[pktools] 16/16: Add manpages for new executables.

Bas Couwenberg sebastic at debian.org
Thu Jun 29 14:25:06 UTC 2017


This is an automated email from the git hooks/post-receive script.

sebastic pushed a commit to branch master
in repository pktools.

commit 7857bdf021c23093708614b917e41e9d0b592f82
Author: Bas Couwenberg <sebastic at xs4all.nl>
Date:   Thu Jun 29 16:14:10 2017 +0200

    Add manpages for new executables.
---
 debian/changelog              |   1 +
 debian/man/pkannogr.1.xml     | 478 +++++++++++++++++++++++++++++++++++++++
 debian/man/pkreclassogr.1.xml | 125 +++++++++++
 debian/man/pksvmogr.1.xml     | 507 ++++++++++++++++++++++++++++++++++++++++++
 debian/pktools.manpages       |   3 +
 5 files changed, 1114 insertions(+)

diff --git a/debian/changelog b/debian/changelog
index b1109d9..6f8c6d6 100644
--- a/debian/changelog
+++ b/debian/changelog
@@ -9,6 +9,7 @@ pktools (2.6.7.1+ds-1) unstable; urgency=medium
   * Use pkg-info.mk variables instead of dpkg-parsechangelog output.
   * Install pk{ann,reclass,svm}ogr in pktools package.
   * Update spelling-errors2.patch to fix new 'columns' typo.
+  * Add manpages for new executables.
 
  -- Bas Couwenberg <sebastic at debian.org>  Thu, 29 Jun 2017 07:51:22 +0200
 
diff --git a/debian/man/pkannogr.1.xml b/debian/man/pkannogr.1.xml
new file mode 100644
index 0000000..9b130ec
--- /dev/null
+++ b/debian/man/pkannogr.1.xml
@@ -0,0 +1,478 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN" "http://www.oasis-open.org/docbook/xml/4.4/docbookx.dtd">
+<refentry id='pkannogr'>
+
+  <refmeta>
+    <refentrytitle>pkannogr</refentrytitle>
+    <manvolnum>1</manvolnum>
+  </refmeta>
+
+  <refnamediv>
+    <refname>pkannogr</refname>
+    <refpurpose>classify vector dataset using Artificial Neural Network</refpurpose>
+  </refnamediv>
+
+  <refsynopsisdiv id='synopsis'>
+    <cmdsynopsis>
+      <command>pkannogr</command>
+      <arg choice='plain'><option>-t</option> <replaceable>training</replaceable></arg>
+      <arg choice='opt'><option>-i</option> <replaceable>input</replaceable></arg>
+      <arg choice='opt'><option>-o</option> <replaceable>output</replaceable></arg>
+      <arg choice='opt'><option>-cv</option> <replaceable>value</replaceable></arg>
+      <arg choice='opt'><replaceable>options</replaceable></arg>
+      <arg choice='opt'><replaceable>advanced options</replaceable></arg>
+    </cmdsynopsis>
+  </refsynopsisdiv>
+
+  <refsect1 id='description'>
+    <title>DESCRIPTION</title>
+    <para>
+      <command>pkannogr</command> implements an artificial neural network (ANN) to
+      solve a supervised classification problem.
+      The implementation is based on the open source C++ library
+      (<ulink url="http://leenissen.dk/fann/wp/">fann</ulink>).
+      Both raster and vector files are supported as input.
+      The output will contain the classification result, either in raster or
+      vector format, corresponding to the format of the input.
+      A training sample must be provided as an OGR vector dataset that contains
+      the class labels and the features for each training point.
+      The point locations are not considered in the training step.
+      You can use the same training sample for classifying different images,
+      provided the number of bands of the images are identical.
+      Use the utility
+      <citerefentry>
+        <refentrytitle>pkextract</refentrytitle>
+        <manvolnum>1</manvolnum>
+      </citerefentry>
+      to create a suitable training sample, based on a sample of points or
+      polygons.
+      For raster output maps you can attach a color table using the option
+      <option>-ct</option>.
+    </para>
+  </refsect1>
+
+  <refsect1 id='options'>
+    <title>OPTIONS</title>
+    <variablelist>
+
+      <varlistentry>
+        <term><option>-i</option> <replaceable>filename</replaceable></term>
+        <term><option>--input</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            input image
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-t</option> <replaceable>filename</replaceable></term>
+        <term><option>--training</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            training vector file.
+            A single vector file contains all training features (must be set
+            as: B0, B1, B2,...) for all classes (class numbers identified by
+            label option).
+            Use multiple training files for bootstrap aggregation (alternative
+            to the <option>--bag</option> and <option>--bsize</option> options,
+            where a random subset is taken from a single training file)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-tln</option> <replaceable>layer</replaceable></term>
+        <term><option>--tln</option> <replaceable>layer</replaceable></term>
+        <listitem>
+          <para>
+            training layer name(s)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-label</option> <replaceable>attribute</replaceable></term>
+        <term><option>--label</option> <replaceable>attribute</replaceable></term>
+        <listitem>
+          <para>
+            identifier for class label in training vector file.
+            (default: label)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-prior</option> <replaceable>value</replaceable></term>
+        <term><option>--prior</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            prior probabilities for each class (e.g., <option>-prior</option>
+            0.3 <option>-prior</option> 0.3 <option>-prior</option> 0.2 )
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-cv</option> <replaceable>value</replaceable></term>
+        <term><option>--cv</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            n-fold cross validation mode (default: 0)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-nn</option> <replaceable>number</replaceable></term>
+        <term><option>--nneuron</option> <replaceable>number</replaceable></term>
+        <listitem>
+          <para>
+            number of neurons in hidden layers in neural network (multiple
+            hidden layers are set by defining multiple number of neurons:
+            <option>-nn</option> 15 <option>-nn</option> 1, default is one
+            hidden layer with 5 neurons)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-m</option> <replaceable>filename</replaceable></term>
+        <term><option>--mask</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            Only classify within specified mask (vector or raster).
+            For raster mask, set nodata values with the option
+            <option>--msknodata</option>.
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-msknodata</option> <replaceable>value</replaceable></term>
+        <term><option>--msknodata</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            mask value(s) not to consider for classification.
+            Values will be taken over in classification image.
+            Default is 0.
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-nodata</option> <replaceable>value</replaceable></term>
+        <term><option>--nodata</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            nodata value to put where image is masked as nodata
+            (default: 0)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-o</option> <replaceable>filename</replaceable></term>
+        <term><option>--output</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            output classification image
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-ot</option> <replaceable>type</replaceable></term>
+        <term><option>--otype</option> <replaceable>type</replaceable></term>
+        <listitem>
+          <para>
+            Data type for output image
+            ({Byte / Int16 / UInt16 / UInt32 / Int32 / Float32 / Float64 / CInt16 / CInt32 / CFloat32 / CFloat64}).
+            Empty string: inherit type from input image
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-of</option> <replaceable>GDALformat</replaceable></term>
+        <term><option>--oformat</option> <replaceable>GDALformat</replaceable></term>
+        <listitem>
+          <para>
+            Output image format (see also
+            <citerefentry>
+              <refentrytitle>gdal_translate</refentrytitle>
+              <manvolnum>1</manvolnum>
+            </citerefentry>).
+            Empty string: inherit from input image 
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-f</option> <replaceable>OGRformat</replaceable></term>
+        <term><option>--f</option> <replaceable>OGRformat</replaceable></term>
+        <listitem>
+          <para>
+           Output ogr format for active training sample
+           (default: SQLite) 
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-ct</option> <replaceable>filename</replaceable></term>
+        <term><option>--ct</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            colour table in ASCII format having 5 columns: id R G B ALFA
+            (0: transparent, 255: solid) 
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-co</option> <replaceable>NAME=VALUE</replaceable></term>
+        <term><option>--co</option> <replaceable>NAME=VALUE</replaceable></term>
+        <listitem>
+          <para>
+            Creation option for output file.
+            Multiple options can be specified.
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-c</option> <replaceable>name</replaceable></term>
+        <term><option>--class</option> <replaceable>name</replaceable></term>
+        <listitem>
+          <para>
+            list of class names.
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-r</option> <replaceable>value</replaceable></term>
+        <term><option>--reclass</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            list of class values (use same order as in
+            <option>--class</option> option).
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-v</option> <replaceable>0|1|2</replaceable></term>
+        <term><option>--verbose</option> <replaceable>0|1|2</replaceable></term>
+        <listitem>
+          <para>
+            set to: 0 (results only), 1 (confusion matrix), 2 (debug)
+          </para>
+        </listitem>
+      </varlistentry>
+
+    </variablelist>
+    
+    <para>Advanced options</para>
+    <variablelist>
+
+      <varlistentry>
+        <term><option>-bal</option> <replaceable>size</replaceable></term>
+        <term><option>--balance</option> <replaceable>size</replaceable></term>
+        <listitem>
+          <para>
+            balance the input data to this number of samples for each class
+            (default: 0)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-min</option> <replaceable>number</replaceable></term>
+        <term><option>--min</option> <replaceable>number</replaceable></term>
+        <listitem>
+          <para>
+            if number of training pixels is less then min, do not take this
+            class into account (0: consider all classes)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-b</option> <replaceable>band</replaceable></term>
+        <term><option>--band</option> <replaceable>band</replaceable></term>
+        <listitem>
+          <para>
+            band index (starting from 0, either use <option>--band</option>
+            option or use <option>--start</option> to <option>--end</option>)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-sband</option> <replaceable>band</replaceable></term>
+        <term><option>--startband</option> <replaceable>band</replaceable></term>
+        <listitem>
+          <para>
+            start band sequence number
+            (default: 0)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-eband</option> <replaceable>band</replaceable></term>
+        <term><option>--endband</option> <replaceable>band</replaceable></term>
+        <listitem>
+          <para>
+            end band sequence number
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-offset</option> <replaceable>value</replaceable></term>
+        <term><option>--offset</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            offset value for each spectral band input features:
+            <literal>refl[band]=(DN[band]-offset[band])/scale[band]</literal>
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-scale</option> <replaceable>value</replaceable></term>
+        <term><option>--scale</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            scale value for each spectral band input features:
+            <literal>refl=(DN[band]-offset[band])/scale[band]</literal>
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-a</option> <replaceable>1|2</replaceable></term>
+        <term><option>--aggreg</option> <replaceable>1|2</replaceable></term>
+        <listitem>
+          <para>
+            how to combine aggregated classifiers, see also
+            <option>--rc</option> option (1: sum rule, 2: max rule).
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>--connection</option> <replaceable>0|1</replaceable></term>
+        <listitem>
+          <para>
+            connection rate (default: 1.0 for a fully connected network)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-w</option> <replaceable>weights</replaceable></term>
+        <term><option>--weights</option> <replaceable>weights</replaceable></term>
+        <listitem>
+          <para>
+            weights for neural network.
+            Apply to fully connected network only, starting from first input
+            neuron to last output neuron, including the bias neurons (last
+            neuron in each but last layer)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-l</option> <replaceable>rate</replaceable></term>
+        <term><option>--learning</option> <replaceable>rate</replaceable></term>
+        <listitem>
+          <para>
+            learning rate (default: 0.7)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>--maxit</option> <replaceable>number</replaceable></term>
+        <listitem>
+          <para>
+            number of maximum iterations (epoch) (default: 500)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-comb</option> <replaceable>rule</replaceable></term>
+        <term><option>--comb</option> <replaceable>rule</replaceable></term>
+        <listitem>
+          <para>
+            how to combine bootstrap aggregation classifiers
+            (0: sum rule, 1: product rule, 2: max rule).
+            Also used to aggregate classes with <option>--rc</option> option.
+            Default is sum rule (0)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-bag</option> <replaceable>value</replaceable></term>
+        <term><option>--bag</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            Number of bootstrap aggregations (default is no bagging: 1)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-bs</option> <replaceable>value</replaceable></term>
+        <term><option>--bsize</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            Percentage of features used from available training features for
+            each bootstrap aggregation (one size for all classes, or a
+            different size for each class respectively. default: 100)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-cb</option> <replaceable>filename</replaceable></term>
+        <term><option>--classbag</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            output for each individual bootstrap aggregation (default is blank)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>--prob</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            probability image.
+            Default is no probability image
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-na</option> <replaceable>number</replaceable></term>
+        <term><option>--na</option> <replaceable>number</replaceable></term>
+        <listitem>
+          <para>
+            number of active training points
+            (default: 1)
+          </para>
+        </listitem>
+      </varlistentry>
+
+    </variablelist>
+
+  </refsect1>
+
+</refentry>
diff --git a/debian/man/pkreclassogr.1.xml b/debian/man/pkreclassogr.1.xml
new file mode 100644
index 0000000..72af485
--- /dev/null
+++ b/debian/man/pkreclassogr.1.xml
@@ -0,0 +1,125 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN" "http://www.oasis-open.org/docbook/xml/4.4/docbookx.dtd">
+<refentry id='pkreclassogr'>
+
+  <refmeta>
+    <refentrytitle>pkreclassogr</refentrytitle>
+    <manvolnum>1</manvolnum>
+  </refmeta>
+
+  <refnamediv>
+    <refname>pkreclassogr</refname>
+    <refpurpose>replace field values of attributes in vector datasets</refpurpose>
+  </refnamediv>
+
+  <refsynopsisdiv id='synopsis'>
+    <cmdsynopsis>
+      <command>pkreclassogr</command>
+      <arg choice='plain'><option>-i</option> <replaceable>input</replaceable></arg>
+      <arg choice='opt'>
+        <option>-c</option> <replaceable>from</replaceable>
+        <option>-r</option> <replaceable>to</replaceable>
+      </arg>
+      <arg choice='plain'><option>-o</option> <replaceable>output</replaceable></arg>
+      <arg choice='opt'><replaceable>options</replaceable></arg>
+    </cmdsynopsis>
+  </refsynopsisdiv>
+
+  <refsect1 id='description'>
+    <title>DESCRIPTION</title>
+    <para>
+      <command>pkreclassogr</command> is a program to replace field values of
+      attributes in vector datasets.
+    </para>
+  </refsect1>
+
+  <refsect1 id='options'>
+    <title>OPTIONS</title>
+    <variablelist>
+
+      <varlistentry>
+        <term><option>-i</option> <replaceable>filename</replaceable></term>
+        <term><option>--input</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            Input vector dataset
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-o</option> <replaceable>filename</replaceable></term>
+        <term><option>--output</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            Output file
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-nodata</option> <replaceable>value</replaceable></term>
+        <term><option>--nodata</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            nodata value to put in vector dataset if not valid (0)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-code</option> <replaceable>filename</replaceable></term>
+        <term><option>--code</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            Recode text file (2 columns: from to)
+          </para>
+        </listitem>
+      </varlistentry>
+      
+      <varlistentry>
+        <term><option>-c</option> <replaceable>classes</replaceable></term>
+        <term><option>--class</option> <replaceable>classes</replaceable></term>
+        <listitem>
+          <para>
+            list of classes to reclass (in combination with reclass option)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-r</option> <replaceable>classes</replaceable></term>
+        <term><option>--reclass</option> <replaceable>classes</replaceable></term>
+        <listitem>
+          <para>
+            list of recoded classes (in combination with class option)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-n</option> <replaceable>name</replaceable></term>
+        <term><option>--fname</option> <replaceable>name</replaceable></term>
+        <listitem>
+          <para>
+            field name of the shape file to be replaced
+            default: label
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-v</option> <replaceable>level</replaceable></term>
+        <term><option>--verbose</option> <replaceable>level</replaceable></term>
+        <listitem>
+          <para>
+            Verbose mode if > 0
+          </para>
+        </listitem>
+      </varlistentry>
+
+    </variablelist>
+    
+  </refsect1>
+
+</refentry>
diff --git a/debian/man/pksvmogr.1.xml b/debian/man/pksvmogr.1.xml
new file mode 100644
index 0000000..015fbaf
--- /dev/null
+++ b/debian/man/pksvmogr.1.xml
@@ -0,0 +1,507 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN" "http://www.oasis-open.org/docbook/xml/4.4/docbookx.dtd">
+<refentry id='pksvmogr'>
+
+  <refmeta>
+    <refentrytitle>pksvmogr</refentrytitle>
+    <manvolnum>1</manvolnum>
+  </refmeta>
+
+  <refnamediv>
+    <refname>pksvmogr</refname>
+    <refpurpose>classify vector dataset using Support Vector Machine</refpurpose>
+  </refnamediv>
+
+  <refsynopsisdiv id='synopsis'>
+    <cmdsynopsis>
+      <command>pksvmogr</command>
+      <arg choice='plain'><option>-t</option> <replaceable>training</replaceable></arg>
+      <arg choice='opt'><option>-i</option> <replaceable>input</replaceable></arg>
+      <arg choice='opt'><option>-o</option> <replaceable>output</replaceable></arg>
+      <arg choice='opt'><option>-cv</option> <replaceable>value</replaceable></arg>
+      <arg choice='opt'><replaceable>options</replaceable></arg>
+      <arg choice='opt'><replaceable>advanced options</replaceable></arg>
+    </cmdsynopsis>
+  </refsynopsisdiv>
+
+  <refsect1 id='description'>
+    <title>DESCRIPTION</title>
+    <para>
+      <command>pksvmogr</command> implements a support vector machine (SVM) to
+      solve a supervised classification problem.
+      The implementation is based on the open source C++ library libSVM
+      (http://www.csie.ntu.edu.tw/~cjlin/libsvm).
+      Both raster and vector files are supported as input.
+      The output will contain the classification result, either in raster or
+      vector format, corresponding to the format of the input.
+      A training sample must be provided as an OGR vector dataset that
+      contains the class labels and the features for each training point.
+      The point locations are not considered in the training step.
+      You can use the same training sample for classifying different images,
+      provided the number of bands of the images are identical.
+      Use the utility pkextract to create a suitable training sample, based
+      on a sample of points or polygons.
+      For raster output maps you can attach a color table using the option
+      <option>-ct</option>.
+    </para>
+  </refsect1>
+
+  <refsect1 id='options'>
+    <title>OPTIONS</title>
+    <variablelist>
+
+      <varlistentry>
+        <term><option>-t</option> <replaceable>filename</replaceable></term>
+        <term><option>--training</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            Training vector file.
+            A single vector file contains all training features
+            (must be set as: b0, b1, b2,...) for all classes
+            (class numbers identified by label option).
+            Use multiple training files for bootstrap aggregation
+            (alternative to the <option>--bag</option> and
+            <option>--bagsize</option> options, where a random subset
+            is taken from a single training file)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-i</option> <replaceable>filename</replaceable></term>
+        <term><option>--input</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            input image
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-o</option> <replaceable>filename</replaceable></term>
+        <term><option>--output</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            Output classification image
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-cv</option> <replaceable>value</replaceable></term>
+        <term><option>--cv</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            N-fold cross validation mode (default: 0)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-tln</option> <replaceable>layer</replaceable></term>
+        <term><option>--tln</option> <replaceable>layer</replaceable></term>
+        <listitem>
+          <para>
+            Training layer name(s)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-c</option> <replaceable>name</replaceable></term>
+        <term><option>--class</option> <replaceable>name</replaceable></term>
+        <listitem>
+          <para>
+            List of class names.
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-r</option> <replaceable>value</replaceable></term>
+        <term><option>--reclass</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            List of class values (use same order as in
+            <option>--class</option> option).
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-of</option> <replaceable>GDALformat</replaceable></term>
+        <term><option>--oformat</option> <replaceable>GDALformat</replaceable></term>
+        <listitem>
+          <para>
+            Output image format (see also
+            <citerefentry>
+              <refentrytitle>gdal_translate</refentrytitle>
+              <manvolnum>1</manvolnum>
+            </citerefentry>).
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-f</option> <replaceable>format</replaceable></term>
+        <term><option>--f</option> <replaceable>format</replaceable></term>
+        <listitem>
+          <para>
+            Output ogr format for active training sample
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-co</option> <replaceable>NAME=VALUE</replaceable></term>
+        <term><option>--co</option> <replaceable>NAME=VALUE</replaceable></term>
+        <listitem>
+          <para>
+            Creation option for output file.
+            Multiple options can be specified.
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-ct</option> <replaceable>filename</replaceable></term>
+        <term><option>--ct</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            Color table in ASCII format having 5 columns:
+            id R G B ALFA (0: transparent, 255: solid) 
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-label</option> <replaceable>attribute</replaceable></term>
+        <term><option>--label</option> <replaceable>attribute</replaceable></term>
+        <listitem>
+          <para>
+            Identifier for class label in training vector file.
+            (default: label)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-prior</option> <replaceable>value</replaceable></term>
+        <term><option>--prior</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            Prior probabilities for each class (e.g.,
+            <option>-prior</option> 0.3 <option>-prior</option> 0.3
+            <option>-prior</option> 0.2)
+            Used for input only (ignored for cross validation)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-g</option> <replaceable>gamma</replaceable></term>
+        <term><option>--gamma</option> <replaceable>gamma</replaceable></term>
+        <listitem>
+          <para>
+            Gamma in kernel function
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-cc</option> <replaceable>cost</replaceable></term>
+        <term><option>--ccost</option> <replaceable>cost</replaceable></term>
+        <listitem>
+          <para>
+            The parameter C of C_SVC, epsilon_SVR, and nu_SVR
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-m</option> <replaceable>filename</replaceable></term>
+        <term><option>--mask</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            Only classify within specified mask (vector or raster).
+            For raster mask, set nodata values with the option
+            <option>--msknodata</option>.
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-msknodata</option> <replaceable>value</replaceable></term>
+        <term><option>--msknodata</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+           Mask value(s) not to consider for classification.
+           Values will be taken over in classification image.
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-nodata</option> <replaceable>value</replaceable></term>
+        <term><option>--nodata</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            Nodata value to put where image is masked as nodata
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-v</option> <replaceable>level</replaceable></term>
+        <term><option>--verbose</option> <replaceable>level</replaceable></term>
+        <listitem>
+          <para>
+            Verbose level
+          </para>
+        </listitem>
+      </varlistentry>
+
+    </variablelist>
+    
+    <para>Advanced options</para>
+    <variablelist>
+
+      <varlistentry>
+        <term><option>-b</option> <replaceable>band</replaceable></term>
+        <term><option>--band</option> <replaceable>band</replaceable></term>
+        <listitem>
+          <para>
+            Band index (starting from 0, either use <option>--band</option>
+            option or use <option>--startband</option> to
+            <option>--endband</option>)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-sband</option> <replaceable>band</replaceable></term>
+        <term><option>--startband</option> <replaceable>band</replaceable></term>
+        <listitem>
+          <para>
+            Start band sequence number
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-eband</option> <replaceable>band</replaceable></term>
+        <term><option>--endband</option> <replaceable>band</replaceable></term>
+        <listitem>
+          <para>
+            End band sequence number
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-bal</option> <replaceable>size</replaceable></term>
+        <term><option>--balance</option> <replaceable>size</replaceable></term>
+        <listitem>
+          <para>
+            Balance the input data to this number of samples for each class
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-min</option> <replaceable>number</replaceable></term>
+        <term><option>--min</option> <replaceable>number</replaceable></term>
+        <listitem>
+          <para>
+            If number of training pixels is less then min, do not take this
+            class into account (0: consider all classes)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-bag</option> <replaceable>value</replaceable></term>
+        <term><option>--bag</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            Number of bootstrap aggregations (default is no bagging: 1)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-bagsize</option> <replaceable>value</replaceable></term>
+        <term><option>--bagsize</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            Percentage of features used from available training features for
+            each bootstrap aggregation (one size for all classes, or a
+            different size for each class respectively
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-comb</option> <replaceable>rule</replaceable></term>
+        <term><option>--comb</option> <replaceable>rule</replaceable></term>
+        <listitem>
+          <para>
+            How to combine bootstrap aggregation classifiers
+            (0: sum rule, 1: product rule, 2: max rule).
+            Also used to aggregate classes with rc option.
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-cb</option> <replaceable>filename</replaceable></term>
+        <term><option>--classbag</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            Output for each individual bootstrap aggregation
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-prob</option> <replaceable>filename</replaceable></term>
+        <term><option>--prob</option> <replaceable>filename</replaceable></term>
+        <listitem>
+          <para>
+            Probability image.
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-offset</option> <replaceable>value</replaceable></term>
+        <term><option>--offset</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            Offset value for each spectral band input features:
+            <literal>refl[band]=(DN[band]-offset[band])/scale[band]</literal>
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-scale</option> <replaceable>value</replaceable></term>
+        <term><option>--scale</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            Scale value for each spectral band input features:
+            <literal>refl=(DN[band]-offset[band])/scale[band]</literal>
+            (use <literal>0</literal> if scale min and max in each band to
+            <literal>-1.0</literal> and <literal>1.0</literal>)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-svmt</option> <replaceable>type</replaceable></term>
+        <term><option>--svmtype</option> <replaceable>type</replaceable></term>
+        <listitem>
+          <para>
+            Type of SVM (C_SVC, nu_SVC,one_class, epsilon_SVR, nu_SVR)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-kt</option> <replaceable>type</replaceable></term>
+        <term><option>--kerneltype</option> <replaceable>type</replaceable></term>
+        <listitem>
+          <para>
+            Type of kernel function (linear,polynomial,radial,sigmoid)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-kd</option> <replaceable>value</replaceable></term>
+        <term><option>--kd</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            Degree in kernel function
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-c0</option> <replaceable>value</replaceable></term>
+        <term><option>--coef0</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            Coef0 in kernel function
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-nu</option> <replaceable>value</replaceable></term>
+        <term><option>--nu</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            The parameter nu of nu-SVC, one-class SVM, and nu-SVR
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-eloss</option> <replaceable>value</replaceable></term>
+        <term><option>--eloss</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            The epsilon in loss function of epsilon-SVR
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-cache</option> <replaceable>number</replaceable></term>
+        <term><option>--cache</option> <replaceable>number</replaceable></term>
+        <listitem>
+          <para>
+            <ulink url="http://pktools.nongnu.org/html/classCache.html">Cache</ulink>
+            memory size in MB
+            (default: 100)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-etol</option> <replaceable>value</replaceable></term>
+        <term><option>--etol</option> <replaceable>value</replaceable></term>
+        <listitem>
+          <para>
+            the tolerance of termination criterion
+            (default: 0.001)
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-shrink</option></term>
+        <term><option>--shrink</option></term>
+        <listitem>
+          <para>
+            Whether to use the shrinking heuristics 
+          </para>
+        </listitem>
+      </varlistentry>
+
+      <varlistentry>
+        <term><option>-na</option> <replaceable>number</replaceable></term>
+        <term><option>--nactive</option> <replaceable>number</replaceable></term>
+        <listitem>
+          <para>
+            Number of active training points
+          </para>
+        </listitem>
+      </varlistentry>
+
+    </variablelist>
+
+  </refsect1>
+
+</refentry>
diff --git a/debian/pktools.manpages b/debian/pktools.manpages
index 88a5ddc..ec40e68 100644
--- a/debian/pktools.manpages
+++ b/debian/pktools.manpages
@@ -1,4 +1,5 @@
 debian/man/pkann.1
+debian/man/pkannogr.1
 debian/man/pkascii2img.1
 debian/man/pkascii2ogr.1
 debian/man/pkcomposite.1
@@ -24,6 +25,7 @@ debian/man/pklas2img.1
 debian/man/pkoptsvm.1
 debian/man/pkpolygonize.1
 debian/man/pkreclass.1
+debian/man/pkreclassogr.1
 debian/man/pkregann.1
 debian/man/pksetmask.1
 debian/man/pksieve.1
@@ -32,3 +34,4 @@ debian/man/pkstatascii.1
 debian/man/pkstatogr.1
 debian/man/pkstatprofile.1
 debian/man/pksvm.1
+debian/man/pksvmogr.1

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-grass/pktools.git



More information about the Pkg-grass-devel mailing list