exports.clrk80 = {
-  a: 6378249.145,
-  rf: 293.4663,
-  ellipseName: "Clarke 1880 mod."
-};
-exports.clrk58 = {
-  a: 6378293.645208759,
-  rf: 294.2606763692654,
-  ellipseName: "Clarke 1858"
-};
-exports.CPM = {
-  a: 6375738.7,
-  rf: 334.29,
-  ellipseName: "Comm. des Poids et Mesures 1799"
-};
-exports.delmbr = {
-  a: 6376428.0,
-  rf: 311.5,
-  ellipseName: "Delambre 1810 (Belgium)"
-};
-exports.engelis = {
-  a: 6378136.05,
-  rf: 298.2566,
-  ellipseName: "Engelis 1985"
-};
-exports.evrst30 = {
-  a: 6377276.345,
-  rf: 300.8017,
-  ellipseName: "Everest 1830"
-};
-exports.evrst48 = {
-  a: 6377304.063,
-  rf: 300.8017,
-  ellipseName: "Everest 1948"
-};
-exports.evrst56 = {
-  a: 6377301.243,
-  rf: 300.8017,
-  ellipseName: "Everest 1956"
-};
-exports.evrst69 = {
-  a: 6377295.664,
-  rf: 300.8017,
-  ellipseName: "Everest 1969"
-};
-exports.evrstSS = {
-  a: 6377298.556,
-  rf: 300.8017,
-  ellipseName: "Everest (Sabah & Sarawak)"
-};
-exports.fschr60 = {
-  a: 6378166.0,
-  rf: 298.3,
-  ellipseName: "Fischer (Mercury Datum) 1960"
-};
-exports.fschr60m = {
-  a: 6378155.0,
-  rf: 298.3,
-  ellipseName: "Fischer 1960"
-};
-exports.fschr68 = {
-  a: 6378150.0,
-  rf: 298.3,
-  ellipseName: "Fischer 1968"
-};
-exports.helmert = {
-  a: 6378200.0,
-  rf: 298.3,
-  ellipseName: "Helmert 1906"
-};
-exports.hough = {
-  a: 6378270.0,
-  rf: 297.0,
-  ellipseName: "Hough"
-};
-exports.intl = {
-  a: 6378388.0,
-  rf: 297.0,
-  ellipseName: "International 1909 (Hayford)"
-};
-exports.kaula = {
-  a: 6378163.0,
-  rf: 298.24,
-  ellipseName: "Kaula 1961"
-};
-exports.lerch = {
-  a: 6378139.0,
-  rf: 298.257,
-  ellipseName: "Lerch 1979"
-};
-exports.mprts = {
-  a: 6397300.0,
-  rf: 191.0,
-  ellipseName: "Maupertius 1738"
-};
-exports.new_intl = {
-  a: 6378157.5,
-  b: 6356772.2,
-  ellipseName: "New International 1967"
-};
-exports.plessis = {
-  a: 6376523.0,
-  rf: 6355863.0,
-  ellipseName: "Plessis 1817 (France)"
-};
-exports.krass = {
-  a: 6378245.0,
-  rf: 298.3,
-  ellipseName: "Krassovsky, 1942"
-};
-exports.SEasia = {
-  a: 6378155.0,
-  b: 6356773.3205,
-  ellipseName: "Southeast Asia"
-};
-exports.walbeck = {
-  a: 6376896.0,
-  b: 6355834.8467,
-  ellipseName: "Walbeck"
-};
-exports.WGS60 = {
-  a: 6378165.0,
-  rf: 298.3,
-  ellipseName: "WGS 60"
-};
-exports.WGS66 = {
-  a: 6378145.0,
-  rf: 298.25,
-  ellipseName: "WGS 66"
-};
-exports.WGS7 = {
-  a: 6378135.0,
-  rf: 298.26,
-  ellipseName: "WGS 72"
-};
-exports.WGS84 = {
-  a: 6378137.0,
-  rf: 298.257223563,
-  ellipseName: "WGS 84"
-};
-exports.sphere = {
-  a: 6370997.0,
-  b: 6370997.0,
-  ellipseName: "Normal Sphere (r=6370997)"
-};
-},{}],27:[function(_dereq_,module,exports){
-exports.greenwich = 0.0; //"0dE",
-exports.lisbon = -9.131906111111; //"9d07'54.862\"W",
-exports.paris = 2.337229166667; //"2d20'14.025\"E",
-exports.bogota = -74.080916666667; //"74d04'51.3\"W",
-exports.madrid = -3.687938888889; //"3d41'16.58\"W",
-exports.rome = 12.452333333333; //"12d27'8.4\"E",
-exports.bern = 7.439583333333; //"7d26'22.5\"E",
-exports.jakarta = 106.807719444444; //"106d48'27.79\"E",
-exports.ferro = -17.666666666667; //"17d40'W",
-exports.brussels = 4.367975; //"4d22'4.71\"E",
-exports.stockholm = 18.058277777778; //"18d3'29.8\"E",
-exports.athens = 23.7163375; //"23d42'58.815\"E",
-exports.oslo = 10.722916666667; //"10d43'22.5\"E"
-},{}],28:[function(_dereq_,module,exports){
-exports.ft = {to_meter: 0.3048};
-exports['us-ft'] = {to_meter: 1200 / 3937};
-
-},{}],29:[function(_dereq_,module,exports){
-var proj = _dereq_('./Proj');
-var transform = _dereq_('./transform');
-var wgs84 = proj('WGS84');
-
-function transformer(from, to, coords) {
-  var transformedArray;
-  if (Array.isArray(coords)) {
-    transformedArray = transform(from, to, coords);
-    if (coords.length === 3) {
-      return [transformedArray.x, transformedArray.y, transformedArray.z];
-    }
-    else {
-      return [transformedArray.x, transformedArray.y];
-    }
-  }
-  else {
-    return transform(from, to, coords);
-  }
-}
-
-function checkProj(item) {
-  if (item instanceof proj) {
-    return item;
-  }
-  if (item.oProj) {
-    return item.oProj;
-  }
-  return proj(item);
-}
-function proj4(fromProj, toProj, coord) {
-  fromProj = checkProj(fromProj);
-  var single = false;
-  var obj;
-  if (typeof toProj === 'undefined') {
-    toProj = fromProj;
-    fromProj = wgs84;
-    single = true;
-  }
-  else if (typeof toProj.x !== 'undefined' || Array.isArray(toProj)) {
-    coord = toProj;
-    toProj = fromProj;
-    fromProj = wgs84;
-    single = true;
-  }
-  toProj = checkProj(toProj);
-  if (coord) {
-    return transformer(fromProj, toProj, coord);
-  }
-  else {
-    obj = {
-      forward: function(coords) {
-        return transformer(fromProj, toProj, coords);
-      },
-      inverse: function(coords) {
-        return transformer(toProj, fromProj, coords);
-      }
-    };
-    if (single) {
-      obj.oProj = toProj;
-    }
-    return obj;
-  }
-}
-module.exports = proj4;
-},{"./Proj":2,"./transform":65}],30:[function(_dereq_,module,exports){
-var HALF_PI = Math.PI/2;
-var PJD_3PARAM = 1;
-var PJD_7PARAM = 2;
-var PJD_GRIDSHIFT = 3;
-var PJD_WGS84 = 4; // WGS84 or equivalent
-var PJD_NODATUM = 5; // WGS84 or equivalent
-var SEC_TO_RAD = 4.84813681109535993589914102357e-6;
-var AD_C = 1.0026000;
-var COS_67P5 = 0.38268343236508977;
-var datum = function(proj) {
-  if (!(this instanceof datum)) {
-    return new datum(proj);
-  }
-  this.datum_type = PJD_WGS84; //default setting
-  if (!proj) {
-    return;
-  }
-  if (proj.datumCode && proj.datumCode === 'none') {
-    this.datum_type = PJD_NODATUM;
-  }
-
-  if (proj.datum_params) {
-    this.datum_params = proj.datum_params.map(parseFloat);
-    if (this.datum_params[0] !== 0 || this.datum_params[1] !== 0 || this.datum_params[2] !== 0) {
-      this.datum_type = PJD_3PARAM;
-    }
-    if (this.datum_params.length > 3) {
-      if (this.datum_params[3] !== 0 || this.datum_params[4] !== 0 || this.datum_params[5] !== 0 || this.datum_params[6] !== 0) {
-        this.datum_type = PJD_7PARAM;
-        this.datum_params[3] *= SEC_TO_RAD;
-        this.datum_params[4] *= SEC_TO_RAD;
-        this.datum_params[5] *= SEC_TO_RAD;
-        this.datum_params[6] = (this.datum_params[6] / 1000000.0) + 1.0;
-      }
-    }
-  }
-
-  // DGR 2011-03-21 : nadgrids support
-  this.datum_type = proj.grids ? PJD_GRIDSHIFT : this.datum_type;
-
-  this.a = proj.a; //datum object also uses these values
-  this.b = proj.b;
-  this.es = proj.es;
-  this.ep2 = proj.ep2;
-  if (this.datum_type === PJD_GRIDSHIFT) {
-    this.grids = proj.grids;
-  }
-};
-datum.prototype = {
-
-
-  /****************************************************************/
-  // cs_compare_datums()
-  //   Returns TRUE if the two datums match, otherwise FALSE.
-  compare_datums: function(dest) {
-    if (this.datum_type !== dest.datum_type) {
-      return false; // false, datums are not equal
-    }
-    else if (this.a !== dest.a || Math.abs(this.es - dest.es) > 0.000000000050) {
-      // the tolerence for es is to ensure that GRS80 and WGS84
-      // are considered identical
-      return false;
-    }
-    else if (this.datum_type === PJD_3PARAM) {
-      return (this.datum_params[0] === dest.datum_params[0] && this.datum_params[1] === dest.datum_params[1] && this.datum_params[2] === dest.datum_params[2]);
-    }
-    else if (this.datum_type === PJD_7PARAM) {
-      return (this.datum_params[0] === dest.datum_params[0] && this.datum_params[1] === dest.datum_params[1] && this.datum_params[2] === dest.datum_params[2] && this.datum_params[3] === dest.datum_params[3] && this.datum_params[4] === dest.datum_params[4] && this.datum_params[5] === dest.datum_params[5] && this.datum_params[6] === dest.datum_params[6]);
-    }
-    else if (this.datum_type === PJD_GRIDSHIFT || dest.datum_type === PJD_GRIDSHIFT) {
-      //alert("ERROR: Grid shift transformations are not implemented.");
-      //return false
-      //DGR 2012-07-29 lazy ...
-      return this.nadgrids === dest.nadgrids;
-    }
-    else {
-      return true; // datums are equal
-    }
-  }, // cs_compare_datums()
-
-  /*
-   * The function Convert_Geodetic_To_Geocentric converts geodetic coordinates
-   * (latitude, longitude, and height) to geocentric coordinates (X, Y, Z),
-   * according to the current ellipsoid parameters.
-   *
-   *    Latitude  : Geodetic latitude in radians                     (input)
-   *    Longitude : Geodetic longitude in radians                    (input)
-   *    Height    : Geodetic height, in meters                       (input)
-   *    X         : Calculated Geocentric X coordinate, in meters    (output)
-   *    Y         : Calculated Geocentric Y coordinate, in meters    (output)
-   *    Z         : Calculated Geocentric Z coordinate, in meters    (output)
-   *
-   */
-  geodetic_to_geocentric: function(p) {
-    var Longitude = p.x;
-    var Latitude = p.y;
-    var Height = p.z ? p.z : 0; //Z value not always supplied
-    var X; // output
-    var Y;
-    var Z;
-
-    var Error_Code = 0; //  GEOCENT_NO_ERROR;
-    var Rn; /*  Earth radius at location  */
-    var Sin_Lat; /*  Math.sin(Latitude)  */
-    var Sin2_Lat; /*  Square of Math.sin(Latitude)  */
-    var Cos_Lat; /*  Math.cos(Latitude)  */
-
-    /*
-     ** Don't blow up if Latitude is just a little out of the value
-     ** range as it may just be a rounding issue.  Also removed longitude
-     ** test, it should be wrapped by Math.cos() and Math.sin().  NFW for PROJ.4, Sep/2001.
-     */
-    if (Latitude < -HALF_PI && Latitude > -1.001 * HALF_PI) {
-      Latitude = -HALF_PI;
-    }
-    else if (Latitude > HALF_PI && Latitude < 1.001 * HALF_PI) {
-      Latitude = HALF_PI;
-    }
-    else if ((Latitude < -HALF_PI) || (Latitude > HALF_PI)) {
-      /* Latitude out of range */
-      //..reportError('geocent:lat out of range:' + Latitude);
-      return null;
-    }
-
-    if (Longitude > Math.PI) {
-      Longitude -= (2 * Math.PI);
-    }
-    Sin_Lat = Math.sin(Latitude);
-    Cos_Lat = Math.cos(Latitude);
-    Sin2_Lat = Sin_Lat * Sin_Lat;
-    Rn = this.a / (Math.sqrt(1.0e0 - this.es * Sin2_Lat));
-    X = (Rn + Height) * Cos_Lat * Math.cos(Longitude);
-    Y = (Rn + Height) * Cos_Lat * Math.sin(Longitude);
-    Z = ((Rn * (1 - this.es)) + Height) * Sin_Lat;
-
-    p.x = X;
-    p.y = Y;
-    p.z = Z;
-    return Error_Code;
-  }, // cs_geodetic_to_geocentric()
-
-
-  geocentric_to_geodetic: function(p) {
-    /* local defintions and variables */
-    /* end-criterium of loop, accuracy of sin(Latitude) */
-    var genau = 1e-12;
-    var genau2 = (genau * genau);
-    var maxiter = 30;
-
-    var P; /* distance between semi-minor axis and location */
-    var RR; /* distance between center and location */
-    var CT; /* sin of geocentric latitude */
-    var ST; /* cos of geocentric latitude */
-    var RX;
-    var RK;
-    var RN; /* Earth radius at location */
-    var CPHI0; /* cos of start or old geodetic latitude in iterations */
-    var SPHI0; /* sin of start or old geodetic latitude in iterations */
-    var CPHI; /* cos of searched geodetic latitude */
-    var SPHI; /* sin of searched geodetic latitude */
-    var SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */
-    var At_Pole; /* indicates location is in polar region */
-    var iter; /* # of continous iteration, max. 30 is always enough (s.a.) */
-
-    var X = p.x;
-    var Y = p.y;
-    var Z = p.z ? p.z : 0.0; //Z value not always supplied
-    var Longitude;
-    var Latitude;
-    var Height;
-
-    At_Pole = false;
-    P = Math.sqrt(X * X + Y * Y);
-    RR = Math.sqrt(X * X + Y * Y + Z * Z);
-
-    /*      special cases for latitude and longitude */
-    if (P / this.a < genau) {
-
-      /*  special case, if P=0. (X=0., Y=0.) */
-      At_Pole = true;
-      Longitude = 0.0;
-
-      /*  if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis
-       *  of ellipsoid (=center of mass), Latitude becomes PI/2 */
-      if (RR / this.a < genau) {
-        Latitude = HALF_PI;
-        Height = -this.b;
-        return;
-      }
-    }
-    else {
-      /*  ellipsoidal (geodetic) longitude
-       *  interval: -PI < Longitude <= +PI */
-      Longitude = Math.atan2(Y, X);
-    }
-
-    /* --------------------------------------------------------------
-     * Following iterative algorithm was developped by
-     * "Institut for Erdmessung", University of Hannover, July 1988.
-     * Internet: www.ife.uni-hannover.de
-     * Iterative computation of CPHI,SPHI and Height.
-     * Iteration of CPHI and SPHI to 10**-12 radian resp.
-     * 2*10**-7 arcsec.
-     * --------------------------------------------------------------
-     */
-    CT = Z / RR;
-    ST = P / RR;
-    RX = 1.0 / Math.sqrt(1.0 - this.es * (2.0 - this.es) * ST * ST);
-    CPHI0 = ST * (1.0 - this.es) * RX;
-    SPHI0 = CT * RX;
-    iter = 0;
-
-    /* loop to find sin(Latitude) resp. Latitude
-     * until |sin(Latitude(iter)-Latitude(iter-1))| < genau */
-    do {
-      iter++;
-      RN = this.a / Math.sqrt(1.0 - this.es * SPHI0 * SPHI0);
-
-      /*  ellipsoidal (geodetic) height */
-      Height = P * CPHI0 + Z * SPHI0 - RN * (1.0 - this.es * SPHI0 * SPHI0);
-
-      RK = this.es * RN / (RN + Height);
-      RX = 1.0 / Math.sqrt(1.0 - RK * (2.0 - RK) * ST * ST);
-      CPHI = ST * (1.0 - RK) * RX;
-      SPHI = CT * RX;
-      SDPHI = SPHI * CPHI0 - CPHI * SPHI0;
-      CPHI0 = CPHI;
-      SPHI0 = SPHI;
-    }
-    while (SDPHI * SDPHI > genau2 && iter < maxiter);
-
-    /*      ellipsoidal (geodetic) latitude */
-    Latitude = Math.atan(SPHI / Math.abs(CPHI));
-
-    p.x = Longitude;
-    p.y = Latitude;
-    p.z = Height;
-    return p;
-  }, // cs_geocentric_to_geodetic()
-
-  /** Convert_Geocentric_To_Geodetic
-   * The method used here is derived from 'An Improved Algorithm for
-   * Geocentric to Geodetic Coordinate Conversion', by Ralph Toms, Feb 1996
-   */
-  geocentric_to_geodetic_noniter: function(p) {
-    var X = p.x;
-    var Y = p.y;
-    var Z = p.z ? p.z : 0; //Z value not always supplied
-    var Longitude;
-    var Latitude;
-    var Height;
-
-    var W; /* distance from Z axis */
-    var W2; /* square of distance from Z axis */
-    var T0; /* initial estimate of vertical component */
-    var T1; /* corrected estimate of vertical component */
-    var S0; /* initial estimate of horizontal component */
-    var S1; /* corrected estimate of horizontal component */
-    var Sin_B0; /* Math.sin(B0), B0 is estimate of Bowring aux variable */
-    var Sin3_B0; /* cube of Math.sin(B0) */
-    var Cos_B0; /* Math.cos(B0) */
-    var Sin_p1; /* Math.sin(phi1), phi1 is estimated latitude */
-    var Cos_p1; /* Math.cos(phi1) */
-    var Rn; /* Earth radius at location */
-    var Sum; /* numerator of Math.cos(phi1) */
-    var At_Pole; /* indicates location is in polar region */
-
-    X = parseFloat(X); // cast from string to float
-    Y = parseFloat(Y);
-    Z = parseFloat(Z);
-
-    At_Pole = false;
-    if (X !== 0.0) {
-      Longitude = Math.atan2(Y, X);
-    }
-    else {
-      if (Y > 0) {
-        Longitude = HALF_PI;
-      }
-      else if (Y < 0) {
-        Longitude = -HALF_PI;
-      }
-      else {
-        At_Pole = true;
-        Longitude = 0.0;
-        if (Z > 0.0) { /* north pole */
-          Latitude = HALF_PI;
-        }
-        else if (Z < 0.0) { /* south pole */
-          Latitude = -HALF_PI;
-        }
-        else { /* center of earth */
-          Latitude = HALF_PI;
-          Height = -this.b;
-          return;
-        }
-      }
-    }
-    W2 = X * X + Y * Y;
-    W = Math.sqrt(W2);
-    T0 = Z * AD_C;
-    S0 = Math.sqrt(T0 * T0 + W2);
-    Sin_B0 = T0 / S0;
-    Cos_B0 = W / S0;
-    Sin3_B0 = Sin_B0 * Sin_B0 * Sin_B0;
-    T1 = Z + this.b * this.ep2 * Sin3_B0;
-    Sum = W - this.a * this.es * Cos_B0 * Cos_B0 * Cos_B0;
-    S1 = Math.sqrt(T1 * T1 + Sum * Sum);
-    Sin_p1 = T1 / S1;
-    Cos_p1 = Sum / S1;
-    Rn = this.a / Math.sqrt(1.0 - this.es * Sin_p1 * Sin_p1);
-    if (Cos_p1 >= COS_67P5) {
-      Height = W / Cos_p1 - Rn;
-    }
-    else if (Cos_p1 <= -COS_67P5) {
-      Height = W / -Cos_p1 - Rn;
-    }
-    else {
-      Height = Z / Sin_p1 + Rn * (this.es - 1.0);
-    }
-    if (At_Pole === false) {
-      Latitude = Math.atan(Sin_p1 / Cos_p1);
-    }
-
-    p.x = Longitude;
-    p.y = Latitude;
-    p.z = Height;
-    return p;
-  }, // geocentric_to_geodetic_noniter()
-
-  /****************************************************************/
-  // pj_geocentic_to_wgs84( p )
-  //  p = point to transform in geocentric coordinates (x,y,z)
-  geocentric_to_wgs84: function(p) {
-
-    if (this.datum_type === PJD_3PARAM) {
-      // if( x[io] === HUGE_VAL )
-      //    continue;
-      p.x += this.datum_params[0];
-      p.y += this.datum_params[1];
-      p.z += this.datum_params[2];
-
-    }
-    else if (this.datum_type === PJD_7PARAM) {
-      var Dx_BF = this.datum_params[0];
-      var Dy_BF = this.datum_params[1];
-      var Dz_BF = this.datum_params[2];
-      var Rx_BF = this.datum_params[3];
-      var Ry_BF = this.datum_params[4];
-      var Rz_BF = this.datum_params[5];
-      var M_BF = this.datum_params[6];
-      // if( x[io] === HUGE_VAL )
-      //    continue;
-      var x_out = M_BF * (p.x - Rz_BF * p.y + Ry_BF * p.z) + Dx_BF;
-      var y_out = M_BF * (Rz_BF * p.x + p.y - Rx_BF * p.z) + Dy_BF;
-      var z_out = M_BF * (-Ry_BF * p.x + Rx_BF * p.y + p.z) + Dz_BF;
-      p.x = x_out;
-      p.y = y_out;
-      p.z = z_out;
-    }
-  }, // cs_geocentric_to_wgs84
-
-  /****************************************************************/
-  // pj_geocentic_from_wgs84()
-  //  coordinate system definition,
-  //  point to transform in geocentric coordinates (x,y,z)
-  geocentric_from_wgs84: function(p) {
-
-    if (this.datum_type === PJD_3PARAM) {
-      //if( x[io] === HUGE_VAL )
-      //    continue;
-      p.x -= this.datum_params[0];
-      p.y -= this.datum_params[1];
-      p.z -= this.datum_params[2];
-
-    }
-    else if (this.datum_type === PJD_7PARAM) {
-      var Dx_BF = this.datum_params[0];
-      var Dy_BF = this.datum_params[1];
-      var Dz_BF = this.datum_params[2];
-      var Rx_BF = this.datum_params[3];
-      var Ry_BF = this.datum_params[4];
-      var Rz_BF = this.datum_params[5];
-      var M_BF = this.datum_params[6];
-      var x_tmp = (p.x - Dx_BF) / M_BF;
-      var y_tmp = (p.y - Dy_BF) / M_BF;
-      var z_tmp = (p.z - Dz_BF) / M_BF;
-      //if( x[io] === HUGE_VAL )
-      //    continue;
-
-      p.x = x_tmp + Rz_BF * y_tmp - Ry_BF * z_tmp;
-      p.y = -Rz_BF * x_tmp + y_tmp + Rx_BF * z_tmp;
-      p.z = Ry_BF * x_tmp - Rx_BF * y_tmp + z_tmp;
-    } //cs_geocentric_from_wgs84()
-  }
-};
-
-/** point object, nothing fancy, just allows values to be
-    passed back and forth by reference rather than by value.
-    Other point classes may be used as long as they have
-    x and y properties, which will get modified in the transform method.
-*/
-module.exports = datum;
-
-},{}],31:[function(_dereq_,module,exports){
-var PJD_3PARAM = 1;
-var PJD_7PARAM = 2;
-var PJD_GRIDSHIFT = 3;
-var PJD_NODATUM = 5; // WGS84 or equivalent
-var SRS_WGS84_SEMIMAJOR = 6378137; // only used in grid shift transforms
-var SRS_WGS84_ESQUARED = 0.006694379990141316; //DGR: 2012-07-29
-module.exports = function(source, dest, point) {
-  var wp, i, l;
-
-  function checkParams(fallback) {
-    return (fallback === PJD_3PARAM || fallback === PJD_7PARAM);
-  }
-  // Short cut if the datums are identical.
-  if (source.compare_datums(dest)) {
-    return point; // in this case, zero is sucess,
-    // whereas cs_compare_datums returns 1 to indicate TRUE
-    // confusing, should fix this
-  }
-
-  // Explicitly skip datum transform by setting 'datum=none' as parameter for either source or dest
-  if (source.datum_type === PJD_NODATUM || dest.datum_type === PJD_NODATUM) {
-    return point;
-  }
-
-  //DGR: 2012-07-29 : add nadgrids support (begin)
-  var src_a = source.a;
-  var src_es = source.es;
-
-  var dst_a = dest.a;
-  var dst_es = dest.es;
-
-  var fallback = source.datum_type;
-  // If this datum requires grid shifts, then apply it to geodetic coordinates.
-  if (fallback === PJD_GRIDSHIFT) {
-    if (this.apply_gridshift(source, 0, point) === 0) {
-      source.a = SRS_WGS84_SEMIMAJOR;
-      source.es = SRS_WGS84_ESQUARED;
-    }
-    else {
-      // try 3 or 7 params transformation or nothing ?
-      if (!source.datum_params) {
-        source.a = src_a;
-        source.es = source.es;
-        return point;
-      }
-      wp = 1;
-      for (i = 0, l = source.datum_params.length; i < l; i++) {
-        wp *= source.datum_params[i];
-      }
-      if (wp === 0) {
-        source.a = src_a;
-        source.es = source.es;
-        return point;
-      }
-      if (source.datum_params.length > 3) {
-        fallback = PJD_7PARAM;
-      }
-      else {
-        fallback = PJD_3PARAM;
-      }
-    }
-  }
-  if (dest.datum_type === PJD_GRIDSHIFT) {
-    dest.a = SRS_WGS84_SEMIMAJOR;
-    dest.es = SRS_WGS84_ESQUARED;
-  }
-  // Do we need to go through geocentric coordinates?
-  if (source.es !== dest.es || source.a !== dest.a || checkParams(fallback) || checkParams(dest.datum_type)) {
-    //DGR: 2012-07-29 : add nadgrids support (end)
-    // Convert to geocentric coordinates.
-    source.geodetic_to_geocentric(point);
-    // CHECK_RETURN;
-    // Convert between datums
-    if (checkParams(source.datum_type)) {
-      source.geocentric_to_wgs84(point);
-      // CHECK_RETURN;
-    }
-    if (checkParams(dest.datum_type)) {
-      dest.geocentric_from_wgs84(point);
-      // CHECK_RETURN;
-    }
-    // Convert back to geodetic coordinates
-    dest.geocentric_to_geodetic(point);
-    // CHECK_RETURN;
-  }
-  // Apply grid shift to destination if required
-  if (dest.datum_type === PJD_GRIDSHIFT) {
-    this.apply_gridshift(dest, 1, point);
-    // CHECK_RETURN;
-  }
-
-  source.a = src_a;
-  source.es = src_es;
-  dest.a = dst_a;
-  dest.es = dst_es;
-
-  return point;
-};
-
-
-},{}],32:[function(_dereq_,module,exports){
-var globals = _dereq_('./global');
-var parseProj = _dereq_('./projString');
-var wkt = _dereq_('./wkt');
-
-function defs(name) {
-  /*global console*/
-  var that = this;
-  if (arguments.length === 2) {
-    var def = arguments[1];
-    if (typeof def === 'string') {
-      if (def.charAt(0) === '+') {
-        defs[name] = parseProj(arguments[1]);
-      }
-      else {
-        defs[name] = wkt(arguments[1]);
-      }
-    } else {
-      defs[name] = def;
-    }
-  }
-  else if (arguments.length === 1) {
-    if (Array.isArray(name)) {
-      return name.map(function(v) {
-        if (Array.isArray(v)) {
-          defs.apply(that, v);
-        }
-        else {
-          defs(v);
-        }
-      });
-    }
-    else if (typeof name === 'string') {
-      if (name in defs) {
-        return defs[name];
-      }
-    }
-    else if ('EPSG' in name) {
-      defs['EPSG:' + name.EPSG] = name;
-    }
-    else if ('ESRI' in name) {
-      defs['ESRI:' + name.ESRI] = name;
-    }
-    else if ('IAU2000' in name) {
-      defs['IAU2000:' + name.IAU2000] = name;
-    }
-    else {
-      console.log(name);
-    }
-    return;
-  }
-
-
-}
-globals(defs);
-module.exports = defs;
-
-},{"./global":35,"./projString":38,"./wkt":66}],33:[function(_dereq_,module,exports){
-var Datum = _dereq_('./constants/Datum');
-var Ellipsoid = _dereq_('./constants/Ellipsoid');
-var extend = _dereq_('./extend');
-var datum = _dereq_('./datum');
-var EPSLN = 1.0e-10;
-// ellipoid pj_set_ell.c
-var SIXTH = 0.1666666666666666667;
-/* 1/6 */
-var RA4 = 0.04722222222222222222;
-/* 17/360 */
-var RA6 = 0.02215608465608465608;
-module.exports = function(json) {
-  // DGR 2011-03-20 : nagrids -> nadgrids
-  if (json.datumCode && json.datumCode !== 'none') {
-    var datumDef = Datum[json.datumCode];
-    if (datumDef) {
-      json.datum_params = datumDef.towgs84 ? datumDef.towgs84.split(',') : null;
-      json.ellps = datumDef.ellipse;
-      json.datumName = datumDef.datumName ? datumDef.datumName : json.datumCode;
-    }
-  }
-  if (!json.a) { // do we have an ellipsoid?
-    var ellipse = Ellipsoid[json.ellps] ? Ellipsoid[json.ellps] : Ellipsoid.WGS84;
-    extend(json, ellipse);
-  }
-  if (json.rf && !json.b) {
-    json.b = (1.0 - 1.0 / json.rf) * json.a;
-  }
-  if (json.rf === 0 || Math.abs(json.a - json.b) < EPSLN) {
-    json.sphere = true;
-    json.b = json.a;
-  }
-  json.a2 = json.a * json.a; // used in geocentric
-  json.b2 = json.b * json.b; // used in geocentric
-  json.es = (json.a2 - json.b2) / json.a2; // e ^ 2
-  json.e = Math.sqrt(json.es); // eccentricity
-  if (json.R_A) {
-    json.a *= 1 - json.es * (SIXTH + json.es * (RA4 + json.es * RA6));
-    json.a2 = json.a * json.a;
-    json.b2 = json.b * json.b;
-    json.es = 0;
-  }
-  json.ep2 = (json.a2 - json.b2) / json.b2; // used in geocentric
-  if (!json.k0) {
-    json.k0 = 1.0; //default value
-  }
-  //DGR 2010-11-12: axis
-  if (!json.axis) {
-    json.axis = "enu";
-  }
-
-  if (!json.datum) {
-    json.datum = datum(json);
-  }
-  return json;
-};
-
-},{"./constants/Datum":25,"./constants/Ellipsoid":26,"./datum":30,"./extend":34}],34:[function(_dereq_,module,exports){
-module.exports = function(destination, source) {
-  destination = destination || {};
-  var value, property;
-  if (!source) {
-    return destination;
-  }
-  for (property in source) {
-    value = source[property];
-    if (value !== undefined) {
-      destination[property] = value;
-    }
-  }
-  return destination;
-};
-
-},{}],35:[function(_dereq_,module,exports){
-module.exports = function(defs) {
-  defs('EPSG:4326', "+title=WGS 84 (long/lat) +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees");
-  defs('EPSG:4269', "+title=NAD83 (long/lat) +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees");
-  defs('EPSG:3857', "+title=WGS 84 / Pseudo-Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs");
-
-  defs.WGS84 = defs['EPSG:4326'];
-  defs['EPSG:3785'] = defs['EPSG:3857']; // maintain backward compat, official code is 3857
-  defs.GOOGLE = defs['EPSG:3857'];
-  defs['EPSG:900913'] = defs['EPSG:3857'];
-  defs['EPSG:102113'] = defs['EPSG:3857'];
-};
-
-},{}],36:[function(_dereq_,module,exports){
-var proj4 = _dereq_('./core');
-proj4.defaultDatum = 'WGS84'; //default datum
-proj4.Proj = _dereq_('./Proj');
-proj4.WGS84 = new proj4.Proj('WGS84');
-proj4.Point = _dereq_('./Point');
-proj4.toPoint = _dereq_("./common/toPoint");
-proj4.defs = _dereq_('./defs');
-proj4.transform = _dereq_('./transform');
-proj4.mgrs = _dereq_('mgrs');
-proj4.version = _dereq_('../package.json').version;
-_dereq_('./includedProjections')(proj4);
-module.exports = proj4;
-},{"../package.json":68,"./Point":1,"./Proj":2,"./common/toPoint":23,"./core":29,"./defs":32,"./includedProjections":"hTEDpn","./transform":65,"mgrs":67}],37:[function(_dereq_,module,exports){
-var defs = _dereq_('./defs');
-var wkt = _dereq_('./wkt');
-var projStr = _dereq_('./projString');
-function testObj(code){
-  return typeof code === 'string';
-}
-function testDef(code){
-  return code in defs;
-}
-function testWKT(code){
-  var codeWords = ['GEOGCS','GEOCCS','PROJCS','LOCAL_CS'];
-  return codeWords.reduce(function(a,b){
-    return a+1+code.indexOf(b);
-  },0);
-}
-function testProj(code){
-  return code[0] === '+';
-}
-function parse(code){
-  if (testObj(code)) {
-    //check to see if this is a WKT string
-    if (testDef(code)) {
-      return defs[code];
-    }
-    else if (testWKT(code)) {
-      return wkt(code);
-    }
-    else if (testProj(code)) {
-      return projStr(code);
-    }
-  }else{
-    return code;
-  }
-}
-
-module.exports = parse;
-},{"./defs":32,"./projString":38,"./wkt":66}],38:[function(_dereq_,module,exports){
-var D2R = 0.01745329251994329577;
-var PrimeMeridian = _dereq_('./constants/PrimeMeridian');
-var units = _dereq_('./constants/units');
-
-module.exports = function(defData) {
-  var self = {};
-  var paramObj = {};
-  defData.split("+").map(function(v) {
-    return v.trim();
-  }).filter(function(a) {
-    return a;
-  }).forEach(function(a) {
-    var split = a.split("=");
-    split.push(true);
-    paramObj[split[0].toLowerCase()] = split[1];
-  });
-  var paramName, paramVal, paramOutname;
-  var params = {
-    proj: 'projName',
-    datum: 'datumCode',
-    rf: function(v) {
-      self.rf = parseFloat(v);
-    },
-    lat_0: function(v) {
-      self.lat0 = v * D2R;
-    },
-    lat_1: function(v) {
-      self.lat1 = v * D2R;
-    },
-    lat_2: function(v) {
-      self.lat2 = v * D2R;
-    },
-    lat_ts: function(v) {
-      self.lat_ts = v * D2R;
-    },
-    lon_0: function(v) {
-      self.long0 = v * D2R;
-    },
-    lon_1: function(v) {
-      self.long1 = v * D2R;
-    },
-    lon_2: function(v) {
-      self.long2 = v * D2R;
-    },
-    alpha: function(v) {
-      self.alpha = parseFloat(v) * D2R;
-    },
-    lonc: function(v) {
-      self.longc = v * D2R;
-    },
-    x_0: function(v) {
-      self.x0 = parseFloat(v);
-    },
-    y_0: function(v) {
-      self.y0 = parseFloat(v);
-    },
-    k_0: function(v) {
-      self.k0 = parseFloat(v);
-    },
-    k: function(v) {
-      self.k0 = parseFloat(v);
-    },
-    a: function(v) {
-      self.a = parseFloat(v);
-    },
-    b: function(v) {
-      self.b = parseFloat(v);
-    },
-    r_a: function() {
-      self.R_A = true;
-    },
-    zone: function(v) {
-      self.zone = parseInt(v, 10);
-    },
-    south: function() {
-      self.utmSouth = true;
-    },
-    towgs84: function(v) {
-      self.datum_params = v.split(",").map(function(a) {
-        return parseFloat(a);
-      });
-    },
-    to_meter: function(v) {
-      self.to_meter = parseFloat(v);
-    },
-    units: function(v) {
-      self.units = v;
-      if (units[v]) {
-        self.to_meter = units[v].to_meter;
-      }
-    },
-    from_greenwich: function(v) {
-      self.from_greenwich = v * D2R;
-    },
-    pm: function(v) {
-      self.from_greenwich = (PrimeMeridian[v] ? PrimeMeridian[v] : parseFloat(v)) * D2R;
-    },
-    nadgrids: function(v) {
-      if (v === '@null') {
-        self.datumCode = 'none';
-      }
-      else {
-        self.nadgrids = v;
-      }
-    },
-    axis: function(v) {
-      var legalAxis = "ewnsud";
-      if (v.length === 3 && legalAxis.indexOf(v.substr(0, 1)) !== -1 && legalAxis.indexOf(v.substr(1, 1)) !== -1 && legalAxis.indexOf(v.substr(2, 1)) !== -1) {
-        self.axis = v;
-      }
-    }
-  };
-  for (paramName in paramObj) {
-    paramVal = paramObj[paramName];
-    if (paramName in params) {
-      paramOutname = params[paramName];
-      if (typeof paramOutname === 'function') {
-        paramOutname(paramVal);
-      }
-      else {
-        self[paramOutname] = paramVal;
-      }
-    }
-    else {
-      self[paramName] = paramVal;
-    }
-  }
-  if(typeof self.datumCode === 'string' && self.datumCode !== "WGS84"){
-    self.datumCode = self.datumCode.toLowerCase();
-  }
-  return self;
-};
-
-},{"./constants/PrimeMeridian":27,"./constants/units":28}],39:[function(_dereq_,module,exports){
-var projs = [
-  _dereq_('./projections/merc'),
-  _dereq_('./projections/longlat')
-];
-var names = {};
-var projStore = [];
-
-function add(proj, i) {
-  var len = projStore.length;
-  if (!proj.names) {
-    console.log(i);
-    return true;
-  }
-  projStore[len] = proj;
-  proj.names.forEach(function(n) {
-    names[n.toLowerCase()] = len;
-  });
-  return this;
-}
-
-exports.add = add;
-
-exports.get = function(name) {
-  if (!name) {
-    return false;
-  }
-  var n = name.toLowerCase();
-  if (typeof names[n] !== 'undefined' && projStore[names[n]]) {
-    return projStore[names[n]];
-  }
-};
-exports.start = function() {
-  projs.forEach(add);
-};
-
-},{"./projections/longlat":51,"./projections/merc":52}],40:[function(_dereq_,module,exports){
-var EPSLN = 1.0e-10;
-var msfnz = _dereq_('../common/msfnz');
-var qsfnz = _dereq_('../common/qsfnz');
-var adjust_lon = _dereq_('../common/adjust_lon');
-var asinz = _dereq_('../common/asinz');
-exports.init = function() {
-
-  if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
-    return;
-  }
-  this.temp = this.b / this.a;
-  this.es = 1 - Math.pow(this.temp, 2);
-  this.e3 = Math.sqrt(this.es);
-
-  this.sin_po = Math.sin(this.lat1);
-  this.cos_po = Math.cos(this.lat1);
-  this.t1 = this.sin_po;
-  this.con = this.sin_po;
-  this.ms1 = msfnz(this.e3, this.sin_po, this.cos_po);
-  this.qs1 = qsfnz(this.e3, this.sin_po, this.cos_po);
-
-  this.sin_po = Math.sin(this.lat2);
-  this.cos_po = Math.cos(this.lat2);
-  this.t2 = this.sin_po;
-  this.ms2 = msfnz(this.e3, this.sin_po, this.cos_po);
-  this.qs2 = qsfnz(this.e3, this.sin_po, this.cos_po);
-
-  this.sin_po = Math.sin(this.lat0);
-  this.cos_po = Math.cos(this.lat0);
-  this.t3 = this.sin_po;
-  this.qs0 = qsfnz(this.e3, this.sin_po, this.cos_po);
-
-  if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
-    this.ns0 = (this.ms1 * this.ms1 - this.ms2 * this.ms2) / (this.qs2 - this.qs1);
-  }
-  else {
-    this.ns0 = this.con;
-  }
-  this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1;
-  this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0) / this.ns0;
-};
-
-/* Albers Conical Equal Area forward equations--mapping lat,long to x,y
-  -------------------------------------------------------------------*/
-exports.forward = function(p) {
-
-  var lon = p.x;
-  var lat = p.y;
-
-  this.sin_phi = Math.sin(lat);
-  this.cos_phi = Math.cos(lat);
-
-  var qs = qsfnz(this.e3, this.sin_phi, this.cos_phi);
-  var rh1 = this.a * Math.sqrt(this.c - this.ns0 * qs) / this.ns0;
-  var theta = this.ns0 * adjust_lon(lon - this.long0);
-  var x = rh1 * Math.sin(theta) + this.x0;
-  var y = this.rh - rh1 * Math.cos(theta) + this.y0;
-
-  p.x = x;
-  p.y = y;
-  return p;
-};
-
-
-exports.inverse = function(p) {
-  var rh1, qs, con, theta, lon, lat;
-
-  p.x -= this.x0;
-  p.y = this.rh - p.y + this.y0;
-  if (this.ns0 >= 0) {
-    rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
-    con = 1;
-  }
-  else {
-    rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
-    con = -1;
-  }
-  theta = 0;
-  if (rh1 !== 0) {
-    theta = Math.atan2(con * p.x, con * p.y);
-  }
-  con = rh1 * this.ns0 / this.a;
-  if (this.sphere) {
-    lat = Math.asin((this.c - con * con) / (2 * this.ns0));
-  }
-  else {
-    qs = (this.c - con * con) / this.ns0;
-    lat = this.phi1z(this.e3, qs);
-  }
-
-  lon = adjust_lon(theta / this.ns0 + this.long0);
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-
-/* Function to compute phi1, the latitude for the inverse of the
-   Albers Conical Equal-Area projection.
--------------------------------------------*/
-exports.phi1z = function(eccent, qs) {
-  var sinphi, cosphi, con, com, dphi;
-  var phi = asinz(0.5 * qs);
-  if (eccent < EPSLN) {
-    return phi;
-  }
-
-  var eccnts = eccent * eccent;
-  for (var i = 1; i <= 25; i++) {
-    sinphi = Math.sin(phi);
-    cosphi = Math.cos(phi);
-    con = eccent * sinphi;
-    com = 1 - con * con;
-    dphi = 0.5 * com * com / cosphi * (qs / (1 - eccnts) - sinphi / com + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
-    phi = phi + dphi;
-    if (Math.abs(dphi) <= 1e-7) {
-      return phi;
-    }
-  }
-  return null;
-};
-exports.names = ["Albers_Conic_Equal_Area", "Albers", "aea"];
-
-},{"../common/adjust_lon":5,"../common/asinz":6,"../common/msfnz":15,"../common/qsfnz":20}],41:[function(_dereq_,module,exports){
-var adjust_lon = _dereq_('../common/adjust_lon');
-var HALF_PI = Math.PI/2;
-var EPSLN = 1.0e-10;
-var mlfn = _dereq_('../common/mlfn');
-var e0fn = _dereq_('../common/e0fn');
-var e1fn = _dereq_('../common/e1fn');
-var e2fn = _dereq_('../common/e2fn');
-var e3fn = _dereq_('../common/e3fn');
-var gN = _dereq_('../common/gN');
-var asinz = _dereq_('../common/asinz');
-var imlfn = _dereq_('../common/imlfn');
-exports.init = function() {
-  this.sin_p12 = Math.sin(this.lat0);
-  this.cos_p12 = Math.cos(this.lat0);
-};
-
-exports.forward = function(p) {
-  var lon = p.x;
-  var lat = p.y;
-  var sinphi = Math.sin(p.y);
-  var cosphi = Math.cos(p.y);
-  var dlon = adjust_lon(lon - this.long0);
-  var e0, e1, e2, e3, Mlp, Ml, tanphi, Nl1, Nl, psi, Az, G, H, GH, Hs, c, kp, cos_c, s, s2, s3, s4, s5;
-  if (this.sphere) {
-    if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
-      //North Pole case
-      p.x = this.x0 + this.a * (HALF_PI - lat) * Math.sin(dlon);
-      p.y = this.y0 - this.a * (HALF_PI - lat) * Math.cos(dlon);
-      return p;
-    }
-    else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
-      //South Pole case
-      p.x = this.x0 + this.a * (HALF_PI + lat) * Math.sin(dlon);
-      p.y = this.y0 + this.a * (HALF_PI + lat) * Math.cos(dlon);
-      return p;
-    }
-    else {
-      //default case
-      cos_c = this.sin_p12 * sinphi + this.cos_p12 * cosphi * Math.cos(dlon);
-      c = Math.acos(cos_c);
-      kp = c / Math.sin(c);
-      p.x = this.x0 + this.a * kp * cosphi * Math.sin(dlon);
-      p.y = this.y0 + this.a * kp * (this.cos_p12 * sinphi - this.sin_p12 * cosphi * Math.cos(dlon));
-      return p;
-    }
-  }
-  else {
-    e0 = e0fn(this.es);
-    e1 = e1fn(this.es);
-    e2 = e2fn(this.es);
-    e3 = e3fn(this.es);
-    if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
-      //North Pole case
-      Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
-      Ml = this.a * mlfn(e0, e1, e2, e3, lat);
-      p.x = this.x0 + (Mlp - Ml) * Math.sin(dlon);
-      p.y = this.y0 - (Mlp - Ml) * Math.cos(dlon);
-      return p;
-    }
-    else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
-      //South Pole case
-      Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
-      Ml = this.a * mlfn(e0, e1, e2, e3, lat);
-      p.x = this.x0 + (Mlp + Ml) * Math.sin(dlon);
-      p.y = this.y0 + (Mlp + Ml) * Math.cos(dlon);
-      return p;
-    }
-    else {
-      //Default case
-      tanphi = sinphi / cosphi;
-      Nl1 = gN(this.a, this.e, this.sin_p12);
-      Nl = gN(this.a, this.e, sinphi);
-      psi = Math.atan((1 - this.es) * tanphi + this.es * Nl1 * this.sin_p12 / (Nl * cosphi));
-      Az = Math.atan2(Math.sin(dlon), this.cos_p12 * Math.tan(psi) - this.sin_p12 * Math.cos(dlon));
-      if (Az === 0) {
-        s = Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
-      }
-      else if (Math.abs(Math.abs(Az) - Math.PI) <= EPSLN) {
-        s = -Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
-      }
-      else {
-        s = Math.asin(Math.sin(dlon) * Math.cos(psi) / Math.sin(Az));
-      }
-      G = this.e * this.sin_p12 / Math.sqrt(1 - this.es);
-      H = this.e * this.cos_p12 * Math.cos(Az) / Math.sqrt(1 - this.es);
-      GH = G * H;
-      Hs = H * H;
-      s2 = s * s;
-      s3 = s2 * s;
-      s4 = s3 * s;
-      s5 = s4 * s;
-      c = Nl1 * s * (1 - s2 * Hs * (1 - Hs) / 6 + s3 / 8 * GH * (1 - 2 * Hs) + s4 / 120 * (Hs * (4 - 7 * Hs) - 3 * G * G * (1 - 7 * Hs)) - s5 / 48 * GH);
-      p.x = this.x0 + c * Math.sin(Az);
-      p.y = this.y0 + c * Math.cos(Az);
-      return p;
-    }
-  }
-
-
-};
-
-exports.inverse = function(p) {
-  p.x -= this.x0;
-  p.y -= this.y0;
-  var rh, z, sinz, cosz, lon, lat, con, e0, e1, e2, e3, Mlp, M, N1, psi, Az, cosAz, tmp, A, B, D, Ee, F;
-  if (this.sphere) {
-    rh = Math.sqrt(p.x * p.x + p.y * p.y);
-    if (rh > (2 * HALF_PI * this.a)) {
-      return;
-    }
-    z = rh / this.a;
-
-    sinz = Math.sin(z);
-    cosz = Math.cos(z);
-
-    lon = this.long0;
-    if (Math.abs(rh) <= EPSLN) {
-      lat = this.lat0;
-    }
-    else {
-      lat = asinz(cosz * this.sin_p12 + (p.y * sinz * this.cos_p12) / rh);
-      con = Math.abs(this.lat0) - HALF_PI;
-      if (Math.abs(con) <= EPSLN) {
-        if (this.lat0 >= 0) {
-          lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
-        }
-        else {
-          lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
-        }
-      }
-      else {
-        /*con = cosz - this.sin_p12 * Math.sin(lat);
-        if ((Math.abs(con) < EPSLN) && (Math.abs(p.x) < EPSLN)) {
-          //no-op, just keep the lon value as is
-        } else {
-          var temp = Math.atan2((p.x * sinz * this.cos_p12), (con * rh));
-          lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz * this.cos_p12), (con * rh)));
-        }*/
-        lon = adjust_lon(this.long0 + Math.atan2(p.x * sinz, rh * this.cos_p12 * cosz - p.y * this.sin_p12 * sinz));
-      }
-    }
-
-    p.x = lon;
-    p.y = lat;
-    return p;
-  }
-  else {
-    e0 = e0fn(this.es);
-    e1 = e1fn(this.es);
-    e2 = e2fn(this.es);
-    e3 = e3fn(this.es);
-    if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
-      //North pole case
-      Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
-      rh = Math.sqrt(p.x * p.x + p.y * p.y);
-      M = Mlp - rh;
-      lat = imlfn(M / this.a, e0, e1, e2, e3);
-      lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
-      p.x = lon;
-      p.y = lat;
-      return p;
-    }
-    else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
-      //South pole case
-      Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
-      rh = Math.sqrt(p.x * p.x + p.y * p.y);
-      M = rh - Mlp;
-
-      lat = imlfn(M / this.a, e0, e1, e2, e3);
-      lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
-      p.x = lon;
-      p.y = lat;
-      return p;
-    }
-    else {
-      //default case
-      rh = Math.sqrt(p.x * p.x + p.y * p.y);
-      Az = Math.atan2(p.x, p.y);
-      N1 = gN(this.a, this.e, this.sin_p12);
-      cosAz = Math.cos(Az);
-      tmp = this.e * this.cos_p12 * cosAz;
-      A = -tmp * tmp / (1 - this.es);
-      B = 3 * this.es * (1 - A) * this.sin_p12 * this.cos_p12 * cosAz / (1 - this.es);
-      D = rh / N1;
-      Ee = D - A * (1 + A) * Math.pow(D, 3) / 6 - B * (1 + 3 * A) * Math.pow(D, 4) / 24;
-      F = 1 - A * Ee * Ee / 2 - D * Ee * Ee * Ee / 6;
-      psi = Math.asin(this.sin_p12 * Math.cos(Ee) + this.cos_p12 * Math.sin(Ee) * cosAz);
-      lon = adjust_lon(this.long0 + Math.asin(Math.sin(Az) * Math.sin(Ee) / Math.cos(psi)));
-      lat = Math.atan((1 - this.es * F * this.sin_p12 / Math.sin(psi)) * Math.tan(psi) / (1 - this.es));
-      p.x = lon;
-      p.y = lat;
-      return p;
-    }
-  }
-
-};
-exports.names = ["Azimuthal_Equidistant", "aeqd"];
-
-},{"../common/adjust_lon":5,"../common/asinz":6,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/gN":11,"../common/imlfn":12,"../common/mlfn":14}],42:[function(_dereq_,module,exports){
-var mlfn = _dereq_('../common/mlfn');
-var e0fn = _dereq_('../common/e0fn');
-var e1fn = _dereq_('../common/e1fn');
-var e2fn = _dereq_('../common/e2fn');
-var e3fn = _dereq_('../common/e3fn');
-var gN = _dereq_('../common/gN');
-var adjust_lon = _dereq_('../common/adjust_lon');
-var adjust_lat = _dereq_('../common/adjust_lat');
-var imlfn = _dereq_('../common/imlfn');
-var HALF_PI = Math.PI/2;
-var EPSLN = 1.0e-10;
-exports.init = function() {
-  if (!this.sphere) {
-    this.e0 = e0fn(this.es);
-    this.e1 = e1fn(this.es);
-    this.e2 = e2fn(this.es);
-    this.e3 = e3fn(this.es);
-    this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
-  }
-};
-
-
-
-/* Cassini forward equations--mapping lat,long to x,y
-  -----------------------------------------------------------------------*/
-exports.forward = function(p) {
-
-  /* Forward equations
-      -----------------*/
-  var x, y;
-  var lam = p.x;
-  var phi = p.y;
-  lam = adjust_lon(lam - this.long0);
-
-  if (this.sphere) {
-    x = this.a * Math.asin(Math.cos(phi) * Math.sin(lam));
-    y = this.a * (Math.atan2(Math.tan(phi), Math.cos(lam)) - this.lat0);
-  }
-  else {
-    //ellipsoid
-    var sinphi = Math.sin(phi);
-    var cosphi = Math.cos(phi);
-    var nl = gN(this.a, this.e, sinphi);
-    var tl = Math.tan(phi) * Math.tan(phi);
-    var al = lam * Math.cos(phi);
-    var asq = al * al;
-    var cl = this.es * cosphi * cosphi / (1 - this.es);
-    var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
-
-    x = nl * al * (1 - asq * tl * (1 / 6 - (8 - tl + 8 * cl) * asq / 120));
-    y = ml - this.ml0 + nl * sinphi / cosphi * asq * (0.5 + (5 - tl + 6 * cl) * asq / 24);
-
-
-  }
-
-  p.x = x + this.x0;
-  p.y = y + this.y0;
-  return p;
-};
-
-/* Inverse equations
-  -----------------*/
-exports.inverse = function(p) {
-  p.x -= this.x0;
-  p.y -= this.y0;
-  var x = p.x / this.a;
-  var y = p.y / this.a;
-  var phi, lam;
-
-  if (this.sphere) {
-    var dd = y + this.lat0;
-    phi = Math.asin(Math.sin(dd) * Math.cos(x));
-    lam = Math.atan2(Math.tan(x), Math.cos(dd));
-  }
-  else {
-    /* ellipsoid */
-    var ml1 = this.ml0 / this.a + y;
-    var phi1 = imlfn(ml1, this.e0, this.e1, this.e2, this.e3);
-    if (Math.abs(Math.abs(phi1) - HALF_PI) <= EPSLN) {
-      p.x = this.long0;
-      p.y = HALF_PI;
-      if (y < 0) {
-        p.y *= -1;
-      }
-      return p;
-    }
-    var nl1 = gN(this.a, this.e, Math.sin(phi1));
-
-    var rl1 = nl1 * nl1 * nl1 / this.a / this.a * (1 - this.es);
-    var tl1 = Math.pow(Math.tan(phi1), 2);
-    var dl = x * this.a / nl1;
-    var dsq = dl * dl;
-    phi = phi1 - nl1 * Math.tan(phi1) / rl1 * dl * dl * (0.5 - (1 + 3 * tl1) * dl * dl / 24);
-    lam = dl * (1 - dsq * (tl1 / 3 + (1 + 3 * tl1) * tl1 * dsq / 15)) / Math.cos(phi1);
-
-  }
-
-  p.x = adjust_lon(lam + this.long0);
-  p.y = adjust_lat(phi);
-  return p;
-
-};
-exports.names = ["Cassini", "Cassini_Soldner", "cass"];
-},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/gN":11,"../common/imlfn":12,"../common/mlfn":14}],43:[function(_dereq_,module,exports){
-var adjust_lon = _dereq_('../common/adjust_lon');
-var qsfnz = _dereq_('../common/qsfnz');
-var msfnz = _dereq_('../common/msfnz');
-var iqsfnz = _dereq_('../common/iqsfnz');
-/*
-  reference:  
-    "Cartographic Projection Procedures for the UNIX Environment-
-    A User's Manual" by Gerald I. Evenden,
-    USGS Open File Report 90-284and Release 4 Interim Reports (2003)
-*/
-exports.init = function() {
-  //no-op
-  if (!this.sphere) {
-    this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
-  }
-};
-
-
-/* Cylindrical Equal Area forward equations--mapping lat,long to x,y
-    ------------------------------------------------------------*/
-exports.forward = function(p) {
-  var lon = p.x;
-  var lat = p.y;
-  var x, y;
-  /* Forward equations
-      -----------------*/
-  var dlon = adjust_lon(lon - this.long0);
-  if (this.sphere) {
-    x = this.x0 + this.a * dlon * Math.cos(this.lat_ts);
-    y = this.y0 + this.a * Math.sin(lat) / Math.cos(this.lat_ts);
-  }
-  else {
-    var qs = qsfnz(this.e, Math.sin(lat));
-    x = this.x0 + this.a * this.k0 * dlon;
-    y = this.y0 + this.a * qs * 0.5 / this.k0;
-  }
-
-  p.x = x;
-  p.y = y;
-  return p;
-};
-
-/* Cylindrical Equal Area inverse equations--mapping x,y to lat/long
-    ------------------------------------------------------------*/
-exports.inverse = function(p) {
-  p.x -= this.x0;
-  p.y -= this.y0;
-  var lon, lat;
-
-  if (this.sphere) {
-    lon = adjust_lon(this.long0 + (p.x / this.a) / Math.cos(this.lat_ts));
-    lat = Math.asin((p.y / this.a) * Math.cos(this.lat_ts));
-  }
-  else {
-    lat = iqsfnz(this.e, 2 * p.y * this.k0 / this.a);
-    lon = adjust_lon(this.long0 + p.x / (this.a * this.k0));
-  }
-
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-exports.names = ["cea"];
-
-},{"../common/adjust_lon":5,"../common/iqsfnz":13,"../common/msfnz":15,"../common/qsfnz":20}],44:[function(_dereq_,module,exports){
-var adjust_lon = _dereq_('../common/adjust_lon');
-var adjust_lat = _dereq_('../common/adjust_lat');
-exports.init = function() {
-
-  this.x0 = this.x0 || 0;
-  this.y0 = this.y0 || 0;
-  this.lat0 = this.lat0 || 0;
-  this.long0 = this.long0 || 0;
-  this.lat_ts = this.lat_ts || 0;
-  this.title = this.title || "Equidistant Cylindrical (Plate Carre)";
-
-  this.rc = Math.cos(this.lat_ts);
-};
-
-
-// forward equations--mapping lat,long to x,y
-// -----------------------------------------------------------------
-exports.forward = function(p) {
-
-  var lon = p.x;
-  var lat = p.y;
-
-  var dlon = adjust_lon(lon - this.long0);
-  var dlat = adjust_lat(lat - this.lat0);
-  p.x = this.x0 + (this.a * dlon * this.rc);
-  p.y = this.y0 + (this.a * dlat);
-  return p;
-};
-
-// inverse equations--mapping x,y to lat/long
-// -----------------------------------------------------------------
-exports.inverse = function(p) {
-
-  var x = p.x;
-  var y = p.y;
-
-  p.x = adjust_lon(this.long0 + ((x - this.x0) / (this.a * this.rc)));
-  p.y = adjust_lat(this.lat0 + ((y - this.y0) / (this.a)));
-  return p;
-};
-exports.names = ["Equirectangular", "Equidistant_Cylindrical", "eqc"];
-
-},{"../common/adjust_lat":4,"../common/adjust_lon":5}],45:[function(_dereq_,module,exports){
-var e0fn = _dereq_('../common/e0fn');
-var e1fn = _dereq_('../common/e1fn');
-var e2fn = _dereq_('../common/e2fn');
-var e3fn = _dereq_('../common/e3fn');
-var msfnz = _dereq_('../common/msfnz');
-var mlfn = _dereq_('../common/mlfn');
-var adjust_lon = _dereq_('../common/adjust_lon');
-var adjust_lat = _dereq_('../common/adjust_lat');
-var imlfn = _dereq_('../common/imlfn');
-var EPSLN = 1.0e-10;
-exports.init = function() {
-
-  /* Place parameters in static storage for common use
-      -------------------------------------------------*/
-  // Standard Parallels cannot be equal and on opposite sides of the equator
-  if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
-    return;
-  }
-  this.lat2 = this.lat2 || this.lat1;
-  this.temp = this.b / this.a;
-  this.es = 1 - Math.pow(this.temp, 2);
-  this.e = Math.sqrt(this.es);
-  this.e0 = e0fn(this.es);
-  this.e1 = e1fn(this.es);
-  this.e2 = e2fn(this.es);
-  this.e3 = e3fn(this.es);
-
-  this.sinphi = Math.sin(this.lat1);
-  this.cosphi = Math.cos(this.lat1);
-
-  this.ms1 = msfnz(this.e, this.sinphi, this.cosphi);
-  this.ml1 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat1);
-
-  if (Math.abs(this.lat1 - this.lat2) < EPSLN) {
-    this.ns = this.sinphi;
-  }
-  else {
-    this.sinphi = Math.sin(this.lat2);
-    this.cosphi = Math.cos(this.lat2);
-    this.ms2 = msfnz(this.e, this.sinphi, this.cosphi);
-    this.ml2 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat2);
-    this.ns = (this.ms1 - this.ms2) / (this.ml2 - this.ml1);
-  }
-  this.g = this.ml1 + this.ms1 / this.ns;
-  this.ml0 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
-  this.rh = this.a * (this.g - this.ml0);
-};
-
-
-/* Equidistant Conic forward equations--mapping lat,long to x,y
-  -----------------------------------------------------------*/
-exports.forward = function(p) {
-  var lon = p.x;
-  var lat = p.y;
-  var rh1;
-
-  /* Forward equations
-      -----------------*/
-  if (this.sphere) {
-    rh1 = this.a * (this.g - lat);
-  }
-  else {
-    var ml = mlfn(this.e0, this.e1, this.e2, this.e3, lat);
-    rh1 = this.a * (this.g - ml);
-  }
-  var theta = this.ns * adjust_lon(lon - this.long0);
-  var x = this.x0 + rh1 * Math.sin(theta);
-  var y = this.y0 + this.rh - rh1 * Math.cos(theta);
-  p.x = x;
-  p.y = y;
-  return p;
-};
-
-/* Inverse equations
-  -----------------*/
-exports.inverse = function(p) {
-  p.x -= this.x0;
-  p.y = this.rh - p.y + this.y0;
-  var con, rh1, lat, lon;
-  if (this.ns >= 0) {
-    rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
-    con = 1;
-  }
-  else {
-    rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
-    con = -1;
-  }
-  var theta = 0;
-  if (rh1 !== 0) {
-    theta = Math.atan2(con * p.x, con * p.y);
-  }
-
-  if (this.sphere) {
-    lon = adjust_lon(this.long0 + theta / this.ns);
-    lat = adjust_lat(this.g - rh1 / this.a);
-    p.x = lon;
-    p.y = lat;
-    return p;
-  }
-  else {
-    var ml = this.g - rh1 / this.a;
-    lat = imlfn(ml, this.e0, this.e1, this.e2, this.e3);
-    lon = adjust_lon(this.long0 + theta / this.ns);
-    p.x = lon;
-    p.y = lat;
-    return p;
-  }
-
-};
-exports.names = ["Equidistant_Conic", "eqdc"];
-
-},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/imlfn":12,"../common/mlfn":14,"../common/msfnz":15}],46:[function(_dereq_,module,exports){
-var FORTPI = Math.PI/4;
-var srat = _dereq_('../common/srat');
-var HALF_PI = Math.PI/2;
-var MAX_ITER = 20;
-exports.init = function() {
-  var sphi = Math.sin(this.lat0);
-  var cphi = Math.cos(this.lat0);
-  cphi *= cphi;
-  this.rc = Math.sqrt(1 - this.es) / (1 - this.es * sphi * sphi);
-  this.C = Math.sqrt(1 + this.es * cphi * cphi / (1 - this.es));
-  this.phic0 = Math.asin(sphi / this.C);
-  this.ratexp = 0.5 * this.C * this.e;
-  this.K = Math.tan(0.5 * this.phic0 + FORTPI) / (Math.pow(Math.tan(0.5 * this.lat0 + FORTPI), this.C) * srat(this.e * sphi, this.ratexp));
-};
-
-exports.forward = function(p) {
-  var lon = p.x;
-  var lat = p.y;
-
-  p.y = 2 * Math.atan(this.K * Math.pow(Math.tan(0.5 * lat + FORTPI), this.C) * srat(this.e * Math.sin(lat), this.ratexp)) - HALF_PI;
-  p.x = this.C * lon;
-  return p;
-};
-
-exports.inverse = function(p) {
-  var DEL_TOL = 1e-14;
-  var lon = p.x / this.C;
-  var lat = p.y;
-  var num = Math.pow(Math.tan(0.5 * lat + FORTPI) / this.K, 1 / this.C);
-  for (var i = MAX_ITER; i > 0; --i) {
-    lat = 2 * Math.atan(num * srat(this.e * Math.sin(p.y), - 0.5 * this.e)) - HALF_PI;
-    if (Math.abs(lat - p.y) < DEL_TOL) {
-      break;
-    }
-    p.y = lat;
-  }
-  /* convergence failed */
-  if (!i) {
-    return null;
-  }
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-exports.names = ["gauss"];
-
-},{"../common/srat":22}],47:[function(_dereq_,module,exports){
-var adjust_lon = _dereq_('../common/adjust_lon');
-var EPSLN = 1.0e-10;
-var asinz = _dereq_('../common/asinz');
-
-/*
-  reference:
-    Wolfram Mathworld "Gnomonic Projection"
-    http://mathworld.wolfram.com/GnomonicProjection.html
-    Accessed: 12th November 2009
-  */
-exports.init = function() {
-
-  /* Place parameters in static storage for common use
-      -------------------------------------------------*/
-  this.sin_p14 = Math.sin(this.lat0);
-  this.cos_p14 = Math.cos(this.lat0);
-  // Approximation for projecting points to the horizon (infinity)
-  this.infinity_dist = 1000 * this.a;
-  this.rc = 1;
-};
-
-
-/* Gnomonic forward equations--mapping lat,long to x,y
-    ---------------------------------------------------*/
-exports.forward = function(p) {
-  var sinphi, cosphi; /* sin and cos value        */
-  var dlon; /* delta longitude value      */
-  var coslon; /* cos of longitude        */
-  var ksp; /* scale factor          */
-  var g;
-  var x, y;
-  var lon = p.x;
-  var lat = p.y;
-  /* Forward equations
-      -----------------*/
-  dlon = adjust_lon(lon - this.long0);
-
-  sinphi = Math.sin(lat);
-  cosphi = Math.cos(lat);
-
-  coslon = Math.cos(dlon);
-  g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
-  ksp = 1;
-  if ((g > 0) || (Math.abs(g) <= EPSLN)) {
-    x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
-    y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
-  }
-  else {
-
-    // Point is in the opposing hemisphere and is unprojectable
-    // We still need to return a reasonable point, so we project 
-    // to infinity, on a bearing 
-    // equivalent to the northern hemisphere equivalent
-    // This is a reasonable approximation for short shapes and lines that 
-    // straddle the horizon.
-
-    x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
-    y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
-
-  }
-  p.x = x;
-  p.y = y;
-  return p;
-};
-
-
-exports.inverse = function(p) {
-  var rh; /* Rho */
-  var sinc, cosc;
-  var c;
-  var lon, lat;
-
-  /* Inverse equations
-      -----------------*/
-  p.x = (p.x - this.x0) / this.a;
-  p.y = (p.y - this.y0) / this.a;
-
-  p.x /= this.k0;
-  p.y /= this.k0;
-
-  if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) {
-    c = Math.atan2(rh, this.rc);
-    sinc = Math.sin(c);
-    cosc = Math.cos(c);
-
-    lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh);
-    lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc);
-    lon = adjust_lon(this.long0 + lon);
-  }
-  else {
-    lat = this.phic0;
-    lon = 0;
-  }
-
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-exports.names = ["gnom"];
-
-},{"../common/adjust_lon":5,"../common/asinz":6}],48:[function(_dereq_,module,exports){
-var adjust_lon = _dereq_('../common/adjust_lon');
-exports.init = function() {
-  this.a = 6377397.155;
-  this.es = 0.006674372230614;
-  this.e = Math.sqrt(this.es);
-  if (!this.lat0) {
-    this.lat0 = 0.863937979737193;
-  }
-  if (!this.long0) {
-    this.long0 = 0.7417649320975901 - 0.308341501185665;
-  }
-  /* if scale not set default to 0.9999 */
-  if (!this.k0) {
-    this.k0 = 0.9999;
-  }
-  this.s45 = 0.785398163397448; /* 45 */
-  this.s90 = 2 * this.s45;
-  this.fi0 = this.lat0;
-  this.e2 = this.es;
-  this.e = Math.sqrt(this.e2);
-  this.alfa = Math.sqrt(1 + (this.e2 * Math.pow(Math.cos(this.fi0), 4)) / (1 - this.e2));
-  this.uq = 1.04216856380474;
-  this.u0 = Math.asin(Math.sin(this.fi0) / this.alfa);
-  this.g = Math.pow((1 + this.e * Math.sin(this.fi0)) / (1 - this.e * Math.sin(this.fi0)), this.alfa * this.e / 2);
-  this.k = Math.tan(this.u0 / 2 + this.s45) / Math.pow(Math.tan(this.fi0 / 2 + this.s45), this.alfa) * this.g;
-  this.k1 = this.k0;
-  this.n0 = this.a * Math.sqrt(1 - this.e2) / (1 - this.e2 * Math.pow(Math.sin(this.fi0), 2));
-  this.s0 = 1.37008346281555;
-  this.n = Math.sin(this.s0);
-  this.ro0 = this.k1 * this.n0 / Math.tan(this.s0);
-  this.ad = this.s90 - this.uq;
-};
-
-/* ellipsoid */
-/* calculate xy from lat/lon */
-/* Constants, identical to inverse transform function */
-exports.forward = function(p) {
-  var gfi, u, deltav, s, d, eps, ro;
-  var lon = p.x;
-  var lat = p.y;
-  var delta_lon = adjust_lon(lon - this.long0);
-  /* Transformation */
-  gfi = Math.pow(((1 + this.e * Math.sin(lat)) / (1 - this.e * Math.sin(lat))), (this.alfa * this.e / 2));
-  u = 2 * (Math.atan(this.k * Math.pow(Math.tan(lat / 2 + this.s45), this.alfa) / gfi) - this.s45);
-  deltav = -delta_lon * this.alfa;
-  s = Math.asin(Math.cos(this.ad) * Math.sin(u) + Math.sin(this.ad) * Math.cos(u) * Math.cos(deltav));
-  d = Math.asin(Math.cos(u) * Math.sin(deltav) / Math.cos(s));
-  eps = this.n * d;
-  ro = this.ro0 * Math.pow(Math.tan(this.s0 / 2 + this.s45), this.n) / Math.pow(Math.tan(s / 2 + this.s45), this.n);
-  p.y = ro * Math.cos(eps) / 1;
-  p.x = ro * Math.sin(eps) / 1;
-
-  if (!this.czech) {
-    p.y *= -1;
-    p.x *= -1;
-  }
-  return (p);
-};
-
-/* calculate lat/lon from xy */
-exports.inverse = function(p) {
-  var u, deltav, s, d, eps, ro, fi1;
-  var ok;
-
-  /* Transformation */
-  /* revert y, x*/
-  var tmp = p.x;
-  p.x = p.y;
-  p.y = tmp;
-  if (!this.czech) {
-    p.y *= -1;
-    p.x *= -1;
-  }
-  ro = Math.sqrt(p.x * p.x + p.y * p.y);
-  eps = Math.atan2(p.y, p.x);
-  d = eps / Math.sin(this.s0);
-  s = 2 * (Math.atan(Math.pow(this.ro0 / ro, 1 / this.n) * Math.tan(this.s0 / 2 + this.s45)) - this.s45);
-  u = Math.asin(Math.cos(this.ad) * Math.sin(s) - Math.sin(this.ad) * Math.cos(s) * Math.cos(d));
-  deltav = Math.asin(Math.cos(s) * Math.sin(d) / Math.cos(u));
-  p.x = this.long0 - deltav / this.alfa;
-  fi1 = u;
-  ok = 0;
-  var iter = 0;
-  do {
-    p.y = 2 * (Math.atan(Math.pow(this.k, - 1 / this.alfa) * Math.pow(Math.tan(u / 2 + this.s45), 1 / this.alfa) * Math.pow((1 + this.e * Math.sin(fi1)) / (1 - this.e * Math.sin(fi1)), this.e / 2)) - this.s45);
-    if (Math.abs(fi1 - p.y) < 0.0000000001) {
-      ok = 1;
-    }
-    fi1 = p.y;
-    iter += 1;
-  } while (ok === 0 && iter < 15);
-  if (iter >= 15) {
-    return null;
-  }
-
-  return (p);
-};
-exports.names = ["Krovak", "krovak"];
-
-},{"../common/adjust_lon":5}],49:[function(_dereq_,module,exports){
-var HALF_PI = Math.PI/2;
-var FORTPI = Math.PI/4;
-var EPSLN = 1.0e-10;
-var qsfnz = _dereq_('../common/qsfnz');
-var adjust_lon = _dereq_('../common/adjust_lon');
-/*
-  reference
-    "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
-    The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
-  */
-
-exports.S_POLE = 1;
-exports.N_POLE = 2;
-exports.EQUIT = 3;
-exports.OBLIQ = 4;
-
-
-/* Initialize the Lambert Azimuthal Equal Area projection
-  ------------------------------------------------------*/
-exports.init = function() {
-  var t = Math.abs(this.lat0);
-  if (Math.abs(t - HALF_PI) < EPSLN) {
-    this.mode = this.lat0 < 0 ? this.S_POLE : this.N_POLE;
-  }
-  else if (Math.abs(t) < EPSLN) {
-    this.mode = this.EQUIT;
-  }
-  else {
-    this.mode = this.OBLIQ;
-  }
-  if (this.es > 0) {
-    var sinphi;
-
-    this.qp = qsfnz(this.e, 1);
-    this.mmf = 0.5 / (1 - this.es);
-    this.apa = this.authset(this.es);
-    switch (this.mode) {
-    case this.N_POLE:
-      this.dd = 1;
-      break;
-    case this.S_POLE:
-      this.dd = 1;
-      break;
-    case this.EQUIT:
-      this.rq = Math.sqrt(0.5 * this.qp);
-      this.dd = 1 / this.rq;
-      this.xmf = 1;
-      this.ymf = 0.5 * this.qp;
-      break;
-    case this.OBLIQ:
-      this.rq = Math.sqrt(0.5 * this.qp);
-      sinphi = Math.sin(this.lat0);
-      this.sinb1 = qsfnz(this.e, sinphi) / this.qp;
-      this.cosb1 = Math.sqrt(1 - this.sinb1 * this.sinb1);
-      this.dd = Math.cos(this.lat0) / (Math.sqrt(1 - this.es * sinphi * sinphi) * this.rq * this.cosb1);
-      this.ymf = (this.xmf = this.rq) / this.dd;
-      this.xmf *= this.dd;
-      break;
-    }
-  }
-  else {
-    if (this.mode === this.OBLIQ) {
-      this.sinph0 = Math.sin(this.lat0);
-      this.cosph0 = Math.cos(this.lat0);
-    }
-  }
-};
-
-/* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y
-  -----------------------------------------------------------------------*/
-exports.forward = function(p) {
-
-  /* Forward equations
-      -----------------*/
-  var x, y, coslam, sinlam, sinphi, q, sinb, cosb, b, cosphi;
-  var lam = p.x;
-  var phi = p.y;
-
-  lam = adjust_lon(lam - this.long0);
-
-  if (this.sphere) {
-    sinphi = Math.sin(phi);
-    cosphi = Math.cos(phi);
-    coslam = Math.cos(lam);
-    if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
-      y = (this.mode === this.EQUIT) ? 1 + cosphi * coslam : 1 + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam;
-      if (y <= EPSLN) {
-        return null;
-      }
-      y = Math.sqrt(2 / y);
-      x = y * cosphi * Math.sin(lam);
-      y *= (this.mode === this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam;
-    }
-    else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
-      if (this.mode === this.N_POLE) {
-        coslam = -coslam;
-      }
-      if (Math.abs(phi + this.phi0) < EPSLN) {
-        return null;
-      }
-      y = FORTPI - phi * 0.5;
-      y = 2 * ((this.mode === this.S_POLE) ? Math.cos(y) : Math.sin(y));
-      x = y * Math.sin(lam);
-      y *= coslam;
-    }
-  }
-  else {
-    sinb = 0;
-    cosb = 0;
-    b = 0;
-    coslam = Math.cos(lam);
-    sinlam = Math.sin(lam);
-    sinphi = Math.sin(phi);
-    q = qsfnz(this.e, sinphi);
-    if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
-      sinb = q / this.qp;
-      cosb = Math.sqrt(1 - sinb * sinb);
-    }
-    switch (this.mode) {
-    case this.OBLIQ:
-      b = 1 + this.sinb1 * sinb + this.cosb1 * cosb * coslam;
-      break;
-    case this.EQUIT:
-      b = 1 + cosb * coslam;
-      break;
-    case this.N_POLE:
-      b = HALF_PI + phi;
-      q = this.qp - q;
-      break;
-    case this.S_POLE:
-      b = phi - HALF_PI;
-      q = this.qp + q;
-      break;
-    }
-    if (Math.abs(b) < EPSLN) {
-      return null;
-    }
-    switch (this.mode) {
-    case this.OBLIQ:
-    case this.EQUIT:
-      b = Math.sqrt(2 / b);
-      if (this.mode === this.OBLIQ) {
-        y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam);
-      }
-      else {
-        y = (b = Math.sqrt(2 / (1 + cosb * coslam))) * sinb * this.ymf;
-      }
-      x = this.xmf * b * cosb * sinlam;
-      break;
-    case this.N_POLE:
-    case this.S_POLE:
-      if (q >= 0) {
-        x = (b = Math.sqrt(q)) * sinlam;
-        y = coslam * ((this.mode === this.S_POLE) ? b : -b);
-      }
-      else {
-        x = y = 0;
-      }
-      break;
-    }
-  }
-
-  p.x = this.a * x + this.x0;
-  p.y = this.a * y + this.y0;
-  return p;
-};
-
-/* Inverse equations
-  -----------------*/
-exports.inverse = function(p) {
-  p.x -= this.x0;
-  p.y -= this.y0;
-  var x = p.x / this.a;
-  var y = p.y / this.a;
-  var lam, phi, cCe, sCe, q, rho, ab;
-
-  if (this.sphere) {
-    var cosz = 0,
-      rh, sinz = 0;
-
-    rh = Math.sqrt(x * x + y * y);
-    phi = rh * 0.5;
-    if (phi > 1) {
-      return null;
-    }
-    phi = 2 * Math.asin(phi);
-    if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
-      sinz = Math.sin(phi);
-      cosz = Math.cos(phi);
-    }
-    switch (this.mode) {
-    case this.EQUIT:
-      phi = (Math.abs(rh) <= EPSLN) ? 0 : Math.asin(y * sinz / rh);
-      x *= sinz;
-      y = cosz * rh;
-      break;
-    case this.OBLIQ:
-      phi = (Math.abs(rh) <= EPSLN) ? this.phi0 : Math.asin(cosz * this.sinph0 + y * sinz * this.cosph0 / rh);
-      x *= sinz * this.cosph0;
-      y = (cosz - Math.sin(phi) * this.sinph0) * rh;
-      break;
-    case this.N_POLE:
-      y = -y;
-      phi = HALF_PI - phi;
-      break;
-    case this.S_POLE:
-      phi -= HALF_PI;
-      break;
-    }
-    lam = (y === 0 && (this.mode === this.EQUIT || this.mode === this.OBLIQ)) ? 0 : Math.atan2(x, y);
-  }
-  else {
-    ab = 0;
-    if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
-      x /= this.dd;
-      y *= this.dd;
-      rho = Math.sqrt(x * x + y * y);
-      if (rho < EPSLN) {
-        p.x = 0;
-        p.y = this.phi0;
-        return p;
-      }
-      sCe = 2 * Math.asin(0.5 * rho / this.rq);
-      cCe = Math.cos(sCe);
-      x *= (sCe = Math.sin(sCe));
-      if (this.mode === this.OBLIQ) {
-        ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho;
-        q = this.qp * ab;
-        y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe;
-      }
-      else {
-        ab = y * sCe / rho;
-        q = this.qp * ab;
-        y = rho * cCe;
-      }
-    }
-    else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
-      if (this.mode === this.N_POLE) {
-        y = -y;
-      }
-      q = (x * x + y * y);
-      if (!q) {
-        p.x = 0;
-        p.y = this.phi0;
-        return p;
-      }
-      ab = 1 - q / this.qp;
-      if (this.mode === this.S_POLE) {
-        ab = -ab;
-      }
-    }
-    lam = Math.atan2(x, y);
-    phi = this.authlat(Math.asin(ab), this.apa);
-  }
-
-
-  p.x = adjust_lon(this.long0 + lam);
-  p.y = phi;
-  return p;
-};
-
-/* determine latitude from authalic latitude */
-exports.P00 = 0.33333333333333333333;
-exports.P01 = 0.17222222222222222222;
-exports.P02 = 0.10257936507936507936;
-exports.P10 = 0.06388888888888888888;
-exports.P11 = 0.06640211640211640211;
-exports.P20 = 0.01641501294219154443;
-
-exports.authset = function(es) {
-  var t;
-  var APA = [];
-  APA[0] = es * this.P00;
-  t = es * es;
-  APA[0] += t * this.P01;
-  APA[1] = t * this.P10;
-  t *= es;
-  APA[0] += t * this.P02;
-  APA[1] += t * this.P11;
-  APA[2] = t * this.P20;
-  return APA;
-};
-
-exports.authlat = function(beta, APA) {
-  var t = beta + beta;
-  return (beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t + t) + APA[2] * Math.sin(t + t + t));
-};
-exports.names = ["Lambert Azimuthal Equal Area", "Lambert_Azimuthal_Equal_Area", "laea"];
-
-},{"../common/adjust_lon":5,"../common/qsfnz":20}],50:[function(_dereq_,module,exports){
-var EPSLN = 1.0e-10;
-var msfnz = _dereq_('../common/msfnz');
-var tsfnz = _dereq_('../common/tsfnz');
-var HALF_PI = Math.PI/2;
-var sign = _dereq_('../common/sign');
-var adjust_lon = _dereq_('../common/adjust_lon');
-var phi2z = _dereq_('../common/phi2z');
-exports.init = function() {
-
-  // array of:  r_maj,r_min,lat1,lat2,c_lon,c_lat,false_east,false_north
-  //double c_lat;                   /* center latitude                      */
-  //double c_lon;                   /* center longitude                     */
-  //double lat1;                    /* first standard parallel              */
-  //double lat2;                    /* second standard parallel             */
-  //double r_maj;                   /* major axis                           */
-  //double r_min;                   /* minor axis                           */
-  //double false_east;              /* x offset in meters                   */
-  //double false_north;             /* y offset in meters                   */
-
-  if (!this.lat2) {
-    this.lat2 = this.lat1;
-  } //if lat2 is not defined
-  if (!this.k0) {
-    this.k0 = 1;
-  }
-  this.x0 = this.x0 || 0;
-  this.y0 = this.y0 || 0;
-  // Standard Parallels cannot be equal and on opposite sides of the equator
-  if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
-    return;
-  }
-
-  var temp = this.b / this.a;
-  this.e = Math.sqrt(1 - temp * temp);
-
-  var sin1 = Math.sin(this.lat1);
-  var cos1 = Math.cos(this.lat1);
-  var ms1 = msfnz(this.e, sin1, cos1);
-  var ts1 = tsfnz(this.e, this.lat1, sin1);
-
-  var sin2 = Math.sin(this.lat2);
-  var cos2 = Math.cos(this.lat2);
-  var ms2 = msfnz(this.e, sin2, cos2);
-  var ts2 = tsfnz(this.e, this.lat2, sin2);
-
-  var ts0 = tsfnz(this.e, this.lat0, Math.sin(this.lat0));
-
-  if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
-    this.ns = Math.log(ms1 / ms2) / Math.log(ts1 / ts2);
-  }
-  else {
-    this.ns = sin1;
-  }
-  if (isNaN(this.ns)) {
-    this.ns = sin1;
-  }
-  this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns));
-  this.rh = this.a * this.f0 * Math.pow(ts0, this.ns);
-  if (!this.title) {
-    this.title = "Lambert Conformal Conic";
-  }
-};
-
-
-// Lambert Conformal conic forward equations--mapping lat,long to x,y
-// -----------------------------------------------------------------
-exports.forward = function(p) {
-
-  var lon = p.x;
-  var lat = p.y;
-
-  // singular cases :
-  if (Math.abs(2 * Math.abs(lat) - Math.PI) <= EPSLN) {
-    lat = sign(lat) * (HALF_PI - 2 * EPSLN);
-  }
-
-  var con = Math.abs(Math.abs(lat) - HALF_PI);
-  var ts, rh1;
-  if (con > EPSLN) {
-    ts = tsfnz(this.e, lat, Math.sin(lat));
-    rh1 = this.a * this.f0 * Math.pow(ts, this.ns);
-  }
-  else {
-    con = lat * this.ns;
-    if (con <= 0) {
-      return null;
-    }
-    rh1 = 0;
-  }
-  var theta = this.ns * adjust_lon(lon - this.long0);
-  p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0;
-  p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0;
-
-  return p;
-};
-
-// Lambert Conformal Conic inverse equations--mapping x,y to lat/long
-// -----------------------------------------------------------------
-exports.inverse = function(p) {
-
-  var rh1, con, ts;
-  var lat, lon;
-  var x = (p.x - this.x0) / this.k0;
-  var y = (this.rh - (p.y - this.y0) / this.k0);
-  if (this.ns > 0) {
-    rh1 = Math.sqrt(x * x + y * y);
-    con = 1;
-  }
-  else {
-    rh1 = -Math.sqrt(x * x + y * y);
-    con = -1;
-  }
-  var theta = 0;
-  if (rh1 !== 0) {
-    theta = Math.atan2((con * x), (con * y));
-  }
-  if ((rh1 !== 0) || (this.ns > 0)) {
-    con = 1 / this.ns;
-    ts = Math.pow((rh1 / (this.a * this.f0)), con);
-    lat = phi2z(this.e, ts);
-    if (lat === -9999) {
-      return null;
-    }
-  }
-  else {
-    lat = -HALF_PI;
-  }
-  lon = adjust_lon(theta / this.ns + this.long0);
-
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-
-exports.names = ["Lambert Tangential Conformal Conic Projection", "Lambert_Conformal_Conic", "Lambert_Conformal_Conic_2SP", "lcc"];
-
-},{"../common/adjust_lon":5,"../common/msfnz":15,"../common/phi2z":16,"../common/sign":21,"../common/tsfnz":24}],51:[function(_dereq_,module,exports){
-exports.init = function() {
-  //no-op for longlat
-};
-
-function identity(pt) {
-  return pt;
-}
-exports.forward = identity;
-exports.inverse = identity;
-exports.names = ["longlat", "identity"];
-
-},{}],52:[function(_dereq_,module,exports){
-var msfnz = _dereq_('../common/msfnz');
-var HALF_PI = Math.PI/2;
-var EPSLN = 1.0e-10;
-var R2D = 57.29577951308232088;
-var adjust_lon = _dereq_('../common/adjust_lon');
-var FORTPI = Math.PI/4;
-var tsfnz = _dereq_('../common/tsfnz');
-var phi2z = _dereq_('../common/phi2z');
-exports.init = function() {
-  var con = this.b / this.a;
-  this.es = 1 - con * con;
-  if(!('x0' in this)){
-    this.x0 = 0;
-  }
-  if(!('y0' in this)){
-    this.y0 = 0;
-  }
-  this.e = Math.sqrt(this.es);
-  if (this.lat_ts) {
-    if (this.sphere) {
-      this.k0 = Math.cos(this.lat_ts);
-    }
-    else {
-      this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
-    }
-  }
-  else {
-    if (!this.k0) {
-      if (this.k) {
-        this.k0 = this.k;
-      }
-      else {
-        this.k0 = 1;
-      }
-    }
-  }
-};
-
-/* Mercator forward equations--mapping lat,long to x,y
-  --------------------------------------------------*/
-
-exports.forward = function(p) {
-  var lon = p.x;
-  var lat = p.y;
-  // convert to radians
-  if (lat * R2D > 90 && lat * R2D < -90 && lon * R2D > 180 && lon * R2D < -180) {
-    return null;
-  }
-
-  var x, y;
-  if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) {
-    return null;
-  }
-  else {
-    if (this.sphere) {
-      x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
-      y = this.y0 + this.a * this.k0 * Math.log(Math.tan(FORTPI + 0.5 * lat));
-    }
-    else {
-      var sinphi = Math.sin(lat);
-      var ts = tsfnz(this.e, lat, sinphi);
-      x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
-      y = this.y0 - this.a * this.k0 * Math.log(ts);
-    }
-    p.x = x;
-    p.y = y;
-    return p;
-  }
-};
-
-
-/* Mercator inverse equations--mapping x,y to lat/long
-  --------------------------------------------------*/
-exports.inverse = function(p) {
-
-  var x = p.x - this.x0;
-  var y = p.y - this.y0;
-  var lon, lat;
-
-  if (this.sphere) {
-    lat = HALF_PI - 2 * Math.atan(Math.exp(-y / (this.a * this.k0)));
-  }
-  else {
-    var ts = Math.exp(-y / (this.a * this.k0));
-    lat = phi2z(this.e, ts);
-    if (lat === -9999) {
-      return null;
-    }
-  }
-  lon = adjust_lon(this.long0 + x / (this.a * this.k0));
-
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-
-exports.names = ["Mercator", "Popular Visualisation Pseudo Mercator", "Mercator_1SP", "Mercator_Auxiliary_Sphere", "merc"];
-
-},{"../common/adjust_lon":5,"../common/msfnz":15,"../common/phi2z":16,"../common/tsfnz":24}],53:[function(_dereq_,module,exports){
-var adjust_lon = _dereq_('../common/adjust_lon');
-/*
-  reference
-    "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
-    The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
-  */
-
-
-/* Initialize the Miller Cylindrical projection
-  -------------------------------------------*/
-exports.init = function() {
-  //no-op
-};
-
-
-/* Miller Cylindrical forward equations--mapping lat,long to x,y
-    ------------------------------------------------------------*/
-exports.forward = function(p) {
-  var lon = p.x;
-  var lat = p.y;
-  /* Forward equations
-      -----------------*/
-  var dlon = adjust_lon(lon - this.long0);
-  var x = this.x0 + this.a * dlon;
-  var y = this.y0 + this.a * Math.log(Math.tan((Math.PI / 4) + (lat / 2.5))) * 1.25;
-
-  p.x = x;
-  p.y = y;
-  return p;
-};
-
-/* Miller Cylindrical inverse equations--mapping x,y to lat/long
-    ------------------------------------------------------------*/
-exports.inverse = function(p) {
-  p.x -= this.x0;
-  p.y -= this.y0;
-
-  var lon = adjust_lon(this.long0 + p.x / this.a);
-  var lat = 2.5 * (Math.atan(Math.exp(0.8 * p.y / this.a)) - Math.PI / 4);
-
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-exports.names = ["Miller_Cylindrical", "mill"];
-
-},{"../common/adjust_lon":5}],54:[function(_dereq_,module,exports){
-var adjust_lon = _dereq_('../common/adjust_lon');
-var EPSLN = 1.0e-10;
-exports.init = function() {};
-
-/* Mollweide forward equations--mapping lat,long to x,y
-    ----------------------------------------------------*/
-exports.forward = function(p) {
-
-  /* Forward equations
-      -----------------*/
-  var lon = p.x;
-  var lat = p.y;
-
-  var delta_lon = adjust_lon(lon - this.long0);
-  var theta = lat;
-  var con = Math.PI * Math.sin(lat);
-
-  /* Iterate using the Newton-Raphson method to find theta
-      -----------------------------------------------------*/
-  for (var i = 0; true; i++) {
-    var delta_theta = -(theta + Math.sin(theta) - con) / (1 + Math.cos(theta));
-    theta += delta_theta;
-    if (Math.abs(delta_theta) < EPSLN) {
-      break;
-    }
-  }
-  theta /= 2;
-
-  /* If the latitude is 90 deg, force the x coordinate to be "0 + false easting"
-       this is done here because of precision problems with "cos(theta)"
-       --------------------------------------------------------------------------*/
-  if (Math.PI / 2 - Math.abs(lat) < EPSLN) {
-    delta_lon = 0;
-  }
-  var x = 0.900316316158 * this.a * delta_lon * Math.cos(theta) + this.x0;
-  var y = 1.4142135623731 * this.a * Math.sin(theta) + this.y0;
-
-  p.x = x;
-  p.y = y;
-  return p;
-};
-
-exports.inverse = function(p) {
-  var theta;
-  var arg;
-
-  /* Inverse equations
-      -----------------*/
-  p.x -= this.x0;
-  p.y -= this.y0;
-  arg = p.y / (1.4142135623731 * this.a);
-
-  /* Because of division by zero problems, 'arg' can not be 1.  Therefore
-       a number very close to one is used instead.
-       -------------------------------------------------------------------*/
-  if (Math.abs(arg) > 0.999999999999) {
-    arg = 0.999999999999;
-  }
-  theta = Math.asin(arg);
-  var lon = adjust_lon(this.long0 + (p.x / (0.900316316158 * this.a * Math.cos(theta))));
-  if (lon < (-Math.PI)) {
-    lon = -Math.PI;
-  }
-  if (lon > Math.PI) {
-    lon = Math.PI;
-  }
-  arg = (2 * theta + Math.sin(2 * theta)) / Math.PI;
-  if (Math.abs(arg) > 1) {
-    arg = 1;
-  }
-  var lat = Math.asin(arg);
-
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-exports.names = ["Mollweide", "moll"];
-
-},{"../common/adjust_lon":5}],55:[function(_dereq_,module,exports){
-var SEC_TO_RAD = 4.84813681109535993589914102357e-6;
-/*
-  reference
-    Department of Land and Survey Technical Circular 1973/32
-      http://www.linz.govt.nz/docs/miscellaneous/nz-map-definition.pdf
-    OSG Technical Report 4.1
-      http://www.linz.govt.nz/docs/miscellaneous/nzmg.pdf
-  */
-
-/**
- * iterations: Number of iterations to refine inverse transform.
- *     0 -> km accuracy
- *     1 -> m accuracy -- suitable for most mapping applications
- *     2 -> mm accuracy
- */
-exports.iterations = 1;
-
-exports.init = function() {
-  this.A = [];
-  this.A[1] = 0.6399175073;
-  this.A[2] = -0.1358797613;
-  this.A[3] = 0.063294409;
-  this.A[4] = -0.02526853;
-  this.A[5] = 0.0117879;
-  this.A[6] = -0.0055161;
-  this.A[7] = 0.0026906;
-  this.A[8] = -0.001333;
-  this.A[9] = 0.00067;
-  this.A[10] = -0.00034;
-
-  this.B_re = [];
-  this.B_im = [];
-  this.B_re[1] = 0.7557853228;
-  this.B_im[1] = 0;
-  this.B_re[2] = 0.249204646;
-  this.B_im[2] = 0.003371507;
-  this.B_re[3] = -0.001541739;
-  this.B_im[3] = 0.041058560;
-  this.B_re[4] = -0.10162907;
-  this.B_im[4] = 0.01727609;
-  this.B_re[5] = -0.26623489;
-  this.B_im[5] = -0.36249218;
-  this.B_re[6] = -0.6870983;
-  this.B_im[6] = -1.1651967;
-
-  this.C_re = [];
-  this.C_im = [];
-  this.C_re[1] = 1.3231270439;
-  this.C_im[1] = 0;
-  this.C_re[2] = -0.577245789;
-  this.C_im[2] = -0.007809598;
-  this.C_re[3] = 0.508307513;
-  this.C_im[3] = -0.112208952;
-  this.C_re[4] = -0.15094762;
-  this.C_im[4] = 0.18200602;
-  this.C_re[5] = 1.01418179;
-  this.C_im[5] = 1.64497696;
-  this.C_re[6] = 1.9660549;
-  this.C_im[6] = 2.5127645;
-
-  this.D = [];
-  this.D[1] = 1.5627014243;
-  this.D[2] = 0.5185406398;
-  this.D[3] = -0.03333098;
-  this.D[4] = -0.1052906;
-  this.D[5] = -0.0368594;
-  this.D[6] = 0.007317;
-  this.D[7] = 0.01220;
-  this.D[8] = 0.00394;
-  this.D[9] = -0.0013;
-};
-
-/**
-    New Zealand Map Grid Forward  - long/lat to x/y
-    long/lat in radians
-  */
-exports.forward = function(p) {
-  var n;
-  var lon = p.x;
-  var lat = p.y;
-
-  var delta_lat = lat - this.lat0;
-  var delta_lon = lon - this.long0;
-
-  // 1. Calculate d_phi and d_psi    ...                          // and d_lambda
-  // For this algorithm, delta_latitude is in seconds of arc x 10-5, so we need to scale to those units. Longitude is radians.
-  var d_phi = delta_lat / SEC_TO_RAD * 1E-5;
-  var d_lambda = delta_lon;
-  var d_phi_n = 1; // d_phi^0
-
-  var d_psi = 0;
-  for (n = 1; n <= 10; n++) {
-    d_phi_n = d_phi_n * d_phi;
-    d_psi = d_psi + this.A[n] * d_phi_n;
-  }
-
-  // 2. Calculate theta
-  var th_re = d_psi;
-  var th_im = d_lambda;
-
-  // 3. Calculate z
-  var th_n_re = 1;
-  var th_n_im = 0; // theta^0
-  var th_n_re1;
-  var th_n_im1;
-
-  var z_re = 0;
-  var z_im = 0;
-  for (n = 1; n <= 6; n++) {
-    th_n_re1 = th_n_re * th_re - th_n_im * th_im;
-    th_n_im1 = th_n_im * th_re + th_n_re * th_im;
-    th_n_re = th_n_re1;
-    th_n_im = th_n_im1;
-    z_re = z_re + this.B_re[n] * th_n_re - this.B_im[n] * th_n_im;
-    z_im = z_im + this.B_im[n] * th_n_re + this.B_re[n] * th_n_im;
-  }
-
-  // 4. Calculate easting and northing
-  p.x = (z_im * this.a) + this.x0;
-  p.y = (z_re * this.a) + this.y0;
-
-  return p;
-};
-
-
-/**
-    New Zealand Map Grid Inverse  -  x/y to long/lat
-  */
-exports.inverse = function(p) {
-  var n;
-  var x = p.x;
-  var y = p.y;
-
-  var delta_x = x - this.x0;
-  var delta_y = y - this.y0;
-
-  // 1. Calculate z
-  var z_re = delta_y / this.a;
-  var z_im = delta_x / this.a;
-
-  // 2a. Calculate theta - first approximation gives km accuracy
-  var z_n_re = 1;
-  var z_n_im = 0; // z^0
-  var z_n_re1;
-  var z_n_im1;
-
-  var th_re = 0;
-  var th_im = 0;
-  for (n = 1; n <= 6; n++) {
-    z_n_re1 = z_n_re * z_re - z_n_im * z_im;
-    z_n_im1 = z_n_im * z_re + z_n_re * z_im;
-    z_n_re = z_n_re1;
-    z_n_im = z_n_im1;
-    th_re = th_re + this.C_re[n] * z_n_re - this.C_im[n] * z_n_im;
-    th_im = th_im + this.C_im[n] * z_n_re + this.C_re[n] * z_n_im;
-  }
-
-  // 2b. Iterate to refine the accuracy of the calculation
-  //        0 iterations gives km accuracy
-  //        1 iteration gives m accuracy -- good enough for most mapping applications
-  //        2 iterations bives mm accuracy
-  for (var i = 0; i < this.iterations; i++) {
-    var th_n_re = th_re;
-    var th_n_im = th_im;
-    var th_n_re1;
-    var th_n_im1;
-
-    var num_re = z_re;
-    var num_im = z_im;
-    for (n = 2; n <= 6; n++) {
-      th_n_re1 = th_n_re * th_re - th_n_im * th_im;
-      th_n_im1 = th_n_im * th_re + th_n_re * th_im;
-      th_n_re = th_n_re1;
-      th_n_im = th_n_im1;
-      num_re = num_re + (n - 1) * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
-      num_im = num_im + (n - 1) * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
-    }
-
-    th_n_re = 1;
-    th_n_im = 0;
-    var den_re = this.B_re[1];
-    var den_im = this.B_im[1];
-    for (n = 2; n <= 6; n++) {
-      th_n_re1 = th_n_re * th_re - th_n_im * th_im;
-      th_n_im1 = th_n_im * th_re + th_n_re * th_im;
-      th_n_re = th_n_re1;
-      th_n_im = th_n_im1;
-      den_re = den_re + n * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
-      den_im = den_im + n * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
-    }
-
-    // Complex division
-    var den2 = den_re * den_re + den_im * den_im;
-    th_re = (num_re * den_re + num_im * den_im) / den2;
-    th_im = (num_im * den_re - num_re * den_im) / den2;
-  }
-
-  // 3. Calculate d_phi              ...                                    // and d_lambda
-  var d_psi = th_re;
-  var d_lambda = th_im;
-  var d_psi_n = 1; // d_psi^0
-
-  var d_phi = 0;
-  for (n = 1; n <= 9; n++) {
-    d_psi_n = d_psi_n * d_psi;
-    d_phi = d_phi + this.D[n] * d_psi_n;
-  }
-
-  // 4. Calculate latitude and longitude
-  // d_phi is calcuated in second of arc * 10^-5, so we need to scale back to radians. d_lambda is in radians.
-  var lat = this.lat0 + (d_phi * SEC_TO_RAD * 1E5);
-  var lon = this.long0 + d_lambda;
-
-  p.x = lon;
-  p.y = lat;
-
-  return p;
-};
-exports.names = ["New_Zealand_Map_Grid", "nzmg"];
-},{}],56:[function(_dereq_,module,exports){
-var tsfnz = _dereq_('../common/tsfnz');
-var adjust_lon = _dereq_('../common/adjust_lon');
-var phi2z = _dereq_('../common/phi2z');
-var HALF_PI = Math.PI/2;
-var FORTPI = Math.PI/4;
-var EPSLN = 1.0e-10;
-
-/* Initialize the Oblique Mercator  projection
-    ------------------------------------------*/
-exports.init = function() {
-  this.no_off = this.no_off || false;
-  this.no_rot = this.no_rot || false;
-
-  if (isNaN(this.k0)) {
-    this.k0 = 1;
-  }
-  var sinlat = Math.sin(this.lat0);
-  var coslat = Math.cos(this.lat0);
-  var con = this.e * sinlat;
-
-  this.bl = Math.sqrt(1 + this.es / (1 - this.es) * Math.pow(coslat, 4));
-  this.al = this.a * this.bl * this.k0 * Math.sqrt(1 - this.es) / (1 - con * con);
-  var t0 = tsfnz(this.e, this.lat0, sinlat);
-  var dl = this.bl / coslat * Math.sqrt((1 - this.es) / (1 - con * con));
-  if (dl * dl < 1) {
-    dl = 1;
-  }
-  var fl;
-  var gl;
-  if (!isNaN(this.longc)) {
-    //Central point and azimuth method
-
-    if (this.lat0 >= 0) {
-      fl = dl + Math.sqrt(dl * dl - 1);
-    }
-    else {
-      fl = dl - Math.sqrt(dl * dl - 1);
-    }
-    this.el = fl * Math.pow(t0, this.bl);
-    gl = 0.5 * (fl - 1 / fl);
-    this.gamma0 = Math.asin(Math.sin(this.alpha) / dl);
-    this.long0 = this.longc - Math.asin(gl * Math.tan(this.gamma0)) / this.bl;
-
-  }
-  else {
-    //2 points method
-    var t1 = tsfnz(this.e, this.lat1, Math.sin(this.lat1));
-    var t2 = tsfnz(this.e, this.lat2, Math.sin(this.lat2));
-    if (this.lat0 >= 0) {
-      this.el = (dl + Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl);
-    }
-    else {
-      this.el = (dl - Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl);
-    }
-    var hl = Math.pow(t1, this.bl);
-    var ll = Math.pow(t2, this.bl);
-    fl = this.el / hl;
-    gl = 0.5 * (fl - 1 / fl);
-    var jl = (this.el * this.el - ll * hl) / (this.el * this.el + ll * hl);
-    var pl = (ll - hl) / (ll + hl);
-    var dlon12 = adjust_lon(this.long1 - this.long2);
-    this.long0 = 0.5 * (this.long1 + this.long2) - Math.atan(jl * Math.tan(0.5 * this.bl * (dlon12)) / pl) / this.bl;
-    this.long0 = adjust_lon(this.long0);
-    var dlon10 = adjust_lon(this.long1 - this.long0);
-    this.gamma0 = Math.atan(Math.sin(this.bl * (dlon10)) / gl);
-    this.alpha = Math.asin(dl * Math.sin(this.gamma0));
-  }
-
-  if (this.no_off) {
-    this.uc = 0;
-  }
-  else {
-    if (this.lat0 >= 0) {
-      this.uc = this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha));
-    }
-    else {
-      this.uc = -1 * this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha));
-    }
-  }
-
-};
-
-
-/* Oblique Mercator forward equations--mapping lat,long to x,y
-    ----------------------------------------------------------*/
-exports.forward = function(p) {
-  var lon = p.x;
-  var lat = p.y;
-  var dlon = adjust_lon(lon - this.long0);
-  var us, vs;
-  var con;
-  if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) {
-    if (lat > 0) {
-      con = -1;
-    }
-    else {
-      con = 1;
-    }
-    vs = this.al / this.bl * Math.log(Math.tan(FORTPI + con * this.gamma0 * 0.5));
-    us = -1 * con * HALF_PI * this.al / this.bl;
-  }
-  else {
-    var t = tsfnz(this.e, lat, Math.sin(lat));
-    var ql = this.el / Math.pow(t, this.bl);
-    var sl = 0.5 * (ql - 1 / ql);
-    var tl = 0.5 * (ql + 1 / ql);
-    var vl = Math.sin(this.bl * (dlon));
-    var ul = (sl * Math.sin(this.gamma0) - vl * Math.cos(this.gamma0)) / tl;
-    if (Math.abs(Math.abs(ul) - 1) <= EPSLN) {
-      vs = Number.POSITIVE_INFINITY;
-    }
-    else {
-      vs = 0.5 * this.al * Math.log((1 - ul) / (1 + ul)) / this.bl;
-    }
-    if (Math.abs(Math.cos(this.bl * (dlon))) <= EPSLN) {
-      us = this.al * this.bl * (dlon);
-    }
-    else {
-      us = this.al * Math.atan2(sl * Math.cos(this.gamma0) + vl * Math.sin(this.gamma0), Math.cos(this.bl * dlon)) / this.bl;
-    }
-  }
-
-  if (this.no_rot) {
-    p.x = this.x0 + us;
-    p.y = this.y0 + vs;
-  }
-  else {
-
-    us -= this.uc;
-    p.x = this.x0 + vs * Math.cos(this.alpha) + us * Math.sin(this.alpha);
-    p.y = this.y0 + us * Math.cos(this.alpha) - vs * Math.sin(this.alpha);
-  }
-  return p;
-};
-
-exports.inverse = function(p) {
-  var us, vs;
-  if (this.no_rot) {
-    vs = p.y - this.y0;
-    us = p.x - this.x0;
-  }
-  else {
-    vs = (p.x - this.x0) * Math.cos(this.alpha) - (p.y - this.y0) * Math.sin(this.alpha);
-    us = (p.y - this.y0) * Math.cos(this.alpha) + (p.x - this.x0) * Math.sin(this.alpha);
-    us += this.uc;
-  }
-  var qp = Math.exp(-1 * this.bl * vs / this.al);
-  var sp = 0.5 * (qp - 1 / qp);
-  var tp = 0.5 * (qp + 1 / qp);
-  var vp = Math.sin(this.bl * us / this.al);
-  var up = (vp * Math.cos(this.gamma0) + sp * Math.sin(this.gamma0)) / tp;
-  var ts = Math.pow(this.el / Math.sqrt((1 + up) / (1 - up)), 1 / this.bl);
-  if (Math.abs(up - 1) < EPSLN) {
-    p.x = this.long0;
-    p.y = HALF_PI;
-  }
-  else if (Math.abs(up + 1) < EPSLN) {
-    p.x = this.long0;
-    p.y = -1 * HALF_PI;
-  }
-  else {
-    p.y = phi2z(this.e, ts);
-    p.x = adjust_lon(this.long0 - Math.atan2(sp * Math.cos(this.gamma0) - vp * Math.sin(this.gamma0), Math.cos(this.bl * us / this.al)) / this.bl);
-  }
-  return p;
-};
-
-exports.names = ["Hotine_Oblique_Mercator", "Hotine Oblique Mercator", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin", "Hotine_Oblique_Mercator_Azimuth_Center", "omerc"];
-},{"../common/adjust_lon":5,"../common/phi2z":16,"../common/tsfnz":24}],57:[function(_dereq_,module,exports){
-var e0fn = _dereq_('../common/e0fn');
-var e1fn = _dereq_('../common/e1fn');
-var e2fn = _dereq_('../common/e2fn');
-var e3fn = _dereq_('../common/e3fn');
-var adjust_lon = _dereq_('../common/adjust_lon');
-var adjust_lat = _dereq_('../common/adjust_lat');
-var mlfn = _dereq_('../common/mlfn');
-var EPSLN = 1.0e-10;
-var gN = _dereq_('../common/gN');
-var MAX_ITER = 20;
-exports.init = function() {
-  /* Place parameters in static storage for common use
-      -------------------------------------------------*/
-  this.temp = this.b / this.a;
-  this.es = 1 - Math.pow(this.temp, 2); // devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles
-  this.e = Math.sqrt(this.es);
-  this.e0 = e0fn(this.es);
-  this.e1 = e1fn(this.es);
-  this.e2 = e2fn(this.es);
-  this.e3 = e3fn(this.es);
-  this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); //si que des zeros le calcul ne se fait pas
-};
-
-
-/* Polyconic forward equations--mapping lat,long to x,y
-    ---------------------------------------------------*/
-exports.forward = function(p) {
-  var lon = p.x;
-  var lat = p.y;
-  var x, y, el;
-  var dlon = adjust_lon(lon - this.long0);
-  el = dlon * Math.sin(lat);
-  if (this.sphere) {
-    if (Math.abs(lat) <= EPSLN) {
-      x = this.a * dlon;
-      y = -1 * this.a * this.lat0;
-    }
-    else {
-      x = this.a * Math.sin(el) / Math.tan(lat);
-      y = this.a * (adjust_lat(lat - this.lat0) + (1 - Math.cos(el)) / Math.tan(lat));
-    }
-  }
-  else {
-    if (Math.abs(lat) <= EPSLN) {
-      x = this.a * dlon;
-      y = -1 * this.ml0;
-    }
-    else {
-      var nl = gN(this.a, this.e, Math.sin(lat)) / Math.tan(lat);
-      x = nl * Math.sin(el);
-      y = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat) - this.ml0 + nl * (1 - Math.cos(el));
-    }
-
-  }
-  p.x = x + this.x0;
-  p.y = y + this.y0;
-  return p;
-};
-
-
-/* Inverse equations
-  -----------------*/
-exports.inverse = function(p) {
-  var lon, lat, x, y, i;
-  var al, bl;
-  var phi, dphi;
-  x = p.x - this.x0;
-  y = p.y - this.y0;
-
-  if (this.sphere) {
-    if (Math.abs(y + this.a * this.lat0) <= EPSLN) {
-      lon = adjust_lon(x / this.a + this.long0);
-      lat = 0;
-    }
-    else {
-      al = this.lat0 + y / this.a;
-      bl = x * x / this.a / this.a + al * al;
-      phi = al;
-      var tanphi;
-      for (i = MAX_ITER; i; --i) {
-        tanphi = Math.tan(phi);
-        dphi = -1 * (al * (phi * tanphi + 1) - phi - 0.5 * (phi * phi + bl) * tanphi) / ((phi - al) / tanphi - 1);
-        phi += dphi;
-        if (Math.abs(dphi) <= EPSLN) {
-          lat = phi;
-          break;
-        }
-      }
-      lon = adjust_lon(this.long0 + (Math.asin(x * Math.tan(phi) / this.a)) / Math.sin(lat));
-    }
-  }
-  else {
-    if (Math.abs(y + this.ml0) <= EPSLN) {
-      lat = 0;
-      lon = adjust_lon(this.long0 + x / this.a);
-    }
-    else {
-
-      al = (this.ml0 + y) / this.a;
-      bl = x * x / this.a / this.a + al * al;
-      phi = al;
-      var cl, mln, mlnp, ma;
-      var con;
-      for (i = MAX_ITER; i; --i) {
-        con = this.e * Math.sin(phi);
-        cl = Math.sqrt(1 - con * con) * Math.tan(phi);
-        mln = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
-        mlnp = this.e0 - 2 * this.e1 * Math.cos(2 * phi) + 4 * this.e2 * Math.cos(4 * phi) - 6 * this.e3 * Math.cos(6 * phi);
-        ma = mln / this.a;
-        dphi = (al * (cl * ma + 1) - ma - 0.5 * cl * (ma * ma + bl)) / (this.es * Math.sin(2 * phi) * (ma * ma + bl - 2 * al * ma) / (4 * cl) + (al - ma) * (cl * mlnp - 2 / Math.sin(2 * phi)) - mlnp);
-        phi -= dphi;
-        if (Math.abs(dphi) <= EPSLN) {
-          lat = phi;
-          break;
-        }
-      }
-
-      //lat=phi4z(this.e,this.e0,this.e1,this.e2,this.e3,al,bl,0,0);
-      cl = Math.sqrt(1 - this.es * Math.pow(Math.sin(lat), 2)) * Math.tan(lat);
-      lon = adjust_lon(this.long0 + Math.asin(x * cl / this.a) / Math.sin(lat));
-    }
-  }
-
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-exports.names = ["Polyconic", "poly"];
-},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/gN":11,"../common/mlfn":14}],58:[function(_dereq_,module,exports){
-var adjust_lon = _dereq_('../common/adjust_lon');
-var adjust_lat = _dereq_('../common/adjust_lat');
-var pj_enfn = _dereq_('../common/pj_enfn');
-var MAX_ITER = 20;
-var pj_mlfn = _dereq_('../common/pj_mlfn');
-var pj_inv_mlfn = _dereq_('../common/pj_inv_mlfn');
-var HALF_PI = Math.PI/2;
-var EPSLN = 1.0e-10;
-var asinz = _dereq_('../common/asinz');
-exports.init = function() {
-  /* Place parameters in static storage for common use
-    -------------------------------------------------*/
-
-
-  if (!this.sphere) {
-    this.en = pj_enfn(this.es);
-  }
-  else {
-    this.n = 1;
-    this.m = 0;
-    this.es = 0;
-    this.C_y = Math.sqrt((this.m + 1) / this.n);
-    this.C_x = this.C_y / (this.m + 1);
-  }
-
-};
-
-/* Sinusoidal forward equations--mapping lat,long to x,y
-  -----------------------------------------------------*/
-exports.forward = function(p) {
-  var x, y;
-  var lon = p.x;
-  var lat = p.y;
-  /* Forward equations
-    -----------------*/
-  lon = adjust_lon(lon - this.long0);
-
-  if (this.sphere) {
-    if (!this.m) {
-      lat = this.n !== 1 ? Math.asin(this.n * Math.sin(lat)) : lat;
-    }
-    else {
-      var k = this.n * Math.sin(lat);
-      for (var i = MAX_ITER; i; --i) {
-        var V = (this.m * lat + Math.sin(lat) - k) / (this.m + Math.cos(lat));
-        lat -= V;
-        if (Math.abs(V) < EPSLN) {
-          break;
-        }
-      }
-    }
-    x = this.a * this.C_x * lon * (this.m + Math.cos(lat));
-    y = this.a * this.C_y * lat;
-
-  }
-  else {
-
-    var s = Math.sin(lat);
-    var c = Math.cos(lat);
-    y = this.a * pj_mlfn(lat, s, c, this.en);
-    x = this.a * lon * c / Math.sqrt(1 - this.es * s * s);
-  }
-
-  p.x = x;
-  p.y = y;
-  return p;
-};
-
-exports.inverse = function(p) {
-  var lat, temp, lon, s;
-
-  p.x -= this.x0;
-  lon = p.x / this.a;
-  p.y -= this.y0;
-  lat = p.y / this.a;
-
-  if (this.sphere) {
-    lat /= this.C_y;
-    lon = lon / (this.C_x * (this.m + Math.cos(lat)));
-    if (this.m) {
-      lat = asinz((this.m * lat + Math.sin(lat)) / this.n);
-    }
-    else if (this.n !== 1) {
-      lat = asinz(Math.sin(lat) / this.n);
-    }
-    lon = adjust_lon(lon + this.long0);
-    lat = adjust_lat(lat);
-  }
-  else {
-    lat = pj_inv_mlfn(p.y / this.a, this.es, this.en);
-    s = Math.abs(lat);
-    if (s < HALF_PI) {
-      s = Math.sin(lat);
-      temp = this.long0 + p.x * Math.sqrt(1 - this.es * s * s) / (this.a * Math.cos(lat));
-      //temp = this.long0 + p.x / (this.a * Math.cos(lat));
-      lon = adjust_lon(temp);
-    }
-    else if ((s - EPSLN) < HALF_PI) {
-      lon = this.long0;
-    }
-  }
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-exports.names = ["Sinusoidal", "sinu"];
-},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/asinz":6,"../common/pj_enfn":17,"../common/pj_inv_mlfn":18,"../common/pj_mlfn":19}],59:[function(_dereq_,module,exports){
-/*
-  references:
-    Formules et constantes pour le Calcul pour la
-    projection cylindrique conforme à axe oblique et pour la transformation entre
-    des systèmes de référence.
-    http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf
-  */
-exports.init = function() {
-  var phy0 = this.lat0;
-  this.lambda0 = this.long0;
-  var sinPhy0 = Math.sin(phy0);
-  var semiMajorAxis = this.a;
-  var invF = this.rf;
-  var flattening = 1 / invF;
-  var e2 = 2 * flattening - Math.pow(flattening, 2);
-  var e = this.e = Math.sqrt(e2);
-  this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2));
-  this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4));
-  this.b0 = Math.asin(sinPhy0 / this.alpha);
-  var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2));
-  var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2));
-  var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0));
-  this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3;
-};
-
-
-exports.forward = function(p) {
-  var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2));
-  var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y)));
-  var S = -this.alpha * (Sa1 + Sa2) + this.K;
-
-  // spheric latitude
-  var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4);
-
-  // spheric longitude
-  var I = this.alpha * (p.x - this.lambda0);
-
-  // psoeudo equatorial rotation
-  var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I)));
-
-  var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I));
-
-  p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0;
-  p.x = this.R * rotI + this.x0;
-  return p;
-};
-
-exports.inverse = function(p) {
-  var Y = p.x - this.x0;
-  var X = p.y - this.y0;
-
-  var rotI = Y / this.R;
-  var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4);
-
-  var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI));
-  var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB)));
-
-  var lambda = this.lambda0 + I / this.alpha;
-
-  var S = 0;
-  var phy = b;
-  var prevPhy = -1000;
-  var iteration = 0;
-  while (Math.abs(phy - prevPhy) > 0.0000001) {
-    if (++iteration > 20) {
-      //...reportError("omercFwdInfinity");
-      return;
-    }
-    //S = Math.log(Math.tan(Math.PI / 4 + phy / 2));
-    S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2));
-    prevPhy = phy;
-    phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2;
-  }
-
-  p.x = lambda;
-  p.y = phy;
-  return p;
-};
-
-exports.names = ["somerc"];
-
-},{}],60:[function(_dereq_,module,exports){
-var HALF_PI = Math.PI/2;
-var EPSLN = 1.0e-10;
-var sign = _dereq_('../common/sign');
-var msfnz = _dereq_('../common/msfnz');
-var tsfnz = _dereq_('../common/tsfnz');
-var phi2z = _dereq_('../common/phi2z');
-var adjust_lon = _dereq_('../common/adjust_lon');
-exports.ssfn_ = function(phit, sinphi, eccen) {
-  sinphi *= eccen;
-  return (Math.tan(0.5 * (HALF_PI + phit)) * Math.pow((1 - sinphi) / (1 + sinphi), 0.5 * eccen));
-};
-
-exports.init = function() {
-  this.coslat0 = Math.cos(this.lat0);
-  this.sinlat0 = Math.sin(this.lat0);
-  if (this.sphere) {
-    if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
-      this.k0 = 0.5 * (1 + sign(this.lat0) * Math.sin(this.lat_ts));
-    }
-  }
-  else {
-    if (Math.abs(this.coslat0) <= EPSLN) {
-      if (this.lat0 > 0) {
-        //North pole
-        //trace('stere:north pole');
-        this.con = 1;
-      }
-      else {
-        //South pole
-        //trace('stere:south pole');
-        this.con = -1;
-      }
-    }
-    this.cons = Math.sqrt(Math.pow(1 + this.e, 1 + this.e) * Math.pow(1 - this.e, 1 - this.e));
-    if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
-      this.k0 = 0.5 * this.cons * msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)) / tsfnz(this.e, this.con * this.lat_ts, this.con * Math.sin(this.lat_ts));
-    }
-    this.ms1 = msfnz(this.e, this.sinlat0, this.coslat0);
-    this.X0 = 2 * Math.atan(this.ssfn_(this.lat0, this.sinlat0, this.e)) - HALF_PI;
-    this.cosX0 = Math.cos(this.X0);
-    this.sinX0 = Math.sin(this.X0);
-  }
-};
-
-// Stereographic forward equations--mapping lat,long to x,y
-exports.forward = function(p) {
-  var lon = p.x;
-  var lat = p.y;
-  var sinlat = Math.sin(lat);
-  var coslat = Math.cos(lat);
-  var A, X, sinX, cosX, ts, rh;
-  var dlon = adjust_lon(lon - this.long0);
-
-  if (Math.abs(Math.abs(lon - this.long0) - Math.PI) <= EPSLN && Math.abs(lat + this.lat0) <= EPSLN) {
-    //case of the origine point
-    //trace('stere:this is the origin point');
-    p.x = NaN;
-    p.y = NaN;
-    return p;
-  }
-  if (this.sphere) {
-    //trace('stere:sphere case');
-    A = 2 * this.k0 / (1 + this.sinlat0 * sinlat + this.coslat0 * coslat * Math.cos(dlon));
-    p.x = this.a * A * coslat * Math.sin(dlon) + this.x0;
-    p.y = this.a * A * (this.coslat0 * sinlat - this.sinlat0 * coslat * Math.cos(dlon)) + this.y0;
-    return p;
-  }
-  else {
-    X = 2 * Math.atan(this.ssfn_(lat, sinlat, this.e)) - HALF_PI;
-    cosX = Math.cos(X);
-    sinX = Math.sin(X);
-    if (Math.abs(this.coslat0) <= EPSLN) {
-      ts = tsfnz(this.e, lat * this.con, this.con * sinlat);
-      rh = 2 * this.a * this.k0 * ts / this.cons;
-      p.x = this.x0 + rh * Math.sin(lon - this.long0);
-      p.y = this.y0 - this.con * rh * Math.cos(lon - this.long0);
-      //trace(p.toString());
-      return p;
-    }
-    else if (Math.abs(this.sinlat0) < EPSLN) {
-      //Eq
-      //trace('stere:equateur');
-      A = 2 * this.a * this.k0 / (1 + cosX * Math.cos(dlon));
-      p.y = A * sinX;
-    }
-    else {
-      //other case
-      //trace('stere:normal case');
-      A = 2 * this.a * this.k0 * this.ms1 / (this.cosX0 * (1 + this.sinX0 * sinX + this.cosX0 * cosX * Math.cos(dlon)));
-      p.y = A * (this.cosX0 * sinX - this.sinX0 * cosX * Math.cos(dlon)) + this.y0;
-    }
-    p.x = A * cosX * Math.sin(dlon) + this.x0;
-  }
-  //trace(p.toString());
-  return p;
-};
-
-
-//* Stereographic inverse equations--mapping x,y to lat/long
-exports.inverse = function(p) {
-  p.x -= this.x0;
-  p.y -= this.y0;
-  var lon, lat, ts, ce, Chi;
-  var rh = Math.sqrt(p.x * p.x + p.y * p.y);
-  if (this.sphere) {
-    var c = 2 * Math.atan(rh / (0.5 * this.a * this.k0));
-    lon = this.long0;
-    lat = this.lat0;
-    if (rh <= EPSLN) {
-      p.x = lon;
-      p.y = lat;
-      return p;
-    }
-    lat = Math.asin(Math.cos(c) * this.sinlat0 + p.y * Math.sin(c) * this.coslat0 / rh);
-    if (Math.abs(this.coslat0) < EPSLN) {
-      if (this.lat0 > 0) {
-        lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
-      }
-      else {
-        lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
-      }
-    }
-    else {
-      lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(c), rh * this.coslat0 * Math.cos(c) - p.y * this.sinlat0 * Math.sin(c)));
-    }
-    p.x = lon;
-    p.y = lat;
-    return p;
-  }
-  else {
-    if (Math.abs(this.coslat0) <= EPSLN) {
-      if (rh <= EPSLN) {
-        lat = this.lat0;
-        lon = this.long0;
-        p.x = lon;
-        p.y = lat;
-        //trace(p.toString());
-        return p;
-      }
-      p.x *= this.con;
-      p.y *= this.con;
-      ts = rh * this.cons / (2 * this.a * this.k0);
-      lat = this.con * phi2z(this.e, ts);
-      lon = this.con * adjust_lon(this.con * this.long0 + Math.atan2(p.x, - 1 * p.y));
-    }
-    else {
-      ce = 2 * Math.atan(rh * this.cosX0 / (2 * this.a * this.k0 * this.ms1));
-      lon = this.long0;
-      if (rh <= EPSLN) {
-        Chi = this.X0;
-      }
-      else {
-        Chi = Math.asin(Math.cos(ce) * this.sinX0 + p.y * Math.sin(ce) * this.cosX0 / rh);
-        lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(ce), rh * this.cosX0 * Math.cos(ce) - p.y * this.sinX0 * Math.sin(ce)));
-      }
-      lat = -1 * phi2z(this.e, Math.tan(0.5 * (HALF_PI + Chi)));
-    }
-  }
-  p.x = lon;
-  p.y = lat;
-
-  //trace(p.toString());
-  return p;
-
-};
-exports.names = ["stere", "Stereographic_South_Pole", "Polar Stereographic (variant B)"];
-
-},{"../common/adjust_lon":5,"../common/msfnz":15,"../common/phi2z":16,"../common/sign":21,"../common/tsfnz":24}],61:[function(_dereq_,module,exports){
-var gauss = _dereq_('./gauss');
-var adjust_lon = _dereq_('../common/adjust_lon');
-exports.init = function() {
-  gauss.init.apply(this);
-  if (!this.rc) {
-    return;
-  }
-  this.sinc0 = Math.sin(this.phic0);
-  this.cosc0 = Math.cos(this.phic0);
-  this.R2 = 2 * this.rc;
-  if (!this.title) {
-    this.title = "Oblique Stereographic Alternative";
-  }
-};
-
-exports.forward = function(p) {
-  var sinc, cosc, cosl, k;
-  p.x = adjust_lon(p.x - this.long0);
-  gauss.forward.apply(this, [p]);
-  sinc = Math.sin(p.y);
-  cosc = Math.cos(p.y);
-  cosl = Math.cos(p.x);
-  k = this.k0 * this.R2 / (1 + this.sinc0 * sinc + this.cosc0 * cosc * cosl);
-  p.x = k * cosc * Math.sin(p.x);
-  p.y = k * (this.cosc0 * sinc - this.sinc0 * cosc * cosl);
-  p.x = this.a * p.x + this.x0;
-  p.y = this.a * p.y + this.y0;
-  return p;
-};
-
-exports.inverse = function(p) {
-  var sinc, cosc, lon, lat, rho;
-  p.x = (p.x - this.x0) / this.a;
-  p.y = (p.y - this.y0) / this.a;
-
-  p.x /= this.k0;
-  p.y /= this.k0;
-  if ((rho = Math.sqrt(p.x * p.x + p.y * p.y))) {
-    var c = 2 * Math.atan2(rho, this.R2);
-    sinc = Math.sin(c);
-    cosc = Math.cos(c);
-    lat = Math.asin(cosc * this.sinc0 + p.y * sinc * this.cosc0 / rho);
-    lon = Math.atan2(p.x * sinc, rho * this.cosc0 * cosc - p.y * this.sinc0 * sinc);
-  }
-  else {
-    lat = this.phic0;
-    lon = 0;
-  }
-
-  p.x = lon;
-  p.y = lat;
-  gauss.inverse.apply(this, [p]);
-  p.x = adjust_lon(p.x + this.long0);
-  return p;
-};
-
-exports.names = ["Stereographic_North_Pole", "Oblique_Stereographic", "Polar_Stereographic", "sterea","Oblique Stereographic Alternative"];
-
-},{"../common/adjust_lon":5,"./gauss":46}],62:[function(_dereq_,module,exports){
-var e0fn = _dereq_('../common/e0fn');
-var e1fn = _dereq_('../common/e1fn');
-var e2fn = _dereq_('../common/e2fn');
-var e3fn = _dereq_('../common/e3fn');
-var mlfn = _dereq_('../common/mlfn');
-var adjust_lon = _dereq_('../common/adjust_lon');
-var HALF_PI = Math.PI/2;
-var EPSLN = 1.0e-10;
-var sign = _dereq_('../common/sign');
-var asinz = _dereq_('../common/asinz');
-
-exports.init = function() {
-  this.e0 = e0fn(this.es);
-  this.e1 = e1fn(this.es);
-  this.e2 = e2fn(this.es);
-  this.e3 = e3fn(this.es);
-  this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
-};
-
-/**
-    Transverse Mercator Forward  - long/lat to x/y
-    long/lat in radians
-  */
-exports.forward = function(p) {
-  var lon = p.x;
-  var lat = p.y;
-
-  var delta_lon = adjust_lon(lon - this.long0);
-  var con;
-  var x, y;
-  var sin_phi = Math.sin(lat);
-  var cos_phi = Math.cos(lat);
-
-  if (this.sphere) {
-    var b = cos_phi * Math.sin(delta_lon);
-    if ((Math.abs(Math.abs(b) - 1)) < 0.0000000001) {
-      return (93);
-    }
-    else {
-      x = 0.5 * this.a * this.k0 * Math.log((1 + b) / (1 - b));
-      con = Math.acos(cos_phi * Math.cos(delta_lon) / Math.sqrt(1 - b * b));
-      if (lat < 0) {
-        con = -con;
-      }
-      y = this.a * this.k0 * (con - this.lat0);
-    }
-  }
-  else {
-    var al = cos_phi * delta_lon;
-    var als = Math.pow(al, 2);
-    var c = this.ep2 * Math.pow(cos_phi, 2);
-    var tq = Math.tan(lat);
-    var t = Math.pow(tq, 2);
-    con = 1 - this.es * Math.pow(sin_phi, 2);
-    var n = this.a / Math.sqrt(con);
-    var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat);
-
-    x = this.k0 * n * al * (1 + als / 6 * (1 - t + c + als / 20 * (5 - 18 * t + Math.pow(t, 2) + 72 * c - 58 * this.ep2))) + this.x0;
-    y = this.k0 * (ml - this.ml0 + n * tq * (als * (0.5 + als / 24 * (5 - t + 9 * c + 4 * Math.pow(c, 2) + als / 30 * (61 - 58 * t + Math.pow(t, 2) + 600 * c - 330 * this.ep2))))) + this.y0;
-
-  }
-  p.x = x;
-  p.y = y;
-  return p;
-};
-
-/**
-    Transverse Mercator Inverse  -  x/y to long/lat
-  */
-exports.inverse = function(p) {
-  var con, phi;
-  var delta_phi;
-  var i;
-  var max_iter = 6;
-  var lat, lon;
-
-  if (this.sphere) {
-    var f = Math.exp(p.x / (this.a * this.k0));
-    var g = 0.5 * (f - 1 / f);
-    var temp = this.lat0 + p.y / (this.a * this.k0);
-    var h = Math.cos(temp);
-    con = Math.sqrt((1 - h * h) / (1 + g * g));
-    lat = asinz(con);
-    if (temp < 0) {
-      lat = -lat;
-    }
-    if ((g === 0) && (h === 0)) {
-      lon = this.long0;
-    }
-    else {
-      lon = adjust_lon(Math.atan2(g, h) + this.long0);
-    }
-  }
-  else { // ellipsoidal form
-    var x = p.x - this.x0;
-    var y = p.y - this.y0;
-
-    con = (this.ml0 + y / this.k0) / this.a;
-    phi = con;
-    for (i = 0; true; i++) {
-      delta_phi = ((con + this.e1 * Math.sin(2 * phi) - this.e2 * Math.sin(4 * phi) + this.e3 * Math.sin(6 * phi)) / this.e0) - phi;
-      phi += delta_phi;
-      if (Math.abs(delta_phi) <= EPSLN) {
-        break;
-      }
-      if (i >= max_iter) {
-        return (95);
-      }
-    } // for()
-    if (Math.abs(phi) < HALF_PI) {
-      var sin_phi = Math.sin(phi);
-      var cos_phi = Math.cos(phi);
-      var tan_phi = Math.tan(phi);
-      var c = this.ep2 * Math.pow(cos_phi, 2);
-      var cs = Math.pow(c, 2);
-      var t = Math.pow(tan_phi, 2);
-      var ts = Math.pow(t, 2);
-      con = 1 - this.es * Math.pow(sin_phi, 2);
-      var n = this.a / Math.sqrt(con);
-      var r = n * (1 - this.es) / con;
-      var d = x / (n * this.k0);
-      var ds = Math.pow(d, 2);
-      lat = phi - (n * tan_phi * ds / r) * (0.5 - ds / 24 * (5 + 3 * t + 10 * c - 4 * cs - 9 * this.ep2 - ds / 30 * (61 + 90 * t + 298 * c + 45 * ts - 252 * this.ep2 - 3 * cs)));
-      lon = adjust_lon(this.long0 + (d * (1 - ds / 6 * (1 + 2 * t + c - ds / 20 * (5 - 2 * c + 28 * t - 3 * cs + 8 * this.ep2 + 24 * ts))) / cos_phi));
-    }
-    else {
-      lat = HALF_PI * sign(y);
-      lon = this.long0;
-    }
-  }
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-exports.names = ["Transverse_Mercator", "Transverse Mercator", "tmerc"];
-
-},{"../common/adjust_lon":5,"../common/asinz":6,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/mlfn":14,"../common/sign":21}],63:[function(_dereq_,module,exports){
-var D2R = 0.01745329251994329577;
-var tmerc = _dereq_('./tmerc');
-exports.dependsOn = 'tmerc';
-exports.init = function() {
-  if (!this.zone) {
-    return;
-  }
-  this.lat0 = 0;
-  this.long0 = ((6 * Math.abs(this.zone)) - 183) * D2R;
-  this.x0 = 500000;
-  this.y0 = this.utmSouth ? 10000000 : 0;
-  this.k0 = 0.9996;
-
-  tmerc.init.apply(this);
-  this.forward = tmerc.forward;
-  this.inverse = tmerc.inverse;
-};
-exports.names = ["Universal Transverse Mercator System", "utm"];
-
-},{"./tmerc":62}],64:[function(_dereq_,module,exports){
-var adjust_lon = _dereq_('../common/adjust_lon');
-var HALF_PI = Math.PI/2;
-var EPSLN = 1.0e-10;
-var asinz = _dereq_('../common/asinz');
-/* Initialize the Van Der Grinten projection
-  ----------------------------------------*/
-exports.init = function() {
-  //this.R = 6370997; //Radius of earth
-  this.R = this.a;
-};
-
-exports.forward = function(p) {
-
-  var lon = p.x;
-  var lat = p.y;
-
-  /* Forward equations
-    -----------------*/
-  var dlon = adjust_lon(lon - this.long0);
-  var x, y;
-
-  if (Math.abs(lat) <= EPSLN) {
-    x = this.x0 + this.R * dlon;
-    y = this.y0;
-  }
-  var theta = asinz(2 * Math.abs(lat / Math.PI));
-  if ((Math.abs(dlon) <= EPSLN) || (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN)) {
-    x = this.x0;
-    if (lat >= 0) {
-      y = this.y0 + Math.PI * this.R * Math.tan(0.5 * theta);
-    }
-    else {
-      y = this.y0 + Math.PI * this.R * -Math.tan(0.5 * theta);
-    }
-    //  return(OK);
-  }
-  var al = 0.5 * Math.abs((Math.PI / dlon) - (dlon / Math.PI));
-  var asq = al * al;
-  var sinth = Math.sin(theta);
-  var costh = Math.cos(theta);
-
-  var g = costh / (sinth + costh - 1);
-  var gsq = g * g;
-  var m = g * (2 / sinth - 1);
-  var msq = m * m;
-  var con = Math.PI * this.R * (al * (g - msq) + Math.sqrt(asq * (g - msq) * (g - msq) - (msq + asq) * (gsq - msq))) / (msq + asq);
-  if (dlon < 0) {
-    con = -con;
-  }
-  x = this.x0 + con;
-  //con = Math.abs(con / (Math.PI * this.R));
-  var q = asq + g;
-  con = Math.PI * this.R * (m * q - al * Math.sqrt((msq + asq) * (asq + 1) - q * q)) / (msq + asq);
-  if (lat >= 0) {
-    //y = this.y0 + Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
-    y = this.y0 + con;
-  }
-  else {
-    //y = this.y0 - Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
-    y = this.y0 - con;
-  }
-  p.x = x;
-  p.y = y;
-  return p;
-};
-
-/* Van Der Grinten inverse equations--mapping x,y to lat/long
-  ---------------------------------------------------------*/
-exports.inverse = function(p) {
-  var lon, lat;
-  var xx, yy, xys, c1, c2, c3;
-  var a1;
-  var m1;
-  var con;
-  var th1;
-  var d;
-
-  /* inverse equations
-    -----------------*/
-  p.x -= this.x0;
-  p.y -= this.y0;
-  con = Math.PI * this.R;
-  xx = p.x / con;
-  yy = p.y / con;
-  xys = xx * xx + yy * yy;
-  c1 = -Math.abs(yy) * (1 + xys);
-  c2 = c1 - 2 * yy * yy + xx * xx;
-  c3 = -2 * c1 + 1 + 2 * yy * yy + xys * xys;
-  d = yy * yy / c3 + (2 * c2 * c2 * c2 / c3 / c3 / c3 - 9 * c1 * c2 / c3 / c3) / 27;
-  a1 = (c1 - c2 * c2 / 3 / c3) / c3;
-  m1 = 2 * Math.sqrt(-a1 / 3);
-  con = ((3 * d) / a1) / m1;
-  if (Math.abs(con) > 1) {
-    if (con >= 0) {
-      con = 1;
-    }
-    else {
-      con = -1;
-    }
-  }
-  th1 = Math.acos(con) / 3;
-  if (p.y >= 0) {
-    lat = (-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
-  }
-  else {
-    lat = -(-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
-  }
-
-  if (Math.abs(xx) < EPSLN) {
-    lon = this.long0;
-  }
-  else {
-    lon = adjust_lon(this.long0 + Math.PI * (xys - 1 + Math.sqrt(1 + 2 * (xx * xx - yy * yy) + xys * xys)) / 2 / xx);
-  }
-
-  p.x = lon;
-  p.y = lat;
-  return p;
-};
-exports.names = ["Van_der_Grinten_I", "VanDerGrinten", "vandg"];
-},{"../common/adjust_lon":5,"../common/asinz":6}],65:[function(_dereq_,module,exports){
-var D2R = 0.01745329251994329577;
-var R2D = 57.29577951308232088;
-var PJD_3PARAM = 1;
-var PJD_7PARAM = 2;
-var datum_transform = _dereq_('./datum_transform');
-var adjust_axis = _dereq_('./adjust_axis');
-var proj = _dereq_('./Proj');
-var toPoint = _dereq_('./common/toPoint');
-module.exports = function transform(source, dest, point) {
-  var wgs84;
-  if (Array.isArray(point)) {
-    point = toPoint(point);
-  }
-  function checkNotWGS(source, dest) {
-    return ((source.datum.datum_type === PJD_3PARAM || source.datum.datum_type === PJD_7PARAM) && dest.datumCode !== "WGS84");
-  }
-
-  // Workaround for datum shifts towgs84, if either source or destination projection is not wgs84
-  if (source.datum && dest.datum && (checkNotWGS(source, dest) || checkNotWGS(dest, source))) {
-    wgs84 = new proj('WGS84');
-    transform(source, wgs84, point);
-    source = wgs84;
-  }
-  // DGR, 2010/11/12
-  if (source.axis !== "enu") {
-    adjust_axis(source, false, point);
-  }
-  // Transform source points to long/lat, if they aren't already.
-  if (source.projName === "longlat") {
-    point.x *= D2R; // convert degrees to radians
-    point.y *= D2R;
-  }
-  else {
-    if (source.to_meter) {
-      point.x *= source.to_meter;
-      point.y *= source.to_meter;
-    }
-    source.inverse(point); // Convert Cartesian to longlat
-  }
-  // Adjust for the prime meridian if necessary
-  if (source.from_greenwich) {
-    point.x += source.from_greenwich;
-  }
-
-  // Convert datums if needed, and if possible.
-  point = datum_transform(source.datum, dest.datum, point);
-
-  // Adjust for the prime meridian if necessary
-  if (dest.from_greenwich) {
-    point.x -= dest.from_greenwich;
-  }
-
-  if (dest.projName === "longlat") {
-    // convert radians to decimal degrees
-    point.x *= R2D;
-    point.y *= R2D;
-  }
-  else { // else project
-    dest.forward(point);
-    if (dest.to_meter) {
-      point.x /= dest.to_meter;
-      point.y /= dest.to_meter;
-    }
-  }
-
-  // DGR, 2010/11/12
-  if (dest.axis !== "enu") {
-    adjust_axis(dest, true, point);
-  }
-
-  return point;
-};
-},{"./Proj":2,"./adjust_axis":3,"./common/toPoint":23,"./datum_transform":31}],66:[function(_dereq_,module,exports){
-var D2R = 0.01745329251994329577;
-var extend = _dereq_('./extend');
-
-function mapit(obj, key, v) {
-  obj[key] = v.map(function(aa) {
-    var o = {};
-    sExpr(aa, o);
-    return o;
-  }).reduce(function(a, b) {
-    return extend(a, b);
-  }, {});
-}
-
-function sExpr(v, obj) {
-  var key;
-  if (!Array.isArray(v)) {
-    obj[v] = true;
-    return;
-  }
-  else {
-    key = v.shift();
-    if (key === 'PARAMETER') {
-      key = v.shift();
-    }
-    if (v.length === 1) {
-      if (Array.isArray(v[0])) {
-        obj[key] = {};
-        sExpr(v[0], obj[key]);
-      }
-      else {
-        obj[key] = v[0];
-      }
-    }
-    else if (!v.length) {
-      obj[key] = true;
-    }
-    else if (key === 'TOWGS84') {
-      obj[key] = v;
-    }
-    else {
-      obj[key] = {};
-      if (['UNIT', 'PRIMEM', 'VERT_DATUM'].indexOf(key) > -1) {
-        obj[key] = {
-          name: v[0].toLowerCase(),
-          convert: v[1]
-        };
-        if (v.length === 3) {
-          obj[key].auth = v[2];
-        }
-      }
-      else if (key === 'SPHEROID') {
-        obj[key] = {
-          name: v[0],
-          a: v[1],
-          rf: v[2]
-        };
-        if (v.length === 4) {
-          obj[key].auth = v[3];
-        }
-      }
-      else if (['GEOGCS', 'GEOCCS', 'DATUM', 'VERT_CS', 'COMPD_CS', 'LOCAL_CS', 'FITTED_CS', 'LOCAL_DATUM'].indexOf(key) > -1) {
-        v[0] = ['name', v[0]];
-        mapit(obj, key, v);
-      }
-      else if (v.every(function(aa) {
-        return Array.isArray(aa);
-      })) {
-        mapit(obj, key, v);
-      }
-      else {
-        sExpr(v, obj[key]);
-      }
-    }
-  }
-}
-
-function rename(obj, params) {
-  var outName = params[0];
-  var inName = params[1];
-  if (!(outName in obj) && (inName in obj)) {
-    obj[outName] = obj[inName];
-    if (params.length === 3) {
-      obj[outName] = params[2](obj[outName]);
-    }
-  }
-}
-
-function d2r(input) {
-  return input * D2R;
-}
-
-function cleanWKT(wkt) {
-  if (wkt.type === 'GEOGCS') {
-    wkt.projName = 'longlat';
-  }
-  else if (wkt.type === 'LOCAL_CS') {
-    wkt.projName = 'identity';
-    wkt.local = true;
-  }
-  else {
-    if (typeof wkt.PROJECTION === "object") {
-      wkt.projName = Object.keys(wkt.PROJECTION)[0];
-    }
-    else {
-      wkt.projName = wkt.PROJECTION;
-    }
-  }
-  if (wkt.UNIT) {
-    wkt.units = wkt.UNIT.name.toLowerCase();
-    if (wkt.units === 'metre') {
-      wkt.units = 'meter';
-    }
-    if (wkt.UNIT.convert) {
-      if (wkt.type === 'GEOGCS') {
-        if (wkt.DATUM && wkt.DATUM.SPHEROID) {
-          wkt.to_meter = parseFloat(wkt.UNIT.convert, 10)*wkt.DATUM.SPHEROID.a;
-        }
-      } else {
-        wkt.to_meter = parseFloat(wkt.UNIT.convert, 10);
-      }
-    }
-  }
-
-  if (wkt.GEOGCS) {
-    //if(wkt.GEOGCS.PRIMEM&&wkt.GEOGCS.PRIMEM.convert){
-    //  wkt.from_greenwich=wkt.GEOGCS.PRIMEM.convert*D2R;
-    //}
-    if (wkt.GEOGCS.DATUM) {
-      wkt.datumCode = wkt.GEOGCS.DATUM.name.toLowerCase();
-    }
-    else {
-      wkt.datumCode = wkt.GEOGCS.name.toLowerCase();
-    }
-    if (wkt.datumCode.slice(0, 2) === 'd_') {
-      wkt.datumCode = wkt.datumCode.slice(2);
-    }
-    if (wkt.datumCode === 'new_zealand_geodetic_datum_1949' || wkt.datumCode === 'new_zealand_1949') {
-      wkt.datumCode = 'nzgd49';
-    }
-    if (wkt.datumCode === "wgs_1984") {
-      if (wkt.PROJECTION === 'Mercator_Auxiliary_Sphere') {
-        wkt.sphere = true;
-      }
-      wkt.datumCode = 'wgs84';
-    }
-    if (wkt.datumCode.slice(-6) === '_ferro') {
-      wkt.datumCode = wkt.datumCode.slice(0, - 6);
-    }
-    if (wkt.datumCode.slice(-8) === '_jakarta') {
-      wkt.datumCode = wkt.datumCode.slice(0, - 8);
-    }
-    if (~wkt.datumCode.indexOf('belge')) {
-      wkt.datumCode = "rnb72";
-    }
-    if (wkt.GEOGCS.DATUM && wkt.GEOGCS.DATUM.SPHEROID) {
-      wkt.ellps = wkt.GEOGCS.DATUM.SPHEROID.name.replace('_19', '').replace(/[Cc]larke\_18/, 'clrk');
-      if (wkt.ellps.toLowerCase().slice(0, 13) === "international") {
-        wkt.ellps = 'intl';
-      }
-
-      wkt.a = wkt.GEOGCS.DATUM.SPHEROID.a;
-      wkt.rf = parseFloat(wkt.GEOGCS.DATUM.SPHEROID.rf, 10);
-    }
-    if (~wkt.datumCode.indexOf('osgb_1936')) {
-      wkt.datumCode = "osgb36";
-    }
-  }
-  if (wkt.b && !isFinite(wkt.b)) {
-    wkt.b = wkt.a;
-  }
-
-  function toMeter(input) {
-    var ratio = wkt.to_meter || 1;
-    return parseFloat(input, 10) * ratio;
-  }
-  var renamer = function(a) {
-    return rename(wkt, a);
-  };
-  var list = [
-    ['standard_parallel_1', 'Standard_Parallel_1'],
-    ['standard_parallel_2', 'Standard_Parallel_2'],
-    ['false_easting', 'False_Easting'],
-    ['false_northing', 'False_Northing'],
-    ['central_meridian', 'Central_Meridian'],
-    ['latitude_of_origin', 'Latitude_Of_Origin'],
-    ['latitude_of_origin', 'Central_Parallel'],
-    ['scale_factor', 'Scale_Factor'],
-    ['k0', 'scale_factor'],
-    ['latitude_of_center', 'Latitude_of_center'],
-    ['lat0', 'latitude_of_center', d2r],
-    ['longitude_of_center', 'Longitude_Of_Center'],
-    ['longc', 'longitude_of_center', d2r],
-    ['x0', 'false_easting', toMeter],
-    ['y0', 'false_northing', toMeter],
-    ['long0', 'central_meridian', d2r],
-    ['lat0', 'latitude_of_origin', d2r],
-    ['lat0', 'standard_parallel_1', d2r],
-    ['lat1', 'standard_parallel_1', d2r],
-    ['lat2', 'standard_parallel_2', d2r],
-    ['alpha', 'azimuth', d2r],
-    ['srsCode', 'name']
-  ];
-  list.forEach(renamer);
-  if (!wkt.long0 && wkt.longc && (wkt.projName === 'Albers_Conic_Equal_Area' || wkt.projName === "Lambert_Azimuthal_Equal_Area")) {
-    wkt.long0 = wkt.longc;
-  }
-  if (!wkt.lat_ts && wkt.lat1 && (wkt.projName === 'Stereographic_South_Pole' || wkt.projName === 'Polar Stereographic (variant B)')) {
-    wkt.lat0 = d2r(wkt.lat1 > 0 ? 90 : -90);
-    wkt.lat_ts = wkt.lat1;
-  }
-}
-module.exports = function(wkt, self) {
-  var lisp = JSON.parse(("," + wkt).replace(/\s*\,\s*([A-Z_0-9]+?)(\[)/g, ',["$1",').slice(1).replace(/\s*\,\s*([A-Z_0-9]+?)\]/g, ',"$1"]').replace(/,\["VERTCS".+/,''));
-  var type = lisp.shift();
-  var name = lisp.shift();
-  lisp.unshift(['name', name]);
-  lisp.unshift(['type', type]);
-  lisp.unshift('output');
-  var obj = {};
-  sExpr(lisp, obj);
-  cleanWKT(obj.output);
-  return extend(self, obj.output);
-};
-
-},{"./extend":34}],67:[function(_dereq_,module,exports){
-
-
-
-/**
- * UTM zones are grouped, and assigned to one of a group of 6
- * sets.
- *
- * {int} @private
- */
-var NUM_100K_SETS = 6;
-
-/**
- * The column letters (for easting) of the lower left value, per
- * set.
- *
- * {string} @private
- */
-var SET_ORIGIN_COLUMN_LETTERS = 'AJSAJS';
-
-/**
- * The row letters (for northing) of the lower left value, per
- * set.
- *
- * {string} @private
- */
-var SET_ORIGIN_ROW_LETTERS = 'AFAFAF';
-
-var A = 65; // A
-var I = 73; // I
-var O = 79; // O
-var V = 86; // V
-var Z = 90; // Z
-
-/**
- * Conversion of lat/lon to MGRS.
- *
- * @param {object} ll Object literal with lat and lon properties on a
- *     WGS84 ellipsoid.
- * @param {int} accuracy Accuracy in digits (5 for 1 m, 4 for 10 m, 3 for
- *      100 m, 2 for 1000 m or 1 for 10000 m). Optional, default is 5.
- * @return {string} the MGRS string for the given location and accuracy.
- */
-exports.forward = function(ll, accuracy) {
-  accuracy = accuracy || 5; // default accuracy 1m
-  return encode(LLtoUTM({
-    lat: ll[1],
-    lon: ll[0]
-  }), accuracy);
-};
-
-/**
- * Conversion of MGRS to lat/lon.
- *
- * @param {string} mgrs MGRS string.
- * @return {array} An array with left (longitude), bottom (latitude), right
- *     (longitude) and top (latitude) values in WGS84, representing the
- *     bounding box for the provided MGRS reference.
- */
-exports.inverse = function(mgrs) {
-  var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
-  if (bbox.lat && bbox.lon) {
-    return [bbox.lon, bbox.lat, bbox.lon, bbox.lat];
-  }
-  return [bbox.left, bbox.bottom, bbox.right, bbox.top];
-};
-
-exports.toPoint = function(mgrs) {
-  var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
-  if (bbox.lat && bbox.lon) {
-    return [bbox.lon, bbox.lat];
-  }
-  return [(bbox.left + bbox.right) / 2, (bbox.top + bbox.bottom) / 2];
-};
-/**
- * Conversion from degrees to radians.
- *
- * @private
- * @param {number} deg the angle in degrees.
- * @return {number} the angle in radians.
- */
-function degToRad(deg) {
-  return (deg * (Math.PI / 180.0));
-}
-
-/**
- * Conversion from radians to degrees.
- *
- * @private
- * @param {number} rad the angle in radians.
- * @return {number} the angle in degrees.
- */
-function radToDeg(rad) {
-  return (180.0 * (rad / Math.PI));
-}
-
-/**
- * Converts a set of Longitude and Latitude co-ordinates to UTM
- * using the WGS84 ellipsoid.
- *
- * @private
- * @param {object} ll Object literal with lat and lon properties
- *     representing the WGS84 coordinate to be converted.
- * @return {object} Object literal containing the UTM value with easting,
- *     northing, zoneNumber and zoneLetter properties, and an optional
- *     accuracy property in digits. Returns null if the conversion failed.
- */
-function LLtoUTM(ll) {
-  var Lat = ll.lat;
-  var Long = ll.lon;
-  var a = 6378137.0; //ellip.radius;
-  var eccSquared = 0.00669438; //ellip.eccsq;
-  var k0 = 0.9996;
-  var LongOrigin;
-  var eccPrimeSquared;
-  var N, T, C, A, M;
-  var LatRad = degToRad(Lat);
-  var LongRad = degToRad(Long);
-  var LongOriginRad;
-  var ZoneNumber;
-  // (int)
-  ZoneNumber = Math.floor((Long + 180) / 6) + 1;
-
-  //Make sure the longitude 180.00 is in Zone 60
-  if (Long === 180) {
-    ZoneNumber = 60;
-  }
-
-  // Special zone for Norway
-  if (Lat >= 56.0 && Lat < 64.0 && Long >= 3.0 && Long < 12.0) {
-    ZoneNumber = 32;
-  }
-
-  // Special zones for Svalbard
-  if (Lat >= 72.0 && Lat < 84.0) {
-    if (Long >= 0.0 && Long < 9.0) {
-      ZoneNumber = 31;
-    }
-    else if (Long >= 9.0 && Long < 21.0) {
-      ZoneNumber = 33;
-    }
-    else if (Long >= 21.0 && Long < 33.0) {
-      ZoneNumber = 35;
-    }
-    else if (Long >= 33.0 && Long < 42.0) {
-      ZoneNumber = 37;
-    }
-  }
-
-  LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3; //+3 puts origin
-  // in middle of
-  // zone
-  LongOriginRad = degToRad(LongOrigin);
-
-  eccPrimeSquared = (eccSquared) / (1 - eccSquared);
-
-  N = a / Math.sqrt(1 - eccSquared * Math.sin(LatRad) * Math.sin(LatRad));
-  T = Math.tan(LatRad) * Math.tan(LatRad);
-  C = eccPrimeSquared * Math.cos(LatRad) * Math.cos(LatRad);
-  A = Math.cos(LatRad) * (LongRad - LongOriginRad);
-
-  M = a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * LatRad - (3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(2 * LatRad) + (15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(4 * LatRad) - (35 * eccSquared * eccSquared * eccSquared / 3072) * Math.sin(6 * LatRad));
-
-  var UTMEasting = (k0 * N * (A + (1 - T + C) * A * A * A / 6.0 + (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120.0) + 500000.0);
-
-  var UTMNorthing = (k0 * (M + N * Math.tan(LatRad) * (A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24.0 + (61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720.0)));
-  if (Lat < 0.0) {
-    UTMNorthing += 10000000.0; //10000000 meter offset for
-    // southern hemisphere
-  }
-
-  return {
-    northing: Math.round(UTMNorthing),
-    easting: Math.round(UTMEasting),
-    zoneNumber: ZoneNumber,
-    zoneLetter: getLetterDesignator(Lat)
-  };
-}
-
-/**
- * Converts UTM coords to lat/long, using the WGS84 ellipsoid. This is a convenience
- * class where the Zone can be specified as a single string eg."60N" which
- * is then broken down into the ZoneNumber and ZoneLetter.
- *
- * @private
- * @param {object} utm An object literal with northing, easting, zoneNumber
- *     and zoneLetter properties. If an optional accuracy property is
- *     provided (in meters), a bounding box will be returned instead of
- *     latitude and longitude.
- * @return {object} An object literal containing either lat and lon values
- *     (if no accuracy was provided), or top, right, bottom and left values
- *     for the bounding box calculated according to the provided accuracy.
- *     Returns null if the conversion failed.
- */
-function UTMtoLL(utm) {
-
-  var UTMNorthing = utm.northing;
-  var UTMEasting = utm.easting;
-  var zoneLetter = utm.zoneLetter;
-  var zoneNumber = utm.zoneNumber;
-  // check the ZoneNummber is valid
-  if (zoneNumber < 0 || zoneNumber > 60) {
-    return null;
-  }
-
-  var k0 = 0.9996;
-  var a = 6378137.0; //ellip.radius;
-  var eccSquared = 0.00669438; //ellip.eccsq;
-  var eccPrimeSquared;
-  var e1 = (1 - Math.sqrt(1 - eccSquared)) / (1 + Math.sqrt(1 - eccSquared));
-  var N1, T1, C1, R1, D, M;
-  var LongOrigin;
-  var mu, phi1Rad;
-
-  // remove 500,000 meter offset for longitude
-  var x = UTMEasting - 500000.0;
-  var y = UTMNorthing;
-
-  // We must know somehow if we are in the Northern or Southern
-  // hemisphere, this is the only time we use the letter So even
-  // if the Zone letter isn't exactly correct it should indicate
-  // the hemisphere correctly
-  if (zoneLetter < 'N') {
-    y -= 10000000.0; // remove 10,000,000 meter offset used
-    // for southern hemisphere
-  }
-
-  // There are 60 zones with zone 1 being at West -180 to -174
-  LongOrigin = (zoneNumber - 1) * 6 - 180 + 3; // +3 puts origin
-  // in middle of
-  // zone
-
-  eccPrimeSquared = (eccSquared) / (1 - eccSquared);
-
-  M = y / k0;
-  mu = M / (a * (1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256));
-
-  phi1Rad = mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * Math.sin(2 * mu) + (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * Math.sin(4 * mu) + (151 * e1 * e1 * e1 / 96) * Math.sin(6 * mu);
-  // double phi1 = ProjMath.radToDeg(phi1Rad);
-
-  N1 = a / Math.sqrt(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad));
-  T1 = Math.tan(phi1Rad) * Math.tan(phi1Rad);
-  C1 = eccPrimeSquared * Math.cos(phi1Rad) * Math.cos(phi1Rad);
-  R1 = a * (1 - eccSquared) / Math.pow(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad), 1.5);
-  D = x / (N1 * k0);
-
-  var lat = phi1Rad - (N1 * Math.tan(phi1Rad) / R1) * (D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * eccPrimeSquared) * D * D * D * D / 24 + (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * eccPrimeSquared - 3 * C1 * C1) * D * D * D * D * D * D / 720);
-  lat = radToDeg(lat);
-
-  var lon = (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * eccPrimeSquared + 24 * T1 * T1) * D * D * D * D * D / 120) / Math.cos(phi1Rad);
-  lon = LongOrigin + radToDeg(lon);
-
-  var result;
-  if (utm.accuracy) {
-    var topRight = UTMtoLL({
-      northing: utm.northing + utm.accuracy,
-      easting: utm.easting + utm.accuracy,
-      zoneLetter: utm.zoneLetter,
-      zoneNumber: utm.zoneNumber
-    });
-    result = {
-      top: topRight.lat,
-      right: topRight.lon,
-      bottom: lat,
-      left: lon
-    };
-  }
-  else {
-    result = {
-      lat: lat,
-      lon: lon
-    };
-  }
-  return result;
-}
-
-/**
- * Calculates the MGRS letter designator for the given latitude.
- *
- * @private
- * @param {number} lat The latitude in WGS84 to get the letter designator
- *     for.
- * @return {char} The letter designator.
- */
-function getLetterDesignator(lat) {
-  //This is here as an error flag to show that the Latitude is
-  //outside MGRS limits
-  var LetterDesignator = 'Z';
-
-  if ((84 >= lat) && (lat >= 72)) {
-    LetterDesignator = 'X';
-  }
-  else if ((72 > lat) && (lat >= 64)) {
-    LetterDesignator = 'W';
-  }
-  else if ((64 > lat) && (lat >= 56)) {
-    LetterDesignator = 'V';
-  }
-  else if ((56 > lat) && (lat >= 48)) {
-    LetterDesignator = 'U';
-  }
-  else if ((48 > lat) && (lat >= 40)) {
-    LetterDesignator = 'T';
-  }
-  else if ((40 > lat) && (lat >= 32)) {
-    LetterDesignator = 'S';
-  }
-  else if ((32 > lat) && (lat >= 24)) {
-    LetterDesignator = 'R';
-  }
-  else if ((24 > lat) && (lat >= 16)) {
-    LetterDesignator = 'Q';
-  }
-  else if ((16 > lat) && (lat >= 8)) {
-    LetterDesignator = 'P';
-  }
-  else if ((8 > lat) && (lat >= 0)) {
-    LetterDesignator = 'N';
-  }
-  else if ((0 > lat) && (lat >= -8)) {
-    LetterDesignator = 'M';
-  }
-  else if ((-8 > lat) && (lat >= -16)) {
-    LetterDesignator = 'L';
-  }
-  else if ((-16 > lat) && (lat >= -24)) {
-    LetterDesignator = 'K';
-  }
-  else if ((-24 > lat) && (lat >= -32)) {
-    LetterDesignator = 'J';
-  }
-  else if ((-32 > lat) && (lat >= -40)) {
-    LetterDesignator = 'H';
-  }
-  else if ((-40 > lat) && (lat >= -48)) {
-    LetterDesignator = 'G';
-  }
-  else if ((-48 > lat) && (lat >= -56)) {
-    LetterDesignator = 'F';
-  }
-  else if ((-56 > lat) && (lat >= -64)) {
-    LetterDesignator = 'E';
-  }
-  else if ((-64 > lat) && (lat >= -72)) {
-    LetterDesignator = 'D';
-  }
-  else if ((-72 > lat) && (lat >= -80)) {
-    LetterDesignator = 'C';
-  }
-  return LetterDesignator;
-}
-
-/**
- * Encodes a UTM location as MGRS string.
- *
- * @private
- * @param {object} utm An object literal with easting, northing,
- *     zoneLetter, zoneNumber
- * @param {number} accuracy Accuracy in digits (1-5).
- * @return {string} MGRS string for the given UTM location.
- */
-function encode(utm, accuracy) {
-  // prepend with leading zeroes
-  var seasting = "00000" + utm.easting,
-    snorthing = "00000" + utm.northing;
-
-  return utm.zoneNumber + utm.zoneLetter + get100kID(utm.easting, utm.northing, utm.zoneNumber) + seasting.substr(seasting.length - 5, accuracy) + snorthing.substr(snorthing.length - 5, accuracy);
-}
-
-/**
- * Get the two letter 100k designator for a given UTM easting,
- * northing and zone number value.
- *
- * @private
- * @param {number} easting
- * @param {number} northing
- * @param {number} zoneNumber
- * @return the two letter 100k designator for the given UTM location.
- */
-function get100kID(easting, northing, zoneNumber) {
-  var setParm = get100kSetForZone(zoneNumber);
-  var setColumn = Math.floor(easting / 100000);
-  var setRow = Math.floor(northing / 100000) % 20;
-  return getLetter100kID(setColumn, setRow, setParm);
-}
-
-/**
- * Given a UTM zone number, figure out the MGRS 100K set it is in.
- *
- * @private
- * @param {number} i An UTM zone number.
- * @return {number} the 100k set the UTM zone is in.
- */
-function get100kSetForZone(i) {
-  var setParm = i % NUM_100K_SETS;
-  if (setParm === 0) {
-    setParm = NUM_100K_SETS;
-  }
-
-  return setParm;
-}
-
-/**
- * Get the two-letter MGRS 100k designator given information
- * translated from the UTM northing, easting and zone number.
- *
- * @private
- * @param {number} column the column index as it relates to the MGRS
- *        100k set spreadsheet, created from the UTM easting.
- *        Values are 1-8.
- * @param {number} row the row index as it relates to the MGRS 100k set
- *        spreadsheet, created from the UTM northing value. Values
- *        are from 0-19.
- * @param {number} parm the set block, as it relates to the MGRS 100k set
- *        spreadsheet, created from the UTM zone. Values are from
- *        1-60.
- * @return two letter MGRS 100k code.
- */
-function getLetter100kID(column, row, parm) {
-  // colOrigin and rowOrigin are the letters at the origin of the set
-  var index = parm - 1;
-  var colOrigin = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(index);
-  var rowOrigin = SET_ORIGIN_ROW_LETTERS.charCodeAt(index);
-
-  // colInt and rowInt are the letters to build to return
-  var colInt = colOrigin + column - 1;
-  var rowInt = rowOrigin + row;
-  var rollover = false;
-
-  if (colInt > Z) {
-    colInt = colInt - Z + A - 1;
-    rollover = true;
-  }
-
-  if (colInt === I || (colOrigin < I && colInt > I) || ((colInt > I || colOrigin < I) && rollover)) {
-    colInt++;
-  }
-
-  if (colInt === O || (colOrigin < O && colInt > O) || ((colInt > O || colOrigin < O) && rollover)) {
-    colInt++;
-
-    if (colInt === I) {
-      colInt++;
-    }
-  }
-
-  if (colInt > Z) {
-    colInt = colInt - Z + A - 1;
-  }
-
-  if (rowInt > V) {
-    rowInt = rowInt - V + A - 1;
-    rollover = true;
-  }
-  else {
-    rollover = false;
-  }
-
-  if (((rowInt === I) || ((rowOrigin < I) && (rowInt > I))) || (((rowInt > I) || (rowOrigin < I)) && rollover)) {
-    rowInt++;
-  }
-
-  if (((rowInt === O) || ((rowOrigin < O) && (rowInt > O))) || (((rowInt > O) || (rowOrigin < O)) && rollover)) {
-    rowInt++;
-
-    if (rowInt === I) {
-      rowInt++;
-    }
-  }
-
-  if (rowInt > V) {
-    rowInt = rowInt - V + A - 1;
-  }
-
-  var twoLetter = String.fromCharCode(colInt) + String.fromCharCode(rowInt);
-  return twoLetter;
-}
-
-/**
- * Decode the UTM parameters from a MGRS string.
- *
- * @private
- * @param {string} mgrsString an UPPERCASE coordinate string is expected.
- * @return {object} An object literal with easting, northing, zoneLetter,
- *     zoneNumber and accuracy (in meters) properties.
- */
-function decode(mgrsString) {
-
-  if (mgrsString && mgrsString.length === 0) {
-    throw ("MGRSPoint coverting from nothing");
-  }
-
-  var length = mgrsString.length;
-
-  var hunK = null;
-  var sb = "";
-  var testChar;
-  var i = 0;
-
-  // get Zone number
-  while (!(/[A-Z]/).test(testChar = mgrsString.charAt(i))) {
-    if (i >= 2) {
-      throw ("MGRSPoint bad conversion from: " + mgrsString);
-    }
-    sb += testChar;
-    i++;
-  }
-
-  var zoneNumber = parseInt(sb, 10);
-
-  if (i === 0 || i + 3 > length) {
-    // A good MGRS string has to be 4-5 digits long,
-    // ##AAA/#AAA at least.
-    throw ("MGRSPoint bad conversion from: " + mgrsString);
-  }
-
-  var zoneLetter = mgrsString.charAt(i++);
-
-  // Should we check the zone letter here? Why not.
-  if (zoneLetter <= 'A' || zoneLetter === 'B' || zoneLetter === 'Y' || zoneLetter >= 'Z' || zoneLetter === 'I' || zoneLetter === 'O') {
-    throw ("MGRSPoint zone letter " + zoneLetter + " not handled: " + mgrsString);
-  }
-
-  hunK = mgrsString.substring(i, i += 2);
-
-  var set = get100kSetForZone(zoneNumber);
-
-  var east100k = getEastingFromChar(hunK.charAt(0), set);
-  var north100k = getNorthingFromChar(hunK.charAt(1), set);
-
-  // We have a bug where the northing may be 2000000 too low.
-  // How
-  // do we know when to roll over?
-
-  while (north100k < getMinNorthing(zoneLetter)) {
-    north100k += 2000000;
-  }
-
-  // calculate the char index for easting/northing separator
-  var remainder = length - i;
-
-  if (remainder % 2 !== 0) {
-    throw ("MGRSPoint has to have an even number \nof digits after the zone letter and two 100km letters - front \nhalf for easting meters, second half for \nnorthing meters" + mgrsString);
-  }
-
-  var sep = remainder / 2;
-
-  var sepEasting = 0.0;
-  var sepNorthing = 0.0;
-  var accuracyBonus, sepEastingString, sepNorthingString, easting, northing;
-  if (sep > 0) {
-    accuracyBonus = 100000.0 / Math.pow(10, sep);
-    sepEastingString = mgrsString.substring(i, i + sep);
-    sepEasting = parseFloat(sepEastingString) * accuracyBonus;
-    sepNorthingString = mgrsString.substring(i + sep);
-    sepNorthing = parseFloat(sepNorthingString) * accuracyBonus;
-  }
-
-  easting = sepEasting + east100k;
-  northing = sepNorthing + north100k;
-
-  return {
-    easting: easting,
-    northing: northing,
-    zoneLetter: zoneLetter,
-    zoneNumber: zoneNumber,
-    accuracy: accuracyBonus
-  };
-}
-
-/**
- * Given the first letter from a two-letter MGRS 100k zone, and given the
- * MGRS table set for the zone number, figure out the easting value that
- * should be added to the other, secondary easting value.
- *
- * @private
- * @param {char} e The first letter from a two-letter MGRS 100´k zone.
- * @param {number} set The MGRS table set for the zone number.
- * @return {number} The easting value for the given letter and set.
- */
-function getEastingFromChar(e, set) {
-  // colOrigin is the letter at the origin of the set for the
-  // column
-  var curCol = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(set - 1);
-  var eastingValue = 100000.0;
-  var rewindMarker = false;
-
-  while (curCol !== e.charCodeAt(0)) {
-    curCol++;
-    if (curCol === I) {
-      curCol++;
-    }
-    if (curCol === O) {
-      curCol++;
-    }
-    if (curCol > Z) {
-      if (rewindMarker) {
-        throw ("Bad character: " + e);
-      }
-      curCol = A;
-      rewindMarker = true;
-    }
-    eastingValue += 100000.0;
-  }
-
-  return eastingValue;
-}
-
-/**
- * Given the second letter from a two-letter MGRS 100k zone, and given the
- * MGRS table set for the zone number, figure out the northing value that
- * should be added to the other, secondary northing value. You have to
- * remember that Northings are determined from the equator, and the vertical
- * cycle of letters mean a 2000000 additional northing meters. This happens
- * approx. every 18 degrees of latitude. This method does *NOT* count any
- * additional northings. You have to figure out how many 2000000 meters need
- * to be added for the zone letter of the MGRS coordinate.
- *
- * @private
- * @param {char} n Second letter of the MGRS 100k zone
- * @param {number} set The MGRS table set number, which is dependent on the
- *     UTM zone number.
- * @return {number} The northing value for the given letter and set.
- */
-function getNorthingFromChar(n, set) {
-
-  if (n > 'V') {
-    throw ("MGRSPoint given invalid Northing " + n);
-  }
-
-  // rowOrigin is the letter at the origin of the set for the
-  // column
-  var curRow = SET_ORIGIN_ROW_LETTERS.charCodeAt(set - 1);
-  var northingValue = 0.0;
-  var rewindMarker = false;
-
-  while (curRow !== n.charCodeAt(0)) {
-    curRow++;
-    if (curRow === I) {
-      curRow++;
-    }
-    if (curRow === O) {
-      curRow++;
-    }
-    // fixing a bug making whole application hang in this loop
-    // when 'n' is a wrong character
-    if (curRow > V) {
-      if (rewindMarker) { // making sure that this loop ends
-        throw ("Bad character: " + n);
-      }
-      curRow = A;
-      rewindMarker = true;
-    }
-    northingValue += 100000.0;
-  }
-
-  return northingValue;
-}
-
-/**
- * The function getMinNorthing returns the minimum northing value of a MGRS
- * zone.
- *
- * Ported from Geotrans' c Lattitude_Band_Value structure table.
- *
- * @private
- * @param {char} zoneLetter The MGRS zone to get the min northing for.
- * @return {number}
- */
-function getMinNorthing(zoneLetter) {
-  var northing;
-  switch (zoneLetter) {
-  case 'C':
-    northing = 1100000.0;
-    break;
-  case 'D':
-    northing = 2000000.0;
-    break;
-  case 'E':
-    northing = 2800000.0;
-    break;
-  case 'F':
-    northing = 3700000.0;
-    break;
-  case 'G':
-    northing = 4600000.0;
-    break;
-  case 'H':
-    northing = 5500000.0;
-    break;
-  case 'J':
-    northing = 6400000.0;
-    break;
-  case 'K':
-    northing = 7300000.0;
-    break;
-  case 'L':
-    northing = 8200000.0;
-    break;
-  case 'M':
-    northing = 9100000.0;
-    break;
-  case 'N':
-    northing = 0.0;
-    break;
-  case 'P':
-    northing = 800000.0;
-    break;
-  case 'Q':
-    northing = 1700000.0;
-    break;
-  case 'R':
-    northing = 2600000.0;
-    break;
-  case 'S':
-    northing = 3500000.0;
-    break;
-  case 'T':
-    northing = 4400000.0;
-    break;
-  case 'U':
-    northing = 5300000.0;
-    break;
-  case 'V':
-    northing = 6200000.0;
-    break;
-  case 'W':
-    northing = 7000000.0;
-    break;
-  case 'X':
-    northing = 7900000.0;
-    break;
-  default:
-    northing = -1.0;
-  }
-  if (northing >= 0.0) {
-    return northing;
-  }
-  else {
-    throw ("Invalid zone letter: " + zoneLetter);
-  }
-
-}
-
-},{}],68:[function(_dereq_,module,exports){
-module.exports={
-  "name": "proj4",
-  "version": "2.3.12",
-  "description": "Proj4js is a JavaScript library to transform point coordinates from one coordinate system to another, including datum transformations.",
-  "main": "lib/index.js",
-  "directories": {
-    "test": "test",
-    "doc": "docs"
-  },
-  "scripts": {
-    "test": "./node_modules/istanbul/lib/cli.js test ./node_modules/mocha/bin/_mocha test/test.js"
-  },
-  "repository": {
-    "type": "git",
-    "url": "git://github.com/proj4js/proj4js.git"
-  },
-  "author": "",
-  "license": "MIT",
-  "jam": {
-    "main": "dist/proj4.js",
-    "include": [
-      "dist/proj4.js",
-      "README.md",
-      "AUTHORS",
-      "LICENSE.md"
-    ]
-  },
-  "devDependencies": {
-    "grunt-cli": "~0.1.13",
-    "grunt": "~0.4.2",
-    "grunt-contrib-connect": "~0.6.0",
-    "grunt-contrib-jshint": "~0.8.0",
-    "chai": "~1.8.1",
-    "mocha": "~1.17.1",
-    "grunt-mocha-phantomjs": "~0.4.0",
-    "browserify": "~3.24.5",
-    "grunt-browserify": "~1.3.0",
-    "grunt-contrib-uglify": "~0.3.2",
-    "curl": "git://github.com/cujojs/curl.git",
-    "istanbul": "~0.2.4",
-    "tin": "~0.4.0"
-  },
-  "dependencies": {
-    "mgrs": "~0.0.2"
-  }
-}
-
-},{}],"./includedProjections":[function(_dereq_,module,exports){
-module.exports=_dereq_('hTEDpn');
-},{}],"hTEDpn":[function(_dereq_,module,exports){
-var projs = [
- _dereq_('./lib/projections/tmerc'),
-	_dereq_('./lib/projections/utm'),
-	_dereq_('./lib/projections/sterea'),
-	_dereq_('./lib/projections/stere'),
-	_dereq_('./lib/projections/somerc'),
-	_dereq_('./lib/projections/omerc'),
-	_dereq_('./lib/projections/lcc'),
-	_dereq_('./lib/projections/krovak'),
-	_dereq_('./lib/projections/cass'),
-	_dereq_('./lib/projections/laea'),
-	_dereq_('./lib/projections/aea'),
-	_dereq_('./lib/projections/gnom'),
-	_dereq_('./lib/projections/cea'),
-	_dereq_('./lib/projections/eqc'),
-	_dereq_('./lib/projections/poly'),
-	_dereq_('./lib/projections/nzmg'),
-	_dereq_('./lib/projections/mill'),
-	_dereq_('./lib/projections/sinu'),
-	_dereq_('./lib/projections/moll'),
-	_dereq_('./lib/projections/eqdc'),
-	_dereq_('./lib/projections/vandg'),
-	_dereq_('./lib/projections/aeqd')
-];
-module.exports = function(proj4){
- projs.forEach(function(proj){
-   proj4.Proj.projections.add(proj);
- });
-}
-},{"./lib/projections/aea":40,"./lib/projections/aeqd":41,"./lib/projections/cass":42,"./lib/projections/cea":43,"./lib/projections/eqc":44,"./lib/projections/eqdc":45,"./lib/projections/gnom":47,"./lib/projections/krovak":48,"./lib/projections/laea":49,"./lib/projections/lcc":50,"./lib/projections/mill":53,"./lib/projections/moll":54,"./lib/projections/nzmg":55,"./lib/projections/omerc":56,"./lib/projections/poly":57,"./lib/projections/sinu":58,"./lib/projections/somerc":59,"./lib/proje [...]
-(36)
-});
\ No newline at end of file
diff --git a/lib/Point.js b/lib/Point.js
index f4073df..376eaf4 100644
--- a/lib/Point.js
+++ b/lib/Point.js
@@ -8,7 +8,7 @@ function Point(x, y, z) {
     this.x = x[0];
     this.y = x[1];
     this.z = x[2] || 0.0;
-  }else if(typeof x === 'object'){
+  } else if(typeof x === 'object') {
     this.x = x.x;
     this.y = x.y;
     this.z = x.z || 0.0;
@@ -17,8 +17,7 @@ function Point(x, y, z) {
     this.x = parseFloat(coords[0], 10);
     this.y = parseFloat(coords[1], 10);
     this.z = parseFloat(coords[2], 10) || 0.0;
-  }
-  else {
+  } else {
     this.x = x;
     this.y = y;
     this.z = z || 0.0;
@@ -32,4 +31,4 @@ Point.fromMGRS = function(mgrsStr) {
 Point.prototype.toMGRS = function(accuracy) {
   return mgrs.forward([this.x, this.y], accuracy);
 };
-module.exports = Point;
\ No newline at end of file
+module.exports = Point;
diff --git a/lib/datum.js b/lib/datum.js
index e7c6fbc..40d3328 100644
--- a/lib/datum.js
+++ b/lib/datum.js
@@ -20,7 +20,7 @@ var datum = function(proj) {
   }
 
   if (proj.datum_params) {
-    this.datum_params = proj.datum_params.map(parseFloat); 
+    this.datum_params = proj.datum_params.map(parseFloat);
     if (this.datum_params[0] !== 0 || this.datum_params[1] !== 0 || this.datum_params[2] !== 0) {
       this.datum_type = PJD_3PARAM;
     }
@@ -34,7 +34,7 @@ var datum = function(proj) {
       }
     }
   }
-  
+
   // DGR 2011-03-21 : nadgrids support
   this.datum_type = proj.grids ? PJD_GRIDSHIFT : this.datum_type;
 
diff --git a/package.json b/package.json
index 3ee40c4..c2526d4 100644
--- a/package.json
+++ b/package.json
@@ -1,6 +1,6 @@
 {
   "name": "proj4",
-  "version": "2.3.11-alpha",
+  "version": "2.3.13-alpha",
   "description": "Proj4js is a JavaScript library to transform point coordinates from one coordinate system to another, including datum transformations.",
   "main": "lib/index.js",
   "directories": {
@@ -33,9 +33,9 @@
     "chai": "~1.8.1",
     "mocha": "~1.17.1",
     "grunt-mocha-phantomjs": "~0.4.0",
-    "browserify": "~3.24.5",
-    "grunt-browserify": "~1.3.0",
-    "grunt-contrib-uglify": "~0.3.2",
+    "browserify": "~12.0.1",
+    "grunt-browserify": "~4.0.1",
+    "grunt-contrib-uglify": "~0.11.1",
     "curl": "git://github.com/cujojs/curl.git",
     "istanbul": "~0.2.4",
     "tin": "~0.4.0"

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-grass/proj4js.git



More information about the Pkg-grass-devel mailing list