[Git][debian-gis-team/python-pyproj][upstream] New upstream version 2.1.0+ds

Bas Couwenberg gitlab at salsa.debian.org
Fri Mar 15 15:40:36 GMT 2019


Bas Couwenberg pushed to branch upstream at Debian GIS Project / python-pyproj


Commits:
e86a7979 by Bas Couwenberg at 2019-03-15T15:24:51Z
New upstream version 2.1.0+ds
- - - - -


16 changed files:

- .travis.yml
- README.md
- pyproj/__init__.py
- pyproj/_proj.pyx
- + pyproj/_transformer.pxd
- + pyproj/_transformer.pyx
- + pyproj/proj.py
- + pyproj/transformer.py
- setup.py
- sphinx/api/index.rst
- sphinx/api/proj.rst
- + sphinx/api/transformer.rst
- sphinx/history.rst
- sphinx/index.rst
- sphinx/installation.rst
- + unittest/test_transformer.py


Changes:

=====================================
.travis.yml
=====================================
@@ -80,7 +80,8 @@ install:
 
 script:
   - python -c "import pyproj; pyproj.Proj(init='epsg:4269')"
-  - nose2 -v --coverage pyproj --coverage-report xml
+  - nose2 -v
+  - nose2 --coverage pyproj --coverage-report xml # coverage report on separate line as does not show failures
 
 after_success:
 - coveralls


=====================================
README.md
=====================================
@@ -1,11 +1,13 @@
 pyproj
 ======
 
-[![Build Status](https://travis-ci.org/jswhit/pyproj.svg)](https://travis-ci.org/jswhit/pyproj)
+[![Build Status](https://travis-ci.org/pyproj4/pyproj.svg)](https://travis-ci.org/pyproj4/pyproj)
 
 [![Build status](https://ci.appveyor.com/api/projects/status/8xkka4s97uwhkc64/branch/master?svg=true
 )](https://ci.appveyor.com/project/jswhit/pyproj)
 
+[![Coverage Status](https://coveralls.io/repos/github/pyproj4/pyproj/badge.svg?branch=master)](https://coveralls.io/github/pyproj4/pyproj?branch=master)
+
 [![PyPI version](https://badge.fury.io/py/pyproj.svg)](https://badge.fury.io/py/pyproj)
 
 [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pyproj/badges/version.svg)](https://anaconda.org/conda-forge/pyproj)
@@ -15,12 +17,12 @@ pyproj
 Python interface to [PROJ.4](https://github.com/OSGeo/proj.4).
 
 
-[Installation](https://jswhit.github.io/pyproj/html/installation.html)
+[Installation](https://pyproj4.github.io/pyproj/html/installation.html)
 ------------
 
-[Documentation](http://jswhit.github.io/pyproj)
+[Documentation](http://pyproj4.github.io/pyproj)
 -------------
 
 Bugs/Questions
 --------------
-Report bugs/ask questions at https://github.com/jswhit/pyproj/issues.
+Report bugs/ask questions at https://github.com/pyproj4/pyproj/issues.


=====================================
pyproj/__init__.py
=====================================
@@ -26,7 +26,7 @@ numpy array objects).
 
 Download: http://python.org/pypi/pyproj
 
-Requirements: Python 2.6, 2.7, 3.2 or higher version.
+Requirements: Python 2.7 or 3.5+.
 
 Example scripts are in 'test' subdirectory of source distribution.
 The 'test()' function will run the examples in the docstrings.
@@ -47,559 +47,23 @@ CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
 LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """
-__version__ = "2.0.2"
-__all__ = ["Proj", "Geod", "CRS", "transform", "itransform", "pj_ellps", "pj_list"]
+__version__ = "2.1.0"
+__all__ = [
+    "Proj",
+    "Geod",
+    "CRS",
+    "Transformer",
+    "transform",
+    "itransform",
+    "pj_ellps",
+    "pj_list",
+]
 
-import re
-import sys
-import warnings
-from array import array
-from itertools import chain, islice
-
-from pyproj import _proj
-from pyproj.compat import cstrencode, pystrdecode
 from pyproj.crs import CRS
 from pyproj.exceptions import ProjError
 from pyproj.geod import Geod, geodesic_version_str, pj_ellps
-from pyproj.utils import _convertback, _copytobuffer
-
-try:
-    from future_builtins import zip  # python 2.6+
-except ImportError:
-    pass  # python 3.x
-
-
-# import numpy as np
-proj_version_str = _proj.proj_version_str
-
-pj_list = {
-    "aea": "Albers Equal Area",
-    "aeqd": "Azimuthal Equidistant",
-    "affine": "Affine transformation",
-    "airy": "Airy",
-    "aitoff": "Aitoff",
-    "alsk": "Mod. Stererographics of Alaska",
-    "apian": "Apian Globular I",
-    "august": "August Epicycloidal",
-    "bacon": "Bacon Globular",
-    "bertin1953": "Bertin 1953",
-    "bipc": "Bipolar conic of western hemisphere",
-    "boggs": "Boggs Eumorphic",
-    "bonne": "Bonne (Werner lat_1=90)",
-    "calcofi": "Cal Coop Ocean Fish Invest Lines/Stations",
-    "cart": "Geodetic/cartesian conversions",
-    "cass": "Cassini",
-    "cc": "Central Cylindrical",
-    "ccon": "Central Conic",
-    "cea": "Equal Area Cylindrical",
-    "chamb": "Chamberlin Trimetric",
-    "collg": "Collignon",
-    "comill": "Compact Miller",
-    "crast": "Craster Parabolic (Putnins P4)",
-    "deformation": "Kinematic grid shift",
-    "denoy": "Denoyer Semi-Elliptical",
-    "eck1": "Eckert I",
-    "eck2": "Eckert II",
-    "eck3": "Eckert III",
-    "eck4": "Eckert IV",
-    "eck5": "Eckert V",
-    "eck6": "Eckert VI",
-    "eqc": "Equidistant Cylindrical (Plate Caree)",
-    "eqdc": "Equidistant Conic",
-    "euler": "Euler",
-    "etmerc": "Extended Transverse Mercator",
-    "fahey": "Fahey",
-    "fouc": "Foucaut",
-    "fouc_s": "Foucaut Sinusoidal",
-    "gall": "Gall (Gall Stereographic)",
-    "geoc": "Geocentric Latitude",
-    "geocent": "Geocentric",
-    "geogoffset": "Geographic Offset",
-    "geos": "Geostationary Satellite View",
-    "gins8": "Ginsburg VIII (TsNIIGAiK)",
-    "gn_sinu": "General Sinusoidal Series",
-    "gnom": "Gnomonic",
-    "goode": "Goode Homolosine",
-    "gs48": "Mod. Stererographics of 48 U.S.",
-    "gs50": "Mod. Stererographics of 50 U.S.",
-    "hammer": "Hammer & Eckert-Greifendorff",
-    "hatano": "Hatano Asymmetrical Equal Area",
-    "healpix": "HEALPix",
-    "rhealpix": "rHEALPix",
-    "helmert": "3- and 7-parameter Helmert shift",
-    "hgridshift": "Horizontal grid shift",
-    "horner": "Horner polynomial evaluation",
-    "igh": "Interrupted Goode Homolosine",
-    "imw_p": "International Map of the World Polyconic",
-    "isea": "Icosahedral Snyder Equal Area",
-    "kav5": "Kavraisky V",
-    "kav7": "Kavraisky VII",
-    "krovak": "Krovak",
-    "labrd": "Laborde",
-    "laea": "Lambert Azimuthal Equal Area",
-    "lagrng": "Lagrange",
-    "larr": "Larrivee",
-    "lask": "Laskowski",
-    "lonlat": "Lat/long (Geodetic)",
-    "latlon": "Lat/long (Geodetic alias)",
-    "latlong": "Lat/long (Geodetic alias)",
-    "longlat": "Lat/long (Geodetic alias)",
-    "lcc": "Lambert Conformal Conic",
-    "lcca": "Lambert Conformal Conic Alternative",
-    "leac": "Lambert Equal Area Conic",
-    "lee_os": "Lee Oblated Stereographic",
-    "loxim": "Loximuthal",
-    "lsat": "Space oblique for LANDSAT",
-    "mbt_s": "McBryde-Thomas Flat-Polar Sine",
-    "mbt_fps": "McBryde-Thomas Flat-Pole Sine (No. 2)",
-    "mbtfpp": "McBride-Thomas Flat-Polar Parabolic",
-    "mbtfpq": "McBryde-Thomas Flat-Polar Quartic",
-    "mbtfps": "McBryde-Thomas Flat-Polar Sinusoidal",
-    "merc": "Mercator",
-    "mil_os": "Miller Oblated Stereographic",
-    "mill": "Miller Cylindrical",
-    "misrsom": "Space oblique for MISR",
-    "moll": "Mollweide",
-    "molobadekas": "Molodensky-Badekas transform",
-    "molodensky": "Molodensky transform",
-    "murd1": "Murdoch I",
-    "murd2": "Murdoch II",
-    "murd3": "Murdoch III",
-    "natearth": "Natural Earth",
-    "natearth2": "Natural Earth 2",
-    "nell": "Nell",
-    "nell_h": "Nell-Hammer",
-    "nicol": "Nicolosi Globular",
-    "nsper": "Near-sided perspective",
-    "nzmg": "New Zealand Map Grid",
-    "ob_tran": "General Oblique Transformation",
-    "ocea": "Oblique Cylindrical Equal Area",
-    "oea": "Oblated Equal Area",
-    "omerc": "Oblique Mercator",
-    "ortel": "Ortelius Oval",
-    "ortho": "Orthographic",
-    "patterson": "Patterson Cylindrical",
-    "pconic": "Perspective Conic",
-    "pipeline": "Transformation pipeline manager",
-    "poly": "Polyconic (American)",
-    "pop": "Retrieve coordinate value from pipeline stack",
-    "putp1": "Putnins P1",
-    "putp2": "Putnins P2",
-    "putp3": "Putnins P3",
-    "putp3p": "Putnins P3'",
-    "putp4p": "Putnins P4'",
-    "putp5": "Putnins P5",
-    "putp5p": "Putnins P5'",
-    "putp6": "Putnins P6",
-    "putp6p": "Putnins P6'",
-    "qua_aut": "Quartic Authalic",
-    "robin": "Robinson",
-    "rouss": "Roussilhe Stereographic",
-    "rpoly": "Rectangular Polyconic",
-    "sch": "Spherical Cross-track Height",
-    "sinu": "Sinusoidal (Sanson-Flamsteed)",
-    "somerc": "Swiss. Obl. Mercator",
-    "stere": "Stereographic",
-    "sterea": "Oblique Stereographic Alternative",
-    "gstmerc": "Gauss-Schreiber Transverse Mercator (aka Gauss-Laborde Reunion)",
-    "tcc": "Transverse Central Cylindrical",
-    "tcea": "Transverse Cylindrical Equal Area",
-    "times": "Times",
-    "tissot": "Tissot Conic",
-    "tmerc": "Transverse Mercator",
-    "tpeqd": "Two Point Equidistant",
-    "tpers": "Tilted perspective",
-    "ups": "Universal Polar Stereographic",
-    "urm5": "Urmaev V",
-    "urmfps": "Urmaev Flat-Polar Sinusoidal",
-    "utm": "Universal Transverse Mercator (UTM)",
-    "vandg": "van der Grinten (I)",
-    "vandg2": "van der Grinten II",
-    "vandg3": "van der Grinten III",
-    "vandg4": "van der Grinten IV",
-    "vitk1": "Vitkovsky I",
-    "wag1": "Wagner I (Kavraisky VI)",
-    "wag2": "Wagner II",
-    "wag3": "Wagner III",
-    "wag4": "Wagner IV",
-    "wag5": "Wagner V",
-    "wag6": "Wagner VI",
-    "wag7": "Wagner VII",
-    "webmerc": "Web Mercator / Pseudo Mercator",
-    "weren": "Werenskiold I",
-    "wink1": "Winkel I",
-    "wink2": "Winkel II",
-    "wintri": "Winkel Tripel",
-}
-
-
-class Proj(_proj.Proj):
-    """
-    performs cartographic transformations (converts from
-    longitude,latitude to native map projection x,y coordinates and
-    vice versa) using proj (https://github.com/OSGeo/proj.4/wiki).
-
-    A Proj class instance is initialized with proj map projection
-    control parameter key/value pairs. The key/value pairs can
-    either be passed in a dictionary, or as keyword arguments,
-    or as a proj4 string (compatible with the proj command). See
-    http://www.remotesensing.org/geotiff/proj_list for examples of
-    key/value pairs defining different map projections.
-
-    Calling a Proj class instance with the arguments lon, lat will
-    convert lon/lat (in degrees) to x/y native map projection
-    coordinates (in meters).  If optional keyword 'inverse' is True
-    (default is False), the inverse transformation from x/y to
-    lon/lat is performed. If optional keyword 'errcheck' is True (default is
-    False) an exception is raised if the transformation is invalid.
-    If errcheck=False and the transformation is invalid, no
-    exception is raised and 1.e30 is returned. If the optional keyword
-    'preserve_units' is True, the units in map projection coordinates
-    are not forced to be meters.
-
-    Works with numpy and regular python array objects, python
-    sequences and scalars.
-    """
-
-    def __init__(self, projparams=None, preserve_units=True, **kwargs):
-        """
-        initialize a Proj class instance.
-
-        See the proj documentation (https://github.com/OSGeo/proj.4/wiki)
-        for more information about projection parameters.
-
-        Parameters
-        ----------
-        projparams: int, str, dict, pyproj.CRS
-            A proj.4 or WKT string, proj.4 dict, EPSG integer, or a pyproj.CRS instnace.
-        preserve_units: bool
-            If false, will ensure +units=m.
-        **kwargs:
-            proj.4 projection parameters.
-
-
-        Example usage:
-
-        >>> from pyproj import Proj
-        >>> p = Proj(proj='utm',zone=10,ellps='WGS84', preserve_units=False) # use kwargs
-        >>> x,y = p(-120.108, 34.36116666)
-        >>> 'x=%9.3f y=%11.3f' % (x,y)
-        'x=765975.641 y=3805993.134'
-        >>> 'lon=%8.3f lat=%5.3f' % p(x,y,inverse=True)
-        'lon=-120.108 lat=34.361'
-        >>> # do 3 cities at a time in a tuple (Fresno, LA, SF)
-        >>> lons = (-119.72,-118.40,-122.38)
-        >>> lats = (36.77, 33.93, 37.62 )
-        >>> x,y = p(lons, lats)
-        >>> 'x: %9.3f %9.3f %9.3f' % x
-        'x: 792763.863 925321.537 554714.301'
-        >>> 'y: %9.3f %9.3f %9.3f' % y
-        'y: 4074377.617 3763936.941 4163835.303'
-        >>> lons, lats = p(x, y, inverse=True) # inverse transform
-        >>> 'lons: %8.3f %8.3f %8.3f' % lons
-        'lons: -119.720 -118.400 -122.380'
-        >>> 'lats: %8.3f %8.3f %8.3f' % lats
-        'lats:   36.770   33.930   37.620'
-        >>> p2 = Proj('+proj=utm +zone=10 +ellps=WGS84', preserve_units=False) # use proj4 string
-        >>> x,y = p2(-120.108, 34.36116666)
-        >>> 'x=%9.3f y=%11.3f' % (x,y)
-        'x=765975.641 y=3805993.134'
-        >>> p = Proj(init="epsg:32667", preserve_units=False)
-        >>> 'x=%12.3f y=%12.3f (meters)' % p(-114.057222, 51.045)
-        'x=-1783506.250 y= 6193827.033 (meters)'
-        >>> p = Proj("+init=epsg:32667")
-        >>> 'x=%12.3f y=%12.3f (feet)' % p(-114.057222, 51.045)
-        'x=-5851386.754 y=20320914.191 (feet)'
-        >>> # test data with radian inputs
-        >>> p1 = Proj(init="epsg:4214")
-        >>> x1, y1 = p1(116.366, 39.867)
-        >>> '{:.3f} {:.3f}'.format(x1, y1)
-        '2.031 0.696'
-        >>> x2, y2 = p1(x1, y1, inverse=True)
-        >>> '{:.3f} {:.3f}'.format(x2, y2)
-        '116.366 39.867'
-        """
-        self.crs = CRS.from_user_input(projparams if projparams is not None else kwargs)
-        # make sure units are meters if preserve_units is False.
-        if not preserve_units and self.crs.is_projected:
-            projstring = self.crs.to_proj4(4)
-            projstring = re.sub(r"\s\+units=[\w-]+", "", projstring)
-            projstring += " +units=m"
-            self.crs = CRS(projstring)
-        super(Proj, self).__init__(
-            cstrencode(self.crs.to_proj4().replace("+type=crs", "").strip())
-        )
-
-    def __call__(self, *args, **kw):
-        # ,lon,lat,inverse=False,errcheck=False):
-        """
-        Calling a Proj class instance with the arguments lon, lat will
-        convert lon/lat (in degrees) to x/y native map projection
-        coordinates (in meters).  If optional keyword 'inverse' is True
-        (default is False), the inverse transformation from x/y to
-        lon/lat is performed. If optional keyword 'errcheck' is True (default is
-        False) an exception is raised if the transformation is invalid.
-        If errcheck=False and the transformation is invalid, no
-        exception is raised and 1.e30 is returned.
-
-        Inputs should be doubles (they will be cast to doubles if they
-        are not, causing a slight performance hit).
-
-        Works with numpy and regular python array objects, python
-        sequences and scalars, but is fastest for array objects.
-        """
-        inverse = kw.get("inverse", False)
-        errcheck = kw.get("errcheck", False)
-        # if len(args) == 1:
-        #    latlon = np.array(args[0], copy=True,
-        #                      order='C', dtype=float, ndmin=2)
-        #    if inverse:
-        #        _proj.Proj._invn(self, latlon, radians=radians, errcheck=errcheck)
-        #    else:
-        #        _proj.Proj._fwdn(self, latlon, radians=radians, errcheck=errcheck)
-        #    return latlon
-        lon, lat = args
-        # process inputs, making copies that support buffer API.
-        inx, xisfloat, xislist, xistuple = _copytobuffer(lon)
-        iny, yisfloat, yislist, yistuple = _copytobuffer(lat)
-        # call proj4 functions. inx and iny modified in place.
-        if inverse:
-            self._inv(inx, iny, errcheck=errcheck)
-        else:
-            self._fwd(inx, iny, errcheck=errcheck)
-        # if inputs were lists, tuples or floats, convert back.
-        outx = _convertback(xisfloat, xislist, xistuple, inx)
-        outy = _convertback(yisfloat, yislist, xistuple, iny)
-        return outx, outy
-
-    def is_latlong(self):
-        """
-        Returns
-        -------
-        bool: True if projection in geographic (lon/lat) coordinates.
-        """
-        warnings.warn("'is_latlong()' is deprecated. Please use 'crs.is_geographic'.")
-        return self.crs.is_geographic
-
-    def is_geocent(self):
-        """
-        Returns
-        -------
-        bool: True if projection in geocentric (x/y) coordinates
-        """
-        warnings.warn("'is_geocent()' is deprecated. Please use 'crs.is_geocent'.")
-        return self.is_geocent
-
-    def definition_string(self):
-        """Returns formal definition string for projection
-
-        >>> Proj('+init=epsg:4326').definition_string()
-        'proj=longlat datum=WGS84 no_defs ellps=WGS84 towgs84=0,0,0'
-        >>>
-        """
-        return pystrdecode(self.definition)
-
-    def to_latlong_def(self):
-        """return the definition string of the geographic (lat/lon)
-        coordinate version of the current projection"""
-        # This is a little hacky way of getting a latlong proj object
-        # Maybe instead of this function the __cinit__ function can take a
-        # Proj object and a type (where type = "geographic") as the libproj
-        # java wrapper
-        return self.crs.to_geodetic().to_proj4(4)
-
-    # deprecated : using in transform raised a TypeError in release 1.9.5.1
-    # reported in issue #53, resolved in #73.
-    def to_latlong(self):
-        """return a new Proj instance which is the geographic (lat/lon)
-        coordinate version of the current projection"""
-        return Proj(self.crs.to_geodetic())
-
-
-def transform(p1, p2, x, y, z=None, radians=False):
-    """
-    x2, y2, z2 = transform(p1, p2, x1, y1, z1)
-
-    Transform points between two coordinate systems defined by the
-    Proj instances p1 and p2.
-
-    The points x1,y1,z1 in the coordinate system defined by p1 are
-    transformed to x2,y2,z2 in the coordinate system defined by p2.
-
-    z1 is optional, if it is not set it is assumed to be zero (and
-    only x2 and y2 are returned). If the optional keyword 
-    'radians' is True (default is False), then all input and 
-    output coordinates will be in radians instead of the default 
-    of degrees for geographic input/output projections.
-
-    In addition to converting between cartographic and geographic
-    projection coordinates, this function can take care of datum
-    shifts (which cannot be done using the __call__ method of the
-    Proj instances). It also allows for one of the coordinate
-    systems to be geographic (proj = 'latlong').
-
-    x,y and z can be numpy or regular python arrays, python
-    lists/tuples or scalars. Arrays are fastest.  For projections in
-    geocentric coordinates, values of x and y are given in meters.
-    z is always meters.
-
-    Example usage:
-
-    >>> # projection 1: UTM zone 15, grs80 ellipse, NAD83 datum
-    >>> # (defined by epsg code 26915)
-    >>> p1 = Proj(init='epsg:26915', preserve_units=False)
-    >>> # projection 2: UTM zone 15, clrk66 ellipse, NAD27 datum
-    >>> p2 = Proj(init='epsg:26715', preserve_units=False)
-    >>> # find x,y of Jefferson City, MO.
-    >>> x1, y1 = p1(-92.199881,38.56694)
-    >>> # transform this point to projection 2 coordinates.
-    >>> x2, y2 = transform(p1,p2,x1,y1)
-    >>> '%9.3f %11.3f' % (x1,y1)
-    '569704.566 4269024.671'
-    >>> '%9.3f %11.3f' % (x2,y2)
-    '569722.342 4268814.028'
-    >>> '%8.3f %5.3f' % p2(x2,y2,inverse=True)
-    ' -92.200 38.567'
-    >>> # process 3 points at a time in a tuple
-    >>> lats = (38.83,39.32,38.75) # Columbia, KC and StL Missouri
-    >>> lons = (-92.22,-94.72,-90.37)
-    >>> x1, y1 = p1(lons,lats)
-    >>> x2, y2 = transform(p1,p2,x1,y1)
-    >>> xy = x1+y1
-    >>> '%9.3f %9.3f %9.3f %11.3f %11.3f %11.3f' % xy
-    '567703.344 351730.944 728553.093 4298200.739 4353698.725 4292319.005'
-    >>> xy = x2+y2
-    >>> '%9.3f %9.3f %9.3f %11.3f %11.3f %11.3f' % xy
-    '567721.149 351747.558 728569.133 4297989.112 4353489.645 4292106.305'
-    >>> lons, lats = p2(x2,y2,inverse=True)
-    >>> xy = lons+lats
-    >>> '%8.3f %8.3f %8.3f %5.3f %5.3f %5.3f' % xy
-    ' -92.220  -94.720  -90.370 38.830 39.320 38.750'
-    >>> # test datum shifting, installation of extra datum grid files.
-    >>> p1 = Proj(proj='latlong',datum='WGS84')
-    >>> x1 = -111.5; y1 = 45.25919444444
-    >>> p2 = Proj(proj="utm",zone=10,datum='NAD27', preserve_units=False)
-    >>> x2, y2 = transform(p1, p2, x1, y1)
-    >>> "%s  %s" % (str(x2)[:9],str(y2)[:9])
-    '1402285.9  5076292.4'
-    >>> from pyproj import CRS
-    >>> c1 = CRS(proj='latlong',datum='WGS84')
-    >>> x1 = -111.5; y1 = 45.25919444444
-    >>> c2 = CRS(proj="utm",zone=10,datum='NAD27')
-    >>> x2, y2 = transform(c1, c2, x1, y1)
-    >>> "%s  %s" % (str(x2)[:9],str(y2)[:9])
-    '1402291.0  5076289.5'
-    >>> x3, y3 = transform("epsg:4326", "epsg:3857", 33, 98)
-    >>> "%.3f  %.3f" % (x3, y3)
-    '10909310.098  3895303.963'
-    >>> pj = Proj(init="epsg:4214")
-    >>> pjx, pjy = pj(116.366, 39.867)
-    >>> xr, yr = transform(pj, Proj(4326), pjx, pjy, radians=True)
-    >>> "%.3f %.3f" % (xr, yr)
-    '2.031 0.696'
-    """
-    # check that p1 and p2 are valid
-    if not isinstance(p1, Proj):
-        p1 = CRS.from_user_input(p1)
-    if not isinstance(p2, Proj):
-        p2 = CRS.from_user_input(p2)
-
-    # process inputs, making copies that support buffer API.
-    inx, xisfloat, xislist, xistuple = _copytobuffer(x)
-    iny, yisfloat, yislist, yistuple = _copytobuffer(y)
-    if z is not None:
-        inz, zisfloat, zislist, zistuple = _copytobuffer(z)
-    else:
-        inz = None
-    # call pj_transform.  inx,iny,inz buffers modified in place.
-    _proj._transform(p1, p2, inx, iny, inz, radians)
-    # if inputs were lists, tuples or floats, convert back.
-    outx = _convertback(xisfloat, xislist, xistuple, inx)
-    outy = _convertback(yisfloat, yislist, xistuple, iny)
-    if inz is not None:
-        outz = _convertback(zisfloat, zislist, zistuple, inz)
-        return outx, outy, outz
-    else:
-        return outx, outy
-
-
-def itransform(p1, p2, points, switch=False, radians=False):
-    """
-    points2 = transform(p1, p2, points1)
-    Iterator/generator version of the function pyproj.transform.
-    Transform points between two coordinate systems defined by the
-    Proj instances p1 and p2. This function can be used as an alternative
-    to pyproj.transform when there is a need to transform a big number of
-    coordinates lazily, for example when reading and processing from a file.
-    Points1 is an iterable/generator of coordinates x1,y1(,z1) or lon1,lat1(,z1)
-    in the coordinate system defined by p1. Points2 is an iterator that returns tuples
-    of x2,y2(,z2) or lon2,lat2(,z2) coordinates in the coordinate system defined by p2.
-    z are provided optionally.
-
-    Points1 can be:
-        - a tuple/list of tuples/lists i.e. for 2d points: [(xi,yi),(xj,yj),....(xn,yn)]
-        - a Nx3 or Nx2 2d numpy array where N is the point number
-        - a generator of coordinates (xi,yi) for 2d points or (xi,yi,zi) for 3d
-
-    If optional keyword 'switch' is True (default is False) then x, y or lon,lat coordinates
-    of points are switched to y, x or lat, lon. If the optional keyword 'radians' is True
-    (default is False), then all input and output coordinates will be in radians instead
-    of the default of degrees for geographic input/output projections.
-
-
-    Example usage:
-
-    >>> # projection 1: WGS84
-    >>> # (defined by epsg code 4326)
-    >>> p1 = Proj(init='epsg:4326', preserve_units=False)
-    >>> # projection 2: GGRS87 / Greek Grid
-    >>> p2 = Proj(init='epsg:2100', preserve_units=False)
-    >>> # Three points with coordinates lon, lat in p1
-    >>> points = [(22.95, 40.63), (22.81, 40.53), (23.51, 40.86)]
-    >>> # transform this point to projection 2 coordinates.
-    >>> for pt in itransform(p1,p2,points): '%6.3f %7.3f' % pt
-    '411200.657 4498214.742'
-    '399210.500 4487264.963'
-    '458703.102 4523331.451'
-    >>> for pt in itransform(4326, 2100, points): '{:.3f} {:.3f}'.format(*pt)
-    '2221638.801 2637034.372'
-    '2212924.125 2619851.898'
-    '2238294.779 2703763.736'
-    >>> pj = Proj(init="epsg:4214")
-    >>> pjx, pjy = pj(116.366, 39.867)
-    >>> for pt in itransform(pj, Proj(4326), [(pjx, pjy)]): '{:.3f} {:.3f}'.format(*pt)
-    '2.031 0.696'
-    """
-    if not isinstance(p1, Proj):
-        p1 = CRS.from_user_input(p1)
-    if not isinstance(p2, Proj):
-        p2 = CRS.from_user_input(p2)
-
-    it = iter(points)  # point iterator
-    # get first point to check stride
-    try:
-        fst_pt = next(it)
-    except StopIteration:
-        raise ValueError("iterable must contain at least one point")
-
-    stride = len(fst_pt)
-    if stride not in (2, 3):
-        raise ValueError("points can contain up to 3 coordinates")
-
-    # create a coordinate sequence generator etc. x1,y1,z1,x2,y2,z2,....
-    # chain so the generator returns the first point that was already acquired
-    coord_gen = chain(fst_pt, (coords[c] for coords in it for c in range(stride)))
-
-    while True:
-        # create a temporary buffer storage for the next 64 points (64*stride*8 bytes)
-        buff = array("d", islice(coord_gen, 0, 64 * stride))
-        if len(buff) == 0:
-            break
-
-        _proj._transform_sequence(p1, p2, stride, buff, switch, radians)
-
-        for pt in zip(*([iter(buff)] * stride)):
-            yield pt
+from pyproj.proj import Proj, pj_list, proj_version_str
+from pyproj.transformer import Transformer, itransform, transform
 
 
 def test(**kwargs):
@@ -608,9 +72,12 @@ def test(**kwargs):
     import pyproj
 
     verbose = kwargs.get("verbose")
-    failure_count, test_count = doctest.testmod(pyproj, verbose=verbose)
+    failure_count, test_count = doctest.testmod(pyproj.proj, verbose=verbose)
     failure_count_crs, test_count_crs = doctest.testmod(pyproj.crs, verbose=verbose)
     failure_count_geod, test_count_geod = doctest.testmod(pyproj.geod, verbose=verbose)
+    failure_count_transform, test_count_transform = doctest.testmod(
+        pyproj.transformer, verbose=verbose
+    )
 
     return failure_count + failure_count_crs + failure_count_geod
 


=====================================
pyproj/_proj.pyx
=====================================
@@ -1,8 +1,5 @@
-# cimport c_numpy
-# c_numpy.import_array()
 include "base.pxi"
 
-from pyproj.crs import CRS
 from pyproj.compat import cstrencode, pystrdecode
 from pyproj.datadir import get_data_dir
 from pyproj.exceptions import ProjError
@@ -175,243 +172,5 @@ cdef class Proj:
                 xdatab[i] = projlonlatout.uv.u
                 ydatab[i] = projlonlatout.uv.v
 
-#     def _fwdn(self, c_numpy.ndarray lonlat, radians=False, errcheck=False):
-#       """
-# forward transformation - lons,lats to x,y (done in place).
-# Uses ndarray of shape ...,2.
-# if radians=True, lons/lats are radians instead of degrees.
-# if errcheck=True, an exception is raised if the forward
-#                transformation is invalid.
-# if errcheck=False and the forward transformation is
-#                invalid, no exception is
-#                raised and 1.e30 is returned.
-#       """
-#       cdef PJ_UV projxyout, projlonlatin
-#       cdef PJ_UV *llptr
-#       cdef int err
-#       cdef Py_ssize_t npts, i
-#       npts = c_numpy.PyArray_SIZE(lonlat)//2
-#       llptr = <PJ_UV *>lonlat.data
-#       for i from 0 <= i < npts:
-#           if radians:
-#               projlonlatin = llptr[i]
-#           else:
-#               projlonlatin.u = _DG2RAD*llptr[i].u
-#               projlonlatin.v = _DG2RAD*llptr[i].v
-#           projxyout = pj_fwd(projlonlatin,self.projpj)
-#
-#           if errcheck:
-#               err = proj_context_errno(self.projctx)
-#               if err != 0:
-#                    raise ProjError(proj_errno_string(err))
-#           # since HUGE_VAL can be 'inf',
-#           # change it to a real (but very large) number.
-#           if projxyout.u == HUGE_VAL:
-#               llptr[i].u = 1.e30
-#           else:
-#               llptr[i].u = projxyout.u
-#           if projxyout.v == HUGE_VAL:
-#               llptr[i].u = 1.e30
-#           else:
-#               llptr[i].v = projxyout.v
-#
-#     def _invn(self, c_numpy.ndarray xy, radians=False, errcheck=False):
-#       """
-# inverse transformation - x,y to lons,lats (done in place).
-# Uses ndarray of shape ...,2.
-# if radians=True, lons/lats are radians instead of degrees.
-# if errcheck=True, an exception is raised if the inverse transformation is invalid.
-# if errcheck=False and the inverse transformation is invalid, no exception is
-# raised and 1.e30 is returned.
-#       """
-#       cdef PJ_UV projxyin, projlonlatout
-#       cdef PJ_UV *llptr
-#       cdef Py_ssize_t npts, i
-#       npts = c_numpy.PyArray_SIZE(xy)//2
-#       llptr = <PJ_UV *>xy.data
-#
-#       for i from 0 <= i < npts:
-#           projxyin = llptr[i]
-#           projlonlatout = pj_inv(projxyin, self.projpj)
-#           if errcheck:
-#               err = proj_context_errno(self.projctx)
-#               if err != 0:
-#                    raise ProjError(proj_errno_string(err))
-#           # since HUGE_VAL can be 'inf',
-#           # change it to a real (but very large) number.
-#           if projlonlatout.u == HUGE_VAL:
-#               llptr[i].u = 1.e30
-#           elif radians:
-#               llptr[i].u = projlonlatout.u
-#           else:
-#               llptr[i].u = _RAD2DG*projlonlatout.u
-#           if projlonlatout.v == HUGE_VAL:
-#               llptr[i].v = 1.e30
-#           elif radians:
-#               llptr[i].v = projlonlatout.v
-#           else:
-#               llptr[i].v = _RAD2DG*projlonlatout.v
-
     def __repr__(self):
         return "Proj('{srs}', preserve_units=True)".format(srs=self.srs)
-
-cdef class TransProj:
-    def __cinit__(self):
-        self.projpj = NULL
-        self.projctx = NULL
-
-    def __init__(self, p1, p2):
-        # set up the context
-        self.projctx = proj_context_create()
-        py_data_dir = cstrencode(get_data_dir())
-        cdef const char* data_dir = py_data_dir
-        proj_context_set_search_paths(self.projctx, 1, &data_dir)
-
-        self.projpj = proj_create_crs_to_crs(
-            self.projctx,
-            TransProj.definition_from_object(p1),
-            TransProj.definition_from_object(p2),
-            NULL)
-        if self.projpj is NULL:
-            raise ProjError("Error creating CRS to CRS.")
-
-    def __dealloc__(self):
-        """destroy projection definition"""
-        if self.projpj is not NULL:
-            proj_destroy(self.projpj)
-        if self.projctx is not NULL:
-            proj_context_destroy(self.projctx)
-
-    @staticmethod
-    def definition_from_object(in_proj):
-        """
-        Parameters
-        ----------
-        in_proj: :obj:`pyproj.Proj` or :obj:`pyproj.CRS`
-
-        Returns
-        -------
-        char*: Definition string for `proj_create_crs_to_crs`.
-
-        """
-        if isinstance(in_proj, Proj):
-            return in_proj.definition
-        return cstrencode(CRS.from_user_input(in_proj).to_wkt())
-
-
-def is_geographic(proj):
-    if hasattr(proj, "crs"):
-        proj = proj.crs
-    return proj.is_geographic
-
-
-def _transform(p1, p2, inx, iny, inz, radians):
-    pj_trans =  TransProj(p1, p2)
-    # private function to call pj_transform
-    cdef void *xdata
-    cdef void *ydata
-    cdef void *zdata
-    cdef double *xx
-    cdef double *yy
-    cdef double *zz
-    cdef Py_ssize_t buflenx, bufleny, buflenz, npts, i
-    cdef int err
-    if PyObject_AsWriteBuffer(inx, &xdata, &buflenx) <> 0:
-        raise ProjError
-    if PyObject_AsWriteBuffer(iny, &ydata, &bufleny) <> 0:
-        raise ProjError
-    if inz is not None:
-        if PyObject_AsWriteBuffer(inz, &zdata, &buflenz) <> 0:
-            raise ProjError
-    else:
-        buflenz = bufleny
-    if not (buflenx == bufleny == buflenz):
-        raise ProjError('x,y and z must be same size')
-    xx = <double *>xdata
-    yy = <double *>ydata
-    if inz is not None:
-        zz = <double *>zdata
-    else:
-        zz = NULL
-    npts = buflenx//8
-
-    if radians and is_geographic(p1):
-        for i from 0 <= i < npts:
-            xx[i] = xx[i]*_RAD2DG
-            yy[i] = yy[i]*_RAD2DG
-
-    proj_trans_generic(
-        pj_trans.projpj,
-        PJ_FWD,
-        xx, _DOUBLESIZE, npts,
-        yy, _DOUBLESIZE, npts,
-        zz, _DOUBLESIZE, npts,
-        NULL, 0, 0,
-    )
-    cdef int errno = proj_errno(pj_trans.projpj)
-    if errno:
-        raise ProjError("proj_trans_generic error: {}".format(
-            pystrdecode(proj_errno_string(errno))))
-
-    if radians and is_geographic(p2):
-        for i from 0 <= i < npts:
-            xx[i] = xx[i]*_DG2RAD
-            yy[i] = yy[i]*_DG2RAD
-
-def _transform_sequence(p1, p2, Py_ssize_t stride, inseq, bint switch, radians):
-    pj_trans =  TransProj(p1, p2)
-    # private function to itransform function
-    cdef:
-        void *buffer
-        double *coords
-        double *x
-        double *y
-        double *z
-        Py_ssize_t buflen, npts, i, j
-        int err
-
-    if stride < 2:
-        raise ProjError("coordinates must contain at least 2 values")
-    if PyObject_AsWriteBuffer(inseq, &buffer, &buflen) <> 0:
-        raise ProjError("object does not provide the python buffer writeable interface")
-
-    coords = <double*>buffer
-    npts = buflen // (stride * _DOUBLESIZE)
-
-    if radians and is_geographic(p1):
-        for i from 0 <= i < npts:
-            j = stride*i
-            coords[j] *= _RAD2DG
-            coords[j+1] *= _RAD2DG
-
-    if not switch:
-        x = coords
-        y = coords + 1
-    else:
-        x = coords + 1
-        y = coords
-
-    if stride == 2:
-        z = NULL
-    else:
-        z = coords + 2
-
-    proj_trans_generic (
-        pj_trans.projpj,
-        PJ_FWD,
-        x, stride*_DOUBLESIZE, npts,
-        y, stride*_DOUBLESIZE, npts,
-        z, stride*_DOUBLESIZE, npts,
-        NULL, 0, 0,
-    )
-
-    cdef int errno = proj_errno(pj_trans.projpj)
-    if errno:
-        raise ProjError("proj_trans_generic error: {}".format(
-            proj_errno_string(errno)))
-
-    if radians and is_geographic(p2):
-        for i from 0 <= i < npts:
-            j = stride*i
-            coords[j] *= _DG2RAD
-            coords[j+1] *= _DG2RAD


=====================================
pyproj/_transformer.pxd
=====================================
@@ -0,0 +1,10 @@
+include "proj.pxi"
+
+cdef class _Transformer:
+    cdef PJ * projpj
+    cdef PJ_CONTEXT * projctx
+    cdef public object input_geographic
+    cdef public object output_geographic
+    cdef public object input_radians
+    cdef public object output_radians
+    cdef public object is_pipeline


=====================================
pyproj/_transformer.pyx
=====================================
@@ -0,0 +1,233 @@
+include "base.pxi"
+
+from pyproj.crs import CRS
+from pyproj.proj import Proj
+from pyproj.compat import cstrencode, pystrdecode
+from pyproj.datadir import get_data_dir
+from pyproj.exceptions import ProjError
+
+cdef class _Transformer:
+    def __cinit__(self):
+        self.projpj = NULL
+        self.projctx = NULL
+        self.input_geographic = False
+        self.output_geographic = False
+        self.input_radians = False
+        self.output_radians = False
+        self.is_pipeline = False
+
+    def __init__(self):
+        # set up the context
+        self.projctx = proj_context_create()
+        py_data_dir = cstrencode(get_data_dir())
+        cdef const char* data_dir = py_data_dir
+        proj_context_set_search_paths(self.projctx, 1, &data_dir)
+
+    def __dealloc__(self):
+        """destroy projection definition"""
+        if self.projpj is not NULL:
+            proj_destroy(self.projpj)
+        if self.projctx is not NULL:
+            proj_context_destroy(self.projctx)
+
+    @staticmethod
+    def _init_crs_to_crs(proj_from, proj_to):
+        cdef _Transformer transformer = _Transformer()
+        transformer.projpj = proj_create_crs_to_crs(
+            transformer.projctx,
+            _Transformer._definition_from_object(proj_from),
+            _Transformer._definition_from_object(proj_to),
+            NULL)
+        if transformer.projpj is NULL:
+            raise ProjError("Error creating CRS to CRS.")
+        transformer.input_radians = proj_angular_input(transformer.projpj, PJ_FWD)
+        transformer.output_radians = proj_angular_output(transformer.projpj, PJ_FWD)
+        transformer.is_pipeline = False
+        return transformer
+
+    @staticmethod
+    def from_proj(proj_from, proj_to):
+        if not isinstance(proj_from, Proj):
+            proj_from = Proj(proj_from)
+        if not isinstance(proj_to, Proj):
+            proj_to = Proj(proj_to)
+        transformer = _Transformer._init_crs_to_crs(proj_from, proj_to)
+        transformer.input_geographic = proj_from.crs.is_geographic
+        transformer.output_geographic = proj_to.crs.is_geographic
+        return transformer
+
+    @staticmethod
+    def from_crs(crs_from, crs_to):
+        if not isinstance(crs_from, CRS):
+            crs_from = CRS.from_user_input(crs_from)
+        if not isinstance(crs_to, CRS):
+            crs_to = CRS.from_user_input(crs_to)
+        transformer = _Transformer._init_crs_to_crs(crs_from, crs_to)
+        transformer.input_geographic = crs_from.is_geographic
+        transformer.output_geographic = crs_to.is_geographic
+        return transformer
+
+    @staticmethod
+    def from_pipeline(const char *proj_pipeline):
+        cdef _Transformer transformer = _Transformer()
+
+        # initialize projection
+        transformer.projpj = proj_create(transformer.projctx, proj_pipeline)
+        if transformer.projpj is NULL:
+            raise ProjError("Invalid projection {}.".format(proj_pipeline))
+        transformer.input_radians = proj_angular_input(transformer.projpj, PJ_FWD)
+        transformer.output_radians = proj_angular_output(transformer.projpj, PJ_FWD)
+        transformer.is_pipeline = True
+        return transformer
+
+    @staticmethod
+    def _definition_from_object(in_proj):
+        """
+        Parameters
+        ----------
+        in_proj: :obj:`pyproj.Proj` or :obj:`pyproj.CRS`
+
+        Returns
+        -------
+        char*: Definition string for `proj_create_crs_to_crs`.
+
+        """
+        if isinstance(in_proj, Proj):
+            return cstrencode(in_proj.srs)
+        return cstrencode(in_proj.to_wkt())
+
+    def _transform(self, inx, iny, inz, radians):
+        # private function to call pj_transform
+        cdef void *xdata
+        cdef void *ydata
+        cdef void *zdata
+        cdef double *xx
+        cdef double *yy
+        cdef double *zz
+        cdef Py_ssize_t buflenx, bufleny, buflenz, npts, i
+        cdef int err
+        if PyObject_AsWriteBuffer(inx, &xdata, &buflenx) <> 0:
+            raise ProjError
+        if PyObject_AsWriteBuffer(iny, &ydata, &bufleny) <> 0:
+            raise ProjError
+        if inz is not None:
+            if PyObject_AsWriteBuffer(inz, &zdata, &buflenz) <> 0:
+                raise ProjError
+        else:
+            buflenz = bufleny
+        if not (buflenx == bufleny == buflenz):
+            raise ProjError('x,y and z must be same size')
+        xx = <double *>xdata
+        yy = <double *>ydata
+        if inz is not None:
+            zz = <double *>zdata
+        else:
+            zz = NULL
+        npts = buflenx//8
+
+        # degrees to radians
+        if not self.is_pipeline and not radians and self.input_radians:
+            for i from 0 <= i < npts:
+                xx[i] = xx[i]*_DG2RAD
+                yy[i] = yy[i]*_DG2RAD
+        # radians to degrees
+        elif not self.is_pipeline and radians and not self.input_radians and self.input_geographic:
+            for i from 0 <= i < npts:
+                xx[i] = xx[i]*_RAD2DG
+                yy[i] = yy[i]*_RAD2DG
+
+        proj_trans_generic(
+            self.projpj,
+            PJ_FWD,
+            xx, _DOUBLESIZE, npts,
+            yy, _DOUBLESIZE, npts,
+            zz, _DOUBLESIZE, npts,
+            NULL, 0, 0,
+        )
+        cdef int errno = proj_errno(self.projpj)
+        if errno:
+            raise ProjError("proj_trans_generic error: {}".format(
+                pystrdecode(proj_errno_string(errno))))
+
+        # radians to degrees
+        if not self.is_pipeline and not radians and self.output_radians:
+            for i from 0 <= i < npts:
+                xx[i] = xx[i]*_RAD2DG
+                yy[i] = yy[i]*_RAD2DG
+        # degrees to radians
+        elif not self.is_pipeline and radians and not self.output_radians and self.output_geographic:
+            for i from 0 <= i < npts:
+                xx[i] = xx[i]*_DG2RAD
+                yy[i] = yy[i]*_DG2RAD
+
+
+    def _transform_sequence(self, Py_ssize_t stride, inseq, bint switch, radians):
+        # private function to itransform function
+        cdef:
+            void *buffer
+            double *coords
+            double *x
+            double *y
+            double *z
+            Py_ssize_t buflen, npts, i, j
+            int err
+
+        if stride < 2:
+            raise ProjError("coordinates must contain at least 2 values")
+        if PyObject_AsWriteBuffer(inseq, &buffer, &buflen) <> 0:
+            raise ProjError("object does not provide the python buffer writeable interface")
+
+        coords = <double*>buffer
+        npts = buflen // (stride * _DOUBLESIZE)
+
+        # degrees to radians
+        if not self.is_pipeline and not radians and self.input_radians:
+            for i from 0 <= i < npts:
+                j = stride*i
+                coords[j] *= _DG2RAD
+                coords[j+1] *= _DG2RAD
+        # radians to degrees
+        elif not self.is_pipeline and radians and not self.input_radians and self.input_geographic:
+            for i from 0 <= i < npts:
+                j = stride*i
+                coords[j] *= _RAD2DG
+                coords[j+1] *= _RAD2DG
+
+        if not switch:
+            x = coords
+            y = coords + 1
+        else:
+            x = coords + 1
+            y = coords
+
+        if stride == 2:
+            z = NULL
+        else:
+            z = coords + 2
+
+        proj_trans_generic (
+            self.projpj,
+            PJ_FWD,
+            x, stride*_DOUBLESIZE, npts,
+            y, stride*_DOUBLESIZE, npts,
+            z, stride*_DOUBLESIZE, npts,
+            NULL, 0, 0,
+        )
+
+        cdef int errno = proj_errno(self.projpj)
+        if errno:
+            raise ProjError("proj_trans_generic error: {}".format(
+                proj_errno_string(errno)))
+
+        # radians to degrees
+        if not self.is_pipeline and not radians and self.output_radians:
+            for i from 0 <= i < npts:
+                j = stride*i
+                coords[j] *= _RAD2DG
+                coords[j+1] *= _RAD2DG
+        # degrees to radians
+        elif not self.is_pipeline and radians and not self.output_radians and self.output_geographic:
+            for i from 0 <= i < npts:
+                j = stride*i
+                coords[j] *= _DG2RAD
+                coords[j+1] *= _DG2RAD


=====================================
pyproj/proj.py
=====================================
@@ -0,0 +1,389 @@
+# -*- coding: utf-8 -*-
+"""
+Cython wrapper to provide python interfaces to
+PROJ.4 (https://github.com/OSGeo/proj.4/wiki) functions.
+
+Performs cartographic transformations and geodetic computations.
+
+The Proj class can convert from geographic (longitude,latitude)
+to native map projection (x,y) coordinates and vice versa, or
+from one map projection coordinate system directly to another.
+The module variable pj_list is a dictionary containing all the
+available projections and their descriptions.
+
+Input coordinates can be given as python arrays, lists/tuples,
+scalars or numpy/Numeric/numarray arrays. Optimized for objects
+that support the Python buffer protocol (regular python and
+numpy array objects).
+
+Download: http://python.org/pypi/pyproj
+
+Contact:  Jeffrey Whitaker <jeffrey.s.whitaker at noaa.gov
+
+copyright (c) 2006 by Jeffrey Whitaker.
+
+Permission to use, copy, modify, and distribute this software
+and its documentation for any purpose and without fee is hereby
+granted, provided that the above copyright notice appear in all
+copies and that both the copyright notice and this permission
+notice appear in supporting documentation. THE AUTHOR DISCLAIMS
+ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
+SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR
+CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
+LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
+NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """
+import re
+import warnings
+
+from pyproj import _proj
+from pyproj.compat import cstrencode, pystrdecode
+from pyproj.crs import CRS
+from pyproj.utils import _convertback, _copytobuffer
+
+# import numpy as np
+proj_version_str = _proj.proj_version_str
+
+pj_list = {
+    "aea": "Albers Equal Area",
+    "aeqd": "Azimuthal Equidistant",
+    "affine": "Affine transformation",
+    "airy": "Airy",
+    "aitoff": "Aitoff",
+    "alsk": "Mod. Stererographics of Alaska",
+    "apian": "Apian Globular I",
+    "august": "August Epicycloidal",
+    "bacon": "Bacon Globular",
+    "bertin1953": "Bertin 1953",
+    "bipc": "Bipolar conic of western hemisphere",
+    "boggs": "Boggs Eumorphic",
+    "bonne": "Bonne (Werner lat_1=90)",
+    "calcofi": "Cal Coop Ocean Fish Invest Lines/Stations",
+    "cart": "Geodetic/cartesian conversions",
+    "cass": "Cassini",
+    "cc": "Central Cylindrical",
+    "ccon": "Central Conic",
+    "cea": "Equal Area Cylindrical",
+    "chamb": "Chamberlin Trimetric",
+    "collg": "Collignon",
+    "comill": "Compact Miller",
+    "crast": "Craster Parabolic (Putnins P4)",
+    "deformation": "Kinematic grid shift",
+    "denoy": "Denoyer Semi-Elliptical",
+    "eck1": "Eckert I",
+    "eck2": "Eckert II",
+    "eck3": "Eckert III",
+    "eck4": "Eckert IV",
+    "eck5": "Eckert V",
+    "eck6": "Eckert VI",
+    "eqc": "Equidistant Cylindrical (Plate Caree)",
+    "eqdc": "Equidistant Conic",
+    "euler": "Euler",
+    "etmerc": "Extended Transverse Mercator",
+    "fahey": "Fahey",
+    "fouc": "Foucaut",
+    "fouc_s": "Foucaut Sinusoidal",
+    "gall": "Gall (Gall Stereographic)",
+    "geoc": "Geocentric Latitude",
+    "geocent": "Geocentric",
+    "geogoffset": "Geographic Offset",
+    "geos": "Geostationary Satellite View",
+    "gins8": "Ginsburg VIII (TsNIIGAiK)",
+    "gn_sinu": "General Sinusoidal Series",
+    "gnom": "Gnomonic",
+    "goode": "Goode Homolosine",
+    "gs48": "Mod. Stererographics of 48 U.S.",
+    "gs50": "Mod. Stererographics of 50 U.S.",
+    "hammer": "Hammer & Eckert-Greifendorff",
+    "hatano": "Hatano Asymmetrical Equal Area",
+    "healpix": "HEALPix",
+    "rhealpix": "rHEALPix",
+    "helmert": "3- and 7-parameter Helmert shift",
+    "hgridshift": "Horizontal grid shift",
+    "horner": "Horner polynomial evaluation",
+    "igh": "Interrupted Goode Homolosine",
+    "imw_p": "International Map of the World Polyconic",
+    "isea": "Icosahedral Snyder Equal Area",
+    "kav5": "Kavraisky V",
+    "kav7": "Kavraisky VII",
+    "krovak": "Krovak",
+    "labrd": "Laborde",
+    "laea": "Lambert Azimuthal Equal Area",
+    "lagrng": "Lagrange",
+    "larr": "Larrivee",
+    "lask": "Laskowski",
+    "lonlat": "Lat/long (Geodetic)",
+    "latlon": "Lat/long (Geodetic alias)",
+    "latlong": "Lat/long (Geodetic alias)",
+    "longlat": "Lat/long (Geodetic alias)",
+    "lcc": "Lambert Conformal Conic",
+    "lcca": "Lambert Conformal Conic Alternative",
+    "leac": "Lambert Equal Area Conic",
+    "lee_os": "Lee Oblated Stereographic",
+    "loxim": "Loximuthal",
+    "lsat": "Space oblique for LANDSAT",
+    "mbt_s": "McBryde-Thomas Flat-Polar Sine",
+    "mbt_fps": "McBryde-Thomas Flat-Pole Sine (No. 2)",
+    "mbtfpp": "McBride-Thomas Flat-Polar Parabolic",
+    "mbtfpq": "McBryde-Thomas Flat-Polar Quartic",
+    "mbtfps": "McBryde-Thomas Flat-Polar Sinusoidal",
+    "merc": "Mercator",
+    "mil_os": "Miller Oblated Stereographic",
+    "mill": "Miller Cylindrical",
+    "misrsom": "Space oblique for MISR",
+    "moll": "Mollweide",
+    "molobadekas": "Molodensky-Badekas transform",
+    "molodensky": "Molodensky transform",
+    "murd1": "Murdoch I",
+    "murd2": "Murdoch II",
+    "murd3": "Murdoch III",
+    "natearth": "Natural Earth",
+    "natearth2": "Natural Earth 2",
+    "nell": "Nell",
+    "nell_h": "Nell-Hammer",
+    "nicol": "Nicolosi Globular",
+    "nsper": "Near-sided perspective",
+    "nzmg": "New Zealand Map Grid",
+    "ob_tran": "General Oblique Transformation",
+    "ocea": "Oblique Cylindrical Equal Area",
+    "oea": "Oblated Equal Area",
+    "omerc": "Oblique Mercator",
+    "ortel": "Ortelius Oval",
+    "ortho": "Orthographic",
+    "patterson": "Patterson Cylindrical",
+    "pconic": "Perspective Conic",
+    "pipeline": "Transformation pipeline manager",
+    "poly": "Polyconic (American)",
+    "pop": "Retrieve coordinate value from pipeline stack",
+    "putp1": "Putnins P1",
+    "putp2": "Putnins P2",
+    "putp3": "Putnins P3",
+    "putp3p": "Putnins P3'",
+    "putp4p": "Putnins P4'",
+    "putp5": "Putnins P5",
+    "putp5p": "Putnins P5'",
+    "putp6": "Putnins P6",
+    "putp6p": "Putnins P6'",
+    "qua_aut": "Quartic Authalic",
+    "robin": "Robinson",
+    "rouss": "Roussilhe Stereographic",
+    "rpoly": "Rectangular Polyconic",
+    "sch": "Spherical Cross-track Height",
+    "sinu": "Sinusoidal (Sanson-Flamsteed)",
+    "somerc": "Swiss. Obl. Mercator",
+    "stere": "Stereographic",
+    "sterea": "Oblique Stereographic Alternative",
+    "gstmerc": "Gauss-Schreiber Transverse Mercator (aka Gauss-Laborde Reunion)",
+    "tcc": "Transverse Central Cylindrical",
+    "tcea": "Transverse Cylindrical Equal Area",
+    "times": "Times",
+    "tissot": "Tissot Conic",
+    "tmerc": "Transverse Mercator",
+    "tpeqd": "Two Point Equidistant",
+    "tpers": "Tilted perspective",
+    "ups": "Universal Polar Stereographic",
+    "urm5": "Urmaev V",
+    "urmfps": "Urmaev Flat-Polar Sinusoidal",
+    "utm": "Universal Transverse Mercator (UTM)",
+    "vandg": "van der Grinten (I)",
+    "vandg2": "van der Grinten II",
+    "vandg3": "van der Grinten III",
+    "vandg4": "van der Grinten IV",
+    "vitk1": "Vitkovsky I",
+    "wag1": "Wagner I (Kavraisky VI)",
+    "wag2": "Wagner II",
+    "wag3": "Wagner III",
+    "wag4": "Wagner IV",
+    "wag5": "Wagner V",
+    "wag6": "Wagner VI",
+    "wag7": "Wagner VII",
+    "webmerc": "Web Mercator / Pseudo Mercator",
+    "weren": "Werenskiold I",
+    "wink1": "Winkel I",
+    "wink2": "Winkel II",
+    "wintri": "Winkel Tripel",
+}
+
+
+class Proj(_proj.Proj):
+    """
+    performs cartographic transformations (converts from
+    longitude,latitude to native map projection x,y coordinates and
+    vice versa) using proj (https://github.com/OSGeo/proj.4/wiki).
+
+    A Proj class instance is initialized with proj map projection
+    control parameter key/value pairs. The key/value pairs can
+    either be passed in a dictionary, or as keyword arguments,
+    or as a proj4 string (compatible with the proj command). See
+    http://www.remotesensing.org/geotiff/proj_list for examples of
+    key/value pairs defining different map projections.
+
+    Calling a Proj class instance with the arguments lon, lat will
+    convert lon/lat (in degrees) to x/y native map projection
+    coordinates (in meters).  If optional keyword 'inverse' is True
+    (default is False), the inverse transformation from x/y to
+    lon/lat is performed. If optional keyword 'errcheck' is True (default is
+    False) an exception is raised if the transformation is invalid.
+    If errcheck=False and the transformation is invalid, no
+    exception is raised and 1.e30 is returned. If the optional keyword
+    'preserve_units' is True, the units in map projection coordinates
+    are not forced to be meters.
+
+    Works with numpy and regular python array objects, python
+    sequences and scalars.
+    """
+
+    def __init__(self, projparams=None, preserve_units=True, **kwargs):
+        """
+        initialize a Proj class instance.
+
+        See the proj documentation (https://github.com/OSGeo/proj.4/wiki)
+        for more information about projection parameters.
+
+        Parameters
+        ----------
+        projparams: int, str, dict, pyproj.CRS
+            A proj.4 or WKT string, proj.4 dict, EPSG integer, or a pyproj.CRS instnace.
+        preserve_units: bool
+            If false, will ensure +units=m.
+        **kwargs:
+            proj.4 projection parameters.
+
+
+        Example usage:
+
+        >>> from pyproj import Proj
+        >>> p = Proj(proj='utm',zone=10,ellps='WGS84', preserve_units=False) # use kwargs
+        >>> x,y = p(-120.108, 34.36116666)
+        >>> 'x=%9.3f y=%11.3f' % (x,y)
+        'x=765975.641 y=3805993.134'
+        >>> 'lon=%8.3f lat=%5.3f' % p(x,y,inverse=True)
+        'lon=-120.108 lat=34.361'
+        >>> # do 3 cities at a time in a tuple (Fresno, LA, SF)
+        >>> lons = (-119.72,-118.40,-122.38)
+        >>> lats = (36.77, 33.93, 37.62 )
+        >>> x,y = p(lons, lats)
+        >>> 'x: %9.3f %9.3f %9.3f' % x
+        'x: 792763.863 925321.537 554714.301'
+        >>> 'y: %9.3f %9.3f %9.3f' % y
+        'y: 4074377.617 3763936.941 4163835.303'
+        >>> lons, lats = p(x, y, inverse=True) # inverse transform
+        >>> 'lons: %8.3f %8.3f %8.3f' % lons
+        'lons: -119.720 -118.400 -122.380'
+        >>> 'lats: %8.3f %8.3f %8.3f' % lats
+        'lats:   36.770   33.930   37.620'
+        >>> p2 = Proj('+proj=utm +zone=10 +ellps=WGS84', preserve_units=False) # use proj4 string
+        >>> x,y = p2(-120.108, 34.36116666)
+        >>> 'x=%9.3f y=%11.3f' % (x,y)
+        'x=765975.641 y=3805993.134'
+        >>> p = Proj(init="epsg:32667", preserve_units=False)
+        >>> 'x=%12.3f y=%12.3f (meters)' % p(-114.057222, 51.045)
+        'x=-1783506.250 y= 6193827.033 (meters)'
+        >>> p = Proj("+init=epsg:32667")
+        >>> 'x=%12.3f y=%12.3f (feet)' % p(-114.057222, 51.045)
+        'x=-5851386.754 y=20320914.191 (feet)'
+        >>> # test data with radian inputs
+        >>> p1 = Proj(init="epsg:4214")
+        >>> x1, y1 = p1(116.366, 39.867)
+        >>> '{:.3f} {:.3f}'.format(x1, y1)
+        '2.031 0.696'
+        >>> x2, y2 = p1(x1, y1, inverse=True)
+        >>> '{:.3f} {:.3f}'.format(x2, y2)
+        '116.366 39.867'
+        """
+        self.crs = CRS.from_user_input(projparams if projparams is not None else kwargs)
+        # make sure units are meters if preserve_units is False.
+        if not preserve_units and self.crs.is_projected:
+            projstring = self.crs.to_proj4(4)
+            projstring = re.sub(r"\s\+units=[\w-]+", "", projstring)
+            projstring += " +units=m"
+            self.crs = CRS(projstring)
+        super(Proj, self).__init__(
+            cstrencode(self.crs.to_proj4().replace("+type=crs", "").strip())
+        )
+
+    def __call__(self, *args, **kw):
+        # ,lon,lat,inverse=False,errcheck=False):
+        """
+        Calling a Proj class instance with the arguments lon, lat will
+        convert lon/lat (in degrees) to x/y native map projection
+        coordinates (in meters).  If optional keyword 'inverse' is True
+        (default is False), the inverse transformation from x/y to
+        lon/lat is performed. If optional keyword 'errcheck' is True (default is
+        False) an exception is raised if the transformation is invalid.
+        If errcheck=False and the transformation is invalid, no
+        exception is raised and 1.e30 is returned.
+
+        Inputs should be doubles (they will be cast to doubles if they
+        are not, causing a slight performance hit).
+
+        Works with numpy and regular python array objects, python
+        sequences and scalars, but is fastest for array objects.
+        """
+        inverse = kw.get("inverse", False)
+        errcheck = kw.get("errcheck", False)
+        # if len(args) == 1:
+        #    latlon = np.array(args[0], copy=True,
+        #                      order='C', dtype=float, ndmin=2)
+        #    if inverse:
+        #        _proj.Proj._invn(self, latlon, radians=radians, errcheck=errcheck)
+        #    else:
+        #        _proj.Proj._fwdn(self, latlon, radians=radians, errcheck=errcheck)
+        #    return latlon
+        lon, lat = args
+        # process inputs, making copies that support buffer API.
+        inx, xisfloat, xislist, xistuple = _copytobuffer(lon)
+        iny, yisfloat, yislist, yistuple = _copytobuffer(lat)
+        # call proj4 functions. inx and iny modified in place.
+        if inverse:
+            self._inv(inx, iny, errcheck=errcheck)
+        else:
+            self._fwd(inx, iny, errcheck=errcheck)
+        # if inputs were lists, tuples or floats, convert back.
+        outx = _convertback(xisfloat, xislist, xistuple, inx)
+        outy = _convertback(yisfloat, yislist, xistuple, iny)
+        return outx, outy
+
+    def is_latlong(self):
+        """
+        Returns
+        -------
+        bool: True if projection in geographic (lon/lat) coordinates.
+        """
+        warnings.warn("'is_latlong()' is deprecated. Please use 'crs.is_geographic'.")
+        return self.crs.is_geographic
+
+    def is_geocent(self):
+        """
+        Returns
+        -------
+        bool: True if projection in geocentric (x/y) coordinates
+        """
+        warnings.warn("'is_geocent()' is deprecated. Please use 'crs.is_geocent'.")
+        return self.is_geocent
+
+    def definition_string(self):
+        """Returns formal definition string for projection
+
+        >>> Proj('+init=epsg:4326').definition_string()
+        'proj=longlat datum=WGS84 no_defs ellps=WGS84 towgs84=0,0,0'
+        >>>
+        """
+        return pystrdecode(self.definition)
+
+    def to_latlong_def(self):
+        """return the definition string of the geographic (lat/lon)
+        coordinate version of the current projection"""
+        # This is a little hacky way of getting a latlong proj object
+        # Maybe instead of this function the __cinit__ function can take a
+        # Proj object and a type (where type = "geographic") as the libproj
+        # java wrapper
+        return self.crs.to_geodetic().to_proj4(4)
+
+    # deprecated : using in transform raised a TypeError in release 1.9.5.1
+    # reported in issue #53, resolved in #73.
+    def to_latlong(self):
+        """return a new Proj instance which is the geographic (lat/lon)
+        coordinate version of the current projection"""
+        return Proj(self.crs.to_geodetic())


=====================================
pyproj/transformer.py
=====================================
@@ -0,0 +1,354 @@
+# -*- coding: utf-8 -*-
+"""
+The transformer module is for performing cartographic transformations.
+
+Copyright (c) 2019 pyproj Contributors.
+
+Permission to use, copy, modify, and distribute this software
+and its documentation for any purpose and without fee is hereby
+granted, provided that the above copyright notice appear in all
+copies and that both the copyright notice and this permission
+notice appear in supporting documentation. THE AUTHOR DISCLAIMS
+ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
+SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR
+CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
+LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
+NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE."""
+
+from array import array
+from itertools import chain, islice
+
+from pyproj._transformer import _Transformer
+from pyproj.compat import cstrencode
+from pyproj.utils import _convertback, _copytobuffer
+
+try:
+    from future_builtins import zip  # python 2.6+
+except ImportError:
+    pass  # python 3.x
+
+
+class Transformer(object):
+    """
+    The Transformer class is for facilitating re-using
+    transforms without needing to re-create them. The goal
+    is to make repeated transforms faster.
+
+    Additionally, it provides multiple methods for initialization.
+    """
+
+    @staticmethod
+    def from_proj(proj_from, proj_to):
+        """Make a Transformer from a :obj:`pyproj.Proj` or input used to create one.
+
+        Parameters
+        ----------
+        proj_from: :obj:`pyproj.Proj` or input used to create one
+            Projection of input data.
+        proj_from: :obj:`pyproj.Proj` or input used to create one
+            Projection of output data.
+
+        Returns
+        -------
+        :obj:`pyproj.Transformer`
+
+        """
+
+        transformer = Transformer()
+        transformer._transformer = _Transformer.from_proj(proj_from, proj_to)
+        return transformer
+
+    @staticmethod
+    def from_crs(crs_from, crs_to):
+        """Make a Transformer from a :obj:`pyproj.CRS` or input used to create one.
+
+        Parameters
+        ----------
+        proj_from: :obj:`pyproj.CRS` or input used to create one
+            Projection of input data.
+        proj_from: :obj:`pyproj.CRS` or input used to create one
+            Projection of output data.
+
+        Returns
+        -------
+        :obj:`pyproj.Transformer`
+
+        """
+        transformer = Transformer()
+        transformer._transformer = _Transformer.from_crs(crs_from, crs_to)
+        return transformer
+
+    @staticmethod
+    def from_pipeline(proj_pipeline):
+        """Make a Transformer from a PROJ pipeline string.
+
+        https://proj4.org/operations/pipeline.html
+
+        Parameters
+        ----------
+        proj_pipeline: str
+            Projection pipeline string.
+
+        Returns
+        -------
+        :obj:`pyproj.Transformer`
+
+        """
+        transformer = Transformer()
+        transformer._transformer = _Transformer.from_pipeline(cstrencode(proj_pipeline))
+        return transformer
+
+    def transform(self, xx, yy, zz=None, radians=False):
+        """
+        Transform points between two coordinate systems.
+
+        Parameters
+        ----------
+        xx: scalar or array (numpy or python)
+            Input x coordinate(s).
+        yy: scalar or array (numpy or python)
+            Input y coordinate(s).
+        zz: scalar or array (numpy or python), optional
+            Input z coordinate(s).
+        radians: boolean, optional
+            If True, will expect input data to be in radians and will return radians
+            if the projection is geographic. Default is False (degrees). Ignored for
+            pipeline transformations.
+
+
+        Example:
+
+        >>> from pyproj import Transformer
+        >>> transformer = Transformer.from_crs("epsg:4326", "epsg:3857")
+        >>> x3, y3 = transformer.transform(33, 98)
+        >>> "%.3f  %.3f" % (x3, y3)
+        '10909310.098  3895303.963'
+        >>> pipeline_str = "+proj=pipeline +step +proj=longlat +ellps=WGS84 +step +proj=unitconvert +xy_in=rad +xy_out=deg"
+        >>> pipe_trans = Transformer.from_pipeline(pipeline_str)
+        >>> xt, yt = pipe_trans.transform(2.1, 0.001)
+        >>> "%.3f  %.3f" % (xt, yt)
+        '120.321  0.057'
+        >>> transproj = Transformer.from_proj({"proj":'geocent', "ellps":'WGS84', "datum":'WGS84'}, '+init=EPSG:4326')
+        >>> xpj, ypj, zpj = transproj.transform(-2704026.010, -4253051.810, 3895878.820, radians=True)
+        >>> "%.3f %.3f %.3f" % (xpj, ypj, zpj)
+        '-2.137 0.661 -20.531'
+        >>> transprojr = Transformer.from_proj('+init=EPSG:4326', {"proj":'geocent', "ellps":'WGS84', "datum":'WGS84'})
+        >>> xpjr, ypjr, zpjr = transprojr.transform(xpj, ypj, zpj, radians=True)
+        >>> "%.3f %.3f %.3f" % (xpjr, ypjr, zpjr)
+        '-2704026.010 -4253051.810 3895878.820'
+
+        """
+        # process inputs, making copies that support buffer API.
+        inx, xisfloat, xislist, xistuple = _copytobuffer(xx)
+        iny, yisfloat, yislist, yistuple = _copytobuffer(yy)
+        if zz is not None:
+            inz, zisfloat, zislist, zistuple = _copytobuffer(zz)
+        else:
+            inz = None
+        # call pj_transform.  inx,iny,inz buffers modified in place.
+        self._transformer._transform(inx, iny, inz, radians)
+        # if inputs were lists, tuples or floats, convert back.
+        outx = _convertback(xisfloat, xislist, xistuple, inx)
+        outy = _convertback(yisfloat, yislist, xistuple, iny)
+        if inz is not None:
+            outz = _convertback(zisfloat, zislist, zistuple, inz)
+            return outx, outy, outz
+        else:
+            return outx, outy
+
+    def itransform(self, points, switch=False, radians=False):
+        """
+        Iterator/generator version of the function pyproj.Transformer.transform.
+
+
+        Parameters
+        ----------
+        points: list
+            List of point tuples.
+        switch: boolean, optional
+            If True x, y or lon,lat coordinates of points are switched to y, x 
+            or lat, lon. Default is False.
+        radians: boolean, optional
+            If True, will expect input data to be in radians and will return radians
+            if the projection is geographic. Default is False (degrees). Ignored for
+            pipeline transformations.
+
+
+        Example:
+
+        >>> from pyproj import Transformer
+        >>> transformer = Transformer.from_crs(4326, 2100)
+        >>> points = [(22.95, 40.63), (22.81, 40.53), (23.51, 40.86)]
+        >>> for pt in transformer.itransform(points): '{:.3f} {:.3f}'.format(*pt)
+        '2221638.801 2637034.372'
+        '2212924.125 2619851.898'
+        '2238294.779 2703763.736'
+        >>> pipeline_str = "+proj=pipeline +step +proj=longlat +ellps=WGS84 +step +proj=unitconvert +xy_in=rad +xy_out=deg"
+        >>> pipe_trans = Transformer.from_pipeline(pipeline_str)
+        >>> for pt in pipe_trans.itransform([(2.1, 0.001)]): '{:.3f} {:.3f}'.format(*pt)
+        '120.321 0.057'
+        >>> transproj = Transformer.from_proj({"proj":'geocent', "ellps":'WGS84', "datum":'WGS84'}, '+init=EPSG:4326')
+        >>> for pt in transproj.itransform([(-2704026.010, -4253051.810, 3895878.820)], radians=True): '{:.3f} {:.3f} {:.3f}'.format(*pt)
+        '-2.137 0.661 -20.531'
+        >>> transprojr = Transformer.from_proj('+init=EPSG:4326', {"proj":'geocent', "ellps":'WGS84', "datum":'WGS84'})
+        >>> for pt in transprojr.itransform([(-2.137, 0.661, -20.531)], radians=True): '{:.3f} {:.3f} {:.3f}'.format(*pt)
+        '-2704214.394 -4254414.478 3894270.731'
+
+        """
+        it = iter(points)  # point iterator
+        # get first point to check stride
+        try:
+            fst_pt = next(it)
+        except StopIteration:
+            raise ValueError("iterable must contain at least one point")
+
+        stride = len(fst_pt)
+        if stride not in (2, 3):
+            raise ValueError("points can contain up to 3 coordinates")
+
+        # create a coordinate sequence generator etc. x1,y1,z1,x2,y2,z2,....
+        # chain so the generator returns the first point that was already acquired
+        coord_gen = chain(fst_pt, (coords[c] for coords in it for c in range(stride)))
+
+        while True:
+            # create a temporary buffer storage for the next 64 points (64*stride*8 bytes)
+            buff = array("d", islice(coord_gen, 0, 64 * stride))
+            if len(buff) == 0:
+                break
+
+            self._transformer._transform_sequence(stride, buff, switch, radians)
+
+            for pt in zip(*([iter(buff)] * stride)):
+                yield pt
+
+
+def transform(p1, p2, x, y, z=None, radians=False):
+    """
+    x2, y2, z2 = transform(p1, p2, x1, y1, z1)
+
+    Transform points between two coordinate systems defined by the
+    Proj instances p1 and p2.
+
+    The points x1,y1,z1 in the coordinate system defined by p1 are
+    transformed to x2,y2,z2 in the coordinate system defined by p2.
+
+    z1 is optional, if it is not set it is assumed to be zero (and
+    only x2 and y2 are returned). If the optional keyword 
+    'radians' is True (default is False), then all input and 
+    output coordinates will be in radians instead of the default 
+    of degrees for geographic input/output projections.
+
+    In addition to converting between cartographic and geographic
+    projection coordinates, this function can take care of datum
+    shifts (which cannot be done using the __call__ method of the
+    Proj instances). It also allows for one of the coordinate
+    systems to be geographic (proj = 'latlong').
+
+    x,y and z can be numpy or regular python arrays, python
+    lists/tuples or scalars. Arrays are fastest.  For projections in
+    geocentric coordinates, values of x and y are given in meters.
+    z is always meters.
+
+    Example usage:
+
+    >>> from pyproj import Proj, transform 
+    >>> # projection 1: UTM zone 15, grs80 ellipse, NAD83 datum
+    >>> # (defined by epsg code 26915)
+    >>> p1 = Proj(init='epsg:26915', preserve_units=False)
+    >>> # projection 2: UTM zone 15, clrk66 ellipse, NAD27 datum
+    >>> p2 = Proj(init='epsg:26715', preserve_units=False)
+    >>> # find x,y of Jefferson City, MO.
+    >>> x1, y1 = p1(-92.199881,38.56694)
+    >>> # transform this point to projection 2 coordinates.
+    >>> x2, y2 = transform(p1,p2,x1,y1)
+    >>> '%9.3f %11.3f' % (x1,y1)
+    '569704.566 4269024.671'
+    >>> '%9.3f %11.3f' % (x2,y2)
+    '569722.342 4268814.028'
+    >>> '%8.3f %5.3f' % p2(x2,y2,inverse=True)
+    ' -92.200 38.567'
+    >>> # process 3 points at a time in a tuple
+    >>> lats = (38.83,39.32,38.75) # Columbia, KC and StL Missouri
+    >>> lons = (-92.22,-94.72,-90.37)
+    >>> x1, y1 = p1(lons,lats)
+    >>> x2, y2 = transform(p1,p2,x1,y1)
+    >>> xy = x1+y1
+    >>> '%9.3f %9.3f %9.3f %11.3f %11.3f %11.3f' % xy
+    '567703.344 351730.944 728553.093 4298200.739 4353698.725 4292319.005'
+    >>> xy = x2+y2
+    >>> '%9.3f %9.3f %9.3f %11.3f %11.3f %11.3f' % xy
+    '567721.149 351747.558 728569.133 4297989.112 4353489.645 4292106.305'
+    >>> lons, lats = p2(x2,y2,inverse=True)
+    >>> xy = lons+lats
+    >>> '%8.3f %8.3f %8.3f %5.3f %5.3f %5.3f' % xy
+    ' -92.220  -94.720  -90.370 38.830 39.320 38.750'
+    >>> # test datum shifting, installation of extra datum grid files.
+    >>> p1 = Proj(proj='latlong',datum='WGS84')
+    >>> x1 = -111.5; y1 = 45.25919444444
+    >>> p2 = Proj(proj="utm",zone=10,datum='NAD27', preserve_units=False)
+    >>> x2, y2 = transform(p1, p2, x1, y1)
+    >>> "%s  %s" % (str(x2)[:9],str(y2)[:9])
+    '1402291.0  5076289.5'
+    >>> from pyproj import CRS
+    >>> c1 = CRS(proj='latlong',datum='WGS84')
+    >>> x1 = -111.5; y1 = 45.25919444444
+    >>> c2 = CRS(proj="utm",zone=10,datum='NAD27')
+    >>> x2, y2 = transform(c1, c2, x1, y1)
+    >>> "%s  %s" % (str(x2)[:9],str(y2)[:9])
+    '1402291.0  5076289.5'
+    >>> pj = Proj(init="epsg:4214")
+    >>> pjx, pjy = pj(116.366, 39.867)
+    >>> xr, yr = transform(pj, Proj(4326), pjx, pjy, radians=True)
+    >>> "%.3f %.3f" % (xr, yr)
+    '2.031 0.696'
+    """
+    return Transformer.from_proj(p1, p2).transform(x, y, z, radians)
+
+
+def itransform(p1, p2, points, switch=False, radians=False):
+    """
+    points2 = itransform(p1, p2, points1)
+    Iterator/generator version of the function pyproj.transform.
+    Transform points between two coordinate systems defined by the
+    Proj instances p1 and p2. This function can be used as an alternative
+    to pyproj.transform when there is a need to transform a big number of
+    coordinates lazily, for example when reading and processing from a file.
+    Points1 is an iterable/generator of coordinates x1,y1(,z1) or lon1,lat1(,z1)
+    in the coordinate system defined by p1. Points2 is an iterator that returns tuples
+    of x2,y2(,z2) or lon2,lat2(,z2) coordinates in the coordinate system defined by p2.
+    z are provided optionally.
+
+    Points1 can be:
+        - a tuple/list of tuples/lists i.e. for 2d points: [(xi,yi),(xj,yj),....(xn,yn)]
+        - a Nx3 or Nx2 2d numpy array where N is the point number
+        - a generator of coordinates (xi,yi) for 2d points or (xi,yi,zi) for 3d
+
+    If optional keyword 'switch' is True (default is False) then x, y or lon,lat coordinates
+    of points are switched to y, x or lat, lon. If the optional keyword 'radians' is True
+    (default is False), then all input and output coordinates will be in radians instead
+    of the default of degrees for geographic input/output projections.
+
+
+    Example usage:
+
+    >>> from pyproj import Proj, itransform 
+    >>> # projection 1: WGS84
+    >>> # (defined by epsg code 4326)
+    >>> p1 = Proj(init='epsg:4326', preserve_units=False)
+    >>> # projection 2: GGRS87 / Greek Grid
+    >>> p2 = Proj(init='epsg:2100', preserve_units=False)
+    >>> # Three points with coordinates lon, lat in p1
+    >>> points = [(22.95, 40.63), (22.81, 40.53), (23.51, 40.86)]
+    >>> # transform this point to projection 2 coordinates.
+    >>> for pt in itransform(p1,p2,points): '%6.3f %7.3f' % pt
+    '411200.657 4498214.742'
+    '399210.500 4487264.963'
+    '458703.102 4523331.451'
+    >>> pj = Proj(init="epsg:4214")
+    >>> pjx, pjy = pj(116.366, 39.867)
+    >>> for pt in itransform(pj, Proj(4326), [(pjx, pjy)], radians=True): '{:.3f} {:.3f}'.format(*pt)
+    '2.031 0.696'
+    """
+    return Transformer.from_proj(p1, p2).itransform(points, switch, radians)


=====================================
setup.py
=====================================
@@ -81,7 +81,6 @@ if "clean" not in sys.argv:
         cythonize_options["compiler_directives"] = {"linetrace": True}
         cythonize_options["annotate"] = True
 
-
     proj_libdir = os.environ.get("PROJ_LIBDIR")
     libdirs = []
     if proj_libdir is None:
@@ -102,7 +101,6 @@ if "clean" not in sys.argv:
     ):
         package_data["pyproj"].append(os.path.join(BASE_INTERNAL_PROJ_DIR, "lib", "*"))
 
-
     proj_incdir = os.environ.get("PROJ_INCDIR")
     incdirs = []
     if proj_incdir is None:
@@ -135,6 +133,9 @@ if "clean" not in sys.argv:
             Extension("pyproj._proj", ["pyproj/_proj.pyx"], **ext_options),
             Extension("pyproj._geod", ["pyproj/_geod.pyx"], **ext_options),
             Extension("pyproj._crs", ["pyproj/_crs.pyx"], **ext_options),
+            Extension(
+                "pyproj._transformer", ["pyproj/_transformer.pyx"], **ext_options
+            ),
         ],
         quiet=True,
         **cythonize_options


=====================================
sphinx/api/index.rst
=====================================
@@ -8,4 +8,5 @@ API Documentation
    proj
    crs
    geod
+   transformer
    datadir


=====================================
sphinx/api/proj.rst
=====================================
@@ -5,19 +5,8 @@ Proj
 pyproj.Proj
 -----------
 
-.. autoclass:: pyproj.Proj
+.. autoclass:: pyproj.proj.Proj
     :members:
     :inherited-members:
     :special-members: __init__, __call__
     :show-inheritance:
-
-pyproj.transform
-----------------
-
-.. autofunction:: pyproj.transform
-
-
-pyproj.itransform
------------------
-
-.. autofunction:: pyproj.itransform


=====================================
sphinx/api/transformer.rst
=====================================
@@ -0,0 +1,19 @@
+Transformer
+===========
+
+pyproj.Transformer
+------------------
+
+.. autoclass:: pyproj.transformer.Transformer
+    :members:
+
+pyproj.transform
+----------------
+
+.. autofunction:: pyproj.transformer.transform
+
+
+pyproj.itransform
+-----------------
+
+.. autofunction:: pyproj.transformer.itransform
\ No newline at end of file


=====================================
sphinx/history.rst
=====================================
@@ -1,5 +1,13 @@
 Change Log
 ==========
+
+2.1.0
+~~~~~
+* Added :class:`pyproj.Transformer` to make repetitive transformations more efficient (issue #187)
+* Added fix for using local datumgrids with transform (issue #191)
+* Added :class:`pyproj.Transformer.from_pipeline` to support pipeline transformations.
+* Added fix for conversion between radians/degrees for transformations (issues #192 & #195)
+
 2.0.2
 ~~~~~
 * add filter for boolean values in dict2string so "no_rot=True" works (issue #183).


=====================================
sphinx/index.rst
=====================================
@@ -3,7 +3,7 @@ pyproj Documentation
 
 Python interface to  `PROJ.4 <https://proj4.org/>`_.
 
-GitHub Repository: https://github.com/jswhit/pyproj
+GitHub Repository: https://github.com/pyproj4/pyproj
 
 
 .. toctree::


=====================================
sphinx/installation.rst
=====================================
@@ -92,7 +92,7 @@ From GitHub with `pip`:
 
 .. code-block:: bash
 
-    pip install git+https://github.com/jswhit/pyproj.git
+    pip install git+https://github.com/pyproj4/pyproj.git
 
 From cloned GitHub repo for development:
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


=====================================
unittest/test_transformer.py
=====================================
@@ -0,0 +1,20 @@
+import pyproj
+
+
+def test_tranform_wgs84_to_custom():
+    custom_proj = pyproj.Proj(
+        "+proj=geos +lon_0=0.000000 +lat_0=0 +h=35807.414063"
+        " +a=6378.169000 +b=6356.583984"
+    )
+    wgs84 = pyproj.Proj("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
+    lat, lon = 51.04715, 3.23406
+    xx, yy = pyproj.transform(wgs84, custom_proj, lon, lat)
+    assert "{:.3f} {:.3f}".format(xx, yy) == "212.623 4604.975"
+
+
+def test_transform_wgs84_to_alaska():
+    lat_lon_proj = pyproj.Proj(init="epsg:4326", preserve_units=False)
+    alaska_aea_proj = pyproj.Proj(init="epsg:2964", preserve_units=False)
+    test = (-179.72638, 49.752533)
+    xx, yy = pyproj.transform(lat_lon_proj, alaska_aea_proj, *test)
+    assert "{:.3f} {:.3f}".format(xx, yy) == "-1824924.495 330822.800"



View it on GitLab: https://salsa.debian.org/debian-gis-team/python-pyproj/commit/e86a797942586cd229a79ca7920214626a7d1b22

-- 
View it on GitLab: https://salsa.debian.org/debian-gis-team/python-pyproj/commit/e86a797942586cd229a79ca7920214626a7d1b22
You're receiving this email because of your account on salsa.debian.org.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://alioth-lists.debian.net/pipermail/pkg-grass-devel/attachments/20190315/fa4906a2/attachment-0001.html>


More information about the Pkg-grass-devel mailing list