Bug#1000273: satpy: autopkgtest regression on armhf and i386: ArrayMemoryError: Unable to allocate 73.4 MiB for an array with shape (14, 2030, 1354) and data type uint16

Paul Gevers elbrus at debian.org
Sat Nov 20 18:59:50 GMT 2021


Source: satpy
Version: 0.31.0-2
X-Debbugs-CC: debian-ci at lists.debian.org
Severity: serious
User: debian-ci at lists.debian.org
Usertags: regression

Dear maintainer(s),

With a recent upload of satpy the autopkgtest of satpy fails in testing 
when that autopkgtest is run with the binary packages of satpy from 
unstable. It passes when run with only packages from testing. In tabular 
form:

                        pass            fail
satpy                  from testing    0.31.0-2
all others             from testing    from testing

I copied some of the output at the bottom of this report. Did the set of 
tests get extended? It seems some tests are running out of memory space 
on 32 bit architectures.

Currently this regression is blocking the migration to testing [1]. Can 
you please investigate the situation and fix it?

More information about this bug and the reason for filing it can be found on
https://wiki.debian.org/ContinuousIntegration/RegressionEmailInformation

Paul

[1] https://qa.debian.org/excuses.php?package=satpy

https://ci.debian.net/data/autopkgtest/testing/armhf/s/satpy/16844833/log.gz

==================================== ERRORS 
====================================
_ ERROR at setup of 
TestModisL1b.test_scene_available_datasets[modis_l1b_nasa_mod021km_file-expected_names0-expected_data_res0-expected_geo_res0] 
_

request = <FixtureRequest for <Function 
test_scene_available_datasets[modis_l1b_nasa_mod021km_file-expected_names0-expected_data_res0-expected_geo_res0]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:316: 
in modis_l1b_nasa_mod021km_file
     variable_infos.update(_get_visible_variable_info("EV_1KM_RefSB", 
1000, AVAILABLE_1KM_VIS_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 1000, num_bands = 14, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
73.4 MiB for an array with shape (14, 2030, 1354) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
_ ERROR at setup of 
TestModisL1b.test_scene_available_datasets[modis_l1b_imapp_1000m_file-expected_names1-expected_data_res1-expected_geo_res1] 
_

request = <FixtureRequest for <Function 
test_scene_available_datasets[modis_l1b_imapp_1000m_file-expected_names1-expected_data_res1-expected_geo_res1]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:330: 
in modis_l1b_imapp_1000m_file
     variable_infos.update(_get_visible_variable_info("EV_1KM_RefSB", 
1000, AVAILABLE_1KM_VIS_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 1000, num_bands = 14, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
73.4 MiB for an array with shape (14, 2030, 1354) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
_ ERROR at setup of 
TestModisL1b.test_scene_available_datasets[modis_l1b_nasa_mod02hkm_file-expected_names2-expected_data_res2-expected_geo_res2] 
_

request = <FixtureRequest for <Function 
test_scene_available_datasets[modis_l1b_nasa_mod02hkm_file-expected_names2-expected_data_res2-expected_geo_res2]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:344: 
in modis_l1b_nasa_mod02hkm_file
     variable_infos.update(_get_visible_variable_info("EV_500_RefSB", 
250, AVAILABLE_QKM_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 250, num_bands = 2, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
168. MiB for an array with shape (2, 8120, 5416) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
_ ERROR at setup of 
TestModisL1b.test_scene_available_datasets[modis_l1b_nasa_mod02qkm_file-expected_names3-expected_data_res3-expected_geo_res3] 
_

request = <FixtureRequest for <Function 
test_scene_available_datasets[modis_l1b_nasa_mod02qkm_file-expected_names3-expected_data_res3-expected_geo_res3]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:355: 
in modis_l1b_nasa_mod02qkm_file
     variable_infos.update(_get_visible_variable_info("EV_250_RefSB", 
250, AVAILABLE_QKM_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 250, num_bands = 2, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
168. MiB for an array with shape (2, 8120, 5416) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
_ ERROR at setup of 
TestModisL1b.test_load_longitude_latitude[modis_l1b_nasa_mod021km_file-True-False-False-1000] 
_

request = <FixtureRequest for <Function 
test_load_longitude_latitude[modis_l1b_nasa_mod021km_file-True-False-False-1000]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:316: 
in modis_l1b_nasa_mod021km_file
     variable_infos.update(_get_visible_variable_info("EV_1KM_RefSB", 
1000, AVAILABLE_1KM_VIS_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 1000, num_bands = 14, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
73.4 MiB for an array with shape (14, 2030, 1354) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
_ ERROR at setup of 
TestModisL1b.test_load_longitude_latitude[modis_l1b_imapp_1000m_file-True-False-False-1000] 
_

request = <FixtureRequest for <Function 
test_load_longitude_latitude[modis_l1b_imapp_1000m_file-True-False-False-1000]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:330: 
in modis_l1b_imapp_1000m_file
     variable_infos.update(_get_visible_variable_info("EV_1KM_RefSB", 
1000, AVAILABLE_1KM_VIS_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 1000, num_bands = 14, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
73.4 MiB for an array with shape (14, 2030, 1354) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
_ ERROR at setup of 
TestModisL1b.test_load_longitude_latitude[modis_l1b_nasa_mod02hkm_file-False-True-True-250] 
_

request = <FixtureRequest for <Function 
test_load_longitude_latitude[modis_l1b_nasa_mod02hkm_file-False-True-True-250]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:344: 
in modis_l1b_nasa_mod02hkm_file
     variable_infos.update(_get_visible_variable_info("EV_500_RefSB", 
250, AVAILABLE_QKM_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 250, num_bands = 2, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
168. MiB for an array with shape (2, 8120, 5416) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
_ ERROR at setup of 
TestModisL1b.test_load_longitude_latitude[modis_l1b_nasa_mod02qkm_file-False-True-True-250] 
_

request = <FixtureRequest for <Function 
test_load_longitude_latitude[modis_l1b_nasa_mod02qkm_file-False-True-True-250]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:355: 
in modis_l1b_nasa_mod02qkm_file
     variable_infos.update(_get_visible_variable_info("EV_250_RefSB", 
250, AVAILABLE_QKM_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 250, num_bands = 2, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
168. MiB for an array with shape (2, 8120, 5416) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
_ ERROR at setup of 
TestModisL1b.test_load_longitude_latitude[modis_l1b_nasa_1km_mod03_files-True-True-True-250] 
_

request = <FixtureRequest for <Function 
test_load_longitude_latitude[modis_l1b_nasa_1km_mod03_files-True-True-True-250]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:316: 
in modis_l1b_nasa_mod021km_file
     variable_infos.update(_get_visible_variable_info("EV_1KM_RefSB", 
1000, AVAILABLE_1KM_VIS_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 1000, num_bands = 14, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
73.4 MiB for an array with shape (14, 2030, 1354) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
__________ ERROR at setup of TestModisL1b.test_load_sat_zenith_angle 
___________

request = <FixtureRequest for <Function test_load_sat_zenith_angle>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
                     item.callspec.params[param] = 
request.getfixturevalue(val.name)
                 elif param not in item.funcargs:
                     item.funcargs[param] = request.getfixturevalue(param)
     >       _fillfixtures()

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:39: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:316: 
in modis_l1b_nasa_mod021km_file
     variable_infos.update(_get_visible_variable_info("EV_1KM_RefSB", 
1000, AVAILABLE_1KM_VIS_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 1000, num_bands = 14, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
73.4 MiB for an array with shape (14, 2030, 1354) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
_________________ ERROR at setup of TestModisL1b.test_load_vis 
_________________

request = <FixtureRequest for <Function test_load_vis>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
                     item.callspec.params[param] = 
request.getfixturevalue(val.name)
                 elif param not in item.funcargs:
                     item.funcargs[param] = request.getfixturevalue(param)
     >       _fillfixtures()

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:39: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:316: 
in modis_l1b_nasa_mod021km_file
     variable_infos.update(_get_visible_variable_info("EV_1KM_RefSB", 
1000, AVAILABLE_1KM_VIS_PRODUCT_NAMES))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:116: 
in _get_visible_variable_info
     data = _generate_visible_data(resolution, len(bands))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
resolution = 1000, num_bands = 14, dtype = <class 'numpy.uint16'>

     def _generate_visible_data(resolution: int, num_bands: int, 
dtype=np.uint16) -> np.ndarray:
         shape = _shape_for_resolution(resolution)
>       data = np.zeros((num_bands, shape[0], shape[1]), dtype=dtype)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
73.4 MiB for an array with shape (14, 2030, 1354) and data type uint16

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:76: 
MemoryError
_ ERROR at setup of 
TestModisL2.test_load_category_dataset[modis_l2_nasa_mod35_mod03_files-loadables0-1000-1000-True] 
_

request = <FixtureRequest for <Function 
test_load_category_dataset[modis_l2_nasa_mod35_mod03_files-loadables0-1000-1000-True]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:365: 
in modis_l1b_nasa_mod03_file
     variable_infos = _get_l1b_geo_variable_info(filename, 1000, 
include_angles=True)
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:188: 
in _get_l1b_geo_variable_info
     variables_info.update(_get_lonlat_variable_info(geo_resolution))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:81: 
in _get_lonlat_variable_info
     lon_5km, lat_5km = _generate_lonlat_data(resolution)
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:61: 
in _generate_lonlat_data
     lat = np.repeat(np.linspace(35., 45., shape[0])[:, None], shape[1], 1)
/usr/lib/python3/dist-packages/numpy/core/fromnumeric.py:479: in repeat
     return _wrapfunc(a, 'repeat', repeats, axis=axis)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
obj = array([[35.        ],
        [35.00492854],
        [35.00985707],
        ...,
        [44.99014293],
        [44.99507146],
        [45.        ]])
method = 'repeat', args = (1354,), kwds = {'axis': 1}
bound = <built-in method repeat of numpy.ndarray object at 0x10796548>

     def _wrapfunc(obj, method, *args, **kwds):
         bound = getattr(obj, method, None)
         if bound is None:
             return _wrapit(obj, method, *args, **kwds)
             try:
>           return bound(*args, **kwds)
E           numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
21.0 MiB for an array with shape (2030, 1354) and data type float64

/usr/lib/python3/dist-packages/numpy/core/fromnumeric.py:58: MemoryError
_ ERROR at setup of 
TestModisL2.test_load_category_dataset[modis_l2_imapp_mask_byte1_geo_files-loadables1-None-1000-True] 
_

request = <FixtureRequest for <Function 
test_load_category_dataset[modis_l2_imapp_mask_byte1_geo_files-loadables1-None-1000-True]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:365: 
in modis_l1b_nasa_mod03_file
     variable_infos = _get_l1b_geo_variable_info(filename, 1000, 
include_angles=True)
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:188: 
in _get_l1b_geo_variable_info
     variables_info.update(_get_lonlat_variable_info(geo_resolution))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:81: 
in _get_lonlat_variable_info
     lon_5km, lat_5km = _generate_lonlat_data(resolution)
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:61: 
in _generate_lonlat_data
     lat = np.repeat(np.linspace(35., 45., shape[0])[:, None], shape[1], 1)
/usr/lib/python3/dist-packages/numpy/core/fromnumeric.py:479: in repeat
     return _wrapfunc(a, 'repeat', repeats, axis=axis)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
obj = array([[35.        ],
        [35.00492854],
        [35.00985707],
        ...,
        [44.99014293],
        [44.99507146],
        [45.        ]])
method = 'repeat', args = (1354,), kwds = {'axis': 1}
bound = <built-in method repeat of numpy.ndarray object at 0x10796548>

     def _wrapfunc(obj, method, *args, **kwds):
         bound = getattr(obj, method, None)
         if bound is None:
             return _wrapit(obj, method, *args, **kwds)
             try:
>           return bound(*args, **kwds)
E           numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
21.0 MiB for an array with shape (2030, 1354) and data type float64

/usr/lib/python3/dist-packages/numpy/core/fromnumeric.py:58: MemoryError
_ ERROR at setup of 
TestModisL2.test_load_250m_cloud_mask_dataset[modis_l2_nasa_mod35_mod03_files-True] 
_

request = <FixtureRequest for <Function 
test_load_250m_cloud_mask_dataset[modis_l2_nasa_mod35_mod03_files-True]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:365: 
in modis_l1b_nasa_mod03_file
     variable_infos = _get_l1b_geo_variable_info(filename, 1000, 
include_angles=True)
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:188: 
in _get_l1b_geo_variable_info
     variables_info.update(_get_lonlat_variable_info(geo_resolution))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:81: 
in _get_lonlat_variable_info
     lon_5km, lat_5km = _generate_lonlat_data(resolution)
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:61: 
in _generate_lonlat_data
     lat = np.repeat(np.linspace(35., 45., shape[0])[:, None], shape[1], 1)
/usr/lib/python3/dist-packages/numpy/core/fromnumeric.py:479: in repeat
     return _wrapfunc(a, 'repeat', repeats, axis=axis)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
obj = array([[35.        ],
        [35.00492854],
        [35.00985707],
        ...,
        [44.99014293],
        [44.99507146],
        [45.        ]])
method = 'repeat', args = (1354,), kwds = {'axis': 1}
bound = <built-in method repeat of numpy.ndarray object at 0x10796548>

     def _wrapfunc(obj, method, *args, **kwds):
         bound = getattr(obj, method, None)
         if bound is None:
             return _wrapit(obj, method, *args, **kwds)
             try:
>           return bound(*args, **kwds)
E           numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
21.0 MiB for an array with shape (2030, 1354) and data type float64

/usr/lib/python3/dist-packages/numpy/core/fromnumeric.py:58: MemoryError
_ ERROR at setup of 
TestModisL2.test_load_l2_dataset[modis_l2_imapp_snowmask_geo_files-loadables2-1000-True] 
_

request = <FixtureRequest for <Function 
test_load_l2_dataset[modis_l2_imapp_snowmask_geo_files-loadables2-1000-True]>>

     def fill(request):
         item = request._pyfuncitem
         fixturenames = getattr(item, "fixturenames", None)
         if fixturenames is None:
             fixturenames = request.fixturenames
             if hasattr(item, 'callspec'):
             for param, val in 
sorted_by_dependency(item.callspec.params, fixturenames):
                 if val is not None and is_lazy_fixture(val):
>                   item.callspec.params[param] = request.getfixturevalue(val.name)

/usr/lib/python3/dist-packages/pytest_lazyfixture.py:35: _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:365: 
in modis_l1b_nasa_mod03_file
     variable_infos = _get_l1b_geo_variable_info(filename, 1000, 
include_angles=True)
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:188: 
in _get_l1b_geo_variable_info
     variables_info.update(_get_lonlat_variable_info(geo_resolution))
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:81: 
in _get_lonlat_variable_info
     lon_5km, lat_5km = _generate_lonlat_data(resolution)
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/_modis_fixtures.py:61: 
in _generate_lonlat_data
     lat = np.repeat(np.linspace(35., 45., shape[0])[:, None], shape[1], 1)
/usr/lib/python3/dist-packages/numpy/core/fromnumeric.py:479: in repeat
     return _wrapfunc(a, 'repeat', repeats, axis=axis)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
obj = array([[35.        ],
        [35.00492854],
        [35.00985707],
        ...,
        [44.99014293],
        [44.99507146],
        [45.        ]])
method = 'repeat', args = (1354,), kwds = {'axis': 1}
bound = <built-in method repeat of numpy.ndarray object at 0x10796548>

     def _wrapfunc(obj, method, *args, **kwds):
         bound = getattr(obj, method, None)
         if bound is None:
             return _wrapit(obj, method, *args, **kwds)
             try:
>           return bound(*args, **kwds)
E           numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
21.0 MiB for an array with shape (2030, 1354) and data type float64

/usr/lib/python3/dist-packages/numpy/core/fromnumeric.py:58: MemoryError
=================================== FAILURES 
===================================
_____________________________ TestScene.test_crop 
______________________________

self = <satpy.tests.test_scene.TestScene object at 0xb4720760>

     def test_crop(self):
         """Test the crop method."""
         from satpy import Scene
         from xarray import DataArray
         from pyresample.geometry import AreaDefinition
         scene1 = Scene()
         area_extent = (-5570248.477339745, -5561247.267842293, 
5567248.074173927,
                        5570248.477339745)
         proj_dict = {'a': 6378169.0, 'b': 6356583.8, 'h': 35785831.0,
                      'lon_0': 0.0, 'proj': 'geos', 'units': 'm'}
         x_size = 3712
         y_size = 3712
         area_def = AreaDefinition(
             'test',
             'test',
             'test',
             proj_dict,
             x_size,
             y_size,
             area_extent,
         )
         area_def2 = AreaDefinition(
             'test2',
             'test2',
             'test2',
             proj_dict,
             x_size // 2,
             y_size // 2,
             area_extent,
         )
         scene1["1"] = DataArray(np.zeros((y_size, x_size)))
         scene1["2"] = DataArray(np.zeros((y_size, x_size)), dims=('y', 
'x'))
>       scene1["3"] = DataArray(np.zeros((y_size, x_size)), dims=('y', 'x'),
                                 attrs={'area': area_def})
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
105. MiB for an array with shape (3712, 3712) and data type float64

/usr/lib/python3/dist-packages/satpy/tests/test_scene.py:422: MemoryError
_________________________ TestScene.test_crop_epsg_crs 
_________________________

self = <satpy.tests.test_scene.TestScene object at 0xf3acbac0>

     def test_crop_epsg_crs(self):
         """Test the crop method when source area uses an EPSG code."""
         from satpy import Scene
         from xarray import DataArray
         from pyresample.geometry import AreaDefinition
             scene1 = Scene()
         area_extent = (699960.0, 5390220.0, 809760.0, 5500020.0)
         x_size = 3712
         y_size = 3712
         area_def = AreaDefinition(
             'test', 'test', 'test',
             "EPSG:32630",
             x_size,
             y_size,
             area_extent,
         )
>       scene1["1"] = DataArray(np.zeros((y_size, x_size)), dims=('y', 'x'),
                                 attrs={'area': area_def})
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
105. MiB for an array with shape (3712, 3712) and data type float64

/usr/lib/python3/dist-packages/satpy/tests/test_scene.py:484: MemoryError
___________________________ TestScene.test_crop_rgb 
____________________________

self = <satpy.tests.test_scene.TestScene object at 0xb4c6bc58>

     def test_crop_rgb(self):
         """Test the crop method on multi-dimensional data."""
         from satpy import Scene
         from xarray import DataArray
         from pyresample.geometry import AreaDefinition
         scene1 = Scene()
         area_extent = (-5570248.477339745, -5561247.267842293, 
5567248.074173927,
                        5570248.477339745)
         proj_dict = {'a': 6378169.0, 'b': 6356583.8, 'h': 35785831.0,
                      'lon_0': 0.0, 'proj': 'geos', 'units': 'm'}
         x_size = 3712
         y_size = 3712
         area_def = AreaDefinition(
             'test',
             'test',
             'test',
             proj_dict,
             x_size,
             y_size,
             area_extent,
         )
         area_def2 = AreaDefinition(
             'test2',
             'test2',
             'test2',
             proj_dict,
             x_size // 2,
             y_size // 2,
             area_extent,
             )
>       scene1["1"] = DataArray(np.zeros((3, y_size, x_size)), dims=('bands', 'y', 'x'), attrs={'area': area_def})
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
315. MiB for an array with shape (3, 3712, 3712) and data type float64

/usr/lib/python3/dist-packages/satpy/tests/test_scene.py:521: MemoryError
_____________________ TestSceneAggregation.test_aggregate 
______________________

self = <satpy.tests.test_scene.TestSceneAggregation 
testMethod=test_aggregate>

     def test_aggregate(self):
         """Test the aggregate method."""
         x_size = 3712
         y_size = 3712
     >       scene1 = self._create_test_data(x_size, y_size)

/usr/lib/python3/dist-packages/satpy/tests/test_scene.py:1810: _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/test_scene.py:1836: in 
_create_test_data
     scene1["2"] = DataArray(np.ones((y_size, x_size)), dims=('y', 'x'),
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
shape = (3712, 3712), dtype = None, order = 'C'

     @set_module('numpy')
     def ones(shape, dtype=None, order='C'):
         """
         Return a new array of given shape and type, filled with ones.
             Parameters
         ----------
         shape : int or sequence of ints
             Shape of the new array, e.g., ``(2, 3)`` or ``2``.
         dtype : data-type, optional
             The desired data-type for the array, e.g., `numpy.int8`. 
Default is
             `numpy.float64`.
         order : {'C', 'F'}, optional, default: C
             Whether to store multi-dimensional data in row-major
             (C-style) or column-major (Fortran-style) order in
             memory.
             Returns
         -------
         out : ndarray
             Array of ones with the given shape, dtype, and order.
             See Also
         --------
         ones_like : Return an array of ones with shape and type of input.
         empty : Return a new uninitialized array.
         zeros : Return a new array setting values to zero.
         full : Return a new array of given shape filled with value.
                 Examples
         --------
         >>> np.ones(5)
         array([1., 1., 1., 1., 1.])
             >>> np.ones((5,), dtype=int)
         array([1, 1, 1, 1, 1])
             >>> np.ones((2, 1))
         array([[1.],
                [1.]])
             >>> s = (2,2)
         >>> np.ones(s)
         array([[1.,  1.],
                [1.,  1.]])
             """
>       a = empty(shape, dtype, order)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
105. MiB for an array with shape (3712, 3712) and data type float64

/usr/lib/python3/dist-packages/numpy/core/numeric.py:192: MemoryError
______________ TestSceneAggregation.test_aggregate_with_boundary 
_______________

self = <satpy.tests.test_scene.TestSceneAggregation 
testMethod=test_aggregate_with_boundary>

     def test_aggregate_with_boundary(self):
         """Test aggregation with boundary argument."""
         x_size = 3711
         y_size = 3711
     >       scene1 = self._create_test_data(x_size, y_size)

/usr/lib/python3/dist-packages/satpy/tests/test_scene.py:1860: _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/test_scene.py:1835: in 
_create_test_data
     scene1["1"] = DataArray(np.ones((y_size, x_size)), 
attrs={'_satpy_id_keys': default_id_keys_config})
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
shape = (3711, 3711), dtype = None, order = 'C'

     @set_module('numpy')
     def ones(shape, dtype=None, order='C'):
         """
         Return a new array of given shape and type, filled with ones.
             Parameters
         ----------
         shape : int or sequence of ints
             Shape of the new array, e.g., ``(2, 3)`` or ``2``.
         dtype : data-type, optional
             The desired data-type for the array, e.g., `numpy.int8`. 
Default is
             `numpy.float64`.
         order : {'C', 'F'}, optional, default: C
             Whether to store multi-dimensional data in row-major
             (C-style) or column-major (Fortran-style) order in
             memory.
             Returns
         -------
         out : ndarray
             Array of ones with the given shape, dtype, and order.
             See Also
         --------
         ones_like : Return an array of ones with shape and type of input.
         empty : Return a new uninitialized array.
         zeros : Return a new array setting values to zero.
         full : Return a new array of given shape filled with value.
                 Examples
         --------
         >>> np.ones(5)
         array([1., 1., 1., 1., 1.])
             >>> np.ones((5,), dtype=int)
         array([1, 1, 1, 1, 1])
             >>> np.ones((2, 1))
         array([[1.],
                [1.]])
             >>> s = (2,2)
         >>> np.ones(s)
         array([[1.,  1.],
                [1.,  1.]])
             """
>       a = empty(shape, dtype, order)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
105. MiB for an array with shape (3711, 3711) and data type float64

/usr/lib/python3/dist-packages/numpy/core/numeric.py:192: MemoryError
_____________________ TestMimicTPW2Reader.test_load_mimic 
______________________

self = <satpy.tests.reader_tests.test_mimic_TPW2_nc.TestMimicTPW2Reader 
testMethod=test_load_mimic>

     def test_load_mimic(self):
         """Load Mimic data."""
         from satpy.readers import load_reader
         r = load_reader(self.reader_configs)
         with mock.patch('satpy.readers.mimic_TPW2_nc.netCDF4.Variable', 
xr.DataArray):
             loadables = r.select_files_from_pathnames([
                 'comp20190619.130000.nc',
             ])
             r.create_filehandlers(loadables)
>       ds = r.load(['tpwGrid'])

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_mimic_TPW2_nc.py:126: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:943: 
in load
     ds = self._load_dataset_with_area(dsid, coords, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:839: in 
_load_dataset_with_area
     ds = self._load_dataset_data(file_handlers, dsid, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:711: in 
_load_dataset_data
     proj = self._load_dataset(dsid, ds_info, file_handlers, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:701: in 
_load_dataset
     res = xr.concat(slice_list, dim=dim)
/usr/lib/python3/dist-packages/xarray/core/concat.py:242: in concat
     return f(
/usr/lib/python3/dist-packages/xarray/core/concat.py:580: in 
_dataarray_concat
     ds = _dataset_concat(
/usr/lib/python3/dist-packages/xarray/core/concat.py:519: in _dataset_concat
     combined = concat_vars(vars, dim, positions, 
combine_attrs=combine_attrs)
/usr/lib/python3/dist-packages/xarray/core/variable.py:2897: in concat
     return Variable.concat(variables, dim, positions, shortcut, 
combine_attrs)
/usr/lib/python3/dist-packages/xarray/core/variable.py:1854: in concat
     data = duck_array_ops.concatenate(arrays, axis=axis)
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:302: in 
concatenate
     return _concatenate(as_shared_dtype(arrays), axis=axis)
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:56: in f
     return wrapped(*args, **kwargs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
args = ([array([[1.62000e+08, 1.62000e+08, 1.62000e+08, ..., 1.62018e+08,
         1.62018e+08, 1.62018e+08],
        [1.61982e...
        [0.00000e+00, 1.00000e+00, 2.00000e+00, ..., 1.79970e+04,
         1.79980e+04, 1.79990e+04]], dtype=float32)],)
kwargs = {'axis': 0}
relevant_args = [array([[1.62000e+08, 1.62000e+08, 1.62000e+08, ..., 
1.62018e+08,
         1.62018e+08, 1.62018e+08],
        [1.61982e+...],
        [0.00000e+00, 1.00000e+00, 2.00000e+00, ..., 1.79970e+04,
         1.79980e+04, 1.79990e+04]], dtype=float32)]

>   ???
E   numpy.core._exceptions._ArrayMemoryError: Unable to allocate 618. 
MiB for an array with shape (9001, 18000) and data type float32

<__array_function__ internals>:5: MemoryError
_ 
TestModisL2.test_load_longitude_latitude[modis_l2_nasa_mod35_file-True-False-False-1000] 
_

self = <satpy.tests.reader_tests.test_modis_l2.TestModisL2 object at 
0xe78c0328>
input_files = 
['/tmp/pytest-of-debci/pytest-0/modis_l20/MOD35_L2.A2021324.1132.061.2021324113236.hdf']
has_5km = True, has_500 = False, has_250 = False, default_res = 1000

     @pytest.mark.parametrize(
         ('input_files', 'has_5km', 'has_500', 'has_250', 'default_res'),
         [
             [lazy_fixture('modis_l2_nasa_mod35_file'),
              True, False, False, 1000],
         ]
     )
     def test_load_longitude_latitude(self, input_files, has_5km, 
has_500, has_250, default_res):
         """Test that longitude and latitude datasets are loaded 
correctly."""
         from .test_modis_l1b import _load_and_check_geolocation
         scene = Scene(reader='modis_l2', filenames=input_files)
         shape_5km = _shape_for_resolution(5000)
         shape_500m = _shape_for_resolution(500)
         shape_250m = _shape_for_resolution(250)
         default_shape = _shape_for_resolution(default_res)
         with dask.config.set(scheduler=CustomScheduler(max_computes=1 + 
has_5km + has_500 + has_250)):
>           _load_and_check_geolocation(scene, "*", default_res, default_shape, True,
 
check_callback=_check_shared_metadata)

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_modis_l2.py:76: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_modis_l1b.py:56: 
in _load_and_check_geolocation
     lon_vals, lat_vals = dask.compute(lon_arr, lat_arr)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/satpy/tests/utils.py:265: in __call__
     return dask.get(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/local.py:563: in get_sync
     return get_async(
/usr/lib/python3/dist-packages/dask/local.py:506: in get_async
     for key, res_info, failed in queue_get(queue).result():
/usr/lib/python3.9/concurrent/futures/_base.py:438: in result
     return self.__get_result()
/usr/lib/python3.9/concurrent/futures/_base.py:390: in __get_result
     raise self._exception
/usr/lib/python3/dist-packages/dask/local.py:548: in submit
     fut.set_result(fn(*args, **kwargs))
/usr/lib/python3/dist-packages/dask/local.py:237: in batch_execute_tasks
     return [execute_task(*a) for a in it]
/usr/lib/python3/dist-packages/dask/local.py:237: in <listcomp>
     return [execute_task(*a) for a in it]
/usr/lib/python3/dist-packages/dask/local.py:228: in execute_task
     result = pack_exception(e, dumps)
/usr/lib/python3/dist-packages/dask/local.py:223: in execute_task
     result = _execute_task(task, data)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/optimization.py:969: in __call__
     return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))
/usr/lib/python3/dist-packages/dask/core.py:151: in get
     result = _execute_task(task, cache)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/core.py:121: in <genexpr>
     return func(*(_execute_task(a, cache) for a in args))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
arg = (<built-in function mul>, (<built-in function add>, 
'__dask_blockwise__2', '__dask_blockwise__3'), '__dask_blockwise__1')
cache = {'__dask_blockwise__0': 5, '__dask_blockwise__1': 1.0, 
'__dask_blockwise__2': 0, '__dask_blockwise__3': array([[-2, -2.....,
        [ 5,  5,  5, ...,  5,  5,  5],
        [ 6,  6,  6, ...,  6,  6,  6],
        [ 7,  7,  7, ...,  7,  7,  7]])}
dsk = None

     def _execute_task(arg, cache, dsk=None):
         """Do the actual work of collecting data and executing a function
             Examples
         --------
             >>> cache = {'x': 1, 'y': 2}
             Compute tasks against a cache
         >>> _execute_task((add, 'x', 1), cache)  # Compute task in 
naive manner
         2
         >>> _execute_task((add, (inc, 'x'), 1), cache)  # Support 
nested computation
         3
             Also grab data from cache
         >>> _execute_task('x', cache)
         1
             Support nested lists
         >>> list(_execute_task(['x', 'y'], cache))
         [1, 2]
             >>> list(map(list, _execute_task([['x', 'y'], ['y', 'x']], 
cache)))
         [[1, 2], [2, 1]]
             >>> _execute_task('foo', cache)  # Passes through on non-keys
         'foo'
         """
         if isinstance(arg, list):
             return [_execute_task(a, cache) for a in arg]
         elif istask(arg):
             func, args = arg[0], arg[1:]
             # Note: Don't assign the subtask results to a variable. 
numpy detects
             # temporaries by their reference count and can execute certain
             # operations in-place.
>           return func(*(_execute_task(a, cache) for a in args))
E           numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
21.0 MiB for an array with shape (2030, 1354) and data type float64

/usr/lib/python3/dist-packages/dask/core.py:121: MemoryError
_ 
TestModisL2.test_load_250m_cloud_mask_dataset[modis_l2_nasa_mod35_file-False] 
_

self = <satpy.tests.reader_tests.test_modis_l2.TestModisL2 object at 
0xb4cc8a00>
input_files = 
['/tmp/pytest-of-debci/pytest-0/modis_l20/MOD35_L2.A2021324.1132.061.2021324113236.hdf']
exp_area = False

     @pytest.mark.parametrize(
         ('input_files', 'exp_area'),
         [
             [lazy_fixture('modis_l2_nasa_mod35_file'), False],
             [lazy_fixture('modis_l2_nasa_mod35_mod03_files'), True],
         ]
     )
     def test_load_250m_cloud_mask_dataset(self, input_files, exp_area):
         """Test loading 250m cloud mask."""
         scene = Scene(reader='modis_l2', filenames=input_files)
         dataset_name = 'cloud_mask'
>       scene.load([dataset_name], resolution=250)

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_modis_l2.py:134: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/scene.py:1213: in load
     self._read_datasets_from_storage(**kwargs)
/usr/lib/python3/dist-packages/satpy/scene.py:1233: in 
_read_datasets_from_storage
     return self._read_dataset_nodes_from_storage(nodes, **kwargs)
/usr/lib/python3/dist-packages/satpy/scene.py:1239: in 
_read_dataset_nodes_from_storage
     loaded_datasets = self._load_datasets_by_readers(reader_datasets, 
**kwargs)
/usr/lib/python3/dist-packages/satpy/scene.py:1264: in 
_load_datasets_by_readers
     new_datasets = reader_instance.load(ds_ids, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:943: in load
     ds = self._load_dataset_with_area(dsid, coords, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:839: in 
_load_dataset_with_area
     ds = self._load_dataset_data(file_handlers, dsid, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:711: in 
_load_dataset_data
     proj = self._load_dataset(dsid, ds_info, file_handlers, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:687: in 
_load_dataset
     projectable = fh.get_dataset(dsid, ds_info)
/usr/lib/python3/dist-packages/satpy/readers/modis_l2.py:139: in get_dataset
     dataset = self._extract_and_mask_category_dataset(dataset_id, 
dataset_info, dataset_name_in_file)
/usr/lib/python3/dist-packages/satpy/readers/modis_l2.py:159: in 
_extract_and_mask_category_dataset
     dataset = _extract_byte_mask(dataset,
/usr/lib/python3/dist-packages/satpy/readers/modis_l2.py:204: in 
_extract_byte_mask
     dataset_a = np.uint16(dataset_a)
/usr/lib/python3/dist-packages/xarray/core/common.py:141: in __array__
     return np.asarray(self.values, dtype=dtype)
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:651: in values
     return self.variable.values
/usr/lib/python3/dist-packages/xarray/core/variable.py:517: in values
     return _as_array_or_item(self._data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:259: in 
_as_array_or_item
     data = np.asarray(data)
/usr/lib/python3/dist-packages/numpy/core/_asarray.py:83: in asarray
     return array(a, dtype, copy=False, order=order)
/usr/lib/python3/dist-packages/dask/array/core.py:1491: in __array__
     x = self.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:517: in get_async
     raise_exception(exc, tb)
/usr/lib/python3/dist-packages/dask/local.py:325: in reraise
     raise exc
/usr/lib/python3/dist-packages/dask/local.py:223: in execute_task
     result = _execute_task(task, data)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/core.py:121: in <genexpr>
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/optimization.py:969: in __call__
     return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))
/usr/lib/python3/dist-packages/dask/core.py:151: in get
     result = _execute_task(task, cache)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/utils.py:35: in apply
     return func(*args, **kwargs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
x = array([[[0, 0, 0, ..., 0, 0, 0],
         [0, 0, 0, ..., 0, 0, 0],
         [0, 0, 0, ..., 0, 0, 0],
         ...,
       ...  ...,
         [0, 0, 0, ..., 0, 0, 0],
         [0, 0, 0, ..., 0, 0, 0],
         [0, 0, 0, ..., 0, 0, 0]]], dtype=int8)
astype_dtype = dtype('uint8'), kwargs = {}

     def astype(x, astype_dtype=None, **kwargs):
>       return x.astype(astype_dtype, **kwargs)
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
15.7 MiB for an array with shape (6, 2030, 1354) and data type uint8

/usr/lib/python3/dist-packages/dask/array/chunk.py:281: MemoryError
------------------------------ Captured log call 
-------------------------------
WARNING  satpy.readers.yaml_reader:yaml_reader.py:771 Required file type 
'hdf_eos_geo' not found or loaded for 'latitude'
WARNING  satpy.readers.yaml_reader:yaml_reader.py:771 Required file type 
'hdf_eos_geo' not found or loaded for 'longitude'
________________________ TestH5NWCSAF.test_get_dataset 
_________________________

self = <satpy.tests.reader_tests.test_nwcsaf_msg.TestH5NWCSAF 
testMethod=test_get_dataset>

     def test_get_dataset(self):
         """Retrieve datasets from a NWCSAF msgv2013 hdf5 file."""
         from satpy.readers.nwcsaf_msg2013_hdf5 import Hdf5NWCSAF
         from satpy.tests.utils import make_dataid
             filename_info = {}
         filetype_info = {}
         dsid = make_dataid(name="ct")
         test = Hdf5NWCSAF(self.filename_ct, filename_info, filetype_info)
         ds = test.get_dataset(dsid, {"file_key": "CT"})
         self.assertEqual(ds.shape, (1856, 3712))
         self.assertEqual(ds.dtype, np.uint8)
>       np.testing.assert_allclose(ds.data[1000:1010, 1000:1010].compute(), CTYPE_TEST_FRAME)

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_nwcsaf_msg.py:521: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:517: in get_async
     raise_exception(exc, tb)
/usr/lib/python3/dist-packages/dask/local.py:325: in reraise
     raise exc
/usr/lib/python3/dist-packages/dask/local.py:223: in execute_task
     result = _execute_task(task, data)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/core.py:121: in <genexpr>
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/optimization.py:969: in __call__
     return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))
/usr/lib/python3/dist-packages/dask/core.py:151: in get
     result = _execute_task(task, cache)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/core.py:121: in <genexpr>
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/core.py:115: in _execute_task
     return [_execute_task(a, cache) for a in arg]
/usr/lib/python3/dist-packages/dask/core.py:115: in <listcomp>
     return [_execute_task(a, cache) for a in arg]
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/dask/core.py:121: in <genexpr>
     return func(*(_execute_task(a, cache) for a in args))
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
arg = (<built-in function mul>, '__dask_blockwise__1', 
'__dask_blockwise__2')
cache = {'__dask_blockwise__0': 0.0, '__dask_blockwise__1': array([[ 91, 
125,  81, ..., 244,  74,  89],
        [ 28, 226, 131,..., 132,  60, ..., 106, 126,   5],
        [100, 157, 165, ..., 169, 196, 199]], dtype=uint8), 
'__dask_blockwise__2': 1.0}
dsk = None

     def _execute_task(arg, cache, dsk=None):
         """Do the actual work of collecting data and executing a function
             Examples
         --------
             >>> cache = {'x': 1, 'y': 2}
             Compute tasks against a cache
         >>> _execute_task((add, 'x', 1), cache)  # Compute task in 
naive manner
         2
         >>> _execute_task((add, (inc, 'x'), 1), cache)  # Support 
nested computation
         3
             Also grab data from cache
         >>> _execute_task('x', cache)
         1
             Support nested lists
         >>> list(_execute_task(['x', 'y'], cache))
         [1, 2]
             >>> list(map(list, _execute_task([['x', 'y'], ['y', 'x']], 
cache)))
         [[1, 2], [2, 1]]
             >>> _execute_task('foo', cache)  # Passes through on non-keys
         'foo'
         """
         if isinstance(arg, list):
             return [_execute_task(a, cache) for a in arg]
         elif istask(arg):
             func, args = arg[0], arg[1:]
             # Note: Don't assign the subtask results to a variable. 
numpy detects
             # temporaries by their reference count and can execute certain
             # operations in-place.
>           return func(*(_execute_task(a, cache) for a in args))
E           numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
52.6 MiB for an array with shape (1856, 3712) and data type float64

/usr/lib/python3/dist-packages/dask/core.py:121: MemoryError
__________________ TestSMOSL2WINDReader.test_load_wind_speed 
___________________

self = <satpy.tests.reader_tests.test_smos_l2_wind.TestSMOSL2WINDReader 
testMethod=test_load_wind_speed>

     def test_load_wind_speed(self):
         """Load wind_speed dataset."""
         from satpy.readers import load_reader
         r = load_reader(self.reader_configs)
         with mock.patch('satpy.readers.smos_l2_wind.netCDF4.Variable', 
xr.DataArray):
             loadables = r.select_files_from_pathnames([
 
'SM_OPER_MIR_SCNFSW_20200420T021649_20200420T035013_110_001_7.nc',
             ])
             r.create_filehandlers(loadables)
>       ds = r.load(['wind_speed'])

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_smos_l2_wind.py:116: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:943: 
in load
     ds = self._load_dataset_with_area(dsid, coords, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:839: in 
_load_dataset_with_area
     ds = self._load_dataset_data(file_handlers, dsid, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:711: in 
_load_dataset_data
     proj = self._load_dataset(dsid, ds_info, file_handlers, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:687: in 
_load_dataset
     projectable = fh.get_dataset(dsid, ds_info)
/usr/lib/python3/dist-packages/satpy/readers/smos_l2_wind.py:140: in 
get_dataset
     data = self._rename_coords(data)
/usr/lib/python3/dist-packages/satpy/readers/smos_l2_wind.py:112: in 
_rename_coords
     data = self._adjust_lon_coord(data)
/usr/lib/python3/dist-packages/satpy/readers/smos_l2_wind.py:106: in 
_adjust_lon_coord
     return data.where(data < 180., data - 360.)
/usr/lib/python3/dist-packages/xarray/core/common.py:1286: in where
     return ops.where_method(self, cond, other)
/usr/lib/python3/dist-packages/xarray/core/ops.py:176: in where_method
     return apply_ufunc(
/usr/lib/python3/dist-packages/xarray/core/computation.py:1174: in 
apply_ufunc
     return apply_dataarray_vfunc(
/usr/lib/python3/dist-packages/xarray/core/computation.py:293: in 
apply_dataarray_vfunc
     result_var = func(*data_vars)
/usr/lib/python3/dist-packages/xarray/core/computation.py:742: in 
apply_variable_ufunc
     result_data = func(*input_data)
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:290: in 
where_method
     return where(cond, data, other)
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:284: in where
     return _where(condition, *as_shared_dtype([x, y]))
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:56: in f
     return wrapped(*args, **kwargs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
args = (array([[ True,  True,  True, ...,  True,  True,  True],
        [ True,  True,  True, ...,  True,  True,  True],
      ...60.],
        [-360., -360., -360., ..., -360., -360., -360.],
        [-360., -360., -360., ..., -360., -360., -360.]]))
kwargs = {}
relevant_args = (array([[ True,  True,  True, ...,  True,  True,  True],
        [ True,  True,  True, ...,  True,  True,  True],
      ...60.],
        [-360., -360., -360., ..., -360., -360., -360.],
        [-360., -360., -360., ..., -360., -360., -360.]]))

>   ???
E   numpy.core._exceptions._ArrayMemoryError: Unable to allocate 7.92 
MiB for an array with shape (721, 1440) and data type float64

<__array_function__ internals>:5: MemoryError
_____________________ TestTROPOMIL2Reader.test_load_bounds 
_____________________

self = <satpy.tests.reader_tests.test_tropomi_l2.TestTROPOMIL2Reader 
testMethod=test_load_bounds>

     def test_load_bounds(self):
         """Load bounds dataset."""
         from satpy.readers import load_reader
         r = load_reader(self.reader_configs)
         with mock.patch('satpy.readers.tropomi_l2.netCDF4.Variable', 
xr.DataArray):
             loadables = r.select_files_from_pathnames([
 
'S5P_OFFL_L2__NO2____20180709T170334_20180709T184504_03821_01_010002_20180715T184729.nc',
             ])
             r.create_filehandlers(loadables)
         keys = ['latitude_bounds', 'longitude_bounds']
>       ds = r.load(keys)

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_tropomi_l2.py:173: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:943: 
in load
     ds = self._load_dataset_with_area(dsid, coords, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:839: in 
_load_dataset_with_area
     ds = self._load_dataset_data(file_handlers, dsid, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:711: in 
_load_dataset_data
     proj = self._load_dataset(dsid, ds_info, file_handlers, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:687: in 
_load_dataset
     projectable = fh.get_dataset(dsid, ds_info)
/usr/lib/python3/dist-packages/satpy/readers/tropomi_l2.py:229: in 
get_dataset
     data = data.where(good_mask, new_fill)
/usr/lib/python3/dist-packages/xarray/core/common.py:1286: in where
     return ops.where_method(self, cond, other)
/usr/lib/python3/dist-packages/xarray/core/ops.py:176: in where_method
     return apply_ufunc(
/usr/lib/python3/dist-packages/xarray/core/computation.py:1174: in 
apply_ufunc
     return apply_dataarray_vfunc(
/usr/lib/python3/dist-packages/xarray/core/computation.py:293: in 
apply_dataarray_vfunc
     result_var = func(*data_vars)
/usr/lib/python3/dist-packages/xarray/core/computation.py:742: in 
apply_variable_ufunc
     result_data = func(*input_data)
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:290: in 
where_method
     return where(cond, data, other)
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:284: in where
     return _where(condition, *as_shared_dtype([x, y]))
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:208: in 
as_shared_dtype
     return [x.astype(out_type, copy=False) for x in arrays]
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
.0 = <list_iterator object at 0xe94598>

>   return [x.astype(out_type, copy=False) for x in arrays]
E   numpy.core._exceptions._ArrayMemoryError: Unable to allocate 44.6 
MiB for an array with shape (3246, 450, 4) and data type float64

/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:208: 
MemoryError
______________________ TestTROPOMIL2Reader.test_load_no2 
_______________________

self = <satpy.tests.reader_tests.test_tropomi_l2.TestTROPOMIL2Reader 
testMethod=test_load_no2>

     def test_load_no2(self):
         """Load NO2 dataset."""
         from satpy.readers import load_reader
         r = load_reader(self.reader_configs)
         with mock.patch('satpy.readers.tropomi_l2.netCDF4.Variable', 
xr.DataArray):
             loadables = r.select_files_from_pathnames([
 
'S5P_OFFL_L2__NO2____20180709T170334_20180709T184504_03821_01_010002_20180715T184729.nc',
             ])
             r.create_filehandlers(loadables)
>       ds = r.load(['nitrogen_dioxide_total_column'])

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_tropomi_l2.py:135: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:943: 
in load
     ds = self._load_dataset_with_area(dsid, coords, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:839: in 
_load_dataset_with_area
     ds = self._load_dataset_data(file_handlers, dsid, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:711: in 
_load_dataset_data
     proj = self._load_dataset(dsid, ds_info, file_handlers, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:687: in 
_load_dataset
     projectable = fh.get_dataset(dsid, ds_info)
/usr/lib/python3/dist-packages/satpy/readers/tropomi_l2.py:229: in 
get_dataset
     data = data.where(good_mask, new_fill)
/usr/lib/python3/dist-packages/xarray/core/common.py:1286: in where
     return ops.where_method(self, cond, other)
/usr/lib/python3/dist-packages/xarray/core/ops.py:176: in where_method
     return apply_ufunc(
/usr/lib/python3/dist-packages/xarray/core/computation.py:1174: in 
apply_ufunc
     return apply_dataarray_vfunc(
/usr/lib/python3/dist-packages/xarray/core/computation.py:293: in 
apply_dataarray_vfunc
     result_var = func(*data_vars)
/usr/lib/python3/dist-packages/xarray/core/computation.py:742: in 
apply_variable_ufunc
     result_data = func(*input_data)
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:290: in 
where_method
     return where(cond, data, other)
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:284: in where
     return _where(condition, *as_shared_dtype([x, y]))
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:208: in 
as_shared_dtype
     return [x.astype(out_type, copy=False) for x in arrays]
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
.0 = <list_iterator object at 0xb46b2238>

>   return [x.astype(out_type, copy=False) for x in arrays]
E   numpy.core._exceptions._ArrayMemoryError: Unable to allocate 11.1 
MiB for an array with shape (3246, 450) and data type float64

/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:208: 
MemoryError
______________________ TestTROPOMIL2Reader.test_load_so2 
_______________________

self = <satpy.tests.reader_tests.test_tropomi_l2.TestTROPOMIL2Reader 
testMethod=test_load_so2>

     def test_load_so2(self):
         """Load SO2 dataset."""
         from satpy.readers import load_reader
         r = load_reader(self.reader_configs)
         with mock.patch('satpy.readers.tropomi_l2.netCDF4.Variable', 
xr.DataArray):
             loadables = r.select_files_from_pathnames([
 
'S5P_OFFL_L2__SO2____20181224T055107_20181224T073237_06198_01_010105_20181230T150634.nc',
             ])
             r.create_filehandlers(loadables)
>       ds = r.load(['sulfurdioxide_total_vertical_column'])

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_tropomi_l2.py:154: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:943: 
in load
     ds = self._load_dataset_with_area(dsid, coords, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:839: in 
_load_dataset_with_area
     ds = self._load_dataset_data(file_handlers, dsid, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:711: in 
_load_dataset_data
     proj = self._load_dataset(dsid, ds_info, file_handlers, **kwargs)
/usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:687: in 
_load_dataset
     projectable = fh.get_dataset(dsid, ds_info)
/usr/lib/python3/dist-packages/satpy/readers/tropomi_l2.py:229: in 
get_dataset
     data = data.where(good_mask, new_fill)
/usr/lib/python3/dist-packages/xarray/core/common.py:1286: in where
     return ops.where_method(self, cond, other)
/usr/lib/python3/dist-packages/xarray/core/ops.py:176: in where_method
     return apply_ufunc(
/usr/lib/python3/dist-packages/xarray/core/computation.py:1174: in 
apply_ufunc
     return apply_dataarray_vfunc(
/usr/lib/python3/dist-packages/xarray/core/computation.py:293: in 
apply_dataarray_vfunc
     result_var = func(*data_vars)
/usr/lib/python3/dist-packages/xarray/core/computation.py:742: in 
apply_variable_ufunc
     result_data = func(*input_data)
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:290: in 
where_method
     return where(cond, data, other)
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:284: in where
     return _where(condition, *as_shared_dtype([x, y]))
/usr/lib/python3/dist-packages/xarray/core/duck_array_ops.py:56: in f
     return wrapped(*args, **kwargs)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
args = (array([[ True,  True,  True, ...,  True,  True,  True],
        [ True,  True,  True, ...,  True,  True,  True],
      ...457e+04],
        [1.8458e+04, 1.8459e+04, 1.8460e+04, ..., 1.8905e+04, 1.8906e+04,
         1.8907e+04]]), array(-999.))
kwargs = {}
relevant_args = (array([[ True,  True,  True, ...,  True,  True,  True],
        [ True,  True,  True, ...,  True,  True,  True],
      ...457e+04],
        [1.8458e+04, 1.8459e+04, 1.8460e+04, ..., 1.8905e+04, 1.8906e+04,
         1.8907e+04]]), array(-999.))

>   ???
E   numpy.core._exceptions._ArrayMemoryError: Unable to allocate 11.1 
MiB for an array with shape (3246, 450) and data type float64

<__array_function__ internals>:5: MemoryError
_________________________ TestCompact.test_distributed 
_________________________

self = <satpy.tests.reader_tests.test_viirs_compact.TestCompact 
testMethod=test_distributed>

     def setUp(self):
         """Create a fake file from scratch."""
         fake_dnb = {
             "All_Data": {
                 "ModeGran": {"value": 0},
                 "ModeScan": {
                     "value": np.array(
                         [
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             249,
                         ],
                         dtype=np.uint8,
                     )
                 },
                 "NumberOfScans": {"value": np.array([47])},
                 "VIIRS-DNB-GEO_All": {
                     "AlignmentCoefficient": {
                         "value": np.array(
                             [
                                 2.11257413e-02,
                                 2.11152732e-02,
                                 2.11079046e-02,
                                 2.10680142e-02,
                                 1.80840008e-02,
                                 1.80402063e-02,
                                 1.79968309e-02,
                                 1.79477539e-02,
                                 2.20463774e-03,
                                 2.17431062e-03,
                                 2.14360282e-03,
                                 2.11503846e-03,
                                 2.08630669e-03,
                                 2.05924874e-03,
                                 2.03177333e-03,
                                 2.00573727e-03,
                                 1.98072987e-03,
                                 1.95503305e-03,
                                 1.93077011e-03,
                                 1.90702057e-03,
                                 1.88353716e-03,
                                 1.86104013e-03,
                                 1.83863181e-03,
                                 1.81696517e-03,
                                 1.79550308e-03,
                                 1.77481642e-03,
                                 1.75439729e-03,
                                 1.73398503e-03,
                                 1.71459839e-03,
                                 1.69516564e-03,
                                 1.67622324e-03,
                                 1.65758410e-03,
                                 1.63990213e-03,
                                 1.62128301e-03,
                                 1.60375470e-03,
                                 1.58667017e-03,
                                 1.61543000e-03,
                                 1.59775047e-03,
                                 1.50719041e-03,
                                 1.48937735e-03,
                                 1.47257745e-03,
                                 1.50070526e-03,
                                 1.48288533e-03,
                                 9.29064234e-04,
                                 9.12246935e-04,
                                 8.95748264e-04,
                                 8.71886965e-04,
                                 8.55044520e-04,
                                 8.38686305e-04,
                                 8.18263041e-04,
                                 8.01501446e-04,
                                 7.85346841e-04,
                                 1.15984806e-03,
                                 1.14326552e-03,
                                 1.12648588e-03,
                                 1.11018715e-03,
                                 1.09399087e-03,
                                 1.19698711e-03,
                                 1.18051842e-03,
                                 1.16404379e-03,
                                 1.14832399e-03,
                                 9.92591376e-04,
                                 9.75896895e-04,
                                 9.59663419e-04,
                                 9.43415158e-04,
                                 9.27662419e-04,
                                 8.92253709e-04,
                                 8.75947590e-04,
                                 8.60177504e-04,
                                 8.44484195e-04,
                                 8.35279003e-04,
                                 8.19236680e-04,
                                 8.03303672e-04,
                                 7.87482015e-04,
                                 7.60449213e-04,
                                 7.44239136e-04,
                                 7.28625571e-04,
                                 7.12990935e-04,
                                 6.89090986e-04,
                                 6.73000410e-04,
                                 6.57248020e-04,
                                 6.41623745e-04,
                                 6.20219158e-04,
                                 6.04308851e-04,
                                 5.88596100e-04,
                                 5.73108089e-04,
                                 3.65344196e-04,
                                 3.49639275e-04,
                                 3.34273063e-04,
                                 4.81286290e-04,
                                 4.65485587e-04,
                                 4.49862011e-04,
                                 4.34543617e-04,
                                 4.19324206e-04,
                                 2.60536268e-04,
                                 2.45052564e-04,
                                 2.29740850e-04,
                                 2.34466774e-04,
                                 2.18822126e-04,
                                 2.03370175e-04,
                                 1.88058810e-04,
                                 1.60192372e-04,
                                 1.44485937e-04,
                                 1.28920830e-04,
                                 3.45615146e-04,
                                 3.30171984e-04,
                                 3.14682693e-04,
                                 2.99300562e-04,
                                 2.83925037e-04,
                                 2.68518896e-04,
                                 2.53254839e-04,
                                 2.37950648e-04,
                                 2.22716670e-04,
                                 2.07562072e-04,
                                 1.92296386e-04,
                                 1.77147449e-04,
                                 1.61994336e-04,
                                 1.46895778e-04,
                                 1.31844325e-04,
                                 1.16730320e-04,
                                 1.01757469e-04,
                                 8.67861963e-05,
                                 7.18669180e-05,
                                 5.70719567e-05,
                                 4.24701866e-05,
                                 2.84846719e-05,
                                 1.70599415e-05,
                                 -1.47213286e-05,
                                 -2.33691408e-05,
                                 -3.68025649e-05,
                                 -5.12388433e-05,
                                 -6.59972284e-05,
                                 -8.08926561e-05,
                                 -9.58433884e-05,
                                 -1.10882705e-04,
                                 -1.25976600e-04,
                                 -1.41044657e-04,
                                 -1.56166439e-04,
                                 -1.71307023e-04,
                                 -1.86516074e-04,
                                 -2.01731804e-04,
                                 -2.16980450e-04,
                                 -2.32271064e-04,
                                 -2.47527263e-04,
                                 -2.62940506e-04,
                                 -2.78283434e-04,
                                 -2.93711084e-04,
                                 -3.09180934e-04,
                                 -3.24661058e-04,
                                 -3.40237195e-04,
                                 -1.27807143e-04,
                                 -1.43646437e-04,
                                 -1.59638614e-04,
                                 -1.87593061e-04,
                                 -2.03169184e-04,
                                 -2.18941437e-04,
                                 -2.34920750e-04,
                                 -2.30605408e-04,
                                 -2.46262236e-04,
                                 -2.62226094e-04,
                                 -4.19838558e-04,
                                 -4.35510388e-04,
                                 -4.51152271e-04,
                                 -4.67120990e-04,
                                 -4.83241311e-04,
                                 -3.37647041e-04,
                                 -3.53568990e-04,
                                 -3.69836489e-04,
                                 -5.76354389e-04,
                                 -5.92070050e-04,
                                 -6.08178903e-04,
                                 -6.24440494e-04,
                                 -6.45648804e-04,
                                 -6.61431870e-04,
                                 -6.77491073e-04,
                                 -6.93967624e-04,
                                 -7.17683870e-04,
                                 -7.33471534e-04,
                                 -7.49999890e-04,
                                 -7.66390527e-04,
                                 -7.93468382e-04,
                                 -8.09502264e-04,
                                 -8.25728697e-04,
                                 -8.42282083e-04,
                                 -8.51265620e-04,
                                 -8.67322611e-04,
                                 -8.83649045e-04,
                                 -9.00280487e-04,
                                 -9.35055199e-04,
                                 -9.51097580e-04,
                                 -9.67527216e-04,
                                 -9.84144746e-04,
                                 -1.00128003e-03,
                                 -1.15522649e-03,
                                 -1.17168750e-03,
                                 -1.18826574e-03,
                                 -1.20496599e-03,
                                 -1.10272120e-03,
                                 -1.11865194e-03,
                                 -1.13539130e-03,
                                 -1.15241797e-03,
                                 -1.16964686e-03,
                                 -7.97322951e-04,
                                 -8.14269355e-04,
                                 -8.31696263e-04,
                                 -8.51555436e-04,
                                 -8.68656265e-04,
                                 -8.86220601e-04,
                                 -9.09406052e-04,
                                 -9.26509325e-04,
                                 -9.44124535e-04,
                                 -1.49479776e-03,
                                 -1.51314179e-03,
                                 -1.48387800e-03,
                                 -1.50146009e-03,
                                 -1.51945755e-03,
                                 -1.61006744e-03,
                                 -1.62846781e-03,
                                 -1.59783731e-03,
                                 -1.61545863e-03,
                                 -1.63336343e-03,
                                 -1.65167439e-03,
                                 -1.67034590e-03,
                                 -1.68956630e-03,
                                 -1.70884258e-03,
                                 -1.72863202e-03,
                                 -1.74859120e-03,
                                 -1.76901231e-03,
                                 -1.79015659e-03,
                                 -1.81144674e-03,
                                 -1.83329231e-03,
                                 -1.85552111e-03,
                                 -1.87840930e-03,
                                 -1.90151483e-03,
                                 -1.92550803e-03,
                                 -1.94982730e-03,
                                 -1.97511422e-03,
                                 -2.00066133e-03,
                                 -2.02709576e-03,
                                 -2.05422146e-03,
                                 -2.08215159e-03,
                                 -2.11093877e-03,
                                 -2.14011059e-03,
                                 -2.17073411e-03,
                                 -2.20196834e-03,
                                 -2.23409734e-03,
                                 -2.26700748e-03,
                                 -2.30150856e-03,
                                 -2.33719964e-03,
                                 -2.37406371e-03,
                                 -2.41223071e-03,
                                 -2.45184498e-03,
                                 -2.49327719e-03,
                                 -2.53651105e-03,
                                 -2.58166087e-03,
                                 -2.62895599e-03,
                                 -2.67871981e-03,
                                 -2.73117283e-03,
                                 -5.49861044e-03,
                                 -5.55437338e-03,
                                 -5.61159104e-03,
                                 -5.67073002e-03,
                                 -5.73173212e-03,
                                 -5.79498662e-03,
                                 -5.85969677e-03,
                                 -5.92768658e-03,
                                 -5.99809457e-03,
                                 -6.07080618e-03,
                                 -6.14715228e-03,
                                 -6.22711331e-03,
                             ],
                             dtype=np.float32,
                         )
                     },
                     "ExpansionCoefficient": {
                         "value": np.array(
                             [
                                 1.17600127e-03,
                                 1.17271533e-03,
                                 1.17000856e-03,
                                 1.16674276e-03,
                                 2.11251900e-03,
                                 2.10516527e-03,
                                 2.09726905e-03,
                                 2.08941335e-03,
                                 1.63907595e-02,
                                 1.58577170e-02,
                                 1.53679820e-02,
                                 1.49007449e-02,
                                 1.44708352e-02,
                                 1.40612368e-02,
                                 1.36818690e-02,
                                 1.33193973e-02,
                                 1.29744308e-02,
                                 1.26568424e-02,
                                 1.23488475e-02,
                                 1.20567940e-02,
                                 1.17803067e-02,
                                 1.15150018e-02,
                                 1.12629030e-02,
                                 1.10203745e-02,
                                 1.07905651e-02,
                                 1.05690639e-02,
                                 1.03563424e-02,
                                 1.01526314e-02,
                                 9.95650515e-03,
                                 9.76785459e-03,
                                 9.58597753e-03,
                                 9.41115711e-03,
                                 9.23914276e-03,
                                 9.07964632e-03,
                                 8.92116502e-03,
                                 8.76654685e-03,
                                 9.04925726e-03,
                                 8.88936501e-03,
                                 9.14804544e-03,
                                 8.98920093e-03,
                                 8.83030891e-03,
                                 9.06952657e-03,
                                 8.90891161e-03,
                                 1.36343827e-02,
                                 1.32706892e-02,
                                 1.29242949e-02,
                                 1.36271119e-02,
                                 1.32572902e-02,
                                 1.29025253e-02,
                                 1.35165229e-02,
                                 1.31412474e-02,
                                 1.27808526e-02,
                                 8.91761761e-03,
                                 8.74674786e-03,
                                 8.58181808e-03,
                                 8.42147414e-03,
                                 8.26664641e-03,
                                 7.81304855e-03,
                                 7.67400907e-03,
                                 7.54208490e-03,
                                 7.40892906e-03,
                                 8.81091598e-03,
                                 8.62924196e-03,
                                 8.45206063e-03,
                                 8.28018785e-03,
                                 8.11239891e-03,
                                 8.62185098e-03,
                                 8.43446422e-03,
                                 8.25031102e-03,
                                 8.07087123e-03,
                                 8.30837712e-03,
                                 8.11944436e-03,
                                 7.93648325e-03,
                                 7.75875151e-03,
                                 8.14332347e-03,
                                 7.94676598e-03,
                                 7.75293307e-03,
                                 7.56529858e-03,
                                 7.88933039e-03,
                                 7.68536143e-03,
                                 7.48489471e-03,
                                 7.28917075e-03,
                                 7.55438488e-03,
                                 7.34063145e-03,
                                 7.13229552e-03,
                                 6.92783622e-03,
                                 1.06161544e-02,
                                 1.01234140e-02,
                                 9.64432582e-03,
                                 6.52031973e-03,
                                 6.29310543e-03,
                                 6.06948463e-03,
                                 5.84984245e-03,
                                 5.63343242e-03,
                                 8.61937553e-03,
                                 8.08268972e-03,
                                 7.55874207e-03,
                                 6.79610623e-03,
                                 6.32849289e-03,
                                 5.86955249e-03,
                                 5.41723240e-03,
                                 5.56734810e-03,
                                 5.01116784e-03,
                                 4.46233014e-03,
                                 1.40874484e-03,
                                 1.34475902e-03,
                                 1.28140685e-03,
                                 1.21824886e-03,
                                 1.15505024e-03,
                                 1.09222531e-03,
                                 1.02962845e-03,
                                 9.67168540e-04,
                                 9.04808170e-04,
                                 8.42478999e-04,
                                 7.80681905e-04,
                                 7.18652213e-04,
                                 6.56902499e-04,
                                 5.95146266e-04,
                                 5.33432467e-04,
                                 4.72071581e-04,
                                 4.10460081e-04,
                                 3.49062117e-04,
                                 2.87777104e-04,
                                 2.26464268e-04,
                                 1.65259655e-04,
                                 1.03993290e-04,
                                 4.27830964e-05,
                                 -1.84028686e-05,
                                 -7.95840388e-05,
                                 -1.40780976e-04,
                                 -2.01987947e-04,
                                 -2.63233029e-04,
                                 -3.24499299e-04,
                                 -3.85862397e-04,
                                 -4.47216793e-04,
                                 -5.08567959e-04,
                                 -5.70152479e-04,
                                 -6.31901203e-04,
                                 -6.93684444e-04,
                                 -7.55490037e-04,
                                 -8.17523745e-04,
                                 -8.79664498e-04,
                                 -9.41973762e-04,
                                 -1.00450485e-03,
                                 -1.06710335e-03,
                                 -1.12990546e-03,
                                 -1.19290419e-03,
                                 -1.25615683e-03,
                                 -1.31971564e-03,
                                 -1.38323894e-03,
                                 -4.38789371e-03,
                                 -4.93527949e-03,
                                 -5.48970094e-03,
                                 -5.34658274e-03,
                                 -5.79780247e-03,
                                 -6.25621388e-03,
                                 -6.72366377e-03,
                                 -7.48283789e-03,
                                 -8.00681766e-03,
                                 -8.54192488e-03,
                                 -5.58420410e-03,
                                 -5.79793099e-03,
                                 -6.01683883e-03,
                                 -6.23886706e-03,
                                 -6.46463828e-03,
                                 -9.56355780e-03,
                                 -1.00387875e-02,
                                 -1.05282217e-02,
                                 -6.87109074e-03,
                                 -7.07587786e-03,
                                 -7.28309387e-03,
                                 -7.49528036e-03,
                                 -7.23363785e-03,
                                 -7.42882164e-03,
                                 -7.62982434e-03,
                                 -7.83343613e-03,
                                 -7.51076965e-03,
                                 -7.69859226e-03,
                                 -7.88733363e-03,
                                 -8.08352232e-03,
                                 -7.69890239e-03,
                                 -7.87641760e-03,
                                 -8.05852562e-03,
                                 -8.24564695e-03,
                                 -8.00882280e-03,
                                 -8.18727538e-03,
                                 -8.36882368e-03,
                                 -8.55544209e-03,
                                 -8.04922916e-03,
                                 -8.21674801e-03,
                                 -8.38823151e-03,
                                 -8.56383517e-03,
                                 -8.74411128e-03,
                                 -7.35407788e-03,
                                 -7.48245185e-03,
                                 -7.61653157e-03,
                                 -7.75389513e-03,
                                 -8.20003450e-03,
                                 -8.35770369e-03,
                                 -8.51695240e-03,
                                 -8.67962278e-03,
                                 -8.84699915e-03,
                                 -1.26767000e-02,
                                 -1.30308550e-02,
                                 -1.34020159e-02,
                                 -1.27902590e-02,
                                 -1.31374933e-02,
                                 -1.35022206e-02,
                                 -1.28020663e-02,
                                 -1.31427627e-02,
                                 -1.35003338e-02,
                                 -8.81921593e-03,
                                 -8.97676684e-03,
                                 -8.73885304e-03,
                                 -8.89289286e-03,
                                 -9.05076787e-03,
                                 -8.79113190e-03,
                                 -8.94579384e-03,
                                 -8.66949651e-03,
                                 -8.81993212e-03,
                                 -8.97467043e-03,
                                 -9.13402718e-03,
                                 -9.29924846e-03,
                                 -9.47104022e-03,
                                 -9.64829233e-03,
                                 -9.83224157e-03,
                                 -1.00242840e-02,
                                 -1.02243433e-02,
                                 -1.04304748e-02,
                                 -1.06464764e-02,
                                 -1.08723603e-02,
                                 -1.11076497e-02,
                                 -1.13517633e-02,
                                 -1.16107482e-02,
                                 -1.18797245e-02,
                                 -1.21643478e-02,
                                 -1.24597261e-02,
                                 -1.27725713e-02,
                                 -1.31026637e-02,
                                 -1.34509858e-02,
                                 -1.38195883e-02,
                                 -1.42097492e-02,
                                 -1.46267340e-02,
                                 -1.50670996e-02,
                                 -1.55417984e-02,
                                 -1.60482023e-02,
                                 -1.65943075e-02,
                                 -1.71795618e-02,
                                 -1.78127103e-02,
                                 -1.84999816e-02,
                                 -1.92504879e-02,
                                 -2.00698171e-02,
                                 -2.09702197e-02,
                                 -2.19654124e-02,
                                 -2.30720937e-02,
                                 -2.43106075e-02,
                                 -2.57069822e-02,
                                 -2.72962451e-02,
                                 -1.43178934e-02,
                                 -1.48085468e-02,
                                 -1.53383436e-02,
                                 -1.59113277e-02,
                                 -1.65353119e-02,
                                 -1.72161739e-02,
                                 -1.79625414e-02,
                                 -1.87847745e-02,
                                 -1.96950957e-02,
                                 -2.07099430e-02,
                                 -2.18482167e-02,
                                 -2.31328830e-02,
                             ],
                             dtype=np.float32,
                         )
                     },
                     "Latitude": {"value": np.random.rand(96, 
332).astype(np.float32)},
                     "Longitude": {"value": np.random.rand(96, 
332).astype(np.float32)},
                     "LunarAzimuthAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "LunarZenithAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "MidTime": {
                         "value": np.array(
                             [
                                 1950675122400462,
                                 1950675124187044,
                                 1950675125973621,
                                 1950675127760200,
                                 1950675129546777,
                                 1950675131333401,
                                 1950675133119981,
                                 1950675134906559,
                                 1950675136693138,
                                 1950675138479716,
                                 1950675140266341,
                                 1950675142052918,
                                 1950675143839498,
                                 1950675145626075,
                                 1950675147412654,
                                 1950675149199278,
                                 1950675150985857,
                                 1950675152772434,
                                 1950675154559014,
                                 1950675156345591,
                                 1950675158132216,
                                 1950675159918795,
                                 1950675161705373,
                                 1950675163491595,
                                 1950675165278173,
                                 1950675167064395,
                                 1950675168850973,
                                 1950675170637195,
                                 1950675172423773,
                                 1950675174209995,
                                 1950675175996573,
                                 1950675177782795,
                                 1950675179569373,
                                 1950675181355595,
                                 1950675183142173,
                                 1950675184928395,
                                 1950675186714973,
                                 1950675188501195,
                                 1950675190287773,
                                 1950675192073995,
                                 1950675193860573,
                                 1950675195646795,
                                 1950675197433373,
                                 1950675199219595,
                                 1950675201006173,
                                 1950675202792395,
                                 1950675204578973,
                                 -993,
                             ]
                         )
                     },
                     "MoonIllumFraction": {"value": 11.518141746520996},
                     "MoonPhaseAngle": {"value": 140.32131958007812},
                     "NumberOfTiePointZoneGroupsScan": {"value": 62},
                     "NumberOfTiePointZoneGroupsTrack": {"value": 1},
                     "NumberOfTiePointZonesScan": {
                         "value": np.array(
                             [
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 28,
                                 2,
                                 3,
                                 2,
                                 3,
                                 3,
                                 3,
                                 5,
                                 4,
                                 5,
                                 4,
                                 4,
                                 4,
                                 4,
                                 4,
                                 3,
                                 5,
                                 3,
                                 4,
                                 3,
                                 23,
                                 23,
                                 3,
                                 4,
                                 3,
                                 5,
                                 3,
                                 4,
                                 4,
                                 4,
                                 4,
                                 4,
                                 5,
                                 4,
                                 5,
                                 3,
                                 3,
                                 3,
                                 2,
                                 3,
                                 2,
                                 40,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                             ],
                             dtype=np.int32,
                         )
                     },
                     "NumberOfTiePointZonesTrack": {"value": 1},
                     "PadByte1": {"value": np.array([0, 0, 0], 
dtype=np.uint8)},
                     "QF1_SCAN_VIIRSSDRGEO": {
                         "value": np.array(
                             [
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 2,
                                 130,
                                 2,
                                 130,
                                 2,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 0,
                             ],
                             dtype=np.uint8,
                         )
                     },
                     "QF2_SCAN_VIIRSSDRGEO": {
                         "value": np.array(
                             [
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 2,
                             ],
                             dtype=np.uint8,
                         )
                     },
                     "SCAttitude": {
                         "value": np.array(
                             [
                                 [-9.22587514e-01, 3.92340779e00, 
5.93621433e-01],
                                 [-2.82428920e-01, 3.98425841e00, 
7.05978215e-01],
                                 [5.63421488e-01, 3.83695555e00, 
3.93174857e-01],
                                 [-3.16407561e-01, 3.85351181e00, 
5.33868372e-01],
                                 [-1.10977542e00, 3.82791996e00, 
6.06707633e-01],
                                 [-1.46703672e00, 3.94862103e00, 
6.45296216e-01],
                                 [-1.14162290e00, 3.79930806e00, 
7.45548725e-01],
                                 [-1.56181908e00, 3.68108273e00, 
6.49301231e-01],
                                 [-1.46823406e00, 3.63365412e00, 
5.03535330e-01],
                                 [-1.02590537e00, 3.64477968e00, 
5.22250295e-01],
                                 [-5.35379410e-01, 3.69151831e00, 
4.32526857e-01],
                                 [-5.78065366e-02, 3.37806726e00, 
4.95986529e-02],
                                 [-2.40110800e-01, 3.22970843e00, 
-9.55391768e-03],
                                 [-6.54527247e-01, 3.16465378e00, 
1.89672917e-01],
                                 [-1.35780311e00, 3.24750924e00, 
1.63008988e-01],
                                 [-1.47417045e00, 3.39788198e00, 
1.84387550e-01],
                                 [-1.74577117e00, 3.53278613e00, 
1.89606979e-01],
                                 [-1.46304774e00, 3.22666740e00, 
1.59070507e-01],
                                 [-4.05473042e00, 3.06258607e00, 
1.10443914e00],
                                 [-5.91582203e00, 2.83895302e00, 
1.79846287e00],
                                 [-7.04713678e00, 2.55699897e00, 
2.23985386e00],
                                 [-7.43741798e00, 2.21711683e00, 
2.42266488e00],
                                 [-7.06249666e00, 1.81872594e00, 
2.33713675e00],
                                 [-5.96051836e00, 1.36609375e00, 
1.99506497e00],
                                 [-4.13137341e00, 8.60225558e-01, 
1.39551389e00],
                                 [-1.57741416e00, 3.02793205e-01, 
5.36690295e-01],
                                 [7.63817742e-12, 1.11727738e-10, 
2.74194088e-11],
                                 [-1.24213686e-11, 8.01499769e-11, 
-1.34056446e-11],
                                 [1.78272761e-11, 9.04948685e-11, 
1.77389995e-11],
                                 [-1.47259357e-11, 9.37734057e-11, 
-3.89882709e-11],
                                 [-1.94052344e-11, 1.49411969e-10, 
-2.48492286e-11],
                                 [3.40418752e-12, 1.25333730e-10, 
1.14499972e-11],
                                 [5.64890669e-12, 1.35170833e-10, 
2.27858565e-11],
                                 [8.78361273e-12, 1.02109009e-10, 
-5.92111386e-12],
                                 [1.47398396e-11, 8.59943505e-11, 
-8.54686872e-13],
                                 [-5.35027361e-12, 1.25450331e-10, 
-1.54262800e-11],
                                 [2.12667054e-11, 1.57356642e-10, 
2.54392306e-11],
                                 [-6.39285022e-12, 1.42791029e-10, 
-8.58749790e-12],
                                 [-2.18451160e-11, 9.94347313e-11, 
-2.18451160e-11],
                                 [1.77587389e-11, 1.16834944e-10, 
3.09037483e-11],
                                 [5.09583955e-12, 1.06878555e-10, 
1.30452402e-11],
                                 [-1.25895900e-11, 1.06217646e-10, 
-1.07971496e-11],
                                 [1.45264981e-11, 1.03935242e-10, 
1.73963136e-11],
                                 [-1.41730258e-12, 7.72037989e-11, 
1.15057850e-11],
                                 [1.99397634e-11, 1.36618120e-10, 
4.70010628e-11],
                                 [1.24784124e-11, 1.14499965e-10, 
4.69658253e-12],
                                 [-1.83001236e-11, 5.19546177e-11, 
-1.31873679e-11],
                                 [-9.99299988e02, -9.99299988e02, 
-9.99299988e02],
                             ],
                             dtype=np.float32,
                         )
                     },
                     "SCPosition": {
                         "value": np.array(
                             [
                                 [2.3191672e06, -4.5127075e06, 
5.1096645e06],
                                 [2.3202438e06, -4.5225140e06, 
5.1005205e06],
                                 [2.3213098e06, -4.5323050e06, 
5.0913595e06],
                                 [2.3223650e06, -4.5420810e06, 
5.0821800e06],
                                 [2.3234100e06, -4.5518415e06, 
5.0729835e06],
                                 [2.3244445e06, -4.5615875e06, 
5.0637700e06],
                                 [2.3254692e06, -4.5713185e06, 
5.0545390e06],
                                 [2.3264830e06, -4.5810340e06, 
5.0452915e06],
                                 [2.3274862e06, -4.5907340e06, 
5.0360255e06],
                                 [2.3284792e06, -4.6004185e06, 
5.0267430e06],
                                 [2.3294620e06, -4.6100885e06, 
5.0174430e06],
                                 [2.3304345e06, -4.6197430e06, 
5.0081270e06],
                                 [2.3313962e06, -4.6293820e06, 
4.9987935e06],
                                 [2.3323475e06, -4.6390050e06, 
4.9894420e06],
                                 [2.3332888e06, -4.6486130e06, 
4.9800740e06],
                                 [2.3342195e06, -4.6582060e06, 
4.9706890e06],
                                 [2.3351398e06, -4.6677835e06, 
4.9612880e06],
                                 [2.3360495e06, -4.6773440e06, 
4.9518685e06],
                                 [2.3369522e06, -4.6868750e06, 
4.9424430e06],
                                 [2.3378502e06, -4.6963695e06, 
4.9330150e06],
                                 [2.3387432e06, -4.7058270e06, 
4.9235845e06],
                                 [2.3396312e06, -4.7152475e06, 
4.9141520e06],
                                 [2.3405140e06, -4.7246290e06, 
4.9047175e06],
                                 [2.3413915e06, -4.7339725e06, 
4.8952825e06],
                                 [2.3422642e06, -4.7432805e06, 
4.8858430e06],
                                 [2.3431318e06, -4.7525505e06, 
4.8764035e06],
                                 [2.3439710e06, -4.7618790e06, 
4.8668965e06],
                                 [2.3447770e06, -4.7712820e06, 
4.8573130e06],
                                 [2.3455728e06, -4.7806710e06, 
4.8477115e06],
                                 [2.3463582e06, -4.7900425e06, 
4.8380950e06],
                                 [2.3471335e06, -4.7994005e06, 
4.8284610e06],
                                 [2.3478980e06, -4.8087395e06, 
4.8188110e06],
                                 [2.3486522e06, -4.8180645e06, 
4.8091435e06],
                                 [2.3493960e06, -4.8273715e06, 
4.7994615e06],
                                 [2.3501298e06, -4.8366645e06, 
4.7897610e06],
                                 [2.3508530e06, -4.8459395e06, 
4.7800465e06],
                                 [2.3515658e06, -4.8552000e06, 
4.7703130e06],
                                 [2.3522680e06, -4.8644420e06, 
4.7605655e06],
                                 [2.3529602e06, -4.8736700e06, 
4.7508000e06],
                                 [2.3536420e06, -4.8828800e06, 
4.7410205e06],
                                 [2.3543132e06, -4.8920755e06, 
4.7312230e06],
                                 [2.3549740e06, -4.9012520e06, 
4.7214105e06],
                                 [2.3556248e06, -4.9104145e06, 
4.7115800e06],
                                 [2.3562650e06, -4.9195590e06, 
4.7017360e06],
                                 [2.3568952e06, -4.9286890e06, 
4.6918745e06],
                                 [2.3575145e06, -4.9378000e06, 
4.6819980e06],
                                 [2.3581235e06, -4.9468960e06, 
4.6721035e06],
                                 [-9.9929999e02, -9.9929999e02, 
-9.9929999e02],
                             ],
                             dtype=np.float32,
                         )
                     },
                     "SCSolarAzimuthAngle": {
                         "value": np.array(
                             [
                                 -140.6137,
                                 -140.54446,
                                 -140.47484,
                                 -140.40486,
                                 -140.33464,
                                 -140.26427,
                                 -140.19333,
                                 -140.12198,
                                 -140.05042,
                                 -139.97855,
                                 -139.90648,
                                 -139.83394,
                                 -139.76117,
                                 -139.68803,
                                 -139.61465,
                                 -139.54103,
                                 -139.46695,
                                 -139.3923,
                                 -139.31741,
                                 -139.2424,
                                 -139.16727,
                                 -139.09201,
                                 -139.01662,
                                 -138.94112,
                                 -138.86546,
                                 -138.78972,
                                 -138.71251,
                                 -138.63487,
                                 -138.5569,
                                 -138.4786,
                                 -138.39995,
                                 -138.32097,
                                 -138.24161,
                                 -138.16193,
                                 -138.0819,
                                 -138.00153,
                                 -137.92078,
                                 -137.8397,
                                 -137.75827,
                                 -137.67648,
                                 -137.59433,
                                 -137.51183,
                                 -137.42896,
                                 -137.34573,
                                 -137.26213,
                                 -137.17819,
                                 -137.09386,
                                 -999.3,
                             ],
                             dtype=np.float32,
                         )
                     },
                     "SCSolarZenithAngle": {
                         "value": np.array(
                             [
                                 135.88528,
                                 135.96703,
                                 136.04868,
                                 136.1302,
                                 136.21165,
                                 136.2931,
                                 136.37451,
                                 136.4556,
                                 136.53659,
                                 136.61748,
                                 136.69843,
                                 136.77931,
                                 136.86021,
                                 136.94092,
                                 137.02148,
                                 137.10208,
                                 137.18248,
                                 137.26239,
                                 137.34204,
                                 137.42155,
                                 137.50092,
                                 137.58014,
                                 137.65923,
                                 137.73816,
                                 137.81696,
                                 137.8956,
                                 137.97507,
                                 138.05447,
                                 138.13382,
                                 138.21303,
                                 138.29218,
                                 138.37122,
                                 138.45016,
                                 138.529,
                                 138.60777,
                                 138.68642,
                                 138.76498,
                                 138.84343,
                                 138.9218,
                                 139.00005,
                                 139.07823,
                                 139.15627,
                                 139.23422,
                                 139.31207,
                                 139.38983,
                                 139.46748,
                                 139.54503,
                                 -999.3,
                             ],
                             dtype=np.float32,
                         )
                     },
                     "SCVelocity": {
                         "value": np.array(
                             [
                                 [605.31726, -5492.9614, -5113.397],
                                 [599.4935, -5484.5615, -5123.1396],
                                 [593.66986, -5476.142, -5132.8657],
                                 [587.8464, -5467.7017, -5142.573],
                                 [582.02313, -5459.241, -5152.263],
                                 [576.19995, -5450.7607, -5161.936],
                                 [570.37714, -5442.2607, -5171.592],
                                 [564.5546, -5433.741, -5181.2295],
                                 [558.73236, -5425.2, -5190.849],
                                 [552.9104, -5416.6396, -5200.4517],
                                 [547.0887, -5408.06, -5210.0366],
                                 [541.26746, -5399.4604, -5219.6035],
                                 [535.44666, -5390.841, -5229.153],
                                 [529.6263, -5382.201, -5238.684],
                                 [523.8063, -5373.5415, -5248.1978],
                                 [517.9866, -5364.863, -5257.694],
                                 [512.16754, -5356.1646, -5267.1724],
                                 [506.34906, -5347.446, -5276.632],
                                 [500.53455, -5338.72, -5286.0645],
                                 [494.72552, -5329.993, -5295.466],
                                 [488.9218, -5321.265, -5304.8364],
                                 [483.1238, -5312.536, -5314.1743],
                                 [477.33157, -5303.806, -5323.4795],
                                 [471.546, -5295.0767, -5332.7515],
                                 [465.7647, -5286.344, -5341.9937],
                                 [459.99005, -5277.613, -5351.2026],
                                 [454.19785, -5268.798, -5360.442],
                                 [448.38614, -5259.887, -5369.7207],
                                 [442.57404, -5250.955, -5378.983],
                                 [436.7639, -5242.0063, -5388.225],
                                 [430.9534, -5233.0366, -5397.4517],
                                 [425.145, -5224.0483, -5406.6567],
                                 [419.33627, -5215.0396, -5415.845],
                                 [413.52963, -5206.013, -5425.014],
                                 [407.72275, -5196.9663, -5434.1665],
                                 [401.91797, -5187.9023, -5443.299],
                                 [396.11307, -5178.8164, -5452.4136],
                                 [390.3103, -5169.7134, -5461.508],
                                 [384.50742, -5160.59, -5470.586],
                                 [378.70673, -5151.4497, -5479.644],
                                 [372.90598, -5142.288, -5488.6846],
                                 [367.1075, -5133.109, -5497.7046],
                                 [361.309, -5123.9097, -5506.708],
                                 [355.5128, -5114.6934, -5515.691],
                                 [349.71658, -5105.4565, -5524.657],
                                 [343.9228, -5096.202, -5533.602],
                                 [338.12906, -5086.927, -5542.53],
                                 [-999.3, -999.3, -999.3],
                             ],
                             dtype=np.float32,
                         )
                     },
                     "SatelliteAzimuthAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "SatelliteZenithAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "SolarAzimuthAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "SolarZenithAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "StartTime": {
                         "value": np.array(
                             [
                                 1950675122120971,
                                 1950675123907557,
                                 1950675125694139,
                                 1950675127480722,
                                 1950675129267304,
                                 1950675131053910,
                                 1950675132840494,
                                 1950675134627077,
                                 1950675136413660,
                                 1950675138200243,
                                 1950675139986850,
                                 1950675141773433,
                                 1950675143560016,
                                 1950675145346598,
                                 1950675147133181,
                                 1950675148919788,
                                 1950675150706371,
                                 1950675152492953,
                                 1950675154279537,
                                 1950675156066119,
                                 1950675157852726,
                                 1950675159639309,
                                 1950675161425892,
                                 1950675163212109,
                                 1950675164998692,
                                 1950675166784909,
                                 1950675168571492,
                                 1950675170357709,
                                 1950675172144292,
                                 1950675173930509,
                                 1950675175717092,
                                 1950675177503309,
                                 1950675179289892,
                                 1950675181076109,
                                 1950675182862692,
                                 1950675184648909,
                                 1950675186435492,
                                 1950675188221709,
                                 1950675190008292,
                                 1950675191794509,
                                 1950675193581092,
                                 1950675195367309,
                                 1950675197153892,
                                 1950675198940109,
                                 1950675200726692,
                                 1950675202512909,
                                 1950675204299492,
                                 -993,
                             ]
                         )
                     },
                     "TiePointZoneGroupLocationScanCompact": {
                         "value": np.array(
                             [
                                 0,
                                 2,
                                 4,
                                 6,
                                 8,
                                 10,
                                 12,
                                 14,
                                 16,
                                 45,
                                 48,
                                 52,
                                 55,
                                 59,
                                 63,
                                 67,
                                 73,
                                 78,
                                 84,
                                 89,
                                 94,
                                 99,
                                 104,
                                 109,
                                 113,
                                 119,
                                 123,
                                 128,
                                 132,
                                 156,
                                 180,
                                 184,
                                 189,
                                 193,
                                 199,
                                 203,
                                 208,
                                 213,
                                 218,
                                 223,
                                 228,
                                 234,
                                 239,
                                 245,
                                 249,
                                 253,
                                 257,
                                 260,
                                 264,
                                 267,
                                 308,
                                 310,
                                 312,
                                 314,
                                 316,
                                 318,
                                 320,
                                 322,
                                 324,
                                 326,
                                 328,
                                 330,
                             ],
                             dtype=np.int32,
                         )
                     },
                     "TiePointZoneGroupLocationTrackCompact": {"value": 0},
                     "attrs": {
                         "OriginalFilename": np.array(
                             [
                                 [
 
b"GDNBO_j01_d20191025_t0611251_e0612478_b10015_c20191025062405837630_cspp_dev.h5"
                                 ]
                             ],
                             dtype="|S78",
                         )
                     },
                 },
                 "VIIRS-DNB-SDR_All": {
                     "NumberOfBadChecksums": {
                         "value": np.array(
                             [
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 -993,
                             ],
                             dtype=np.int32,
                         )
                     },
                     "NumberOfDiscardedPkts": {
                         "value": np.array(
                             [
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 -993,
                             ],
                             dtype=np.int32,
                         )
                     },
                     "NumberOfMissingPkts": {
                         "value": np.array(
                             [
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 18,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 -993,
                             ],
                             dtype=np.int32,
                         )
                     },
                     "PadByte1": {"value": np.array([0, 0, 0], 
dtype=np.uint8)},
                     "QF1_VIIRSDNBSDR": {
>                       "value": (np.random.rand(768, 4064) * 255).astype(np.uint8)
                     },
                     "QF2_SCAN_SDR": {
                         "value": np.array(
                             [
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 0,
                             ],
                             dtype=np.uint8,
                         )
                     },
                     "QF3_SCAN_RDR": {
                         "value": np.array(
                             [
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                             ],
                             dtype=np.uint8,
                         )
                     },
                     "Radiance": {"value": np.random.rand(768, 
4064).astype(np.float32)},
                     "attrs": {
                         "OriginalFilename": np.array(
                             [
                                 [
 
b"SVDNB_j01_d20191025_t0611251_e0612478_b10015_c20191025062427398006_cspp_dev.h5"
                                 ]
                             ],
                             dtype="|S78",
                         ),
                         "PixelOffsetScan": np.array([[0.5]], 
dtype=np.float32),
                         "PixelOffsetTrack": np.array([[0.5]], 
dtype=np.float32),
                         "TiePointZoneGroupLocationScan": np.array(
                             [
                                 [0],
                                 [2],
                                 [4],
                                 [6],
                                 [8],
                                 [10],
                                 [12],
                                 [14],
                                 [16],
                                 [464],
                                 [496],
                                 [544],
                                 [576],
                                 [648],
                                 [720],
                                 [792],
                                 [872],
                                 [928],
                                 [1008],
                                 [1072],
                                 [1136],
                                 [1200],
                                 [1264],
                                 [1328],
                                 [1400],
                                 [1480],
                                 [1552],
                                 [1640],
                                 [1712],
                                 [1896],
                                 [2080],
                                 [2152],
                                 [2240],
                                 [2312],
                                 [2392],
                                 [2464],
                                 [2528],
                                 [2592],
                                 [2656],
                                 [2720],
                                 [2784],
                                 [2864],
                                 [2920],
                                 [3000],
                                 [3072],
                                 [3144],
                                 [3216],
                                 [3248],
                                 [3296],
                                 [3328],
                                 [3968],
                                 [3976],
                                 [3984],
                                 [3992],
                                 [4000],
                                 [4008],
                                 [4016],
                                 [4024],
                                 [4032],
                                 [4040],
                                 [4048],
                                 [4056],
                             ],
                             dtype=np.int32,
                         ),
                         "TiePointZoneGroupLocationTrack": np.array(
                             [[0]], dtype=np.int32
                         ),
                         "TiePointZoneSizeScan": np.array(
                             [
                                 [2],
                                 [2],
                                 [2],
                                 [2],
                                 [2],
                                 [2],
                                 [2],
                                 [2],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [24],
                                 [24],
                                 [24],
                                 [16],
                                 [14],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [24],
                                 [16],
                                 [24],
                                 [22],
                                 [24],
                                 [8],
                                 [8],
                                 [24],
                                 [22],
                                 [24],
                                 [16],
                                 [24],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [14],
                                 [16],
                                 [24],
                                 [24],
                                 [24],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                             ],
                             dtype=np.int32,
                         ),
                         "TiePointZoneSizeTrack": np.array([[16]], 
dtype=np.int32),
                     },
                 },
                 "attrs": {"MissionStartTime": 
np.array([[1698019234000000]])},
             },
             "Data_Products": {
                 "VIIRS-DNB-GEO": {
                     "VIIRS-DNB-GEO_Aggr": {
                         "attrs": {
                             "AggregateBeginningDate": np.array(
                                 [[b"20191025"]], dtype="|S9"
                             ),
                             "AggregateBeginningGranuleID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "AggregateBeginningOrbitNumber": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "AggregateBeginningTime": np.array(
                                 [[b"061125.120971Z"]], dtype="|S15"
                             ),
                             "AggregateEndingDate": np.array(
                                 [[b"20191025"]], dtype="|S9"
                             ),
                             "AggregateEndingGranuleID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "AggregateEndingOrbitNumber": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "AggregateEndingTime": np.array(
                                 [[b"061247.849492Z"]], dtype="|S15"
                             ),
                             "AggregateNumberGranules": np.array([[1]], 
dtype=np.uint64),
                         }
                     },
                     "VIIRS-DNB-GEO_Gran_0": {
                         "attrs": {
                             "Ascending/Descending_Indicator": np.array(
                                 [[1]], dtype=np.uint8
                             ),
                             "Beginning_Date": np.array([[b"20191025"]], 
dtype="|S9"),
                             "Beginning_Time": np.array(
                                 [[b"061125.120971Z"]], dtype="|S15"
                             ),
                             "East_Bounding_Coordinate": np.array(
                                 [[-45.09228]], dtype=np.float32
                             ),
                             "Ending_Date": np.array([[b"20191025"]], 
dtype="|S9"),
                             "Ending_Time": np.array(
                                 [[b"061247.849492Z"]], dtype="|S15"
                             ),
                             "G-Ring_Latitude": np.array(
                                 [
                                     [41.84151],
                                     [44.31062],
                                     [46.78565],
                                     [45.41409],
                                     [41.07657],
                                     [38.81504],
                                     [36.53401],
                                     [40.55788],
                                 ],
                                 dtype=np.float32,
                             ),
                             "G-Ring_Longitude": np.array(
                                 [
                                     [-82.66234],
                                     [-82.55624],
                                     [-82.48891],
                                     [-62.80042],
                                     [-45.09228],
                                     [-46.58502],
                                     [-47.95933],
                                     [-64.54196],
                                 ],
                                 dtype=np.float32,
                             ),
                             "LeapSecondsGranuleStart": np.array([[37]], 
dtype=np.int32),
                             "N_Algorithm_Version": np.array(
                                 [[b"1.O.000.014"]], dtype="|S12"
                             ),
                             "N_Anc_Filename": np.array(
                                 [
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0691_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0692_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0693_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0719_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0720_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0721_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0722_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0723_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0724_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0725_1.O.0.0"
                                     ],
                                     [
 
b"off_Planet-Eph-ANC_Static_JPL_000f_20151008_200001010000Z_20000101000000Z_ee00000000000000Z_np" 
  # noqa
                                     ],
                                     [
 
b"off_USNO-PolarWander-UT1-ANC_Ser7_USNO_000f_20191025_201910250000Z_20191025000109Z_ee20191101120000Z_np" 
  # noqa
                                     ],
                                 ],
                                 dtype="|S104",
                             ),
                             "N_Aux_Filename": np.array(
                                 [
                                     [
 
b"CMNGEO-PARAM-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"CmnGeo-SAA-AC_j01_20151008180000Z_20170807130000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"TLE-AUX_j01_20191024053224Z_20191024000000Z_ee00000000000000Z_-_nobc_ops_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-GEO-DNB-PARAM-LUT_j01_20180507121508Z_20180315000000Z_ee00000000000000Z_PS-1-O-CCR-3963-006-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-GEO-IMG-PARAM-LUT_j01_20180430182354Z_20180315000000Z_ee00000000000000Z_PS-1-O-CCR-3963-006-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-GEO-MOD-PARAM-LUT_j01_20180430182652Z_20180315000000Z_ee00000000000000Z_PS-1-O-CCR-3963-006-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-QA-LUT_j01_20180109121411Z_20180409000000Z_ee00000000000000Z_PS-1-O-CCR-3742-003-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                 ],
                                 dtype="|S126",
                             ),
                             "N_Beginning_Orbit_Number": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "N_Beginning_Time_IET": np.array(
                                 [[1950675122120971]], dtype=np.uint64
                             ),
                             "N_Creation_Date": 
np.array([[b"20191025"]], dtype="|S9"),
                             "N_Creation_Time": np.array(
                                 [[b"062136.412867Z"]], dtype="|S15"
                             ),
                             "N_Day_Night_Flag": np.array([[b"Night"]], 
dtype="|S6"),
                             "N_Ending_Time_IET": np.array(
                                 [[1950675204849492]], dtype=np.uint64
                             ),
                             "N_Granule_ID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "N_Granule_Status": np.array([[b"N/A"]], 
dtype="|S4"),
                             "N_Granule_Version": np.array([[b"A1"]], 
dtype="|S3"),
                             "N_IDPS_Mode": np.array([[b"N/A"]], 
dtype="|S4"),
                             "N_Input_Prod": np.array(
                                 [
 
[b"SPACECRAFT-DIARY-RDR:J01002526558800:A1"],
 
[b"SPACECRAFT-DIARY-RDR:J01002526559000:A1"],
 
[b"VIIRS-SCIENCE-RDR:J01002526558865:A1"],
                                 ],
                                 dtype="|S40",
                             ),
                             "N_JPSS_Document_Ref": np.array(
                                 [
                                     [
 
b"474-00448-02-06_JPSS-DD-Vol-II-Part-6_0200H.pdf"
                                     ],
                                     [
 
b"474-00448-02-06_JPSS-VIIRS-SDR-DD-Part-6_0200H_VIIRS-DNB-GEO-PP.xml"
                                     ],
                                     [
 
b"474-00448-03-06_JPSS-OAD-Vol-III-Part-6-VIIRS-RDR-SDR_-1.pdf"
                                     ],
                                 ],
                                 dtype="|S68",
                             ),
                             "N_LEOA_Flag": np.array([[b"On"]], 
dtype="|S3"),
                             "N_Nadir_Latitude_Max": np.array(
                                 [[45.3722]], dtype=np.float32
                             ),
                             "N_Nadir_Latitude_Min": np.array(
                                 [[40.6172]], dtype=np.float32
                             ),
                             "N_Nadir_Longitude_Max": np.array(
                                 [[-62.80047]], dtype=np.float32
                             ),
                             "N_Nadir_Longitude_Min": np.array(
                                 [[-64.51342]], dtype=np.float32
                             ),
                             "N_Number_Of_Scans": np.array([[47]], 
dtype=np.int32),
                             "N_Primary_Label": np.array(
                                 [[b"Non-Primary"]], dtype="|S12"
                             ),
                             "N_Quality_Summary_Names": np.array(
                                 [
                                     [b"Automatic Quality Flag"],
                                     [b"Percent Missing Data"],
                                     [b"Percent Out of Bounds"],
                                 ],
                                 dtype="|S23",
                             ),
                             "N_Quality_Summary_Values": np.array(
                                 [[1], [61], [0]], dtype=np.int32
                             ),
                             "N_Reference_ID": np.array(
 
[[b"VIIRS-DNB-GEO:J01002526558865:A1"]], dtype="|S33"
                             ),
                             "N_Software_Version": np.array(
                                 [[b"CSPP_SDR_3_1_3"]], dtype="|S15"
                             ),
                             "N_Spacecraft_Maneuver": np.array(
                                 [[b"Normal Operations"]], dtype="|S18"
                             ),
                             "North_Bounding_Coordinate": np.array(
                                 [[46.8018]], dtype=np.float32
                             ),
                             "South_Bounding_Coordinate": np.array(
                                 [[36.53401]], dtype=np.float32
                             ),
                             "West_Bounding_Coordinate": np.array(
                                 [[-82.66234]], dtype=np.float32
                             ),
                         }
                     },
                     "attrs": {
                         "Instrument_Short_Name": np.array([[b"VIIRS"]], 
dtype="|S6"),
                         "N_Anc_Type_Tasked": np.array([[b"Official"]], 
dtype="|S9"),
                         "N_Collection_Short_Name": np.array(
                             [[b"VIIRS-DNB-GEO"]], dtype="|S14"
                         ),
                         "N_Dataset_Type_Tag": np.array([[b"GEO"]], 
dtype="|S4"),
                         "N_Processing_Domain": np.array([[b"ops"]], 
dtype="|S4"),
                         "Operational_Mode": np.array(
                             [[b"J01 Normal Operations, VIIRS 
Operational"]],
                             dtype="|S41",
                         ),
                     },
                 },
                 "VIIRS-DNB-SDR": {
                     "VIIRS-DNB-SDR_Aggr": {
                         "attrs": {
                             "AggregateBeginningDate": np.array(
                                 [[b"20191025"]], dtype="|S9"
                             ),
                             "AggregateBeginningGranuleID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "AggregateBeginningOrbitNumber": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "AggregateBeginningTime": np.array(
                                 [[b"061125.120971Z"]], dtype="|S15"
                             ),
                             "AggregateEndingDate": np.array(
                                 [[b"20191025"]], dtype="|S9"
                             ),
                             "AggregateEndingGranuleID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "AggregateEndingOrbitNumber": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "AggregateEndingTime": np.array(
                                 [[b"061247.849492Z"]], dtype="|S15"
                             ),
                             "AggregateNumberGranules": np.array([[1]], 
dtype=np.uint64),
                         }
                     },
                     "VIIRS-DNB-SDR_Gran_0": {
                         "attrs": {
                             "Ascending/Descending_Indicator": np.array(
                                 [[1]], dtype=np.uint8
                             ),
                             "Band_ID": np.array([[b"N/A"]], dtype="|S4"),
                             "Beginning_Date": np.array([[b"20191025"]], 
dtype="|S9"),
                             "Beginning_Time": np.array(
                                 [[b"061125.120971Z"]], dtype="|S15"
                             ),
                             "East_Bounding_Coordinate": np.array(
                                 [[-45.09281]], dtype=np.float32
                             ),
                             "Ending_Date": np.array([[b"20191025"]], 
dtype="|S9"),
                             "Ending_Time": np.array(
                                 [[b"061247.849492Z"]], dtype="|S15"
                             ),
                             "G-Ring_Latitude": np.array(
                                 [
                                     [41.84157],
                                     [44.31069],
                                     [46.78591],
                                     [45.41409],
                                     [41.07675],
                                     [38.81512],
                                     [36.53402],
                                     [40.55788],
                                 ],
                                 dtype=np.float32,
                             ),
                             "G-Ring_Longitude": np.array(
                                 [
                                     [-82.65787],
                                     [-82.55148],
                                     [-82.47269],
                                     [-62.80042],
                                     [-45.09281],
                                     [-46.58528],
                                     [-47.95936],
                                     [-64.54196],
                                 ],
                                 dtype=np.float32,
                             ),
                             "N_Algorithm_Version": np.array(
                                 [[b"1.O.000.015"]], dtype="|S12"
                             ),
                             "N_Anc_Filename": np.array(
                                 [
                                     [
 
b"off_Planet-Eph-ANC_Static_JPL_000f_20151008_200001010000Z_20000101000000Z_ee00000000000000Z_np" 
  # noqa
                                     ],
                                     [
 
b"off_USNO-PolarWander-UT1-ANC_Ser7_USNO_000f_20191025_201910250000Z_20191025000109Z_ee20191101120000Z_np" 
  # noqa
                                     ],
                                 ],
                                 dtype="|S104",
                             ),
                             "N_Aux_Filename": np.array(
                                 [
                                     [
 
b"CMNGEO-PARAM-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-DNB-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-I1-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-I2-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-I3-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-I4-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-I5-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M1-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M10-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M11-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M12-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M13-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M14-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M15-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M16-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M2-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M3-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M4-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M5-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M6-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M7-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M8-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M9-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-RSBAUTOCAL-HISTORY-AUX_j01_20191024021527Z_20191024000000Z_ee00000000000000Z_-_nobc_ops_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-RSBAUTOCAL-VOLT-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-EDD154640-109C-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-BB-TEMP-COEFFS-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-CAL-AUTOMATE-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-Pred-SideA-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-COEFF-A-LUT_j01_20180109114311Z_20180409000000Z_ee00000000000000Z_PS-1-O-CCR-3742-003-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-COEFF-B-LUT_j01_20180109101739Z_20180409000000Z_ee00000000000000Z_PS-1-O-CCR-3742-004-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DELTA-C-LUT_j01_20180109000000Z_20180409000000Z_ee00000000000000Z_PS-1-O-CCR-3742-003-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DG-ANOMALY-DN-LIMITS-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-SideA-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-DN0-LUT_j01_20190930000000Z_20190928000000Z_ee00000000000000Z_PS-1-O-CCR-4262-026-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-FRAME-TO-ZONE-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-Op21-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-GAIN-RATIOS-LUT_j01_20190930000000Z_20190928000000Z_ee00000000000000Z_PS-1-O-CCR-4262-025-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-LGS-GAINS-LUT_j01_20180413122703Z_20180412000000Z_ee00000000000000Z_PS-1-O-CCR-3918-005-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-RVF-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-Op21-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-STRAY-LIGHT-CORRECTION-LUT_j01_20190930160523Z_20191001000000Z_ee00000000000000Z_PS-1-O-CCR-4322-024-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-EBBT-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-EMISSIVE-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-F-PREDICTED-LUT_j01_20180413123333Z_20180412000000Z_ee00000000000000Z_PS-1-O-CCR-3918-006-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-GAIN-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-HAM-ER-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-OBC-ER-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-OBC-RR-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-OBS-TO-PIXELS-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-SameAsSNPP-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-QA-LUT_j01_20180109121411Z_20180409000000Z_ee00000000000000Z_PS-1-O-CCR-3742-003-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-RADIOMETRIC-PARAM-V3-LUT_j01_20161117000000Z_20180111000000Z_ee00000000000000Z_PS-1-O-CCR-17-3436-v003-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-REFLECTIVE-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-SameAsSNPP-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-RELATIVE-SPECTRAL-RESPONSE-LUT_j01_20161031000000Z_20180111000000Z_ee00000000000000Z_PS-1-O-CCR-17-3436-v003-FusedM9-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-RTA-ER-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-RVF-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-M16-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-SOLAR-IRAD-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-Thuillier2002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-TELE-COEFFS-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-SideA-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                 ],
                                 dtype="|S151",
                             ),
                             "N_Beginning_Orbit_Number": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "N_Beginning_Time_IET": np.array(
                                 [[1950675122120971]], dtype=np.uint64
                             ),
                             "N_Creation_Date": 
np.array([[b"20191025"]], dtype="|S9"),
                             "N_Creation_Time": np.array(
                                 [[b"062411.116253Z"]], dtype="|S15"
                             ),
                             "N_Day_Night_Flag": np.array([[b"Night"]], 
dtype="|S6"),
                             "N_Ending_Time_IET": np.array(
                                 [[1950675204849492]], dtype=np.uint64
                             ),
                             "N_Graceful_Degradation": 
np.array([[b"No"]], dtype="|S3"),
                             "N_Granule_ID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "N_Granule_Status": np.array([[b"N/A"]], 
dtype="|S4"),
                             "N_Granule_Version": np.array([[b"A1"]], 
dtype="|S3"),
                             "N_IDPS_Mode": np.array([[b"N/A"]], 
dtype="|S4"),
                             "N_Input_Prod": np.array(
                                 [
 
[b"GEO-VIIRS-OBC-IP:J01002526558865:A1"],
 
[b"SPACECRAFT-DIARY-RDR:J01002526558800:A1"],
 
[b"SPACECRAFT-DIARY-RDR:J01002526559000:A1"],
                                     [b"VIIRS-DNB-GEO:J01002526558865:A1"],
 
[b"VIIRS-IMG-RGEO-TC:J01002526558865:A1"],
 
[b"VIIRS-MOD-RGEO-TC:J01002526558865:A1"],
 
[b"VIIRS-SCIENCE-RDR:J01002526558012:A1"],
 
[b"VIIRS-SCIENCE-RDR:J01002526558865:A1"],
                                 ],
                                 dtype="|S40",
                             ),
                             "N_JPSS_Document_Ref": np.array(
                                 [
                                     [
 
b"474-00448-02-06_JPSS-DD-Vol-II-Part-6_0200H.pdf"
                                     ],
                                     [
 
b"474-00448-02-06_JPSS-VIIRS-SDR-DD-Part-6_0200H_VIIRS-DNB-SDR-PP.xml"
                                     ],
                                     [
 
b"474-00448-03-06_JPSS-OAD-Vol-III-Part-6-VIIRS-RDR-SDR_-1.pdf"
                                     ],
                                 ],
                                 dtype="|S68",
                             ),
                             "N_LEOA_Flag": np.array([[b"On"]], 
dtype="|S3"),
                             "N_Nadir_Latitude_Max": np.array(
                                 [[45.3722]], dtype=np.float32
                             ),
                             "N_Nadir_Latitude_Min": np.array(
                                 [[40.6172]], dtype=np.float32
                             ),
                             "N_Nadir_Longitude_Max": np.array(
                                 [[-62.80047]], dtype=np.float32
                             ),
                             "N_Nadir_Longitude_Min": np.array(
                                 [[-64.51342]], dtype=np.float32
                             ),
                             "N_Number_Of_Scans": np.array([[47]], 
dtype=np.int32),
                             "N_Percent_Erroneous_Data": np.array(
                                 [[0.0]], dtype=np.float32
                             ),
                             "N_Percent_Missing_Data": np.array(
                                 [[51.05127]], dtype=np.float32
                             ),
                             "N_Percent_Not-Applicable_Data": np.array(
                                 [[0.0]], dtype=np.float32
                             ),
                             "N_Primary_Label": np.array(
                                 [[b"Non-Primary"]], dtype="|S12"
                             ),
                             "N_Quality_Summary_Names": np.array(
                                 [
                                     [b"Scan Quality Exclusion"],
                                     [b"Summary VIIRS SDR Quality"],
                                 ],
                                 dtype="|S26",
                             ),
                             "N_Quality_Summary_Values": np.array(
                                 [[24], [49]], dtype=np.int32
                             ),
                             "N_RSB_Index": np.array([[17]], 
dtype=np.int32),
                             "N_Reference_ID": np.array(
 
[[b"VIIRS-DNB-SDR:J01002526558865:A1"]], dtype="|S33"
                             ),
                             "N_Satellite/Local_Azimuth_Angle_Max": 
np.array(
                                 [[179.9995]], dtype=np.float32
                             ),
                             "N_Satellite/Local_Azimuth_Angle_Min": 
np.array(
                                 [[-179.9976]], dtype=np.float32
                             ),
                             "N_Satellite/Local_Zenith_Angle_Max": np.array(
                                 [[69.83973]], dtype=np.float32
                             ),
                             "N_Satellite/Local_Zenith_Angle_Min": np.array(
                                 [[0.00898314]], dtype=np.float32
                             ),
                             "N_Software_Version": np.array(
                                 [[b"CSPP_SDR_3_1_3"]], dtype="|S15"
                             ),
                             "N_Solar_Azimuth_Angle_Max": np.array(
                                 [[73.93496]], dtype=np.float32
                             ),
                             "N_Solar_Azimuth_Angle_Min": np.array(
                                 [[23.83542]], dtype=np.float32
                             ),
                             "N_Solar_Zenith_Angle_Max": np.array(
                                 [[147.5895]], dtype=np.float32
                             ),
                             "N_Solar_Zenith_Angle_Min": np.array(
                                 [[126.3929]], dtype=np.float32
                             ),
                             "N_Spacecraft_Maneuver": np.array(
                                 [[b"Normal Operations"]], dtype="|S18"
                             ),
                             "North_Bounding_Coordinate": np.array(
                                 [[46.8018]], dtype=np.float32
                             ),
                             "South_Bounding_Coordinate": np.array(
                                 [[36.53402]], dtype=np.float32
                             ),
                             "West_Bounding_Coordinate": np.array(
                                 [[-82.65787]], dtype=np.float32
                             ),
                         }
                     },
                     "attrs": {
                         "Instrument_Short_Name": np.array([[b"VIIRS"]], 
dtype="|S6"),
                         "N_Collection_Short_Name": np.array(
                             [[b"VIIRS-DNB-SDR"]], dtype="|S14"
                         ),
                         "N_Dataset_Type_Tag": np.array([[b"SDR"]], 
dtype="|S4"),
                         "N_Instrument_Flight_SW_Version": np.array(
                             [[20], [65534]], dtype=np.int32
                         ),
                         "N_Processing_Domain": np.array([[b"ops"]], 
dtype="|S4"),
                         "Operational_Mode": np.array(
                             [[b"J01 Normal Operations, VIIRS 
Operational"]],
                             dtype="|S41",
                         ),
                     },
                 },
             },
             "attrs": {
                 "CVIIRS_Version": np.array([[b"2.0.1"]], dtype="|S5"),
                 "Compact_VIIRS_SDR_Version": np.array([[b"3.1"]], 
dtype="|S3"),
                 "Distributor": np.array([[b"cspp"]], dtype="|S5"),
                 "Mission_Name": np.array([[b"JPSS-1"]], dtype="|S7"),
                 "N_Dataset_Source": np.array([[b"all-"]], dtype="|S5"),
                 "N_GEO_Ref": np.array(
                     [
                         [
 
b"GDNBO_j01_d20191025_t0611251_e0612478_b10015_c20191025062405837630_cspp_dev.h5"
                         ]
                     ],
                     dtype="|S78",
                 ),
                 "N_HDF_Creation_Date": np.array([[b"20191025"]], 
dtype="|S8"),
                 "N_HDF_Creation_Time": np.array([[b"062502.927000Z"]], 
dtype="|S14"),
                 "Platform_Short_Name": np.array([[b"J01"]], dtype="|S4"),
                 "Satellite_Id_Filename": np.array([[b"j01"]], dtype="|S3"),
             },
         }

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_viirs_compact.py:1485: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ mtrand.pyx:1169: in numpy.random.mtrand.RandomState.rand
     ???
mtrand.pyx:423: in numpy.random.mtrand.RandomState.random_sample
     ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
>   ???
E   numpy.core._exceptions._ArrayMemoryError: Unable to allocate 23.8 
MiB for an array with shape (768, 4064) and data type float64

_common.pyx:270: MemoryError
_________________________ TestCompact.test_get_dataset 
_________________________

self = <satpy.tests.reader_tests.test_viirs_compact.TestCompact 
testMethod=test_get_dataset>

     def setUp(self):
         """Create a fake file from scratch."""
         fake_dnb = {
             "All_Data": {
                 "ModeGran": {"value": 0},
                 "ModeScan": {
                     "value": np.array(
                         [
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             0,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             254,
                             249,
                         ],
                         dtype=np.uint8,
                     )
                 },
                 "NumberOfScans": {"value": np.array([47])},
                 "VIIRS-DNB-GEO_All": {
                     "AlignmentCoefficient": {
                         "value": np.array(
                             [
                                 2.11257413e-02,
                                 2.11152732e-02,
                                 2.11079046e-02,
                                 2.10680142e-02,
                                 1.80840008e-02,
                                 1.80402063e-02,
                                 1.79968309e-02,
                                 1.79477539e-02,
                                 2.20463774e-03,
                                 2.17431062e-03,
                                 2.14360282e-03,
                                 2.11503846e-03,
                                 2.08630669e-03,
                                 2.05924874e-03,
                                 2.03177333e-03,
                                 2.00573727e-03,
                                 1.98072987e-03,
                                 1.95503305e-03,
                                 1.93077011e-03,
                                 1.90702057e-03,
                                 1.88353716e-03,
                                 1.86104013e-03,
                                 1.83863181e-03,
                                 1.81696517e-03,
                                 1.79550308e-03,
                                 1.77481642e-03,
                                 1.75439729e-03,
                                 1.73398503e-03,
                                 1.71459839e-03,
                                 1.69516564e-03,
                                 1.67622324e-03,
                                 1.65758410e-03,
                                 1.63990213e-03,
                                 1.62128301e-03,
                                 1.60375470e-03,
                                 1.58667017e-03,
                                 1.61543000e-03,
                                 1.59775047e-03,
                                 1.50719041e-03,
                                 1.48937735e-03,
                                 1.47257745e-03,
                                 1.50070526e-03,
                                 1.48288533e-03,
                                 9.29064234e-04,
                                 9.12246935e-04,
                                 8.95748264e-04,
                                 8.71886965e-04,
                                 8.55044520e-04,
                                 8.38686305e-04,
                                 8.18263041e-04,
                                 8.01501446e-04,
                                 7.85346841e-04,
                                 1.15984806e-03,
                                 1.14326552e-03,
                                 1.12648588e-03,
                                 1.11018715e-03,
                                 1.09399087e-03,
                                 1.19698711e-03,
                                 1.18051842e-03,
                                 1.16404379e-03,
                                 1.14832399e-03,
                                 9.92591376e-04,
                                 9.75896895e-04,
                                 9.59663419e-04,
                                 9.43415158e-04,
                                 9.27662419e-04,
                                 8.92253709e-04,
                                 8.75947590e-04,
                                 8.60177504e-04,
                                 8.44484195e-04,
                                 8.35279003e-04,
                                 8.19236680e-04,
                                 8.03303672e-04,
                                 7.87482015e-04,
                                 7.60449213e-04,
                                 7.44239136e-04,
                                 7.28625571e-04,
                                 7.12990935e-04,
                                 6.89090986e-04,
                                 6.73000410e-04,
                                 6.57248020e-04,
                                 6.41623745e-04,
                                 6.20219158e-04,
                                 6.04308851e-04,
                                 5.88596100e-04,
                                 5.73108089e-04,
                                 3.65344196e-04,
                                 3.49639275e-04,
                                 3.34273063e-04,
                                 4.81286290e-04,
                                 4.65485587e-04,
                                 4.49862011e-04,
                                 4.34543617e-04,
                                 4.19324206e-04,
                                 2.60536268e-04,
                                 2.45052564e-04,
                                 2.29740850e-04,
                                 2.34466774e-04,
                                 2.18822126e-04,
                                 2.03370175e-04,
                                 1.88058810e-04,
                                 1.60192372e-04,
                                 1.44485937e-04,
                                 1.28920830e-04,
                                 3.45615146e-04,
                                 3.30171984e-04,
                                 3.14682693e-04,
                                 2.99300562e-04,
                                 2.83925037e-04,
                                 2.68518896e-04,
                                 2.53254839e-04,
                                 2.37950648e-04,
                                 2.22716670e-04,
                                 2.07562072e-04,
                                 1.92296386e-04,
                                 1.77147449e-04,
                                 1.61994336e-04,
                                 1.46895778e-04,
                                 1.31844325e-04,
                                 1.16730320e-04,
                                 1.01757469e-04,
                                 8.67861963e-05,
                                 7.18669180e-05,
                                 5.70719567e-05,
                                 4.24701866e-05,
                                 2.84846719e-05,
                                 1.70599415e-05,
                                 -1.47213286e-05,
                                 -2.33691408e-05,
                                 -3.68025649e-05,
                                 -5.12388433e-05,
                                 -6.59972284e-05,
                                 -8.08926561e-05,
                                 -9.58433884e-05,
                                 -1.10882705e-04,
                                 -1.25976600e-04,
                                 -1.41044657e-04,
                                 -1.56166439e-04,
                                 -1.71307023e-04,
                                 -1.86516074e-04,
                                 -2.01731804e-04,
                                 -2.16980450e-04,
                                 -2.32271064e-04,
                                 -2.47527263e-04,
                                 -2.62940506e-04,
                                 -2.78283434e-04,
                                 -2.93711084e-04,
                                 -3.09180934e-04,
                                 -3.24661058e-04,
                                 -3.40237195e-04,
                                 -1.27807143e-04,
                                 -1.43646437e-04,
                                 -1.59638614e-04,
                                 -1.87593061e-04,
                                 -2.03169184e-04,
                                 -2.18941437e-04,
                                 -2.34920750e-04,
                                 -2.30605408e-04,
                                 -2.46262236e-04,
                                 -2.62226094e-04,
                                 -4.19838558e-04,
                                 -4.35510388e-04,
                                 -4.51152271e-04,
                                 -4.67120990e-04,
                                 -4.83241311e-04,
                                 -3.37647041e-04,
                                 -3.53568990e-04,
                                 -3.69836489e-04,
                                 -5.76354389e-04,
                                 -5.92070050e-04,
                                 -6.08178903e-04,
                                 -6.24440494e-04,
                                 -6.45648804e-04,
                                 -6.61431870e-04,
                                 -6.77491073e-04,
                                 -6.93967624e-04,
                                 -7.17683870e-04,
                                 -7.33471534e-04,
                                 -7.49999890e-04,
                                 -7.66390527e-04,
                                 -7.93468382e-04,
                                 -8.09502264e-04,
                                 -8.25728697e-04,
                                 -8.42282083e-04,
                                 -8.51265620e-04,
                                 -8.67322611e-04,
                                 -8.83649045e-04,
                                 -9.00280487e-04,
                                 -9.35055199e-04,
                                 -9.51097580e-04,
                                 -9.67527216e-04,
                                 -9.84144746e-04,
                                 -1.00128003e-03,
                                 -1.15522649e-03,
                                 -1.17168750e-03,
                                 -1.18826574e-03,
                                 -1.20496599e-03,
                                 -1.10272120e-03,
                                 -1.11865194e-03,
                                 -1.13539130e-03,
                                 -1.15241797e-03,
                                 -1.16964686e-03,
                                 -7.97322951e-04,
                                 -8.14269355e-04,
                                 -8.31696263e-04,
                                 -8.51555436e-04,
                                 -8.68656265e-04,
                                 -8.86220601e-04,
                                 -9.09406052e-04,
                                 -9.26509325e-04,
                                 -9.44124535e-04,
                                 -1.49479776e-03,
                                 -1.51314179e-03,
                                 -1.48387800e-03,
                                 -1.50146009e-03,
                                 -1.51945755e-03,
                                 -1.61006744e-03,
                                 -1.62846781e-03,
                                 -1.59783731e-03,
                                 -1.61545863e-03,
                                 -1.63336343e-03,
                                 -1.65167439e-03,
                                 -1.67034590e-03,
                                 -1.68956630e-03,
                                 -1.70884258e-03,
                                 -1.72863202e-03,
                                 -1.74859120e-03,
                                 -1.76901231e-03,
                                 -1.79015659e-03,
                                 -1.81144674e-03,
                                 -1.83329231e-03,
                                 -1.85552111e-03,
                                 -1.87840930e-03,
                                 -1.90151483e-03,
                                 -1.92550803e-03,
                                 -1.94982730e-03,
                                 -1.97511422e-03,
                                 -2.00066133e-03,
                                 -2.02709576e-03,
                                 -2.05422146e-03,
                                 -2.08215159e-03,
                                 -2.11093877e-03,
                                 -2.14011059e-03,
                                 -2.17073411e-03,
                                 -2.20196834e-03,
                                 -2.23409734e-03,
                                 -2.26700748e-03,
                                 -2.30150856e-03,
                                 -2.33719964e-03,
                                 -2.37406371e-03,
                                 -2.41223071e-03,
                                 -2.45184498e-03,
                                 -2.49327719e-03,
                                 -2.53651105e-03,
                                 -2.58166087e-03,
                                 -2.62895599e-03,
                                 -2.67871981e-03,
                                 -2.73117283e-03,
                                 -5.49861044e-03,
                                 -5.55437338e-03,
                                 -5.61159104e-03,
                                 -5.67073002e-03,
                                 -5.73173212e-03,
                                 -5.79498662e-03,
                                 -5.85969677e-03,
                                 -5.92768658e-03,
                                 -5.99809457e-03,
                                 -6.07080618e-03,
                                 -6.14715228e-03,
                                 -6.22711331e-03,
                             ],
                             dtype=np.float32,
                         )
                     },
                     "ExpansionCoefficient": {
                         "value": np.array(
                             [
                                 1.17600127e-03,
                                 1.17271533e-03,
                                 1.17000856e-03,
                                 1.16674276e-03,
                                 2.11251900e-03,
                                 2.10516527e-03,
                                 2.09726905e-03,
                                 2.08941335e-03,
                                 1.63907595e-02,
                                 1.58577170e-02,
                                 1.53679820e-02,
                                 1.49007449e-02,
                                 1.44708352e-02,
                                 1.40612368e-02,
                                 1.36818690e-02,
                                 1.33193973e-02,
                                 1.29744308e-02,
                                 1.26568424e-02,
                                 1.23488475e-02,
                                 1.20567940e-02,
                                 1.17803067e-02,
                                 1.15150018e-02,
                                 1.12629030e-02,
                                 1.10203745e-02,
                                 1.07905651e-02,
                                 1.05690639e-02,
                                 1.03563424e-02,
                                 1.01526314e-02,
                                 9.95650515e-03,
                                 9.76785459e-03,
                                 9.58597753e-03,
                                 9.41115711e-03,
                                 9.23914276e-03,
                                 9.07964632e-03,
                                 8.92116502e-03,
                                 8.76654685e-03,
                                 9.04925726e-03,
                                 8.88936501e-03,
                                 9.14804544e-03,
                                 8.98920093e-03,
                                 8.83030891e-03,
                                 9.06952657e-03,
                                 8.90891161e-03,
                                 1.36343827e-02,
                                 1.32706892e-02,
                                 1.29242949e-02,
                                 1.36271119e-02,
                                 1.32572902e-02,
                                 1.29025253e-02,
                                 1.35165229e-02,
                                 1.31412474e-02,
                                 1.27808526e-02,
                                 8.91761761e-03,
                                 8.74674786e-03,
                                 8.58181808e-03,
                                 8.42147414e-03,
                                 8.26664641e-03,
                                 7.81304855e-03,
                                 7.67400907e-03,
                                 7.54208490e-03,
                                 7.40892906e-03,
                                 8.81091598e-03,
                                 8.62924196e-03,
                                 8.45206063e-03,
                                 8.28018785e-03,
                                 8.11239891e-03,
                                 8.62185098e-03,
                                 8.43446422e-03,
                                 8.25031102e-03,
                                 8.07087123e-03,
                                 8.30837712e-03,
                                 8.11944436e-03,
                                 7.93648325e-03,
                                 7.75875151e-03,
                                 8.14332347e-03,
                                 7.94676598e-03,
                                 7.75293307e-03,
                                 7.56529858e-03,
                                 7.88933039e-03,
                                 7.68536143e-03,
                                 7.48489471e-03,
                                 7.28917075e-03,
                                 7.55438488e-03,
                                 7.34063145e-03,
                                 7.13229552e-03,
                                 6.92783622e-03,
                                 1.06161544e-02,
                                 1.01234140e-02,
                                 9.64432582e-03,
                                 6.52031973e-03,
                                 6.29310543e-03,
                                 6.06948463e-03,
                                 5.84984245e-03,
                                 5.63343242e-03,
                                 8.61937553e-03,
                                 8.08268972e-03,
                                 7.55874207e-03,
                                 6.79610623e-03,
                                 6.32849289e-03,
                                 5.86955249e-03,
                                 5.41723240e-03,
                                 5.56734810e-03,
                                 5.01116784e-03,
                                 4.46233014e-03,
                                 1.40874484e-03,
                                 1.34475902e-03,
                                 1.28140685e-03,
                                 1.21824886e-03,
                                 1.15505024e-03,
                                 1.09222531e-03,
                                 1.02962845e-03,
                                 9.67168540e-04,
                                 9.04808170e-04,
                                 8.42478999e-04,
                                 7.80681905e-04,
                                 7.18652213e-04,
                                 6.56902499e-04,
                                 5.95146266e-04,
                                 5.33432467e-04,
                                 4.72071581e-04,
                                 4.10460081e-04,
                                 3.49062117e-04,
                                 2.87777104e-04,
                                 2.26464268e-04,
                                 1.65259655e-04,
                                 1.03993290e-04,
                                 4.27830964e-05,
                                 -1.84028686e-05,
                                 -7.95840388e-05,
                                 -1.40780976e-04,
                                 -2.01987947e-04,
                                 -2.63233029e-04,
                                 -3.24499299e-04,
                                 -3.85862397e-04,
                                 -4.47216793e-04,
                                 -5.08567959e-04,
                                 -5.70152479e-04,
                                 -6.31901203e-04,
                                 -6.93684444e-04,
                                 -7.55490037e-04,
                                 -8.17523745e-04,
                                 -8.79664498e-04,
                                 -9.41973762e-04,
                                 -1.00450485e-03,
                                 -1.06710335e-03,
                                 -1.12990546e-03,
                                 -1.19290419e-03,
                                 -1.25615683e-03,
                                 -1.31971564e-03,
                                 -1.38323894e-03,
                                 -4.38789371e-03,
                                 -4.93527949e-03,
                                 -5.48970094e-03,
                                 -5.34658274e-03,
                                 -5.79780247e-03,
                                 -6.25621388e-03,
                                 -6.72366377e-03,
                                 -7.48283789e-03,
                                 -8.00681766e-03,
                                 -8.54192488e-03,
                                 -5.58420410e-03,
                                 -5.79793099e-03,
                                 -6.01683883e-03,
                                 -6.23886706e-03,
                                 -6.46463828e-03,
                                 -9.56355780e-03,
                                 -1.00387875e-02,
                                 -1.05282217e-02,
                                 -6.87109074e-03,
                                 -7.07587786e-03,
                                 -7.28309387e-03,
                                 -7.49528036e-03,
                                 -7.23363785e-03,
                                 -7.42882164e-03,
                                 -7.62982434e-03,
                                 -7.83343613e-03,
                                 -7.51076965e-03,
                                 -7.69859226e-03,
                                 -7.88733363e-03,
                                 -8.08352232e-03,
                                 -7.69890239e-03,
                                 -7.87641760e-03,
                                 -8.05852562e-03,
                                 -8.24564695e-03,
                                 -8.00882280e-03,
                                 -8.18727538e-03,
                                 -8.36882368e-03,
                                 -8.55544209e-03,
                                 -8.04922916e-03,
                                 -8.21674801e-03,
                                 -8.38823151e-03,
                                 -8.56383517e-03,
                                 -8.74411128e-03,
                                 -7.35407788e-03,
                                 -7.48245185e-03,
                                 -7.61653157e-03,
                                 -7.75389513e-03,
                                 -8.20003450e-03,
                                 -8.35770369e-03,
                                 -8.51695240e-03,
                                 -8.67962278e-03,
                                 -8.84699915e-03,
                                 -1.26767000e-02,
                                 -1.30308550e-02,
                                 -1.34020159e-02,
                                 -1.27902590e-02,
                                 -1.31374933e-02,
                                 -1.35022206e-02,
                                 -1.28020663e-02,
                                 -1.31427627e-02,
                                 -1.35003338e-02,
                                 -8.81921593e-03,
                                 -8.97676684e-03,
                                 -8.73885304e-03,
                                 -8.89289286e-03,
                                 -9.05076787e-03,
                                 -8.79113190e-03,
                                 -8.94579384e-03,
                                 -8.66949651e-03,
                                 -8.81993212e-03,
                                 -8.97467043e-03,
                                 -9.13402718e-03,
                                 -9.29924846e-03,
                                 -9.47104022e-03,
                                 -9.64829233e-03,
                                 -9.83224157e-03,
                                 -1.00242840e-02,
                                 -1.02243433e-02,
                                 -1.04304748e-02,
                                 -1.06464764e-02,
                                 -1.08723603e-02,
                                 -1.11076497e-02,
                                 -1.13517633e-02,
                                 -1.16107482e-02,
                                 -1.18797245e-02,
                                 -1.21643478e-02,
                                 -1.24597261e-02,
                                 -1.27725713e-02,
                                 -1.31026637e-02,
                                 -1.34509858e-02,
                                 -1.38195883e-02,
                                 -1.42097492e-02,
                                 -1.46267340e-02,
                                 -1.50670996e-02,
                                 -1.55417984e-02,
                                 -1.60482023e-02,
                                 -1.65943075e-02,
                                 -1.71795618e-02,
                                 -1.78127103e-02,
                                 -1.84999816e-02,
                                 -1.92504879e-02,
                                 -2.00698171e-02,
                                 -2.09702197e-02,
                                 -2.19654124e-02,
                                 -2.30720937e-02,
                                 -2.43106075e-02,
                                 -2.57069822e-02,
                                 -2.72962451e-02,
                                 -1.43178934e-02,
                                 -1.48085468e-02,
                                 -1.53383436e-02,
                                 -1.59113277e-02,
                                 -1.65353119e-02,
                                 -1.72161739e-02,
                                 -1.79625414e-02,
                                 -1.87847745e-02,
                                 -1.96950957e-02,
                                 -2.07099430e-02,
                                 -2.18482167e-02,
                                 -2.31328830e-02,
                             ],
                             dtype=np.float32,
                         )
                     },
                     "Latitude": {"value": np.random.rand(96, 
332).astype(np.float32)},
                     "Longitude": {"value": np.random.rand(96, 
332).astype(np.float32)},
                     "LunarAzimuthAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "LunarZenithAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "MidTime": {
                         "value": np.array(
                             [
                                 1950675122400462,
                                 1950675124187044,
                                 1950675125973621,
                                 1950675127760200,
                                 1950675129546777,
                                 1950675131333401,
                                 1950675133119981,
                                 1950675134906559,
                                 1950675136693138,
                                 1950675138479716,
                                 1950675140266341,
                                 1950675142052918,
                                 1950675143839498,
                                 1950675145626075,
                                 1950675147412654,
                                 1950675149199278,
                                 1950675150985857,
                                 1950675152772434,
                                 1950675154559014,
                                 1950675156345591,
                                 1950675158132216,
                                 1950675159918795,
                                 1950675161705373,
                                 1950675163491595,
                                 1950675165278173,
                                 1950675167064395,
                                 1950675168850973,
                                 1950675170637195,
                                 1950675172423773,
                                 1950675174209995,
                                 1950675175996573,
                                 1950675177782795,
                                 1950675179569373,
                                 1950675181355595,
                                 1950675183142173,
                                 1950675184928395,
                                 1950675186714973,
                                 1950675188501195,
                                 1950675190287773,
                                 1950675192073995,
                                 1950675193860573,
                                 1950675195646795,
                                 1950675197433373,
                                 1950675199219595,
                                 1950675201006173,
                                 1950675202792395,
                                 1950675204578973,
                                 -993,
                             ]
                         )
                     },
                     "MoonIllumFraction": {"value": 11.518141746520996},
                     "MoonPhaseAngle": {"value": 140.32131958007812},
                     "NumberOfTiePointZoneGroupsScan": {"value": 62},
                     "NumberOfTiePointZoneGroupsTrack": {"value": 1},
                     "NumberOfTiePointZonesScan": {
                         "value": np.array(
                             [
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 28,
                                 2,
                                 3,
                                 2,
                                 3,
                                 3,
                                 3,
                                 5,
                                 4,
                                 5,
                                 4,
                                 4,
                                 4,
                                 4,
                                 4,
                                 3,
                                 5,
                                 3,
                                 4,
                                 3,
                                 23,
                                 23,
                                 3,
                                 4,
                                 3,
                                 5,
                                 3,
                                 4,
                                 4,
                                 4,
                                 4,
                                 4,
                                 5,
                                 4,
                                 5,
                                 3,
                                 3,
                                 3,
                                 2,
                                 3,
                                 2,
                                 40,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                                 1,
                             ],
                             dtype=np.int32,
                         )
                     },
                     "NumberOfTiePointZonesTrack": {"value": 1},
                     "PadByte1": {"value": np.array([0, 0, 0], 
dtype=np.uint8)},
                     "QF1_SCAN_VIIRSSDRGEO": {
                         "value": np.array(
                             [
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 0,
                                 128,
                                 2,
                                 130,
                                 2,
                                 130,
                                 2,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 142,
                                 14,
                                 0,
                             ],
                             dtype=np.uint8,
                         )
                     },
                     "QF2_SCAN_VIIRSSDRGEO": {
                         "value": np.array(
                             [
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 2,
                             ],
                             dtype=np.uint8,
                         )
                     },
                     "SCAttitude": {
                         "value": np.array(
                             [
                                 [-9.22587514e-01, 3.92340779e00, 
5.93621433e-01],
                                 [-2.82428920e-01, 3.98425841e00, 
7.05978215e-01],
                                 [5.63421488e-01, 3.83695555e00, 
3.93174857e-01],
                                 [-3.16407561e-01, 3.85351181e00, 
5.33868372e-01],
                                 [-1.10977542e00, 3.82791996e00, 
6.06707633e-01],
                                 [-1.46703672e00, 3.94862103e00, 
6.45296216e-01],
                                 [-1.14162290e00, 3.79930806e00, 
7.45548725e-01],
                                 [-1.56181908e00, 3.68108273e00, 
6.49301231e-01],
                                 [-1.46823406e00, 3.63365412e00, 
5.03535330e-01],
                                 [-1.02590537e00, 3.64477968e00, 
5.22250295e-01],
                                 [-5.35379410e-01, 3.69151831e00, 
4.32526857e-01],
                                 [-5.78065366e-02, 3.37806726e00, 
4.95986529e-02],
                                 [-2.40110800e-01, 3.22970843e00, 
-9.55391768e-03],
                                 [-6.54527247e-01, 3.16465378e00, 
1.89672917e-01],
                                 [-1.35780311e00, 3.24750924e00, 
1.63008988e-01],
                                 [-1.47417045e00, 3.39788198e00, 
1.84387550e-01],
                                 [-1.74577117e00, 3.53278613e00, 
1.89606979e-01],
                                 [-1.46304774e00, 3.22666740e00, 
1.59070507e-01],
                                 [-4.05473042e00, 3.06258607e00, 
1.10443914e00],
                                 [-5.91582203e00, 2.83895302e00, 
1.79846287e00],
                                 [-7.04713678e00, 2.55699897e00, 
2.23985386e00],
                                 [-7.43741798e00, 2.21711683e00, 
2.42266488e00],
                                 [-7.06249666e00, 1.81872594e00, 
2.33713675e00],
                                 [-5.96051836e00, 1.36609375e00, 
1.99506497e00],
                                 [-4.13137341e00, 8.60225558e-01, 
1.39551389e00],
                                 [-1.57741416e00, 3.02793205e-01, 
5.36690295e-01],
                                 [7.63817742e-12, 1.11727738e-10, 
2.74194088e-11],
                                 [-1.24213686e-11, 8.01499769e-11, 
-1.34056446e-11],
                                 [1.78272761e-11, 9.04948685e-11, 
1.77389995e-11],
                                 [-1.47259357e-11, 9.37734057e-11, 
-3.89882709e-11],
                                 [-1.94052344e-11, 1.49411969e-10, 
-2.48492286e-11],
                                 [3.40418752e-12, 1.25333730e-10, 
1.14499972e-11],
                                 [5.64890669e-12, 1.35170833e-10, 
2.27858565e-11],
                                 [8.78361273e-12, 1.02109009e-10, 
-5.92111386e-12],
                                 [1.47398396e-11, 8.59943505e-11, 
-8.54686872e-13],
                                 [-5.35027361e-12, 1.25450331e-10, 
-1.54262800e-11],
                                 [2.12667054e-11, 1.57356642e-10, 
2.54392306e-11],
                                 [-6.39285022e-12, 1.42791029e-10, 
-8.58749790e-12],
                                 [-2.18451160e-11, 9.94347313e-11, 
-2.18451160e-11],
                                 [1.77587389e-11, 1.16834944e-10, 
3.09037483e-11],
                                 [5.09583955e-12, 1.06878555e-10, 
1.30452402e-11],
                                 [-1.25895900e-11, 1.06217646e-10, 
-1.07971496e-11],
                                 [1.45264981e-11, 1.03935242e-10, 
1.73963136e-11],
                                 [-1.41730258e-12, 7.72037989e-11, 
1.15057850e-11],
                                 [1.99397634e-11, 1.36618120e-10, 
4.70010628e-11],
                                 [1.24784124e-11, 1.14499965e-10, 
4.69658253e-12],
                                 [-1.83001236e-11, 5.19546177e-11, 
-1.31873679e-11],
                                 [-9.99299988e02, -9.99299988e02, 
-9.99299988e02],
                             ],
                             dtype=np.float32,
                         )
                     },
                     "SCPosition": {
                         "value": np.array(
                             [
                                 [2.3191672e06, -4.5127075e06, 
5.1096645e06],
                                 [2.3202438e06, -4.5225140e06, 
5.1005205e06],
                                 [2.3213098e06, -4.5323050e06, 
5.0913595e06],
                                 [2.3223650e06, -4.5420810e06, 
5.0821800e06],
                                 [2.3234100e06, -4.5518415e06, 
5.0729835e06],
                                 [2.3244445e06, -4.5615875e06, 
5.0637700e06],
                                 [2.3254692e06, -4.5713185e06, 
5.0545390e06],
                                 [2.3264830e06, -4.5810340e06, 
5.0452915e06],
                                 [2.3274862e06, -4.5907340e06, 
5.0360255e06],
                                 [2.3284792e06, -4.6004185e06, 
5.0267430e06],
                                 [2.3294620e06, -4.6100885e06, 
5.0174430e06],
                                 [2.3304345e06, -4.6197430e06, 
5.0081270e06],
                                 [2.3313962e06, -4.6293820e06, 
4.9987935e06],
                                 [2.3323475e06, -4.6390050e06, 
4.9894420e06],
                                 [2.3332888e06, -4.6486130e06, 
4.9800740e06],
                                 [2.3342195e06, -4.6582060e06, 
4.9706890e06],
                                 [2.3351398e06, -4.6677835e06, 
4.9612880e06],
                                 [2.3360495e06, -4.6773440e06, 
4.9518685e06],
                                 [2.3369522e06, -4.6868750e06, 
4.9424430e06],
                                 [2.3378502e06, -4.6963695e06, 
4.9330150e06],
                                 [2.3387432e06, -4.7058270e06, 
4.9235845e06],
                                 [2.3396312e06, -4.7152475e06, 
4.9141520e06],
                                 [2.3405140e06, -4.7246290e06, 
4.9047175e06],
                                 [2.3413915e06, -4.7339725e06, 
4.8952825e06],
                                 [2.3422642e06, -4.7432805e06, 
4.8858430e06],
                                 [2.3431318e06, -4.7525505e06, 
4.8764035e06],
                                 [2.3439710e06, -4.7618790e06, 
4.8668965e06],
                                 [2.3447770e06, -4.7712820e06, 
4.8573130e06],
                                 [2.3455728e06, -4.7806710e06, 
4.8477115e06],
                                 [2.3463582e06, -4.7900425e06, 
4.8380950e06],
                                 [2.3471335e06, -4.7994005e06, 
4.8284610e06],
                                 [2.3478980e06, -4.8087395e06, 
4.8188110e06],
                                 [2.3486522e06, -4.8180645e06, 
4.8091435e06],
                                 [2.3493960e06, -4.8273715e06, 
4.7994615e06],
                                 [2.3501298e06, -4.8366645e06, 
4.7897610e06],
                                 [2.3508530e06, -4.8459395e06, 
4.7800465e06],
                                 [2.3515658e06, -4.8552000e06, 
4.7703130e06],
                                 [2.3522680e06, -4.8644420e06, 
4.7605655e06],
                                 [2.3529602e06, -4.8736700e06, 
4.7508000e06],
                                 [2.3536420e06, -4.8828800e06, 
4.7410205e06],
                                 [2.3543132e06, -4.8920755e06, 
4.7312230e06],
                                 [2.3549740e06, -4.9012520e06, 
4.7214105e06],
                                 [2.3556248e06, -4.9104145e06, 
4.7115800e06],
                                 [2.3562650e06, -4.9195590e06, 
4.7017360e06],
                                 [2.3568952e06, -4.9286890e06, 
4.6918745e06],
                                 [2.3575145e06, -4.9378000e06, 
4.6819980e06],
                                 [2.3581235e06, -4.9468960e06, 
4.6721035e06],
                                 [-9.9929999e02, -9.9929999e02, 
-9.9929999e02],
                             ],
                             dtype=np.float32,
                         )
                     },
                     "SCSolarAzimuthAngle": {
                         "value": np.array(
                             [
                                 -140.6137,
                                 -140.54446,
                                 -140.47484,
                                 -140.40486,
                                 -140.33464,
                                 -140.26427,
                                 -140.19333,
                                 -140.12198,
                                 -140.05042,
                                 -139.97855,
                                 -139.90648,
                                 -139.83394,
                                 -139.76117,
                                 -139.68803,
                                 -139.61465,
                                 -139.54103,
                                 -139.46695,
                                 -139.3923,
                                 -139.31741,
                                 -139.2424,
                                 -139.16727,
                                 -139.09201,
                                 -139.01662,
                                 -138.94112,
                                 -138.86546,
                                 -138.78972,
                                 -138.71251,
                                 -138.63487,
                                 -138.5569,
                                 -138.4786,
                                 -138.39995,
                                 -138.32097,
                                 -138.24161,
                                 -138.16193,
                                 -138.0819,
                                 -138.00153,
                                 -137.92078,
                                 -137.8397,
                                 -137.75827,
                                 -137.67648,
                                 -137.59433,
                                 -137.51183,
                                 -137.42896,
                                 -137.34573,
                                 -137.26213,
                                 -137.17819,
                                 -137.09386,
                                 -999.3,
                             ],
                             dtype=np.float32,
                         )
                     },
                     "SCSolarZenithAngle": {
                         "value": np.array(
                             [
                                 135.88528,
                                 135.96703,
                                 136.04868,
                                 136.1302,
                                 136.21165,
                                 136.2931,
                                 136.37451,
                                 136.4556,
                                 136.53659,
                                 136.61748,
                                 136.69843,
                                 136.77931,
                                 136.86021,
                                 136.94092,
                                 137.02148,
                                 137.10208,
                                 137.18248,
                                 137.26239,
                                 137.34204,
                                 137.42155,
                                 137.50092,
                                 137.58014,
                                 137.65923,
                                 137.73816,
                                 137.81696,
                                 137.8956,
                                 137.97507,
                                 138.05447,
                                 138.13382,
                                 138.21303,
                                 138.29218,
                                 138.37122,
                                 138.45016,
                                 138.529,
                                 138.60777,
                                 138.68642,
                                 138.76498,
                                 138.84343,
                                 138.9218,
                                 139.00005,
                                 139.07823,
                                 139.15627,
                                 139.23422,
                                 139.31207,
                                 139.38983,
                                 139.46748,
                                 139.54503,
                                 -999.3,
                             ],
                             dtype=np.float32,
                         )
                     },
                     "SCVelocity": {
                         "value": np.array(
                             [
                                 [605.31726, -5492.9614, -5113.397],
                                 [599.4935, -5484.5615, -5123.1396],
                                 [593.66986, -5476.142, -5132.8657],
                                 [587.8464, -5467.7017, -5142.573],
                                 [582.02313, -5459.241, -5152.263],
                                 [576.19995, -5450.7607, -5161.936],
                                 [570.37714, -5442.2607, -5171.592],
                                 [564.5546, -5433.741, -5181.2295],
                                 [558.73236, -5425.2, -5190.849],
                                 [552.9104, -5416.6396, -5200.4517],
                                 [547.0887, -5408.06, -5210.0366],
                                 [541.26746, -5399.4604, -5219.6035],
                                 [535.44666, -5390.841, -5229.153],
                                 [529.6263, -5382.201, -5238.684],
                                 [523.8063, -5373.5415, -5248.1978],
                                 [517.9866, -5364.863, -5257.694],
                                 [512.16754, -5356.1646, -5267.1724],
                                 [506.34906, -5347.446, -5276.632],
                                 [500.53455, -5338.72, -5286.0645],
                                 [494.72552, -5329.993, -5295.466],
                                 [488.9218, -5321.265, -5304.8364],
                                 [483.1238, -5312.536, -5314.1743],
                                 [477.33157, -5303.806, -5323.4795],
                                 [471.546, -5295.0767, -5332.7515],
                                 [465.7647, -5286.344, -5341.9937],
                                 [459.99005, -5277.613, -5351.2026],
                                 [454.19785, -5268.798, -5360.442],
                                 [448.38614, -5259.887, -5369.7207],
                                 [442.57404, -5250.955, -5378.983],
                                 [436.7639, -5242.0063, -5388.225],
                                 [430.9534, -5233.0366, -5397.4517],
                                 [425.145, -5224.0483, -5406.6567],
                                 [419.33627, -5215.0396, -5415.845],
                                 [413.52963, -5206.013, -5425.014],
                                 [407.72275, -5196.9663, -5434.1665],
                                 [401.91797, -5187.9023, -5443.299],
                                 [396.11307, -5178.8164, -5452.4136],
                                 [390.3103, -5169.7134, -5461.508],
                                 [384.50742, -5160.59, -5470.586],
                                 [378.70673, -5151.4497, -5479.644],
                                 [372.90598, -5142.288, -5488.6846],
                                 [367.1075, -5133.109, -5497.7046],
                                 [361.309, -5123.9097, -5506.708],
                                 [355.5128, -5114.6934, -5515.691],
                                 [349.71658, -5105.4565, -5524.657],
                                 [343.9228, -5096.202, -5533.602],
                                 [338.12906, -5086.927, -5542.53],
                                 [-999.3, -999.3, -999.3],
                             ],
                             dtype=np.float32,
                         )
                     },
                     "SatelliteAzimuthAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "SatelliteZenithAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "SolarAzimuthAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "SolarZenithAngle": {
                         "value": np.random.rand(96, 332).astype(np.float32)
                     },
                     "StartTime": {
                         "value": np.array(
                             [
                                 1950675122120971,
                                 1950675123907557,
                                 1950675125694139,
                                 1950675127480722,
                                 1950675129267304,
                                 1950675131053910,
                                 1950675132840494,
                                 1950675134627077,
                                 1950675136413660,
                                 1950675138200243,
                                 1950675139986850,
                                 1950675141773433,
                                 1950675143560016,
                                 1950675145346598,
                                 1950675147133181,
                                 1950675148919788,
                                 1950675150706371,
                                 1950675152492953,
                                 1950675154279537,
                                 1950675156066119,
                                 1950675157852726,
                                 1950675159639309,
                                 1950675161425892,
                                 1950675163212109,
                                 1950675164998692,
                                 1950675166784909,
                                 1950675168571492,
                                 1950675170357709,
                                 1950675172144292,
                                 1950675173930509,
                                 1950675175717092,
                                 1950675177503309,
                                 1950675179289892,
                                 1950675181076109,
                                 1950675182862692,
                                 1950675184648909,
                                 1950675186435492,
                                 1950675188221709,
                                 1950675190008292,
                                 1950675191794509,
                                 1950675193581092,
                                 1950675195367309,
                                 1950675197153892,
                                 1950675198940109,
                                 1950675200726692,
                                 1950675202512909,
                                 1950675204299492,
                                 -993,
                             ]
                         )
                     },
                     "TiePointZoneGroupLocationScanCompact": {
                         "value": np.array(
                             [
                                 0,
                                 2,
                                 4,
                                 6,
                                 8,
                                 10,
                                 12,
                                 14,
                                 16,
                                 45,
                                 48,
                                 52,
                                 55,
                                 59,
                                 63,
                                 67,
                                 73,
                                 78,
                                 84,
                                 89,
                                 94,
                                 99,
                                 104,
                                 109,
                                 113,
                                 119,
                                 123,
                                 128,
                                 132,
                                 156,
                                 180,
                                 184,
                                 189,
                                 193,
                                 199,
                                 203,
                                 208,
                                 213,
                                 218,
                                 223,
                                 228,
                                 234,
                                 239,
                                 245,
                                 249,
                                 253,
                                 257,
                                 260,
                                 264,
                                 267,
                                 308,
                                 310,
                                 312,
                                 314,
                                 316,
                                 318,
                                 320,
                                 322,
                                 324,
                                 326,
                                 328,
                                 330,
                             ],
                             dtype=np.int32,
                         )
                     },
                     "TiePointZoneGroupLocationTrackCompact": {"value": 0},
                     "attrs": {
                         "OriginalFilename": np.array(
                             [
                                 [
 
b"GDNBO_j01_d20191025_t0611251_e0612478_b10015_c20191025062405837630_cspp_dev.h5"
                                 ]
                             ],
                             dtype="|S78",
                         )
                     },
                 },
                 "VIIRS-DNB-SDR_All": {
                     "NumberOfBadChecksums": {
                         "value": np.array(
                             [
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 -993,
                             ],
                             dtype=np.int32,
                         )
                     },
                     "NumberOfDiscardedPkts": {
                         "value": np.array(
                             [
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 -993,
                             ],
                             dtype=np.int32,
                         )
                     },
                     "NumberOfMissingPkts": {
                         "value": np.array(
                             [
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 17,
                                 18,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 479,
                                 -993,
                             ],
                             dtype=np.int32,
                         )
                     },
                     "PadByte1": {"value": np.array([0, 0, 0], 
dtype=np.uint8)},
                     "QF1_VIIRSDNBSDR": {
>                       "value": (np.random.rand(768, 4064) * 255).astype(np.uint8)
                     },
                     "QF2_SCAN_SDR": {
                         "value": np.array(
                             [
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 1,
                                 0,
                                 0,
                             ],
                             dtype=np.uint8,
                         )
                     },
                     "QF3_SCAN_RDR": {
                         "value": np.array(
                             [
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 0,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                                 64,
                             ],
                             dtype=np.uint8,
                         )
                     },
                     "Radiance": {"value": np.random.rand(768, 
4064).astype(np.float32)},
                     "attrs": {
                         "OriginalFilename": np.array(
                             [
                                 [
 
b"SVDNB_j01_d20191025_t0611251_e0612478_b10015_c20191025062427398006_cspp_dev.h5"
                                 ]
                             ],
                             dtype="|S78",
                         ),
                         "PixelOffsetScan": np.array([[0.5]], 
dtype=np.float32),
                         "PixelOffsetTrack": np.array([[0.5]], 
dtype=np.float32),
                         "TiePointZoneGroupLocationScan": np.array(
                             [
                                 [0],
                                 [2],
                                 [4],
                                 [6],
                                 [8],
                                 [10],
                                 [12],
                                 [14],
                                 [16],
                                 [464],
                                 [496],
                                 [544],
                                 [576],
                                 [648],
                                 [720],
                                 [792],
                                 [872],
                                 [928],
                                 [1008],
                                 [1072],
                                 [1136],
                                 [1200],
                                 [1264],
                                 [1328],
                                 [1400],
                                 [1480],
                                 [1552],
                                 [1640],
                                 [1712],
                                 [1896],
                                 [2080],
                                 [2152],
                                 [2240],
                                 [2312],
                                 [2392],
                                 [2464],
                                 [2528],
                                 [2592],
                                 [2656],
                                 [2720],
                                 [2784],
                                 [2864],
                                 [2920],
                                 [3000],
                                 [3072],
                                 [3144],
                                 [3216],
                                 [3248],
                                 [3296],
                                 [3328],
                                 [3968],
                                 [3976],
                                 [3984],
                                 [3992],
                                 [4000],
                                 [4008],
                                 [4016],
                                 [4024],
                                 [4032],
                                 [4040],
                                 [4048],
                                 [4056],
                             ],
                             dtype=np.int32,
                         ),
                         "TiePointZoneGroupLocationTrack": np.array(
                             [[0]], dtype=np.int32
                         ),
                         "TiePointZoneSizeScan": np.array(
                             [
                                 [2],
                                 [2],
                                 [2],
                                 [2],
                                 [2],
                                 [2],
                                 [2],
                                 [2],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [24],
                                 [24],
                                 [24],
                                 [16],
                                 [14],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [24],
                                 [16],
                                 [24],
                                 [22],
                                 [24],
                                 [8],
                                 [8],
                                 [24],
                                 [22],
                                 [24],
                                 [16],
                                 [24],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [14],
                                 [16],
                                 [24],
                                 [24],
                                 [24],
                                 [16],
                                 [16],
                                 [16],
                                 [16],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                                 [8],
                             ],
                             dtype=np.int32,
                         ),
                         "TiePointZoneSizeTrack": np.array([[16]], 
dtype=np.int32),
                     },
                 },
                 "attrs": {"MissionStartTime": 
np.array([[1698019234000000]])},
             },
             "Data_Products": {
                 "VIIRS-DNB-GEO": {
                     "VIIRS-DNB-GEO_Aggr": {
                         "attrs": {
                             "AggregateBeginningDate": np.array(
                                 [[b"20191025"]], dtype="|S9"
                             ),
                             "AggregateBeginningGranuleID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "AggregateBeginningOrbitNumber": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "AggregateBeginningTime": np.array(
                                 [[b"061125.120971Z"]], dtype="|S15"
                             ),
                             "AggregateEndingDate": np.array(
                                 [[b"20191025"]], dtype="|S9"
                             ),
                             "AggregateEndingGranuleID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "AggregateEndingOrbitNumber": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "AggregateEndingTime": np.array(
                                 [[b"061247.849492Z"]], dtype="|S15"
                             ),
                             "AggregateNumberGranules": np.array([[1]], 
dtype=np.uint64),
                         }
                     },
                     "VIIRS-DNB-GEO_Gran_0": {
                         "attrs": {
                             "Ascending/Descending_Indicator": np.array(
                                 [[1]], dtype=np.uint8
                             ),
                             "Beginning_Date": np.array([[b"20191025"]], 
dtype="|S9"),
                             "Beginning_Time": np.array(
                                 [[b"061125.120971Z"]], dtype="|S15"
                             ),
                             "East_Bounding_Coordinate": np.array(
                                 [[-45.09228]], dtype=np.float32
                             ),
                             "Ending_Date": np.array([[b"20191025"]], 
dtype="|S9"),
                             "Ending_Time": np.array(
                                 [[b"061247.849492Z"]], dtype="|S15"
                             ),
                             "G-Ring_Latitude": np.array(
                                 [
                                     [41.84151],
                                     [44.31062],
                                     [46.78565],
                                     [45.41409],
                                     [41.07657],
                                     [38.81504],
                                     [36.53401],
                                     [40.55788],
                                 ],
                                 dtype=np.float32,
                             ),
                             "G-Ring_Longitude": np.array(
                                 [
                                     [-82.66234],
                                     [-82.55624],
                                     [-82.48891],
                                     [-62.80042],
                                     [-45.09228],
                                     [-46.58502],
                                     [-47.95933],
                                     [-64.54196],
                                 ],
                                 dtype=np.float32,
                             ),
                             "LeapSecondsGranuleStart": np.array([[37]], 
dtype=np.int32),
                             "N_Algorithm_Version": np.array(
                                 [[b"1.O.000.014"]], dtype="|S12"
                             ),
                             "N_Anc_Filename": np.array(
                                 [
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0691_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0692_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0693_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0719_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0720_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0721_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0722_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0723_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0724_1.O.0.0"
                                     ],
                                     [
 
b"Terrain-Eco-ANC-Tile_20030125000000Z_ee00000000000000Z_NA_NA_N0725_1.O.0.0"
                                     ],
                                     [
 
b"off_Planet-Eph-ANC_Static_JPL_000f_20151008_200001010000Z_20000101000000Z_ee00000000000000Z_np" 
  # noqa
                                     ],
                                     [
 
b"off_USNO-PolarWander-UT1-ANC_Ser7_USNO_000f_20191025_201910250000Z_20191025000109Z_ee20191101120000Z_np" 
  # noqa
                                     ],
                                 ],
                                 dtype="|S104",
                             ),
                             "N_Aux_Filename": np.array(
                                 [
                                     [
 
b"CMNGEO-PARAM-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"CmnGeo-SAA-AC_j01_20151008180000Z_20170807130000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"TLE-AUX_j01_20191024053224Z_20191024000000Z_ee00000000000000Z_-_nobc_ops_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-GEO-DNB-PARAM-LUT_j01_20180507121508Z_20180315000000Z_ee00000000000000Z_PS-1-O-CCR-3963-006-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-GEO-IMG-PARAM-LUT_j01_20180430182354Z_20180315000000Z_ee00000000000000Z_PS-1-O-CCR-3963-006-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-GEO-MOD-PARAM-LUT_j01_20180430182652Z_20180315000000Z_ee00000000000000Z_PS-1-O-CCR-3963-006-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-QA-LUT_j01_20180109121411Z_20180409000000Z_ee00000000000000Z_PS-1-O-CCR-3742-003-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                 ],
                                 dtype="|S126",
                             ),
                             "N_Beginning_Orbit_Number": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "N_Beginning_Time_IET": np.array(
                                 [[1950675122120971]], dtype=np.uint64
                             ),
                             "N_Creation_Date": 
np.array([[b"20191025"]], dtype="|S9"),
                             "N_Creation_Time": np.array(
                                 [[b"062136.412867Z"]], dtype="|S15"
                             ),
                             "N_Day_Night_Flag": np.array([[b"Night"]], 
dtype="|S6"),
                             "N_Ending_Time_IET": np.array(
                                 [[1950675204849492]], dtype=np.uint64
                             ),
                             "N_Granule_ID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "N_Granule_Status": np.array([[b"N/A"]], 
dtype="|S4"),
                             "N_Granule_Version": np.array([[b"A1"]], 
dtype="|S3"),
                             "N_IDPS_Mode": np.array([[b"N/A"]], 
dtype="|S4"),
                             "N_Input_Prod": np.array(
                                 [
 
[b"SPACECRAFT-DIARY-RDR:J01002526558800:A1"],
 
[b"SPACECRAFT-DIARY-RDR:J01002526559000:A1"],
 
[b"VIIRS-SCIENCE-RDR:J01002526558865:A1"],
                                 ],
                                 dtype="|S40",
                             ),
                             "N_JPSS_Document_Ref": np.array(
                                 [
                                     [
 
b"474-00448-02-06_JPSS-DD-Vol-II-Part-6_0200H.pdf"
                                     ],
                                     [
 
b"474-00448-02-06_JPSS-VIIRS-SDR-DD-Part-6_0200H_VIIRS-DNB-GEO-PP.xml"
                                     ],
                                     [
 
b"474-00448-03-06_JPSS-OAD-Vol-III-Part-6-VIIRS-RDR-SDR_-1.pdf"
                                     ],
                                 ],
                                 dtype="|S68",
                             ),
                             "N_LEOA_Flag": np.array([[b"On"]], 
dtype="|S3"),
                             "N_Nadir_Latitude_Max": np.array(
                                 [[45.3722]], dtype=np.float32
                             ),
                             "N_Nadir_Latitude_Min": np.array(
                                 [[40.6172]], dtype=np.float32
                             ),
                             "N_Nadir_Longitude_Max": np.array(
                                 [[-62.80047]], dtype=np.float32
                             ),
                             "N_Nadir_Longitude_Min": np.array(
                                 [[-64.51342]], dtype=np.float32
                             ),
                             "N_Number_Of_Scans": np.array([[47]], 
dtype=np.int32),
                             "N_Primary_Label": np.array(
                                 [[b"Non-Primary"]], dtype="|S12"
                             ),
                             "N_Quality_Summary_Names": np.array(
                                 [
                                     [b"Automatic Quality Flag"],
                                     [b"Percent Missing Data"],
                                     [b"Percent Out of Bounds"],
                                 ],
                                 dtype="|S23",
                             ),
                             "N_Quality_Summary_Values": np.array(
                                 [[1], [61], [0]], dtype=np.int32
                             ),
                             "N_Reference_ID": np.array(
 
[[b"VIIRS-DNB-GEO:J01002526558865:A1"]], dtype="|S33"
                             ),
                             "N_Software_Version": np.array(
                                 [[b"CSPP_SDR_3_1_3"]], dtype="|S15"
                             ),
                             "N_Spacecraft_Maneuver": np.array(
                                 [[b"Normal Operations"]], dtype="|S18"
                             ),
                             "North_Bounding_Coordinate": np.array(
                                 [[46.8018]], dtype=np.float32
                             ),
                             "South_Bounding_Coordinate": np.array(
                                 [[36.53401]], dtype=np.float32
                             ),
                             "West_Bounding_Coordinate": np.array(
                                 [[-82.66234]], dtype=np.float32
                             ),
                         }
                     },
                     "attrs": {
                         "Instrument_Short_Name": np.array([[b"VIIRS"]], 
dtype="|S6"),
                         "N_Anc_Type_Tasked": np.array([[b"Official"]], 
dtype="|S9"),
                         "N_Collection_Short_Name": np.array(
                             [[b"VIIRS-DNB-GEO"]], dtype="|S14"
                         ),
                         "N_Dataset_Type_Tag": np.array([[b"GEO"]], 
dtype="|S4"),
                         "N_Processing_Domain": np.array([[b"ops"]], 
dtype="|S4"),
                         "Operational_Mode": np.array(
                             [[b"J01 Normal Operations, VIIRS 
Operational"]],
                             dtype="|S41",
                         ),
                     },
                 },
                 "VIIRS-DNB-SDR": {
                     "VIIRS-DNB-SDR_Aggr": {
                         "attrs": {
                             "AggregateBeginningDate": np.array(
                                 [[b"20191025"]], dtype="|S9"
                             ),
                             "AggregateBeginningGranuleID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "AggregateBeginningOrbitNumber": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "AggregateBeginningTime": np.array(
                                 [[b"061125.120971Z"]], dtype="|S15"
                             ),
                             "AggregateEndingDate": np.array(
                                 [[b"20191025"]], dtype="|S9"
                             ),
                             "AggregateEndingGranuleID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "AggregateEndingOrbitNumber": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "AggregateEndingTime": np.array(
                                 [[b"061247.849492Z"]], dtype="|S15"
                             ),
                             "AggregateNumberGranules": np.array([[1]], 
dtype=np.uint64),
                         }
                     },
                     "VIIRS-DNB-SDR_Gran_0": {
                         "attrs": {
                             "Ascending/Descending_Indicator": np.array(
                                 [[1]], dtype=np.uint8
                             ),
                             "Band_ID": np.array([[b"N/A"]], dtype="|S4"),
                             "Beginning_Date": np.array([[b"20191025"]], 
dtype="|S9"),
                             "Beginning_Time": np.array(
                                 [[b"061125.120971Z"]], dtype="|S15"
                             ),
                             "East_Bounding_Coordinate": np.array(
                                 [[-45.09281]], dtype=np.float32
                             ),
                             "Ending_Date": np.array([[b"20191025"]], 
dtype="|S9"),
                             "Ending_Time": np.array(
                                 [[b"061247.849492Z"]], dtype="|S15"
                             ),
                             "G-Ring_Latitude": np.array(
                                 [
                                     [41.84157],
                                     [44.31069],
                                     [46.78591],
                                     [45.41409],
                                     [41.07675],
                                     [38.81512],
                                     [36.53402],
                                     [40.55788],
                                 ],
                                 dtype=np.float32,
                             ),
                             "G-Ring_Longitude": np.array(
                                 [
                                     [-82.65787],
                                     [-82.55148],
                                     [-82.47269],
                                     [-62.80042],
                                     [-45.09281],
                                     [-46.58528],
                                     [-47.95936],
                                     [-64.54196],
                                 ],
                                 dtype=np.float32,
                             ),
                             "N_Algorithm_Version": np.array(
                                 [[b"1.O.000.015"]], dtype="|S12"
                             ),
                             "N_Anc_Filename": np.array(
                                 [
                                     [
 
b"off_Planet-Eph-ANC_Static_JPL_000f_20151008_200001010000Z_20000101000000Z_ee00000000000000Z_np" 
  # noqa
                                     ],
                                     [
 
b"off_USNO-PolarWander-UT1-ANC_Ser7_USNO_000f_20191025_201910250000Z_20191025000109Z_ee20191101120000Z_np" 
  # noqa
                                     ],
                                 ],
                                 dtype="|S104",
                             ),
                             "N_Aux_Filename": np.array(
                                 [
                                     [
 
b"CMNGEO-PARAM-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-DNB-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-I1-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-I2-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-I3-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-I4-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-I5-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M1-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M10-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M11-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M12-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M13-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M14-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M15-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M16-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M2-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M3-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M4-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M5-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M6-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M7-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M8-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-M9-SDR-DQTT_j01_20151008180000Z_20020101010000Z_ee00000000000000Z_PS-1-O-NPP-1-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-RSBAUTOCAL-HISTORY-AUX_j01_20191024021527Z_20191024000000Z_ee00000000000000Z_-_nobc_ops_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-RSBAUTOCAL-VOLT-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-EDD154640-109C-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-BB-TEMP-COEFFS-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-CAL-AUTOMATE-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-Pred-SideA-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-COEFF-A-LUT_j01_20180109114311Z_20180409000000Z_ee00000000000000Z_PS-1-O-CCR-3742-003-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-COEFF-B-LUT_j01_20180109101739Z_20180409000000Z_ee00000000000000Z_PS-1-O-CCR-3742-004-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DELTA-C-LUT_j01_20180109000000Z_20180409000000Z_ee00000000000000Z_PS-1-O-CCR-3742-003-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DG-ANOMALY-DN-LIMITS-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-SideA-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-DN0-LUT_j01_20190930000000Z_20190928000000Z_ee00000000000000Z_PS-1-O-CCR-4262-026-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-FRAME-TO-ZONE-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-Op21-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-GAIN-RATIOS-LUT_j01_20190930000000Z_20190928000000Z_ee00000000000000Z_PS-1-O-CCR-4262-025-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-LGS-GAINS-LUT_j01_20180413122703Z_20180412000000Z_ee00000000000000Z_PS-1-O-CCR-3918-005-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-RVF-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-Op21-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-DNB-STRAY-LIGHT-CORRECTION-LUT_j01_20190930160523Z_20191001000000Z_ee00000000000000Z_PS-1-O-CCR-4322-024-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-EBBT-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-EMISSIVE-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-F-PREDICTED-LUT_j01_20180413123333Z_20180412000000Z_ee00000000000000Z_PS-1-O-CCR-3918-006-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-GAIN-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-HAM-ER-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-OBC-ER-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-OBC-RR-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-OBS-TO-PIXELS-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-SameAsSNPP-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-QA-LUT_j01_20180109121411Z_20180409000000Z_ee00000000000000Z_PS-1-O-CCR-3742-003-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-RADIOMETRIC-PARAM-V3-LUT_j01_20161117000000Z_20180111000000Z_ee00000000000000Z_PS-1-O-CCR-17-3436-v003-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-REFLECTIVE-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-SameAsSNPP-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-RELATIVE-SPECTRAL-RESPONSE-LUT_j01_20161031000000Z_20180111000000Z_ee00000000000000Z_PS-1-O-CCR-17-3436-v003-FusedM9-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-RTA-ER-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-RVF-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-M16-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-SOLAR-IRAD-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-Thuillier2002-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                     [
 
b"VIIRS-SDR-TELE-COEFFS-LUT_j01_20160331000000Z_20170807130000Z_ee00000000000000Z_PS-1-O-CCR-16-2859-v002-SideA-LE-PE_all-_all_all-_ops" 
  # noqa
                                     ],
                                 ],
                                 dtype="|S151",
                             ),
                             "N_Beginning_Orbit_Number": np.array(
                                 [[10015]], dtype=np.uint64
                             ),
                             "N_Beginning_Time_IET": np.array(
                                 [[1950675122120971]], dtype=np.uint64
                             ),
                             "N_Creation_Date": 
np.array([[b"20191025"]], dtype="|S9"),
                             "N_Creation_Time": np.array(
                                 [[b"062411.116253Z"]], dtype="|S15"
                             ),
                             "N_Day_Night_Flag": np.array([[b"Night"]], 
dtype="|S6"),
                             "N_Ending_Time_IET": np.array(
                                 [[1950675204849492]], dtype=np.uint64
                             ),
                             "N_Graceful_Degradation": 
np.array([[b"No"]], dtype="|S3"),
                             "N_Granule_ID": np.array(
                                 [[b"J01002526558865"]], dtype="|S16"
                             ),
                             "N_Granule_Status": np.array([[b"N/A"]], 
dtype="|S4"),
                             "N_Granule_Version": np.array([[b"A1"]], 
dtype="|S3"),
                             "N_IDPS_Mode": np.array([[b"N/A"]], 
dtype="|S4"),
                             "N_Input_Prod": np.array(
                                 [
 
[b"GEO-VIIRS-OBC-IP:J01002526558865:A1"],
 
[b"SPACECRAFT-DIARY-RDR:J01002526558800:A1"],
 
[b"SPACECRAFT-DIARY-RDR:J01002526559000:A1"],
                                     [b"VIIRS-DNB-GEO:J01002526558865:A1"],
 
[b"VIIRS-IMG-RGEO-TC:J01002526558865:A1"],
 
[b"VIIRS-MOD-RGEO-TC:J01002526558865:A1"],
 
[b"VIIRS-SCIENCE-RDR:J01002526558012:A1"],
 
[b"VIIRS-SCIENCE-RDR:J01002526558865:A1"],
                                 ],
                                 dtype="|S40",
                             ),
                             "N_JPSS_Document_Ref": np.array(
                                 [
                                     [
 
b"474-00448-02-06_JPSS-DD-Vol-II-Part-6_0200H.pdf"
                                     ],
                                     [
 
b"474-00448-02-06_JPSS-VIIRS-SDR-DD-Part-6_0200H_VIIRS-DNB-SDR-PP.xml"
                                     ],
                                     [
 
b"474-00448-03-06_JPSS-OAD-Vol-III-Part-6-VIIRS-RDR-SDR_-1.pdf"
                                     ],
                                 ],
                                 dtype="|S68",
                             ),
                             "N_LEOA_Flag": np.array([[b"On"]], 
dtype="|S3"),
                             "N_Nadir_Latitude_Max": np.array(
                                 [[45.3722]], dtype=np.float32
                             ),
                             "N_Nadir_Latitude_Min": np.array(
                                 [[40.6172]], dtype=np.float32
                             ),
                             "N_Nadir_Longitude_Max": np.array(
                                 [[-62.80047]], dtype=np.float32
                             ),
                             "N_Nadir_Longitude_Min": np.array(
                                 [[-64.51342]], dtype=np.float32
                             ),
                             "N_Number_Of_Scans": np.array([[47]], 
dtype=np.int32),
                             "N_Percent_Erroneous_Data": np.array(
                                 [[0.0]], dtype=np.float32
                             ),
                             "N_Percent_Missing_Data": np.array(
                                 [[51.05127]], dtype=np.float32
                             ),
                             "N_Percent_Not-Applicable_Data": np.array(
                                 [[0.0]], dtype=np.float32
                             ),
                             "N_Primary_Label": np.array(
                                 [[b"Non-Primary"]], dtype="|S12"
                             ),
                             "N_Quality_Summary_Names": np.array(
                                 [
                                     [b"Scan Quality Exclusion"],
                                     [b"Summary VIIRS SDR Quality"],
                                 ],
                                 dtype="|S26",
                             ),
                             "N_Quality_Summary_Values": np.array(
                                 [[24], [49]], dtype=np.int32
                             ),
                             "N_RSB_Index": np.array([[17]], 
dtype=np.int32),
                             "N_Reference_ID": np.array(
 
[[b"VIIRS-DNB-SDR:J01002526558865:A1"]], dtype="|S33"
                             ),
                             "N_Satellite/Local_Azimuth_Angle_Max": 
np.array(
                                 [[179.9995]], dtype=np.float32
                             ),
                             "N_Satellite/Local_Azimuth_Angle_Min": 
np.array(
                                 [[-179.9976]], dtype=np.float32
                             ),
                             "N_Satellite/Local_Zenith_Angle_Max": np.array(
                                 [[69.83973]], dtype=np.float32
                             ),
                             "N_Satellite/Local_Zenith_Angle_Min": np.array(
                                 [[0.00898314]], dtype=np.float32
                             ),
                             "N_Software_Version": np.array(
                                 [[b"CSPP_SDR_3_1_3"]], dtype="|S15"
                             ),
                             "N_Solar_Azimuth_Angle_Max": np.array(
                                 [[73.93496]], dtype=np.float32
                             ),
                             "N_Solar_Azimuth_Angle_Min": np.array(
                                 [[23.83542]], dtype=np.float32
                             ),
                             "N_Solar_Zenith_Angle_Max": np.array(
                                 [[147.5895]], dtype=np.float32
                             ),
                             "N_Solar_Zenith_Angle_Min": np.array(
                                 [[126.3929]], dtype=np.float32
                             ),
                             "N_Spacecraft_Maneuver": np.array(
                                 [[b"Normal Operations"]], dtype="|S18"
                             ),
                             "North_Bounding_Coordinate": np.array(
                                 [[46.8018]], dtype=np.float32
                             ),
                             "South_Bounding_Coordinate": np.array(
                                 [[36.53402]], dtype=np.float32
                             ),
                             "West_Bounding_Coordinate": np.array(
                                 [[-82.65787]], dtype=np.float32
                             ),
                         }
                     },
                     "attrs": {
                         "Instrument_Short_Name": np.array([[b"VIIRS"]], 
dtype="|S6"),
                         "N_Collection_Short_Name": np.array(
                             [[b"VIIRS-DNB-SDR"]], dtype="|S14"
                         ),
                         "N_Dataset_Type_Tag": np.array([[b"SDR"]], 
dtype="|S4"),
                         "N_Instrument_Flight_SW_Version": np.array(
                             [[20], [65534]], dtype=np.int32
                         ),
                         "N_Processing_Domain": np.array([[b"ops"]], 
dtype="|S4"),
                         "Operational_Mode": np.array(
                             [[b"J01 Normal Operations, VIIRS 
Operational"]],
                             dtype="|S41",
                         ),
                     },
                 },
             },
             "attrs": {
                 "CVIIRS_Version": np.array([[b"2.0.1"]], dtype="|S5"),
                 "Compact_VIIRS_SDR_Version": np.array([[b"3.1"]], 
dtype="|S3"),
                 "Distributor": np.array([[b"cspp"]], dtype="|S5"),
                 "Mission_Name": np.array([[b"JPSS-1"]], dtype="|S7"),
                 "N_Dataset_Source": np.array([[b"all-"]], dtype="|S5"),
                 "N_GEO_Ref": np.array(
                     [
                         [
 
b"GDNBO_j01_d20191025_t0611251_e0612478_b10015_c20191025062405837630_cspp_dev.h5"
                         ]
                     ],
                     dtype="|S78",
                 ),
                 "N_HDF_Creation_Date": np.array([[b"20191025"]], 
dtype="|S8"),
                 "N_HDF_Creation_Time": np.array([[b"062502.927000Z"]], 
dtype="|S14"),
                 "Platform_Short_Name": np.array([[b"J01"]], dtype="|S4"),
                 "Satellite_Id_Filename": np.array([[b"j01"]], dtype="|S3"),
             },
         }

/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_viirs_compact.py:1485: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ mtrand.pyx:1169: in numpy.random.mtrand.RandomState.rand
     ???
mtrand.pyx:423: in numpy.random.mtrand.RandomState.random_sample
     ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
>   ???
E   numpy.core._exceptions._ArrayMemoryError: Unable to allocate 23.8 
MiB for an array with shape (768, 4064) and data type float64

_common.pyx:270: MemoryError
________________ TestAWIPSTiledWriter.test_basic_lettered_tiles 
________________

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0xf3bf69e8>

     def test_basic_lettered_tiles(self):
         """Test creating a lettered grid."""
         import xarray as xr
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
         data = self._get_test_data(shape=(2000, 1000), chunks=500)
         area_def = self._get_test_area(shape=(2000, 1000),
                                        extents=(-1000000., -1500000., 
1000000., 1500000.))
         ds = self._get_test_lcc_data(data, area_def)
         # tile_count should be ignored since we specified lettered_grid
>       w.save_datasets([ds], sector_id='LCC', source_name="TESTS", tile_count=(3, 3), lettered_grid=True)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:261: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1615: in 
save_datasets
     delayeds = self._delay_netcdf_creation(delayed_gen)
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1632: in 
_delay_netcdf_creation
     for dataset_to_save, output_filename, mode in 
dataset_iter(delayed_gen):
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1654: in 
dataset_iter
     results = dask.compute(_delayed_gen)[0]
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_34, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
------------------------------ Captured log call 
-------------------------------
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
________ TestAWIPSTiledWriter.test_basic_lettered_tiles_diff_projection 
________

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0x608eb0>

     def test_basic_lettered_tiles_diff_projection(self):
         """Test creating a lettered grid from data with differing 
projection.."""
         import xarray as xr
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
         crs = CRS("+proj=lcc +datum=WGS84 +ellps=WGS84 +lon_0=-95. 
+lat_0=45 +lat_1=45 +units=m +no_defs")
>       data = self._get_test_data(shape=(2000, 1000), chunks=500)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:276: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:144: 
in _get_test_data
     data = np.linspace(0., 1., shape[0] * shape[1], 
dtype=np.float32).reshape(shape)
<__array_function__ internals>:5: in linspace
     ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
start = 0.0, stop = 1.0, num = 2000000, endpoint = True, retstep = False
dtype = <class 'numpy.float32'>, axis = 0

     @array_function_dispatch(_linspace_dispatcher)
     def linspace(start, stop, num=50, endpoint=True, retstep=False, 
dtype=None,
                  axis=0):
         """
         Return evenly spaced numbers over a specified interval.
             Returns `num` evenly spaced samples, calculated over the
         interval [`start`, `stop`].
             The endpoint of the interval can optionally be excluded.
             .. versionchanged:: 1.16.0
             Non-scalar `start` and `stop` are now supported.
             Parameters
         ----------
         start : array_like
             The starting value of the sequence.
         stop : array_like
             The end value of the sequence, unless `endpoint` is set to 
False.
             In that case, the sequence consists of all but the last of 
``num + 1``
             evenly spaced samples, so that `stop` is excluded.  Note 
that the step
             size changes when `endpoint` is False.
         num : int, optional
             Number of samples to generate. Default is 50. Must be 
non-negative.
         endpoint : bool, optional
             If True, `stop` is the last sample. Otherwise, it is not 
included.
             Default is True.
         retstep : bool, optional
             If True, return (`samples`, `step`), where `step` is the 
spacing
             between samples.
         dtype : dtype, optional
             The type of the output array.  If `dtype` is not given, 
infer the data
             type from the other input arguments.
                 .. versionadded:: 1.9.0
             axis : int, optional
             The axis in the result to store the samples.  Relevant only 
if start
             or stop are array-like.  By default (0), the samples will 
be along a
             new axis inserted at the beginning. Use -1 to get an axis 
at the end.
                 .. versionadded:: 1.16.0
             Returns
         -------
         samples : ndarray
             There are `num` equally spaced samples in the closed interval
             ``[start, stop]`` or the half-open interval ``[start, stop)``
             (depending on whether `endpoint` is True or False).
         step : float, optional
             Only returned if `retstep` is True
                 Size of spacing between samples.
                 See Also
         --------
         arange : Similar to `linspace`, but uses a step size (instead 
of the
                  number of samples).
         geomspace : Similar to `linspace`, but with numbers spaced 
evenly on a log
                     scale (a geometric progression).
         logspace : Similar to `geomspace`, but with the end points 
specified as
                    logarithms.
             Examples
         --------
         >>> np.linspace(2.0, 3.0, num=5)
         array([2.  , 2.25, 2.5 , 2.75, 3.  ])
         >>> np.linspace(2.0, 3.0, num=5, endpoint=False)
         array([2. ,  2.2,  2.4,  2.6,  2.8])
         >>> np.linspace(2.0, 3.0, num=5, retstep=True)
         (array([2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)
             Graphical illustration:
             >>> import matplotlib.pyplot as plt
         >>> N = 8
         >>> y = np.zeros(N)
         >>> x1 = np.linspace(0, 10, N, endpoint=True)
         >>> x2 = np.linspace(0, 10, N, endpoint=False)
         >>> plt.plot(x1, y, 'o')
         [<matplotlib.lines.Line2D object at 0x...>]
         >>> plt.plot(x2, y + 0.5, 'o')
         [<matplotlib.lines.Line2D object at 0x...>]
         >>> plt.ylim([-0.5, 1])
         (-0.5, 1)
         >>> plt.show()
             """
         num = operator.index(num)
         if num < 0:
             raise ValueError("Number of samples, %s, must be 
non-negative." % num)
         div = (num - 1) if endpoint else num
             # Convert float/complex array scalars to float, gh-3504
         # and make sure one can use variables that have an 
__array_interface__, gh-6634
         start = asanyarray(start) * 1.0
         stop  = asanyarray(stop)  * 1.0
             dt = result_type(start, stop, float(num))
         if dtype is None:
             dtype = dt
             delta = stop - start
>       y = _nx.arange(0, num, dtype=dt).reshape((-1,) + (1,) * ndim(delta))
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
15.3 MiB for an array with shape (2000000,) and data type float64

/usr/lib/python3/dist-packages/numpy/core/function_base.py:128: MemoryError
___________ TestAWIPSTiledWriter.test_lettered_tiles_update_existing 
___________

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0x4eeb98>

     def test_lettered_tiles_update_existing(self):
         """Test updating lettered tiles with additional data."""
         import shutil
         import xarray as xr
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         import dask
         first_base_dir = os.path.join(self.base_dir, 'first')
         w = AWIPSTiledWriter(base_dir=first_base_dir, compress=True)
         shape = (2000, 1000)
>       data = np.linspace(0., 1., shape[0] * shape[1], dtype=np.float32).reshape(shape)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:300: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ <__array_function__ internals>:5: in linspace
     ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
start = 0.0, stop = 1.0, num = 2000000, endpoint = True, retstep = False
dtype = <class 'numpy.float32'>, axis = 0

     @array_function_dispatch(_linspace_dispatcher)
     def linspace(start, stop, num=50, endpoint=True, retstep=False, 
dtype=None,
                  axis=0):
         """
         Return evenly spaced numbers over a specified interval.
             Returns `num` evenly spaced samples, calculated over the
         interval [`start`, `stop`].
             The endpoint of the interval can optionally be excluded.
             .. versionchanged:: 1.16.0
             Non-scalar `start` and `stop` are now supported.
             Parameters
         ----------
         start : array_like
             The starting value of the sequence.
         stop : array_like
             The end value of the sequence, unless `endpoint` is set to 
False.
             In that case, the sequence consists of all but the last of 
``num + 1``
             evenly spaced samples, so that `stop` is excluded.  Note 
that the step
             size changes when `endpoint` is False.
         num : int, optional
             Number of samples to generate. Default is 50. Must be 
non-negative.
         endpoint : bool, optional
             If True, `stop` is the last sample. Otherwise, it is not 
included.
             Default is True.
         retstep : bool, optional
             If True, return (`samples`, `step`), where `step` is the 
spacing
             between samples.
         dtype : dtype, optional
             The type of the output array.  If `dtype` is not given, 
infer the data
             type from the other input arguments.
                 .. versionadded:: 1.9.0
             axis : int, optional
             The axis in the result to store the samples.  Relevant only 
if start
             or stop are array-like.  By default (0), the samples will 
be along a
             new axis inserted at the beginning. Use -1 to get an axis 
at the end.
                 .. versionadded:: 1.16.0
             Returns
         -------
         samples : ndarray
             There are `num` equally spaced samples in the closed interval
             ``[start, stop]`` or the half-open interval ``[start, stop)``
             (depending on whether `endpoint` is True or False).
         step : float, optional
             Only returned if `retstep` is True
                 Size of spacing between samples.
                 See Also
         --------
         arange : Similar to `linspace`, but uses a step size (instead 
of the
                  number of samples).
         geomspace : Similar to `linspace`, but with numbers spaced 
evenly on a log
                     scale (a geometric progression).
         logspace : Similar to `geomspace`, but with the end points 
specified as
                    logarithms.
             Examples
         --------
         >>> np.linspace(2.0, 3.0, num=5)
         array([2.  , 2.25, 2.5 , 2.75, 3.  ])
         >>> np.linspace(2.0, 3.0, num=5, endpoint=False)
         array([2. ,  2.2,  2.4,  2.6,  2.8])
         >>> np.linspace(2.0, 3.0, num=5, retstep=True)
         (array([2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)
             Graphical illustration:
             >>> import matplotlib.pyplot as plt
         >>> N = 8
         >>> y = np.zeros(N)
         >>> x1 = np.linspace(0, 10, N, endpoint=True)
         >>> x2 = np.linspace(0, 10, N, endpoint=False)
         >>> plt.plot(x1, y, 'o')
         [<matplotlib.lines.Line2D object at 0x...>]
         >>> plt.plot(x2, y + 0.5, 'o')
         [<matplotlib.lines.Line2D object at 0x...>]
         >>> plt.ylim([-0.5, 1])
         (-0.5, 1)
         >>> plt.show()
             """
         num = operator.index(num)
         if num < 0:
             raise ValueError("Number of samples, %s, must be 
non-negative." % num)
         div = (num - 1) if endpoint else num
             # Convert float/complex array scalars to float, gh-3504
         # and make sure one can use variables that have an 
__array_interface__, gh-6634
         start = asanyarray(start) * 1.0
         stop  = asanyarray(stop)  * 1.0
             dt = result_type(start, stop, float(num))
         if dtype is None:
             dtype = dt
             delta = stop - start
>       y = _nx.arange(0, num, dtype=dt).reshape((-1,) + (1,) * ndim(delta))
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
15.3 MiB for an array with shape (2000000,) and data type float64

/usr/lib/python3/dist-packages/numpy/core/function_base.py:128: MemoryError
_____________ TestAWIPSTiledWriter.test_lettered_tiles_sector_ref 
______________

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0xbbd58e68>

     def test_lettered_tiles_sector_ref(self):
         """Test creating a lettered grid using the sector as reference."""
         import xarray as xr
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
>       data = self._get_test_data(shape=(2000, 1000), chunks=500)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:366: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:144: 
in _get_test_data
     data = np.linspace(0., 1., shape[0] * shape[1], 
dtype=np.float32).reshape(shape)
<__array_function__ internals>:5: in linspace
     ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
start = 0.0, stop = 1.0, num = 2000000, endpoint = True, retstep = False
dtype = <class 'numpy.float32'>, axis = 0

     @array_function_dispatch(_linspace_dispatcher)
     def linspace(start, stop, num=50, endpoint=True, retstep=False, 
dtype=None,
                  axis=0):
         """
         Return evenly spaced numbers over a specified interval.
             Returns `num` evenly spaced samples, calculated over the
         interval [`start`, `stop`].
             The endpoint of the interval can optionally be excluded.
             .. versionchanged:: 1.16.0
             Non-scalar `start` and `stop` are now supported.
             Parameters
         ----------
         start : array_like
             The starting value of the sequence.
         stop : array_like
             The end value of the sequence, unless `endpoint` is set to 
False.
             In that case, the sequence consists of all but the last of 
``num + 1``
             evenly spaced samples, so that `stop` is excluded.  Note 
that the step
             size changes when `endpoint` is False.
         num : int, optional
             Number of samples to generate. Default is 50. Must be 
non-negative.
         endpoint : bool, optional
             If True, `stop` is the last sample. Otherwise, it is not 
included.
             Default is True.
         retstep : bool, optional
             If True, return (`samples`, `step`), where `step` is the 
spacing
             between samples.
         dtype : dtype, optional
             The type of the output array.  If `dtype` is not given, 
infer the data
             type from the other input arguments.
                 .. versionadded:: 1.9.0
             axis : int, optional
             The axis in the result to store the samples.  Relevant only 
if start
             or stop are array-like.  By default (0), the samples will 
be along a
             new axis inserted at the beginning. Use -1 to get an axis 
at the end.
                 .. versionadded:: 1.16.0
             Returns
         -------
         samples : ndarray
             There are `num` equally spaced samples in the closed interval
             ``[start, stop]`` or the half-open interval ``[start, stop)``
             (depending on whether `endpoint` is True or False).
         step : float, optional
             Only returned if `retstep` is True
                 Size of spacing between samples.
                 See Also
         --------
         arange : Similar to `linspace`, but uses a step size (instead 
of the
                  number of samples).
         geomspace : Similar to `linspace`, but with numbers spaced 
evenly on a log
                     scale (a geometric progression).
         logspace : Similar to `geomspace`, but with the end points 
specified as
                    logarithms.
             Examples
         --------
         >>> np.linspace(2.0, 3.0, num=5)
         array([2.  , 2.25, 2.5 , 2.75, 3.  ])
         >>> np.linspace(2.0, 3.0, num=5, endpoint=False)
         array([2. ,  2.2,  2.4,  2.6,  2.8])
         >>> np.linspace(2.0, 3.0, num=5, retstep=True)
         (array([2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)
             Graphical illustration:
             >>> import matplotlib.pyplot as plt
         >>> N = 8
         >>> y = np.zeros(N)
         >>> x1 = np.linspace(0, 10, N, endpoint=True)
         >>> x2 = np.linspace(0, 10, N, endpoint=False)
         >>> plt.plot(x1, y, 'o')
         [<matplotlib.lines.Line2D object at 0x...>]
         >>> plt.plot(x2, y + 0.5, 'o')
         [<matplotlib.lines.Line2D object at 0x...>]
         >>> plt.ylim([-0.5, 1])
         (-0.5, 1)
         >>> plt.show()
             """
         num = operator.index(num)
         if num < 0:
             raise ValueError("Number of samples, %s, must be 
non-negative." % num)
         div = (num - 1) if endpoint else num
             # Convert float/complex array scalars to float, gh-3504
         # and make sure one can use variables that have an 
__array_interface__, gh-6634
         start = asanyarray(start) * 1.0
         stop  = asanyarray(stop)  * 1.0
             dt = result_type(start, stop, float(num))
         if dtype is None:
             dtype = dt
             delta = stop - start
>       y = _nx.arange(0, num, dtype=dt).reshape((-1,) + (1,) * ndim(delta))
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
15.3 MiB for an array with shape (2000000,) and data type float64

/usr/lib/python3/dist-packages/numpy/core/function_base.py:128: MemoryError
_______________ TestAWIPSTiledWriter.test_lettered_tiles_no_fit 
________________

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0xe9d7760>

     def test_lettered_tiles_no_fit(self):
         """Test creating a lettered grid with no data overlapping the 
grid."""
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
>       data = self._get_test_data(shape=(2000, 1000), chunks=500)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:386: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:144: 
in _get_test_data
     data = np.linspace(0., 1., shape[0] * shape[1], 
dtype=np.float32).reshape(shape)
<__array_function__ internals>:5: in linspace
     ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
start = 0.0, stop = 1.0, num = 2000000, endpoint = True, retstep = False
dtype = <class 'numpy.float32'>, axis = 0

     @array_function_dispatch(_linspace_dispatcher)
     def linspace(start, stop, num=50, endpoint=True, retstep=False, 
dtype=None,
                  axis=0):
         """
         Return evenly spaced numbers over a specified interval.
             Returns `num` evenly spaced samples, calculated over the
         interval [`start`, `stop`].
             The endpoint of the interval can optionally be excluded.
             .. versionchanged:: 1.16.0
             Non-scalar `start` and `stop` are now supported.
             Parameters
         ----------
         start : array_like
             The starting value of the sequence.
         stop : array_like
             The end value of the sequence, unless `endpoint` is set to 
False.
             In that case, the sequence consists of all but the last of 
``num + 1``
             evenly spaced samples, so that `stop` is excluded.  Note 
that the step
             size changes when `endpoint` is False.
         num : int, optional
             Number of samples to generate. Default is 50. Must be 
non-negative.
         endpoint : bool, optional
             If True, `stop` is the last sample. Otherwise, it is not 
included.
             Default is True.
         retstep : bool, optional
             If True, return (`samples`, `step`), where `step` is the 
spacing
             between samples.
         dtype : dtype, optional
             The type of the output array.  If `dtype` is not given, 
infer the data
             type from the other input arguments.
                 .. versionadded:: 1.9.0
             axis : int, optional
             The axis in the result to store the samples.  Relevant only 
if start
             or stop are array-like.  By default (0), the samples will 
be along a
             new axis inserted at the beginning. Use -1 to get an axis 
at the end.
                 .. versionadded:: 1.16.0
             Returns
         -------
         samples : ndarray
             There are `num` equally spaced samples in the closed interval
             ``[start, stop]`` or the half-open interval ``[start, stop)``
             (depending on whether `endpoint` is True or False).
         step : float, optional
             Only returned if `retstep` is True
                 Size of spacing between samples.
                 See Also
         --------
         arange : Similar to `linspace`, but uses a step size (instead 
of the
                  number of samples).
         geomspace : Similar to `linspace`, but with numbers spaced 
evenly on a log
                     scale (a geometric progression).
         logspace : Similar to `geomspace`, but with the end points 
specified as
                    logarithms.
             Examples
         --------
         >>> np.linspace(2.0, 3.0, num=5)
         array([2.  , 2.25, 2.5 , 2.75, 3.  ])
         >>> np.linspace(2.0, 3.0, num=5, endpoint=False)
         array([2. ,  2.2,  2.4,  2.6,  2.8])
         >>> np.linspace(2.0, 3.0, num=5, retstep=True)
         (array([2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)
             Graphical illustration:
             >>> import matplotlib.pyplot as plt
         >>> N = 8
         >>> y = np.zeros(N)
         >>> x1 = np.linspace(0, 10, N, endpoint=True)
         >>> x2 = np.linspace(0, 10, N, endpoint=False)
         >>> plt.plot(x1, y, 'o')
         [<matplotlib.lines.Line2D object at 0x...>]
         >>> plt.plot(x2, y + 0.5, 'o')
         [<matplotlib.lines.Line2D object at 0x...>]
         >>> plt.ylim([-0.5, 1])
         (-0.5, 1)
         >>> plt.show()
             """
         num = operator.index(num)
         if num < 0:
             raise ValueError("Number of samples, %s, must be 
non-negative." % num)
         div = (num - 1) if endpoint else num
             # Convert float/complex array scalars to float, gh-3504
         # and make sure one can use variables that have an 
__array_interface__, gh-6634
         start = asanyarray(start) * 1.0
         stop  = asanyarray(stop)  * 1.0
             dt = result_type(start, stop, float(num))
         if dtype is None:
             dtype = dt
             delta = stop - start
>       y = _nx.arange(0, num, dtype=dt).reshape((-1,) + (1,) * ndim(delta))
E       numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
15.3 MiB for an array with shape (2000000,) and data type float64

/usr/lib/python3/dist-packages/numpy/core/function_base.py:128: MemoryError
____________ TestAWIPSTiledWriter.test_lettered_tiles_no_valid_data 
____________

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0xe9f7e38>

     def test_lettered_tiles_no_valid_data(self):
         """Test creating a lettered grid with no valid data."""
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
         data = da.full((2000, 1000), np.nan, chunks=500, dtype=np.float32)
         area_def = self._get_test_area(shape=(2000, 1000),
                                        extents=(-1000000., -1500000., 
1000000., 1500000.))
         ds = self._get_test_lcc_data(data, area_def)
>       w.save_datasets([ds], sector_id='LCC', source_name="TESTS", tile_count=(3, 3), lettered_grid=True)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:403: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1615: in 
save_datasets
     delayeds = self._delay_netcdf_creation(delayed_gen)
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1632: in 
_delay_netcdf_creation
     for dataset_to_save, output_filename, mode in 
dataset_iter(delayed_gen):
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1654: in 
dataset_iter
     results = dask.compute(_delayed_gen)[0]
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_34, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
------------------------------ Captured log call 
-------------------------------
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
WARNING  satpy.writers.awips_tiled:awips_tiled.py:935 environment 
ORGANIZATION not set for .production_location attribute, using hostname
____________ TestAWIPSTiledWriter.test_lettered_tiles_bad_filename 
_____________

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0xc9fdd30>

     def test_lettered_tiles_bad_filename(self):
         """Test creating a lettered grid with a bad filename."""
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True, 
filename="{Bad Key}.nc")
>       data = self._get_test_data(shape=(2000, 1000), chunks=500)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:412: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:144: 
in _get_test_data
     data = np.linspace(0., 1., shape[0] * shape[1], 
dtype=np.float32).reshape(shape)
<__array_function__ internals>:5: in linspace
     ???
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
start = 0.0, stop = 1.0, num = 2000000, endpoint = True, retstep = False
dtype = <class 'numpy.float32'>, axis = 0

     @array_function_dispatch(_linspace_dispatcher)
     def linspace(start, stop, num=50, endpoint=True, retstep=False, 
dtype=None,
                  axis=0):
         """
         Return evenly spaced numbers over a specified interval.
             Returns `num` evenly spaced samples, calculated over the
         interval [`start`, `stop`].
             The endpoint of the interval can optionally be excluded.
             .. versionchanged:: 1.16.0
             Non-scalar `start` and `stop` are now supported.
             Parameters
         ----------
         start : array_like
             The starting value of the sequence.
         stop : array_like
             The end value of the sequence, unless `endpoint` is set to 
False.
             In that case, the sequence consists of all but the last of 
``num + 1``
             evenly spaced samples, so that `stop` is excluded.  Note 
that the step
             size changes when `endpoint` is False.
         num : int, optional
             Number of samples to generate. Default is 50. Must be 
non-negative.
         endpoint : bool, optional
             If True, `stop` is the last sample. Otherwise, it is not 
included.
             Default is True.
         retstep : bool, optional
             If True, return (`samples`, `step`), where `step` is the 
spacing
             between samples.
         dtype : dtype, optional
             The type of the output array.  If `dtype` is not given, 
infer the data
             type from the other input arguments.
                 .. versionadded:: 1.9.0
             axis : int, optional
             The axis in the result to store the samples.  Relevant only 
if start
             or stop are array-like.  By default (0), the samples will 
be along a
             new axis inserted at the beginning. Use -1 to get an axis 
at the end.
                 .. versionadded:: 1.16.0
             Returns
         -------
         samples : ndarray
             There are `num` equally spaced samples in the closed interval
             ``[start, stop]`` or the half-open interval ``[start, stop)``
             (depending on whether `endpoint` is True or False).
         step : float, optional
             Only returned if `retstep` is True
                 Size of spacing between samples.
                 See Also
         --------
         arange : Similar to `linspace`, but uses a step size (instead 
of the
                  number of samples).
         geomspace : Similar to `linspace`, but with numbers spaced 
evenly on a log
                     scale (a geometric progression).
         logspace : Similar to `geomspace`, but with the end points 
specified as
                    logarithms.
             Examples
         --------
         >>> np.linspace(2.0, 3.0, num=5)
         array([2.  , 2.25, 2.5 , 2.75, 3.  ])
         >>> np.linspace(2.0, 3.0, num=5, endpoint=False)
         array([2. ,  2.2,  2.4,  2.6,  2.8])
         >>> np.linspace(2.0, 3.0, num=5, retstep=True)
         (array([2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)
             Graphical illustration:
             >>> import matplotlib.pyplot as plt
         >>> N = 8
         >>> y = np.zeros(N)
         >>> x1 = np.linspace(0, 10, N, endpoint=True)
         >>> x2 = np.linspace(0, 10, N, endpoint=False)
         >>> plt.plot(x1, y, 'o')
         [<matplotlib.lines.Line2D object at 0x...>]
         >>> plt.plot(x2, y + 0.5, 'o')
         [<matplotlib.lines.Line2D object at 0x...>]
         >>> plt.ylim([-0.5, 1])
         (-0.5, 1)
         >>> plt.show()
             """
         num = operator.index(num)
         if num < 0:
             raise ValueError("Number of samples, %s, must be 
non-negative." % num)
         div = (num - 1) if endpoint else num
             # Convert float/complex array scalars to float, gh-3504
         # and make sure one can use variables that have an 
__array_interface__, gh-6634
         start = asanyarray(start) * 1.0
         stop  = asanyarray(stop)  * 1.0
             dt = result_type(start, stop, float(num))
         if dtype is None:
             dtype = dt
             delta = stop - start
         y = _nx.arange(0, num, dtype=dt).reshape((-1,) + (1,) * 
ndim(delta))
         # In-place multiplication y *= delta/div is faster, but 
prevents the multiplicant
         # from overriding what class is produced, and thus prevents, 
e.g. use of Quantities,
         # see gh-7142. Hence, we multiply in place only for standard 
scalar types.
         _mult_inplace = _nx.isscalar(delta)
         if div > 0:
             step = delta / div
             if _nx.any(step == 0):
                 # Special handling for denormal numbers, gh-5437
                 y /= div
                 if _mult_inplace:
                     y *= delta
                 else:
                     y = y * delta
             else:
                 if _mult_inplace:
                     y *= step
                 else:
                     y = y * step
         else:
             # sequences with 0 items or 1 item with endpoint=True (i.e. 
div <= 0)
             # have an undefined step
             step = NaN
             # Multiply with delta to allow possible override of output 
class.
             y = y * delta
             y += start
             if endpoint and num > 1:
             y[-1] = stop
             if axis != 0:
             y = _nx.moveaxis(y, 0, axis)
             if retstep:
             return y.astype(dtype, copy=False), step
         else:
>           return y.astype(dtype, copy=False)
E           numpy.core._exceptions._ArrayMemoryError: Unable to allocate 
7.63 MiB for an array with shape (2000000,) and data type float32

/usr/lib/python3/dist-packages/numpy/core/function_base.py:165: MemoryError
____ 
TestAWIPSTiledWriter.test_multivar_numbered_tiles_glm[extra_kwargs0-C] ____

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0x5eebb50>
sector = 'C', extra_kwargs = {}

     @pytest.mark.parametrize(
         "sector",
         ['C',
          'F']
     )
     @pytest.mark.parametrize(
         "extra_kwargs",
         [
             {},
             {'environment_prefix': 'AA'},
             {'environment_prefix': 'BB', 'filename': 
'{environment_prefix}_{name}_GLM_T{tile_number:04d}.nc'},
         ]
     )
     def test_multivar_numbered_tiles_glm(self, sector, extra_kwargs):
         """Test creating a tiles with multiple variables."""
         import xarray as xr
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         import os
         os.environ['ORGANIZATION'] = '1' * 50
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
         data = self._get_test_data()
         area_def = self._get_test_area()
         ds1 = self._get_test_lcc_data(data, area_def)
         ds1.attrs.update(
             dict(
                 name='total_energy',
                 platform_name='GOES-17',
                 sensor='SENSOR',
                 units='1',
                 scan_mode='M3',
                 scene_abbr=sector,
                 platform_shortname="G17"
             )
         )
         ds2 = ds1.copy()
         ds2.attrs.update({
             'name': 'flash_extent_density',
         })
         ds3 = ds1.copy()
         ds3.attrs.update({
             'name': 'average_flash_area',
         })
         dqf = ds1.copy()
         dqf = (dqf * 255).astype(np.uint8)
         dqf.attrs = ds1.attrs.copy()
         dqf.attrs.update({
             'name': 'DQF',
             '_FillValue': 1,
         })
     >       w.save_datasets([ds1, ds2, ds3, dqf], sector_id='TEST', 
source_name="TESTS",
                         tile_count=(3, 3), 
template='glm_l2_rad{}'.format(sector.lower()),
                         **extra_kwargs)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:499: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1615: in 
save_datasets
     delayeds = self._delay_netcdf_creation(delayed_gen)
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1632: in 
_delay_netcdf_creation
     for dataset_to_save, output_filename, mode in 
dataset_iter(delayed_gen):
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1654: in 
dataset_iter
     results = dask.compute(_delayed_gen)[0]
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_34, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
____ 
TestAWIPSTiledWriter.test_multivar_numbered_tiles_glm[extra_kwargs0-F] ____

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0xeb1640>
sector = 'F', extra_kwargs = {}

     @pytest.mark.parametrize(
         "sector",
         ['C',
          'F']
     )
     @pytest.mark.parametrize(
         "extra_kwargs",
         [
             {},
             {'environment_prefix': 'AA'},
             {'environment_prefix': 'BB', 'filename': 
'{environment_prefix}_{name}_GLM_T{tile_number:04d}.nc'},
         ]
     )
     def test_multivar_numbered_tiles_glm(self, sector, extra_kwargs):
         """Test creating a tiles with multiple variables."""
         import xarray as xr
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         import os
         os.environ['ORGANIZATION'] = '1' * 50
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
         data = self._get_test_data()
         area_def = self._get_test_area()
         ds1 = self._get_test_lcc_data(data, area_def)
         ds1.attrs.update(
             dict(
                 name='total_energy',
                 platform_name='GOES-17',
                 sensor='SENSOR',
                 units='1',
                 scan_mode='M3',
                 scene_abbr=sector,
                 platform_shortname="G17"
             )
         )
         ds2 = ds1.copy()
         ds2.attrs.update({
             'name': 'flash_extent_density',
         })
         ds3 = ds1.copy()
         ds3.attrs.update({
             'name': 'average_flash_area',
         })
         dqf = ds1.copy()
         dqf = (dqf * 255).astype(np.uint8)
         dqf.attrs = ds1.attrs.copy()
         dqf.attrs.update({
             'name': 'DQF',
             '_FillValue': 1,
         })
     >       w.save_datasets([ds1, ds2, ds3, dqf], sector_id='TEST', 
source_name="TESTS",
                         tile_count=(3, 3), 
template='glm_l2_rad{}'.format(sector.lower()),
                         **extra_kwargs)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:499: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1615: in 
save_datasets
     delayeds = self._delay_netcdf_creation(delayed_gen)
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1632: in 
_delay_netcdf_creation
     for dataset_to_save, output_filename, mode in 
dataset_iter(delayed_gen):
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1654: in 
dataset_iter
     results = dask.compute(_delayed_gen)[0]
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_35, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
____ 
TestAWIPSTiledWriter.test_multivar_numbered_tiles_glm[extra_kwargs1-C] ____

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0xfd406e8>
sector = 'C', extra_kwargs = {'environment_prefix': 'AA'}

     @pytest.mark.parametrize(
         "sector",
         ['C',
          'F']
     )
     @pytest.mark.parametrize(
         "extra_kwargs",
         [
             {},
             {'environment_prefix': 'AA'},
             {'environment_prefix': 'BB', 'filename': 
'{environment_prefix}_{name}_GLM_T{tile_number:04d}.nc'},
         ]
     )
     def test_multivar_numbered_tiles_glm(self, sector, extra_kwargs):
         """Test creating a tiles with multiple variables."""
         import xarray as xr
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         import os
         os.environ['ORGANIZATION'] = '1' * 50
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
         data = self._get_test_data()
         area_def = self._get_test_area()
         ds1 = self._get_test_lcc_data(data, area_def)
         ds1.attrs.update(
             dict(
                 name='total_energy',
                 platform_name='GOES-17',
                 sensor='SENSOR',
                 units='1',
                 scan_mode='M3',
                 scene_abbr=sector,
                 platform_shortname="G17"
             )
         )
         ds2 = ds1.copy()
         ds2.attrs.update({
             'name': 'flash_extent_density',
         })
         ds3 = ds1.copy()
         ds3.attrs.update({
             'name': 'average_flash_area',
         })
         dqf = ds1.copy()
         dqf = (dqf * 255).astype(np.uint8)
         dqf.attrs = ds1.attrs.copy()
         dqf.attrs.update({
             'name': 'DQF',
             '_FillValue': 1,
         })
     >       w.save_datasets([ds1, ds2, ds3, dqf], sector_id='TEST', 
source_name="TESTS",
                         tile_count=(3, 3), 
template='glm_l2_rad{}'.format(sector.lower()),
                         **extra_kwargs)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:499: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1615: in 
save_datasets
     delayeds = self._delay_netcdf_creation(delayed_gen)
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1632: in 
_delay_netcdf_creation
     for dataset_to_save, output_filename, mode in 
dataset_iter(delayed_gen):
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1654: in 
dataset_iter
     results = dask.compute(_delayed_gen)[0]
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_35, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
____ 
TestAWIPSTiledWriter.test_multivar_numbered_tiles_glm[extra_kwargs1-F] ____

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0xd59ac70>
sector = 'F', extra_kwargs = {'environment_prefix': 'AA'}

     @pytest.mark.parametrize(
         "sector",
         ['C',
          'F']
     )
     @pytest.mark.parametrize(
         "extra_kwargs",
         [
             {},
             {'environment_prefix': 'AA'},
             {'environment_prefix': 'BB', 'filename': 
'{environment_prefix}_{name}_GLM_T{tile_number:04d}.nc'},
         ]
     )
     def test_multivar_numbered_tiles_glm(self, sector, extra_kwargs):
         """Test creating a tiles with multiple variables."""
         import xarray as xr
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         import os
         os.environ['ORGANIZATION'] = '1' * 50
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
         data = self._get_test_data()
         area_def = self._get_test_area()
         ds1 = self._get_test_lcc_data(data, area_def)
         ds1.attrs.update(
             dict(
                 name='total_energy',
                 platform_name='GOES-17',
                 sensor='SENSOR',
                 units='1',
                 scan_mode='M3',
                 scene_abbr=sector,
                 platform_shortname="G17"
             )
         )
         ds2 = ds1.copy()
         ds2.attrs.update({
             'name': 'flash_extent_density',
         })
         ds3 = ds1.copy()
         ds3.attrs.update({
             'name': 'average_flash_area',
         })
         dqf = ds1.copy()
         dqf = (dqf * 255).astype(np.uint8)
         dqf.attrs = ds1.attrs.copy()
         dqf.attrs.update({
             'name': 'DQF',
             '_FillValue': 1,
         })
     >       w.save_datasets([ds1, ds2, ds3, dqf], sector_id='TEST', 
source_name="TESTS",
                         tile_count=(3, 3), 
template='glm_l2_rad{}'.format(sector.lower()),
                         **extra_kwargs)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:499: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1615: in 
save_datasets
     delayeds = self._delay_netcdf_creation(delayed_gen)
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1632: in 
_delay_netcdf_creation
     for dataset_to_save, output_filename, mode in 
dataset_iter(delayed_gen):
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1654: in 
dataset_iter
     results = dask.compute(_delayed_gen)[0]
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_35, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
____ 
TestAWIPSTiledWriter.test_multivar_numbered_tiles_glm[extra_kwargs2-C] ____

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0xabbac88>
sector = 'C'
extra_kwargs = {'environment_prefix': 'BB', 'filename': 
'{environment_prefix}_{name}_GLM_T{tile_number:04d}.nc'}

     @pytest.mark.parametrize(
         "sector",
         ['C',
          'F']
     )
     @pytest.mark.parametrize(
         "extra_kwargs",
         [
             {},
             {'environment_prefix': 'AA'},
             {'environment_prefix': 'BB', 'filename': 
'{environment_prefix}_{name}_GLM_T{tile_number:04d}.nc'},
         ]
     )
     def test_multivar_numbered_tiles_glm(self, sector, extra_kwargs):
         """Test creating a tiles with multiple variables."""
         import xarray as xr
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         import os
         os.environ['ORGANIZATION'] = '1' * 50
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
         data = self._get_test_data()
         area_def = self._get_test_area()
         ds1 = self._get_test_lcc_data(data, area_def)
         ds1.attrs.update(
             dict(
                 name='total_energy',
                 platform_name='GOES-17',
                 sensor='SENSOR',
                 units='1',
                 scan_mode='M3',
                 scene_abbr=sector,
                 platform_shortname="G17"
             )
         )
         ds2 = ds1.copy()
         ds2.attrs.update({
             'name': 'flash_extent_density',
         })
         ds3 = ds1.copy()
         ds3.attrs.update({
             'name': 'average_flash_area',
         })
         dqf = ds1.copy()
         dqf = (dqf * 255).astype(np.uint8)
         dqf.attrs = ds1.attrs.copy()
         dqf.attrs.update({
             'name': 'DQF',
             '_FillValue': 1,
         })
     >       w.save_datasets([ds1, ds2, ds3, dqf], sector_id='TEST', 
source_name="TESTS",
                         tile_count=(3, 3), 
template='glm_l2_rad{}'.format(sector.lower()),
                         **extra_kwargs)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:499: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1615: in 
save_datasets
     delayeds = self._delay_netcdf_creation(delayed_gen)
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1632: in 
_delay_netcdf_creation
     for dataset_to_save, output_filename, mode in 
dataset_iter(delayed_gen):
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1654: in 
dataset_iter
     results = dask.compute(_delayed_gen)[0]
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_35, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
____ 
TestAWIPSTiledWriter.test_multivar_numbered_tiles_glm[extra_kwargs2-F] ____

self = <satpy.tests.writer_tests.test_awips_tiled.TestAWIPSTiledWriter 
object at 0xc9d0328>
sector = 'F'
extra_kwargs = {'environment_prefix': 'BB', 'filename': 
'{environment_prefix}_{name}_GLM_T{tile_number:04d}.nc'}

     @pytest.mark.parametrize(
         "sector",
         ['C',
          'F']
     )
     @pytest.mark.parametrize(
         "extra_kwargs",
         [
             {},
             {'environment_prefix': 'AA'},
             {'environment_prefix': 'BB', 'filename': 
'{environment_prefix}_{name}_GLM_T{tile_number:04d}.nc'},
         ]
     )
     def test_multivar_numbered_tiles_glm(self, sector, extra_kwargs):
         """Test creating a tiles with multiple variables."""
         import xarray as xr
         from satpy.writers.awips_tiled import AWIPSTiledWriter
         import os
         os.environ['ORGANIZATION'] = '1' * 50
         w = AWIPSTiledWriter(base_dir=self.base_dir, compress=True)
         data = self._get_test_data()
         area_def = self._get_test_area()
         ds1 = self._get_test_lcc_data(data, area_def)
         ds1.attrs.update(
             dict(
                 name='total_energy',
                 platform_name='GOES-17',
                 sensor='SENSOR',
                 units='1',
                 scan_mode='M3',
                 scene_abbr=sector,
                 platform_shortname="G17"
             )
         )
         ds2 = ds1.copy()
         ds2.attrs.update({
             'name': 'flash_extent_density',
         })
         ds3 = ds1.copy()
         ds3.attrs.update({
             'name': 'average_flash_area',
         })
         dqf = ds1.copy()
         dqf = (dqf * 255).astype(np.uint8)
         dqf.attrs = ds1.attrs.copy()
         dqf.attrs.update({
             'name': 'DQF',
             '_FillValue': 1,
         })
     >       w.save_datasets([ds1, ds2, ds3, dqf], sector_id='TEST', 
source_name="TESTS",
                         tile_count=(3, 3), 
template='glm_l2_rad{}'.format(sector.lower()),
                         **extra_kwargs)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_awips_tiled.py:499: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ 
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1615: in 
save_datasets
     delayeds = self._delay_netcdf_creation(delayed_gen)
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1632: in 
_delay_netcdf_creation
     for dataset_to_save, output_filename, mode in 
dataset_iter(delayed_gen):
/usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:1654: in 
dataset_iter
     results = dask.compute(_delayed_gen)[0]
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_35, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
__________ TestMITIFFWriter.test_get_test_dataset_three_bands_prereq 
___________

self = <satpy.tests.writer_tests.test_mitiff.TestMITIFFWriter 
testMethod=test_get_test_dataset_three_bands_prereq>

     def test_get_test_dataset_three_bands_prereq(self):
         """Test basic writer operation with 3 bands with DataQuery 
prerequisites with missing name."""
         import os
         from libtiff import TIFF
         from satpy.writers.mitiff import MITIFFWriter
         IMAGEDESCRIPTION = 270
             dataset = self._get_test_dataset_three_bands_prereq()
         w = MITIFFWriter(base_dir=self.base_dir)
>       w.save_dataset(dataset)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_mitiff.py:988: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/writers/mitiff.py:113: in 
save_dataset
     return delayed.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:517: in get_async
     raise_exception(exc, tb)
/usr/lib/python3/dist-packages/dask/local.py:325: in reraise
     raise exc
/usr/lib/python3/dist-packages/dask/local.py:223: in execute_task
     result = _execute_task(task, data)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:104: in 
_delayed_create
     self._save_datasets_as_mitiff(dataset, image_description,
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:728: in 
_save_datasets_as_mitiff
     self._save_as_enhanced(tif, datasets, **kwargs)
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:664: in 
_save_as_enhanced
     data = chn.values.clip(0, 1) * 254. + 1
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:651: in values
     return self.variable.values
/usr/lib/python3/dist-packages/xarray/core/variable.py:517: in values
     return _as_array_or_item(self._data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:259: in 
_as_array_or_item
     data = np.asarray(data)
/usr/lib/python3/dist-packages/numpy/core/_asarray.py:83: in asarray
     return array(a, dtype, copy=False, order=order)
/usr/lib/python3/dist-packages/dask/array/core.py:1491: in __array__
     x = self.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-2_0, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
______________ TestMITIFFWriter.test_save_dataset_with_bad_value 
_______________

self = <satpy.tests.writer_tests.test_mitiff.TestMITIFFWriter 
testMethod=test_save_dataset_with_bad_value>

     def test_save_dataset_with_bad_value(self):
         """Test writer operation with bad values."""
         import os
         import numpy as np
         from libtiff import TIFF
         from satpy.writers.mitiff import MITIFFWriter
             expected = np.array([[0, 4, 1, 37, 73],
                              [110, 146, 183, 219, 255]])
             dataset = self._get_test_dataset_with_bad_values()
         w = MITIFFWriter(base_dir=self.base_dir)
>       w.save_dataset(dataset)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_mitiff.py:831: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/writers/mitiff.py:113: in 
save_dataset
     return delayed.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:517: in get_async
     raise_exception(exc, tb)
/usr/lib/python3/dist-packages/dask/local.py:325: in reraise
     raise exc
/usr/lib/python3/dist-packages/dask/local.py:223: in execute_task
     result = _execute_task(task, data)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:104: in 
_delayed_create
     self._save_datasets_as_mitiff(dataset, image_description,
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:728: in 
_save_datasets_as_mitiff
     self._save_as_enhanced(tif, datasets, **kwargs)
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:664: in 
_save_as_enhanced
     data = chn.values.clip(0, 1) * 254. + 1
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:651: in values
     return self.variable.values
/usr/lib/python3/dist-packages/xarray/core/variable.py:517: in values
     return _as_array_or_item(self._data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:259: in 
_as_array_or_item
     data = np.asarray(data)
/usr/lib/python3/dist-packages/numpy/core/_asarray.py:83: in asarray
     return array(a, dtype, copy=False, order=order)
/usr/lib/python3/dist-packages/dask/array/core.py:1491: in __array__
     x = self.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-3_0, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
_____________ TestMITIFFWriter.test_save_dataset_with_calibration 
______________

self = <satpy.tests.writer_tests.test_mitiff.TestMITIFFWriter 
testMethod=test_save_dataset_with_calibration>

     def test_save_dataset_with_calibration(self):
         """Test writer operation with calibration."""
         import os
         import numpy as np
         from libtiff import TIFF
         from satpy.writers.mitiff import MITIFFWriter
             expected_ir = np.full((100, 200), 255)
         expected_vis = np.full((100, 200), 0)
         expected = np.stack([expected_vis, expected_vis, expected_ir, 
expected_ir, expected_ir, expected_vis])
         expected_key_channel = ['Table_calibration: 1-VIS0.63, 
Reflectance(Albedo), [%], 8, [ 0.00 0.39 0.78 1.18 1.57 '
                                 '1.96 2.35 2.75 3.14 3.53 3.92 4.31 
4.71 5.10 5.49 5.88 6.27 6.67 7.06 7.45 7.84 8.24 '
                                 '8.63 9.02 9.41 9.80 10.20 10.59 10.98 
11.37 11.76 12.16 12.55 12.94 13.33 13.73 14.12 '
                                 '14.51 14.90 15.29 15.69 16.08 16.47 
16.86 17.25 17.65 18.04 18.43 18.82 19.22 19.61 '
                                 '20.00 20.39 20.78 21.18 21.57 21.96 
22.35 22.75 23.14 23.53 23.92 24.31 24.71 25.10 '
                                 '25.49 25.88 26.27 26.67 27.06 27.45 
27.84 28.24 28.63 29.02 29.41 29.80 30.20 30.59 '
                                 '30.98 31.37 31.76 32.16 32.55 32.94 
33.33 33.73 34.12 34.51 34.90 35.29 35.69 36.08 '
                                 '36.47 36.86 37.25 37.65 38.04 38.43 
38.82 39.22 39.61 40.00 40.39 40.78 41.18 41.57 '
                                 '41.96 42.35 42.75 43.14 43.53 43.92 
44.31 44.71 45.10 45.49 45.88 46.27 46.67 47.06 '
                                 '47.45 47.84 48.24 48.63 49.02 49.41 
49.80 50.20 50.59 50.98 51.37 51.76 52.16 52.55 '
                                 '52.94 53.33 53.73 54.12 54.51 54.90 
55.29 55.69 56.08 56.47 56.86 57.25 57.65 58.04 '
                                 '58.43 58.82 59.22 59.61 60.00 60.39 
60.78 61.18 61.57 61.96 62.35 62.75 63.14 63.53 '
                                 '63.92 64.31 64.71 65.10 65.49 65.88 
66.27 66.67 67.06 67.45 67.84 68.24 68.63 69.02 '
                                 '69.41 69.80 70.20 70.59 70.98 71.37 
71.76 72.16 72.55 72.94 73.33 73.73 74.12 74.51 '
                                 '74.90 75.29 75.69 76.08 76.47 76.86 
77.25 77.65 78.04 78.43 78.82 79.22 79.61 80.00 '
                                 '80.39 80.78 81.18 81.57 81.96 82.35 
82.75 83.14 83.53 83.92 84.31 84.71 85.10 85.49 '
                                 '85.88 86.27 86.67 87.06 87.45 87.84 
88.24 88.63 89.02 89.41 89.80 90.20 90.59 90.98 '
                                 '91.37 91.76 92.16 92.55 92.94 93.33 
93.73 94.12 94.51 94.90 95.29 95.69 96.08 96.47 '
                                 '96.86 97.25 97.65 98.04 98.43 98.82 
99.22 99.61 100.00 ]',
                                 'Table_calibration: 2-VIS0.86, 
Reflectance(Albedo), [%], 8, [ 0.00 0.39 0.78 1.18 1.57 '
                                 '1.96 2.35 2.75 3.14 3.53 3.92 4.31 
4.71 5.10 5.49 5.88 6.27 6.67 7.06 7.45 7.84 8.24 '
                                 '8.63 9.02 9.41 9.80 10.20 10.59 10.98 
11.37 11.76 12.16 12.55 12.94 13.33 13.73 14.12 '
                                 '14.51 14.90 15.29 15.69 16.08 16.47 
16.86 17.25 17.65 18.04 18.43 18.82 19.22 19.61 '
                                 '20.00 20.39 20.78 21.18 21.57 21.96 
22.35 22.75 23.14 23.53 23.92 24.31 24.71 25.10 '
                                 '25.49 25.88 26.27 26.67 27.06 27.45 
27.84 28.24 28.63 29.02 29.41 29.80 30.20 30.59 '
                                 '30.98 31.37 31.76 32.16 32.55 32.94 
33.33 33.73 34.12 34.51 34.90 35.29 35.69 36.08 '
                                 '36.47 36.86 37.25 37.65 38.04 38.43 
38.82 39.22 39.61 40.00 40.39 40.78 41.18 41.57 '
                                 '41.96 42.35 42.75 43.14 43.53 43.92 
44.31 44.71 45.10 45.49 45.88 46.27 46.67 47.06 '
                                 '47.45 47.84 48.24 48.63 49.02 49.41 
49.80 50.20 50.59 50.98 51.37 51.76 52.16 52.55 '
                                 '52.94 53.33 53.73 54.12 54.51 54.90 
55.29 55.69 56.08 56.47 56.86 57.25 57.65 58.04 '
                                 '58.43 58.82 59.22 59.61 60.00 60.39 
60.78 61.18 61.57 61.96 62.35 62.75 63.14 63.53 '
                                 '63.92 64.31 64.71 65.10 65.49 65.88 
66.27 66.67 67.06 67.45 67.84 68.24 68.63 69.02 '
                                 '69.41 69.80 70.20 70.59 70.98 71.37 
71.76 72.16 72.55 72.94 73.33 73.73 74.12 74.51 '
                                 '74.90 75.29 75.69 76.08 76.47 76.86 
77.25 77.65 78.04 78.43 78.82 79.22 79.61 80.00 '
                                 '80.39 80.78 81.18 81.57 81.96 82.35 
82.75 83.14 83.53 83.92 84.31 84.71 85.10 85.49 '
                                 '85.88 86.27 86.67 87.06 87.45 87.84 
88.24 88.63 89.02 89.41 89.80 90.20 90.59 90.98 '
                                 '91.37 91.76 92.16 92.55 92.94 93.33 
93.73 94.12 94.51 94.90 95.29 95.69 96.08 96.47 '
                                 '96.86 97.25 97.65 98.04 98.43 98.82 
99.22 99.61 100.00 ]',
                                 u'Table_calibration: 3(3B)-IR3.7, BT, 
°[C], 8, [ 50.00 49.22 48.43 47.65 46.86 46.08 '
                                 '45.29 44.51 43.73 42.94 42.16 41.37 
40.59 39.80 39.02 38.24 37.45 36.67 35.88 35.10 '
                                 '34.31 33.53 32.75 31.96 31.18 30.39 
29.61 28.82 28.04 27.25 26.47 25.69 24.90 24.12 '
                                 '23.33 22.55 21.76 20.98 20.20 19.41 
18.63 17.84 17.06 16.27 15.49 14.71 13.92 13.14 '
                                 '12.35 11.57 10.78 10.00 9.22 8.43 7.65 
6.86 6.08 5.29 4.51 3.73 2.94 2.16 1.37 0.59 '
                                 '-0.20 -0.98 -1.76 -2.55 -3.33 -4.12 
-4.90 -5.69 -6.47 -7.25 -8.04 -8.82 -9.61 -10.39 '
                                 '-11.18 -11.96 -12.75 -13.53 -14.31 
-15.10 -15.88 -16.67 -17.45 -18.24 -19.02 -19.80 '
                                 '-20.59 -21.37 -22.16 -22.94 -23.73 
-24.51 -25.29 -26.08 -26.86 -27.65 -28.43 -29.22 '
                                 '-30.00 -30.78 -31.57 -32.35 -33.14 
-33.92 -34.71 -35.49 -36.27 -37.06 -37.84 -38.63 '
                                 '-39.41 -40.20 -40.98 -41.76 -42.55 
-43.33 -44.12 -44.90 -45.69 -46.47 -47.25 -48.04 '
                                 '-48.82 -49.61 -50.39 -51.18 -51.96 
-52.75 -53.53 -54.31 -55.10 -55.88 -56.67 -57.45 '
                                 '-58.24 -59.02 -59.80 -60.59 -61.37 
-62.16 -62.94 -63.73 -64.51 -65.29 -66.08 -66.86 '
                                 '-67.65 -68.43 -69.22 -70.00 -70.78 
-71.57 -72.35 -73.14 -73.92 -74.71 -75.49 -76.27 '
                                 '-77.06 -77.84 -78.63 -79.41 -80.20 
-80.98 -81.76 -82.55 -83.33 -84.12 -84.90 -85.69 '
                                 '-86.47 -87.25 -88.04 -88.82 -89.61 
-90.39 -91.18 -91.96 -92.75 -93.53 -94.31 -95.10 '
                                 '-95.88 -96.67 -97.45 -98.24 -99.02 
-99.80 -100.59 -101.37 -102.16 -102.94 -103.73 '
                                 '-104.51 -105.29 -106.08 -106.86 
-107.65 -108.43 -109.22 -110.00 -110.78 -111.57 '
                                 '-112.35 -113.14 -113.92 -114.71 
-115.49 -116.27 -117.06 -117.84 -118.63 -119.41 '
                                 '-120.20 -120.98 -121.76 -122.55 
-123.33 -124.12 -124.90 -125.69 -126.47 -127.25 '
                                 '-128.04 -128.82 -129.61 -130.39 
-131.18 -131.96 -132.75 -133.53 -134.31 -135.10 '
                                 '-135.88 -136.67 -137.45 -138.24 
-139.02 -139.80 -140.59 -141.37 -142.16 -142.94 '
                                 '-143.73 -144.51 -145.29 -146.08 
-146.86 -147.65 -148.43 -149.22 -150.00 ]',
                                 u'Table_calibration: 4-IR10.8, BT, 
°[C], 8, [ 50.00 49.22 48.43 47.65 46.86 46.08 '
                                 '45.29 '
                                 '44.51 43.73 42.94 42.16 41.37 40.59 
39.80 39.02 38.24 37.45 36.67 35.88 35.10 34.31 '
                                 '33.53 32.75 31.96 31.18 30.39 29.61 
28.82 28.04 27.25 26.47 25.69 24.90 24.12 23.33 '
                                 '22.55 21.76 20.98 20.20 19.41 18.63 
17.84 17.06 16.27 15.49 14.71 13.92 13.14 12.35 '
                                 '11.57 10.78 10.00 9.22 8.43 7.65 6.86 
6.08 5.29 4.51 3.73 2.94 2.16 1.37 0.59 -0.20 '
                                 '-0.98 -1.76 -2.55 -3.33 -4.12 -4.90 
-5.69 -6.47 -7.25 -8.04 -8.82 -9.61 -10.39 -11.18 '
                                 '-11.96 -12.75 -13.53 -14.31 -15.10 
-15.88 -16.67 -17.45 -18.24 -19.02 -19.80 -20.59 '
                                 '-21.37 -22.16 -22.94 -23.73 -24.51 
-25.29 -26.08 -26.86 -27.65 -28.43 -29.22 -30.00 '
                                 '-30.78 -31.57 -32.35 -33.14 -33.92 
-34.71 -35.49 -36.27 -37.06 -37.84 -38.63 -39.41 '
                                 '-40.20 -40.98 -41.76 -42.55 -43.33 
-44.12 -44.90 -45.69 -46.47 -47.25 -48.04 -48.82 '
                                 '-49.61 -50.39 -51.18 -51.96 -52.75 
-53.53 -54.31 -55.10 -55.88 -56.67 -57.45 -58.24 '
                                 '-59.02 -59.80 -60.59 -61.37 -62.16 
-62.94 -63.73 -64.51 -65.29 -66.08 -66.86 -67.65 '
                                 '-68.43 -69.22 -70.00 -70.78 -71.57 
-72.35 -73.14 -73.92 -74.71 -75.49 -76.27 -77.06 '
                                 '-77.84 -78.63 -79.41 -80.20 -80.98 
-81.76 -82.55 -83.33 -84.12 -84.90 -85.69 -86.47 '
                                 '-87.25 -88.04 -88.82 -89.61 -90.39 
-91.18 -91.96 -92.75 -93.53 -94.31 -95.10 -95.88 '
                                 '-96.67 -97.45 -98.24 -99.02 -99.80 
-100.59 -101.37 -102.16 -102.94 -103.73 -104.51 '
                                 '-105.29 -106.08 -106.86 -107.65 
-108.43 -109.22 -110.00 -110.78 -111.57 -112.35 '
                                 '-113.14 -113.92 -114.71 -115.49 
-116.27 -117.06 -117.84 -118.63 -119.41 -120.20 '
                                 '-120.98 -121.76 -122.55 -123.33 
-124.12 -124.90 -125.69 -126.47 -127.25 -128.04 '
                                 '-128.82 -129.61 -130.39 -131.18 
-131.96 -132.75 -133.53 -134.31 -135.10 -135.88 '
                                 '-136.67 -137.45 -138.24 -139.02 
-139.80 -140.59 -141.37 -142.16 -142.94 -143.73 '
                                 '-144.51 -145.29 -146.08 -146.86 
-147.65 -148.43 -149.22 -150.00 ]',
                                 u'Table_calibration: 5-IR11.5, BT, 
°[C], 8, [ 50.00 49.22 48.43 47.65 46.86 46.08 '
                                 '45.29 '
                                 '44.51 43.73 42.94 42.16 41.37 40.59 
39.80 39.02 38.24 37.45 36.67 35.88 35.10 34.31 '
                                 '33.53 32.75 31.96 31.18 30.39 29.61 
28.82 28.04 27.25 26.47 25.69 24.90 24.12 23.33 '
                                 '22.55 21.76 20.98 20.20 19.41 18.63 
17.84 17.06 16.27 15.49 14.71 13.92 13.14 12.35 '
                                 '11.57 10.78 10.00 9.22 8.43 7.65 6.86 
6.08 5.29 4.51 3.73 2.94 2.16 1.37 0.59 -0.20 '
                                 '-0.98 -1.76 -2.55 -3.33 -4.12 -4.90 
-5.69 -6.47 -7.25 -8.04 -8.82 -9.61 -10.39 -11.18 '
                                 '-11.96 -12.75 -13.53 -14.31 -15.10 
-15.88 -16.67 -17.45 -18.24 -19.02 -19.80 -20.59 '
                                 '-21.37 -22.16 -22.94 -23.73 -24.51 
-25.29 -26.08 -26.86 -27.65 -28.43 -29.22 -30.00 '
                                 '-30.78 -31.57 -32.35 -33.14 -33.92 
-34.71 -35.49 -36.27 -37.06 -37.84 -38.63 -39.41 '
                                 '-40.20 -40.98 -41.76 -42.55 -43.33 
-44.12 -44.90 -45.69 -46.47 -47.25 -48.04 -48.82 '
                                 '-49.61 -50.39 -51.18 -51.96 -52.75 
-53.53 -54.31 -55.10 -55.88 -56.67 -57.45 -58.24 '
                                 '-59.02 -59.80 -60.59 -61.37 -62.16 
-62.94 -63.73 -64.51 -65.29 -66.08 -66.86 -67.65 '
                                 '-68.43 -69.22 -70.00 -70.78 -71.57 
-72.35 -73.14 -73.92 -74.71 -75.49 -76.27 -77.06 '
                                 '-77.84 -78.63 -79.41 -80.20 -80.98 
-81.76 -82.55 -83.33 -84.12 -84.90 -85.69 -86.47 '
                                 '-87.25 -88.04 -88.82 -89.61 -90.39 
-91.18 -91.96 -92.75 -93.53 -94.31 -95.10 -95.88 '
                                 '-96.67 -97.45 -98.24 -99.02 -99.80 
-100.59 -101.37 -102.16 -102.94 -103.73 -104.51 '
                                 '-105.29 -106.08 -106.86 -107.65 
-108.43 -109.22 -110.00 -110.78 -111.57 -112.35 '
                                 '-113.14 -113.92 -114.71 -115.49 
-116.27 -117.06 -117.84 -118.63 -119.41 -120.20 '
                                 '-120.98 -121.76 -122.55 -123.33 
-124.12 -124.90 -125.69 -126.47 -127.25 -128.04 '
                                 '-128.82 -129.61 -130.39 -131.18 
-131.96 -132.75 -133.53 -134.31 -135.10 -135.88 '
                                 '-136.67 -137.45 -138.24 -139.02 
-139.80 -140.59 -141.37 -142.16 -142.94 -143.73 '
                                 '-144.51 -145.29 -146.08 -146.86 
-147.65 -148.43 -149.22 -150.00 ]',
                                 'Table_calibration: 6(3A)-VIS1.6, 
Reflectance(Albedo), [%], 8, [ 0.00 0.39 0.78 1.18 '
                                 '1.57 1.96 2.35 2.75 3.14 3.53 3.92 
4.31 4.71 5.10 5.49 5.88 6.27 6.67 7.06 7.45 7.84 '
                                 '8.24 8.63 9.02 9.41 9.80 10.20 10.59 
10.98 11.37 11.76 12.16 12.55 12.94 13.33 13.73 '
                                 '14.12 14.51 14.90 15.29 15.69 16.08 
16.47 16.86 17.25 17.65 18.04 18.43 18.82 19.22 '
                                 '19.61 20.00 20.39 20.78 21.18 21.57 
21.96 22.35 22.75 23.14 23.53 23.92 24.31 24.71 '
                                 '25.10 25.49 25.88 26.27 26.67 27.06 
27.45 27.84 28.24 28.63 29.02 29.41 29.80 30.20 '
                                 '30.59 30.98 31.37 31.76 32.16 32.55 
32.94 33.33 33.73 34.12 34.51 34.90 35.29 35.69 '
                                 '36.08 36.47 36.86 37.25 37.65 38.04 
38.43 38.82 39.22 39.61 40.00 40.39 40.78 41.18 '
                                 '41.57 41.96 42.35 42.75 43.14 43.53 
43.92 44.31 44.71 45.10 45.49 45.88 46.27 46.67 '
                                 '47.06 47.45 47.84 48.24 48.63 49.02 
49.41 49.80 50.20 50.59 50.98 51.37 51.76 52.16 '
                                 '52.55 52.94 53.33 53.73 54.12 54.51 
54.90 55.29 55.69 56.08 56.47 56.86 57.25 57.65 '
                                 '58.04 58.43 58.82 59.22 59.61 60.00 
60.39 60.78 61.18 61.57 61.96 62.35 62.75 63.14 '
                                 '63.53 63.92 64.31 64.71 65.10 65.49 
65.88 66.27 66.67 67.06 67.45 67.84 68.24 68.63 '
                                 '69.02 69.41 69.80 70.20 70.59 70.98 
71.37 71.76 72.16 72.55 72.94 73.33 73.73 74.12 '
                                 '74.51 74.90 75.29 75.69 76.08 76.47 
76.86 77.25 77.65 78.04 78.43 78.82 79.22 79.61 '
                                 '80.00 80.39 80.78 81.18 81.57 81.96 
82.35 82.75 83.14 83.53 83.92 84.31 84.71 85.10 '
                                 '85.49 85.88 86.27 86.67 87.06 87.45 
87.84 88.24 88.63 89.02 89.41 89.80 90.20 90.59 '
                                 '90.98 91.37 91.76 92.16 92.55 92.94 
93.33 93.73 94.12 94.51 94.90 95.29 95.69 96.08 '
                                 '96.47 96.86 97.25 97.65 98.04 98.43 
98.82 99.22 99.61 100.00 ]']
         dataset = self._get_test_dataset_calibration()
         w = 
MITIFFWriter(filename=dataset.attrs['metadata_requirements']['file_pattern'], 
base_dir=self.base_dir)
>       w.save_dataset(dataset)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_mitiff.py:731: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/writers/mitiff.py:113: in 
save_dataset
     return delayed.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_35, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
____________________ TestMITIFFWriter.test_save_one_dataset 
____________________

self = <satpy.tests.writer_tests.test_mitiff.TestMITIFFWriter 
testMethod=test_save_one_dataset>

     def test_save_one_dataset(self):
         """Test basic writer operation with one dataset ie. no bands."""
         import os
         from libtiff import TIFF
         from satpy.writers.mitiff import MITIFFWriter
         dataset = self._get_test_one_dataset()
         w = MITIFFWriter(base_dir=self.base_dir)
>       w.save_dataset(dataset)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_mitiff.py:571: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/writers/mitiff.py:113: in 
save_dataset
     return delayed.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:517: in get_async
     raise_exception(exc, tb)
/usr/lib/python3/dist-packages/dask/local.py:325: in reraise
     raise exc
/usr/lib/python3/dist-packages/dask/local.py:223: in execute_task
     result = _execute_task(task, data)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:104: in 
_delayed_create
     self._save_datasets_as_mitiff(dataset, image_description,
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:728: in 
_save_datasets_as_mitiff
     self._save_as_enhanced(tif, datasets, **kwargs)
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:664: in 
_save_as_enhanced
     data = chn.values.clip(0, 1) * 254. + 1
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:651: in values
     return self.variable.values
/usr/lib/python3/dist-packages/xarray/core/variable.py:517: in values
     return _as_array_or_item(self._data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:259: in 
_as_array_or_item
     data = np.asarray(data)
/usr/lib/python3/dist-packages/numpy/core/_asarray.py:83: in asarray
     return array(a, dtype, copy=False, order=order)
/usr/lib/python3/dist-packages/dask/array/core.py:1491: in __array__
     x = self.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-4_0, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
______________ TestMITIFFWriter.test_save_one_dataset_sesnor_set 
_______________

self = <satpy.tests.writer_tests.test_mitiff.TestMITIFFWriter 
testMethod=test_save_one_dataset_sesnor_set>

     def test_save_one_dataset_sesnor_set(self):
         """Test basic writer operation with one dataset ie. no bands."""
         import os
         from libtiff import TIFF
         from satpy.writers.mitiff import MITIFFWriter
         dataset = self._get_test_one_dataset_sensor_set()
         w = MITIFFWriter(base_dir=self.base_dir)
>       w.save_dataset(dataset)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_mitiff.py:586: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/writers/mitiff.py:113: in 
save_dataset
     return delayed.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:517: in get_async
     raise_exception(exc, tb)
/usr/lib/python3/dist-packages/dask/local.py:325: in reraise
     raise exc
/usr/lib/python3/dist-packages/dask/local.py:223: in execute_task
     result = _execute_task(task, data)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:104: in 
_delayed_create
     self._save_datasets_as_mitiff(dataset, image_description,
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:728: in 
_save_datasets_as_mitiff
     self._save_as_enhanced(tif, datasets, **kwargs)
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:664: in 
_save_as_enhanced
     data = chn.values.clip(0, 1) * 254. + 1
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:651: in values
     return self.variable.values
/usr/lib/python3/dist-packages/xarray/core/variable.py:517: in values
     return _as_array_or_item(self._data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:259: in 
_as_array_or_item
     data = np.asarray(data)
/usr/lib/python3/dist-packages/numpy/core/_asarray.py:83: in asarray
     return array(a, dtype, copy=False, order=order)
/usr/lib/python3/dist-packages/dask/array/core.py:1491: in __array__
     x = self.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-5_0, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
------------------------------ Captured log call 
-------------------------------
WARNING  satpy.writers.mitiff:mitiff.py:81 Sensor is set, will use the 
first value: {'avhrr'}
______________________ TestMITIFFWriter.test_simple_write 
______________________

self = <satpy.tests.writer_tests.test_mitiff.TestMITIFFWriter 
testMethod=test_simple_write>

     def test_simple_write(self):
         """Test basic writer operation."""
         from satpy.writers.mitiff import MITIFFWriter
         dataset = self._get_test_dataset()
         w = MITIFFWriter(base_dir=self.base_dir)
>       w.save_dataset(dataset)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_mitiff.py:530: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/writers/mitiff.py:113: in 
save_dataset
     return delayed.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:517: in get_async
     raise_exception(exc, tb)
/usr/lib/python3/dist-packages/dask/local.py:325: in reraise
     raise exc
/usr/lib/python3/dist-packages/dask/local.py:223: in execute_task
     result = _execute_task(task, data)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:104: in 
_delayed_create
     self._save_datasets_as_mitiff(dataset, image_description,
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:728: in 
_save_datasets_as_mitiff
     self._save_as_enhanced(tif, datasets, **kwargs)
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:664: in 
_save_as_enhanced
     data = chn.values.clip(0, 1) * 254. + 1
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:651: in values
     return self.variable.values
/usr/lib/python3/dist-packages/xarray/core/variable.py:517: in values
     return _as_array_or_item(self._data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:259: in 
_as_array_or_item
     data = np.asarray(data)
/usr/lib/python3/dist-packages/numpy/core/_asarray.py:83: in asarray
     return array(a, dtype, copy=False, order=order)
/usr/lib/python3/dist-packages/dask/array/core.py:1491: in __array__
     x = self.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-6_0, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
_________________ TestMITIFFWriter.test_simple_write_two_bands 
_________________

self = <satpy.tests.writer_tests.test_mitiff.TestMITIFFWriter 
testMethod=test_simple_write_two_bands>

     def test_simple_write_two_bands(self):
         """Test basic writer operation with 3 bands from 2 
prerequisites."""
         from satpy.writers.mitiff import MITIFFWriter
         dataset = self._get_test_dataset_three_bands_two_prereq()
         w = MITIFFWriter(base_dir=self.base_dir)
>       w.save_dataset(dataset)

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_mitiff.py:977: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/writers/mitiff.py:113: in 
save_dataset
     return delayed.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:517: in get_async
     raise_exception(exc, tb)
/usr/lib/python3/dist-packages/dask/local.py:325: in reraise
     raise exc
/usr/lib/python3/dist-packages/dask/local.py:223: in execute_task
     result = _execute_task(task, data)
/usr/lib/python3/dist-packages/dask/core.py:121: in _execute_task
     return func(*(_execute_task(a, cache) for a in args))
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:104: in 
_delayed_create
     self._save_datasets_as_mitiff(dataset, image_description,
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:728: in 
_save_datasets_as_mitiff
     self._save_as_enhanced(tif, datasets, **kwargs)
/usr/lib/python3/dist-packages/satpy/writers/mitiff.py:664: in 
_save_as_enhanced
     data = chn.values.clip(0, 1) * 254. + 1
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:651: in values
     return self.variable.values
/usr/lib/python3/dist-packages/xarray/core/variable.py:517: in values
     return _as_array_or_item(self._data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:259: in 
_as_array_or_item
     data = np.asarray(data)
/usr/lib/python3/dist-packages/numpy/core/_asarray.py:83: in asarray
     return array(a, dtype, copy=False, order=order)
/usr/lib/python3/dist-packages/dask/array/core.py:1491: in __array__
     x = self.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-7_0, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
_________________________ test_write_and_read_file_RGB 
_________________________

test_image_large_asia_RGB = <trollimage.xrimage.XRImage object at 
0xb4697760>
tmp_path = 
PosixPath('/tmp/pytest-of-debci/pytest-0/test_write_and_read_file_RGB0')

     def test_write_and_read_file_RGB(test_image_large_asia_RGB, tmp_path):
         """Test writing and reading RGB."""
         import rasterio
         from satpy.writers.ninjogeotiff import NinJoGeoTIFFWriter
         fn = os.fspath(tmp_path / "test.tif")
         ngtw = NinJoGeoTIFFWriter()
>       ngtw.save_dataset(
             test_image_large_asia_RGB.data,
             filename=fn,
             fill_value=0,
             PhysicUnit="N/A",
             PhysicValue="N/A",
             SatelliteNameID=6400014,
             ChannelID=900015,
             DataType="GORN",
             DataSource="dowsing rod")

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_ninjogeotiff.py:467: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/satpy/writers/__init__.py:809: in 
save_dataset
     return self.save_image(img, filename=filename, compute=compute, 
fill_value=fill_value, **kwargs)
/usr/lib/python3/dist-packages/satpy/writers/ninjogeotiff.py:178: in 
save_image
     return super().save_image(
/usr/lib/python3/dist-packages/satpy/writers/geotiff.py:228: in save_image
     return img.save(filename, fformat='tif', fill_value=fill_value,
/usr/lib/python3/dist-packages/trollimage/xrimage.py:419: in save
     return self.rio_save(filename, fformat=fformat,
/usr/lib/python3/dist-packages/trollimage/xrimage.py:590: in rio_save
     res = da.store(*to_store)
/usr/lib/python3/dist-packages/dask/array/core.py:1043: in store
     compute_as_if_collection(Array, store_dsk, store_keys, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:315: in compute_as_if_collection
     return schedule(dsk2, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_35, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
_________________________ test_get_min_gray_value_RGB 
__________________________

ntg2 = <satpy.writers.ninjogeotiff.NinJoTagGenerator object at 0xb466e070>

     def test_get_min_gray_value_RGB(ntg2):
         """Test getting min gray value for RGB.
             Note that min/max gray value is mandatory in NinJo even for 
RGBs?
         """
>       assert ntg2.get_min_gray_value().compute().item() == 1  # fill value 0

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_ninjogeotiff.py:696: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/xarray/core/dataarray.py:955: in 
compute
     return new.load(**kwargs)
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:929: in load
     ds = self._to_temp_dataset().load(**kwargs)
/usr/lib/python3/dist-packages/xarray/core/dataset.py:865: in load
     evaluated_data = da.compute(*lazy_data.values(), **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_35, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
_________________________ test_get_max_gray_value_RGB 
__________________________

ntg2 = <satpy.writers.ninjogeotiff.NinJoTagGenerator object at 0xb466e070>

     def test_get_max_gray_value_RGB(ntg2):
         """Test max gray value for RGB."""
>       assert ntg2.get_max_gray_value() == 255

/usr/lib/python3/dist-packages/satpy/tests/writer_tests/test_ninjogeotiff.py:713: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ /usr/lib/python3/dist-packages/xarray/core/common.py:129: in 
__bool__
     return bool(self.values)
/usr/lib/python3/dist-packages/xarray/core/dataarray.py:651: in values
     return self.variable.values
/usr/lib/python3/dist-packages/xarray/core/variable.py:517: in values
     return _as_array_or_item(self._data)
/usr/lib/python3/dist-packages/xarray/core/variable.py:259: in 
_as_array_or_item
     data = np.asarray(data)
/usr/lib/python3/dist-packages/numpy/core/_asarray.py:83: in asarray
     return array(a, dtype, copy=False, order=order)
/usr/lib/python3/dist-packages/dask/array/core.py:1491: in __array__
     x = self.compute()
/usr/lib/python3/dist-packages/dask/base.py:288: in compute
     (result,) = compute(self, traverse=False, **kwargs)
/usr/lib/python3/dist-packages/dask/base.py:570: in compute
     results = schedule(dsk, keys, **kwargs)
/usr/lib/python3/dist-packages/dask/threaded.py:79: in get
     results = get_async(
/usr/lib/python3/dist-packages/dask/local.py:505: in get_async
     fire_tasks(chunksize)
/usr/lib/python3/dist-packages/dask/local.py:500: in fire_tasks
     fut = submit(batch_execute_tasks, each_args)
/usr/lib/python3.9/concurrent/futures/thread.py:176: in submit
     self._adjust_thread_count()
/usr/lib/python3.9/concurrent/futures/thread.py:199: in _adjust_thread_count
     t.start()
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _
self = <Thread(ThreadPoolExecutor-0_35, initial)>

     def start(self):
         """Start the thread's activity.
             It must be called at most once per thread object. It 
arranges for the
         object's run() method to be invoked in a separate thread of 
control.
             This method will raise a RuntimeError if called more than 
once on the
         same thread object.
             """
         if not self._initialized:
             raise RuntimeError("thread.__init__() not called")
             if self._started.is_set():
             raise RuntimeError("threads can only be started once")
             with _active_limbo_lock:
             _limbo[self] = self
         try:
>           _start_new_thread(self._bootstrap, ())
E           RuntimeError: can't start new thread

/usr/lib/python3.9/threading.py:892: RuntimeError
=============================== warnings summary 
===============================
../../../../usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_mviri_l1b_fiduceo_nc.py:535
 
/usr/lib/python3/dist-packages/satpy/tests/reader_tests/test_mviri_l1b_fiduceo_nc.py:535: 
PytestUnknownMarkWarning: Unknown pytest.mark.file_handler_data - is 
this a typo?  You can register custom marks to avoid this warning - for 
details, see https://docs.pytest.org/en/stable/mark.html
     @pytest.mark.file_handler_data(mask_bad_quality=False)

tests/test_composites.py: 13 warnings
tests/test_config.py: 112 warnings
tests/test_modifiers.py: 2 warnings
tests/test_multiscene.py: 10 warnings
tests/test_regressions.py: 6 warnings
tests/test_resample.py: 14 warnings
tests/test_scene.py: 15 warnings
tests/test_writers.py: 4 warnings
tests/test_yaml_reader.py: 3 warnings
tests/compositor_tests/test_abi.py: 1 warning
tests/compositor_tests/test_ahi.py: 1 warning
tests/compositor_tests/test_glm.py: 1 warning
tests/modifier_tests/test_crefl.py: 12 warnings
tests/reader_tests/test_ahi_hsd.py: 2 warnings
tests/reader_tests/test_ahi_l1b_gridded_bin.py: 1 warning
tests/reader_tests/test_cmsaf_claas.py: 2 warnings
tests/reader_tests/test_fci_l1c_nc.py: 16 warnings
tests/reader_tests/test_generic_image.py: 3 warnings
tests/reader_tests/test_geocat.py: 6 warnings
tests/reader_tests/test_geos_area.py: 1 warning
tests/reader_tests/test_gpm_imerg.py: 1 warning
tests/reader_tests/test_hrit_base.py: 1 warning
tests/reader_tests/test_mviri_l1b_fiduceo_nc.py: 12 warnings
tests/reader_tests/test_nwcsaf_msg.py: 1 warning
tests/reader_tests/test_nwcsaf_nc.py: 3 warnings
tests/reader_tests/test_seviri_l1b_hrit.py: 3 warnings
tests/reader_tests/test_seviri_l1b_native.py: 2 warnings
tests/writer_tests/test_mitiff.py: 23 warnings
   /usr/lib/python3/dist-packages/pyproj/crs/crs.py:1256: UserWarning: 
You will likely lose important projection information when converting to 
a PROJ string from another format. See: 
https://proj.org/faq.html#what-is-the-best-format-for-describing-coordinate-reference-systems
     return self._crs.to_proj4(version=version)

tests/test_composites.py::TestMatchDataArrays::test_nondimensional_coords
tests/test_composites.py::TestMatchDataArrays::test_nondimensional_coords
tests/reader_tests/test_goes_imager_nc.py::GOESNCEUMFileHandlerRadianceTest::test_get_dataset_radiance
tests/reader_tests/test_goes_imager_nc.py::GOESNCEUMFileHandlerRadianceTest::test_get_dataset_radiance
tests/reader_tests/test_goes_imager_nc.py::GOESNCEUMFileHandlerRadianceTest::test_get_dataset_radiance
tests/reader_tests/test_goes_imager_nc.py::GOESNCEUMFileHandlerRadianceTest::test_get_dataset_radiance
tests/reader_tests/test_goes_imager_nc.py::GOESNCEUMFileHandlerReflectanceTest::test_get_dataset_reflectance
   /usr/lib/python3/dist-packages/xarray/core/dataarray.py:2343: 
PendingDeprecationWarning: dropping variables using `drop` will be 
deprecated; using drop_vars is encouraged.
     ds = self._to_temp_dataset().drop(labels, dim, errors=errors)

tests/test_data_download.py::TestDataDownload::test_find_registerable[readers0-writers0-None]
tests/test_data_download.py::TestDataDownload::test_find_registerable[readers0-None-None]
tests/test_data_download.py::TestDataDownload::test_find_registerable[readers0-writers2-None]
tests/test_data_download.py::TestDataDownload::test_find_registerable[None-writers0-None]
tests/test_data_download.py::TestDataDownload::test_find_registerable[None-None-None]
tests/test_data_download.py::TestDataDownload::test_find_registerable[None-writers2-None]
tests/test_data_download.py::TestDataDownload::test_find_registerable[readers2-writers0-None]
tests/test_data_download.py::TestDataDownload::test_find_registerable[readers2-None-None]
tests/test_data_download.py::TestDataDownload::test_find_registerable[readers2-writers2-None]
   /usr/lib/python3/dist-packages/satpy/modifiers/_crefl.py:56: 
DeprecationWarning: 'dem_filename' for 'ReflectanceCorrector' is 
deprecated. Use 'url' instead.
     warnings.warn("'dem_filename' for 'ReflectanceCorrector' is "

tests/test_data_download.py::TestDataDownload::test_find_registerable[readers0-None-comp_sensors0]
   /usr/lib/python3/dist-packages/pyninjotiff/tifffile.py:154: 
UserWarning: failed to import the optional _tifffile C extension module.
   Loading of some compressed images will be slow.
   Tifffile.c can be obtained at http://www.lfd.uci.edu/~gohlke/
     warnings.warn(

tests/test_dataset.py::test_combine_dicts_different[test_mda5]
   /usr/lib/python3/dist-packages/satpy/dataset/metadata.py:198: 
FutureWarning: elementwise comparison failed; returning scalar instead, 
but in the future will perform elementwise comparison
     res = comp_func(a, b)

tests/test_dataset.py::TestIDQueryInteractions::test_seviri_hrv_has_priority_over_vis008
   /usr/lib/python3/dist-packages/satpy/tests/test_dataset.py:662: 
UserWarning: Attribute access to DataIDs is deprecated, use key access 
instead.
     assert res[0].name == "HRV"

tests/test_dependency_tree.py::TestMultipleSensors::test_compositor_loaded_sensor_order
 
/usr/lib/python3/dist-packages/satpy/tests/test_dependency_tree.py:223: 
UserWarning: Attribute access to DataIDs is deprecated, use key access 
instead.
     self.assertEqual(comp_nodes[0].name.resolution, 500)

tests/test_modifiers.py::TestPSPAtmosphericalCorrection::test_call
tests/modifier_tests/test_crefl.py::TestReflectanceCorrectorModifier::test_reflectance_corrector_abi
tests/modifier_tests/test_crefl.py::TestReflectanceCorrectorModifier::test_reflectance_corrector_abi
   /usr/lib/python3/dist-packages/dask/core.py:121: RuntimeWarning: 
invalid value encountered in remainder
     return func(*(_execute_task(a, cache) for a in args))

tests/test_readers.py::TestReaderLoader::test_missing_requirements
   /usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:495: 
UserWarning: No handler for reading requirement 'HRIT_EPI' for 
H-000-MSG4__-MSG4________-IR_108___-000006___-201809050900-__
     warnings.warn(msg)

tests/test_readers.py::TestReaderLoader::test_missing_requirements
   /usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:495: 
UserWarning: No handler for reading requirement 'HRIT_PRO' for 
H-000-MSG4__-MSG4________-IR_108___-000006___-201809050900-__
     warnings.warn(msg)

tests/test_readers.py::TestReaderLoader::test_missing_requirements
   /usr/lib/python3/dist-packages/satpy/readers/yaml_reader.py:498: 
UserWarning: No matching requirement file of type HRIT_PRO for 
H-000-MSG4__-MSG4________-IR_108___-000006___-201809051000-__
     warnings.warn(str(err) + ' for {}'.format(filename))

tests/test_resample.py::TestHLResample::test_type_preserve
tests/test_resample.py::TestHLResample::test_type_preserve
   /usr/lib/python3/dist-packages/pyresample/geometry.py:567: 
DeprecationWarning: This function is deprecated. See: 
https://pyproj4.github.io/pyproj/stable/gotchas.html#upgrading-to-pyproj-2-from-pyproj-1
     xyz = np.stack(transform(src, dst, lons, lats, alt), axis=1)

tests/test_resample.py::TestKDTreeResampler::test_check_numpy_cache
   /usr/lib/python3/dist-packages/satpy/resample.py:551: UserWarning: 
Using Numpy files as resampling cache is deprecated.
     warnings.warn("Using Numpy files as resampling cache is "

tests/test_resample.py::TestBucketAvg::test_compute_and_not_use_skipna_handling
tests/test_resample.py::TestBucketAvg::test_compute_and_not_use_skipna_handling
tests/test_resample.py::TestBucketSum::test_compute_and_not_use_skipna_handling
tests/test_resample.py::TestBucketSum::test_compute_and_not_use_skipna_handling
   /usr/lib/python3/dist-packages/satpy/resample.py:1072: 
DeprecationWarning: Argument mask_all_nan is deprecated.Please update 
Pyresample and use skipna for missing values handling.
     warnings.warn('Argument mask_all_nan is deprecated.'

tests/test_resample.py::TestBucketAvg::test_compute_and_use_skipna_handling
tests/test_resample.py::TestBucketSum::test_compute_and_use_skipna_handling
   /usr/lib/python3/dist-packages/satpy/resample.py:1067: 
DeprecationWarning: Argument mask_all_nan is deprecated. Please use 
skipna for missing values handling. Continuing with default skipna=True, 
if not provided differently.
     warnings.warn('Argument mask_all_nan is deprecated. Please use 
skipna for missing values handling. '

tests/test_scene.py: 2 warnings
tests/test_writers.py: 14 warnings
tests/writer_tests/test_geotiff.py: 4 warnings
   /usr/lib/python3/dist-packages/rasterio/__init__.py:230: 
NotGeoreferencedWarning: Dataset has no geotransform, gcps, or rpcs. The 
identity matrix be returned.
     s = writer(path, mode, driver=driver,

tests/test_scene.py: 3 warnings
tests/test_writers.py: 10 warnings
tests/reader_tests/test_aapp_l1b.py: 3 warnings
tests/writer_tests/test_geotiff.py: 2 warnings
tests/writer_tests/test_simple_image.py: 2 warnings
   /usr/lib/python3/dist-packages/dask/core.py:121: RuntimeWarning: 
divide by zero encountered in true_divide
     return func(*(_execute_task(a, cache) for a in args))

tests/test_scene.py: 3 warnings
tests/test_writers.py: 10 warnings
tests/writer_tests/test_geotiff.py: 2 warnings
tests/writer_tests/test_simple_image.py: 2 warnings
   /usr/lib/python3/dist-packages/dask/core.py:121: RuntimeWarning: 
invalid value encountered in multiply
     return func(*(_execute_task(a, cache) for a in args))

tests/enhancement_tests/test_enhancements.py::TestEnhancementStretch::test_crefl_scaling
   /usr/lib/python3/dist-packages/satpy/enhancements/__init__.py:114: 
DeprecationWarning: 'crefl_scaling' is deprecated, use 
'piecewise_linear_stretch' instead.
     warnings.warn("'crefl_scaling' is deprecated, use 
'piecewise_linear_stretch' instead.", DeprecationWarning)

tests/enhancement_tests/test_enhancements.py::TestColormapLoading::test_cmap_from_file_rgb_1
tests/enhancement_tests/test_enhancements.py::TestColormapLoading::test_cmap_list
   /usr/lib/python3/dist-packages/trollimage/colormap.py:207: 
UserWarning: Colormap 'colors' should be flotaing point numbers between 
0 and 1.
     warnings.warn("Colormap 'colors' should be flotaing point numbers 
between 0 and 1.")

tests/reader_tests/test_aapp_l1b.py::TestAAPPL1BAllChannelsPresent::test_read
tests/reader_tests/test_aapp_l1b.py::TestAAPPL1BAllChannelsPresent::test_read
tests/reader_tests/test_aapp_l1b.py::TestAAPPL1BAllChannelsPresent::test_read
tests/reader_tests/test_aapp_l1b.py::TestAAPPL1BAllChannelsPresent::test_read
tests/reader_tests/test_aapp_l1b.py::TestAAPPL1BAllChannelsPresent::test_read
tests/reader_tests/test_aapp_l1b.py::TestAAPPL1BAllChannelsPresent::test_read
tests/reader_tests/test_aapp_l1b.py::TestAAPPL1BAllChannelsPresent::test_read
   /usr/lib/python3/dist-packages/dask/core.py:121: RuntimeWarning: 
invalid value encountered in log
     return func(*(_execute_task(a, cache) for a in args))

tests/reader_tests/test_abi_l2_nc.py::TestMCMIPReading::test_mcmip_get_dataset
   /usr/lib/python3/dist-packages/satpy/readers/abi_l2_nc.py:40: 
UserWarning: Attribute access to DataIDs is deprecated, use key access 
instead.
     var += "_" + key.name

tests/reader_tests/test_ahi_hsd.py::TestAHIHSDFileHandler::test_read_band
tests/reader_tests/test_ahi_hsd.py::TestAHIHSDFileHandler::test_read_band
tests/reader_tests/test_ahi_hsd.py::TestAHIHSDFileHandler::test_scene_loading
tests/reader_tests/test_utils.py::TestHelpers::test_get_earth_radius
tests/reader_tests/test_utils.py::TestHelpers::test_get_earth_radius
tests/reader_tests/test_utils.py::TestHelpers::test_get_earth_radius
tests/reader_tests/test_utils.py::TestHelpers::test_get_earth_radius
tests/reader_tests/test_utils.py::TestHelpers::test_get_earth_radius
tests/reader_tests/test_utils.py::TestHelpers::test_get_earth_radius
   /usr/lib/python3/dist-packages/satpy/readers/utils.py:320: 
DeprecationWarning: This function is deprecated. See: 
https://pyproj4.github.io/pyproj/stable/gotchas.html#upgrading-to-pyproj-2-from-pyproj-1
     x, y, z = pyproj.transform(latlong, geocent, lon, lat, 0.)

tests/reader_tests/test_ami_l1b.py::TestAMIL1bNetCDF::test_get_dataset
tests/reader_tests/test_ami_l1b.py::TestAMIL1bNetCDF::test_get_dataset_counts
tests/reader_tests/test_ami_l1b.py::TestAMIL1bNetCDF::test_get_dataset_vis
tests/reader_tests/test_ami_l1b.py::TestAMIL1bNetCDFIRCal::test_default_calibrate
tests/reader_tests/test_ami_l1b.py::TestAMIL1bNetCDFIRCal::test_gsics_radiance_corr
tests/reader_tests/test_ami_l1b.py::TestAMIL1bNetCDFIRCal::test_infile_calibrate
tests/reader_tests/test_ami_l1b.py::TestAMIL1bNetCDFIRCal::test_user_radiance_corr
   /usr/lib/python3/dist-packages/satpy/readers/ami_l1b.py:165: 
DeprecationWarning: This function is deprecated. See: 
https://pyproj4.github.io/pyproj/stable/gotchas.html#upgrading-to-pyproj-2-from-pyproj-1
     sc_position = pyproj.transform(

tests/reader_tests/test_avhrr_l0_hrpt.py::TestHRPTGetCalibratedReflectances::test_calibrated_reflectances_values
tests/reader_tests/test_avhrr_l0_hrpt.py::TestHRPTGetCalibratedBT::test_calibrated_bt_values
tests/reader_tests/test_avhrr_l0_hrpt.py::TestHRPTChannel3::test_channel_3a_masking
tests/reader_tests/test_avhrr_l0_hrpt.py::TestHRPTChannel3::test_channel_3b_masking
tests/reader_tests/test_avhrr_l0_hrpt.py::TestHRPTNavigation::test_latitudes_are_returned
tests/reader_tests/test_avhrr_l0_hrpt.py::TestHRPTNavigation::test_longitudes_are_returned
   /usr/lib/python3/dist-packages/satpy/readers/hrpt.py:80: 
DeprecationWarning: parsing timezone aware datetimes is deprecated; this 
will raise an error in the future
     return (np.datetime64(

tests/reader_tests/test_avhrr_l0_hrpt.py::TestHRPTGetCalibratedReflectances::test_calibrated_reflectances_values
tests/reader_tests/test_avhrr_l0_hrpt.py::TestHRPTChannel3::test_channel_3a_masking
   /usr/lib/python3/dist-packages/satpy/readers/hrpt.py:222: 
DeprecationWarning: parsing timezone aware datetimes is deprecated; this 
will raise an error in the future
     - np.datetime64(str(self.year) + '-01-01T00:00:00Z'))

tests/reader_tests/test_fci_l2_nc.py::TestFciL2NCReadingByteData::test_byte_extraction
   /usr/lib/python3/dist-packages/pyresample/geometry.py:1282: 
RuntimeWarning: invalid value encountered in double_scalars
     self.pixel_offset_x = -self.area_extent[0] / self.pixel_size_x

tests/reader_tests/test_fci_l2_nc.py::TestFciL2NCReadingByteData::test_byte_extraction
   /usr/lib/python3/dist-packages/pyresample/geometry.py:1283: 
RuntimeWarning: invalid value encountered in double_scalars
     self.pixel_offset_y = self.area_extent[3] / self.pixel_size_y

tests/reader_tests/test_generic_image.py: 7 warnings
tests/reader_tests/test_smos_l2_wind.py: 2 warnings
tests/writer_tests/test_mitiff.py: 5 warnings
   /usr/lib/python3/dist-packages/pyproj/crs/crs.py:131: FutureWarning: 
'+init=<authority>:<code>' syntax is deprecated. '<authority>:<code>' is 
the preferred initialization method. When making the change, be mindful 
of axis order changes: 
https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6
     in_crs_string = _prepare_from_proj_string(in_crs_string)

tests/reader_tests/test_generic_image.py::TestGenericImage::test_png_scene
tests/reader_tests/test_generic_image.py::TestGenericImage::test_png_scene
   /usr/lib/python3/dist-packages/rasterio/__init__.py:220: 
NotGeoreferencedWarning: Dataset has no geotransform, gcps, or rpcs. The 
identity matrix be returned.
     s = DatasetReader(path, driver=driver, sharing=sharing, **kwargs)

tests/reader_tests/test_goes_imager_nc.py: 28 warnings
   /usr/lib/python3/dist-packages/satpy/readers/goes_imager_nc.py:738: 
DeprecationWarning: an integer is required (got type DataArray). 
Implicit conversion to integers using __int__ is deprecated, and may be 
removed in a future version of Python.
     return datetime(year=dt.year, month=dt.month, day=dt.day,

tests/reader_tests/test_olci_nc.py::TestOLCIReader::test_olci_angles
tests/reader_tests/test_olci_nc.py::TestOLCIReader::test_olci_angles
tests/reader_tests/test_olci_nc.py::TestOLCIReader::test_olci_angles
tests/reader_tests/test_olci_nc.py::TestOLCIReader::test_olci_angles
tests/reader_tests/test_olci_nc.py::TestOLCIReader::test_olci_meteo
tests/reader_tests/test_olci_nc.py::TestOLCIReader::test_olci_meteo
tests/reader_tests/test_olci_nc.py::TestOLCIReader::test_olci_meteo
tests/reader_tests/test_olci_nc.py::TestOLCIReader::test_olci_meteo
   /usr/lib/python3/dist-packages/geotiepoints/interpolator.py:239: 
DeprecationWarning: elementwise comparison failed; this will raise an 
error in the future.
     if np.all(self.hrow_indices == self.row_indices):

tests/reader_tests/test_satpy_cf_nc.py: 8 warnings
tests/writer_tests/test_cf.py: 19 warnings
   /usr/lib/python3/dist-packages/satpy/writers/cf_writer.py:754: 
FutureWarning: The default behaviour of the CF writer will soon change 
to not compress data by default.
     warnings.warn("The default behaviour of the CF writer will soon 
change to not compress data by default.",

tests/reader_tests/test_satpy_cf_nc.py: 18 warnings
   /usr/lib/python3/dist-packages/satpy/readers/satpy_cf_nc.py:240: 
DeprecationWarning: The truth value of an empty array is ambiguous. 
Returning False, but in future this will result in an error. Use 
`array.size > 0` to check that an array is not empty.
     if 'modifiers' in ds_info and not ds_info['modifiers']:

tests/reader_tests/test_satpy_cf_nc.py::TestCFReader::test_read_prefixed_channels_by_user_no_prefix
tests/writer_tests/test_cf.py::TestCFWriter::test_save_dataset_a_digit_no_prefix_include_attr
   /usr/lib/python3/dist-packages/satpy/writers/cf_writer.py:566: 
UserWarning: Invalid NetCDF dataset name: 1 starts with a digit.
     warnings.warn('Invalid NetCDF dataset name: {} starts with a 
digit.'.format(name))

tests/reader_tests/test_seviri_base.py::TestOrbitPolynomialFinder::test_get_orbit_polynomial[orbit_polynomials1-time1-orbit_polynomial_exp1]
tests/reader_tests/test_seviri_base.py::TestOrbitPolynomialFinder::test_get_orbit_polynomial_exceptions[orbit_polynomials1-time1]
   /usr/lib/python3/dist-packages/satpy/readers/seviri_base.py:770: 
UserWarning: No orbit polynomial valid for 2006-01-01T12:15:00.000000. 
Using closest match.
     warnings.warn(

tests/reader_tests/test_seviri_base.py::TestOrbitPolynomialFinder::test_get_orbit_polynomial_exceptions[orbit_polynomials0-time0]
   /usr/lib/python3/dist-packages/satpy/readers/seviri_base.py:770: 
UserWarning: No orbit polynomial valid for 2006-01-02T12:15:00.000000. 
Using closest match.
     warnings.warn(

tests/reader_tests/test_seviri_l1b_hrit.py::TestHRITMSGFileHandler::test_satpos_no_valid_orbit_polynomial
tests/reader_tests/test_seviri_l1b_native.py::TestNativeMSGDataset::test_satpos_no_valid_orbit_polynomial
   /usr/lib/python3/dist-packages/satpy/readers/seviri_base.py:770: 
UserWarning: No orbit polynomial valid for 2006-01-01T12:15:09.304888. 
Using closest match.
     warnings.warn(

tests/reader_tests/test_seviri_l1b_nc.py::TestNCSEVIRIFileHandler::test_satpos_no_valid_orbit_polynomial
   /usr/lib/python3/dist-packages/satpy/readers/seviri_base.py:770: 
UserWarning: No orbit polynomial valid for 2020-01-01T00:00:00.000000. 
Using closest match.
     warnings.warn(

tests/reader_tests/test_slstr_l1b.py::TestSLSTRReader::test_instantiate
   /usr/lib/python3/dist-packages/satpy/readers/slstr_l1b.py:174: 
UserWarning: Warning: No radiance adjustment supplied for channel foo_nadir
     warnings.warn("Warning: No radiance adjustment supplied " +

tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_lettered_tiles_no_valid_data
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_lettered_tiles_no_valid_data
   /usr/lib/python3/dist-packages/dask/utils.py:35: RuntimeWarning: 
All-NaN slice encountered
     return func(*args, **kwargs)

tests/writer_tests/test_awips_tiled.py: 54 warnings
   /usr/lib/python3/dist-packages/satpy/writers/awips_tiled.py:940: 
UserWarning: Production location attribute is longer than 31 characters 
(AWIPS limit). Set it to a smaller value with the 'ORGANIZATION' 
environment variable. Defaults to hostname and is currently set to 
'11111111111111111111111111111111111111111111111111'.
     warnings.warn("Production location attribute is longer than 31 "

tests/writer_tests/test_cf.py::TestCFWriter::test_groups
   /usr/lib/python3/dist-packages/satpy/writers/cf_writer.py:361: 
UserWarning: Cannot pretty-format "acq_time" coordinates because they 
are not unique among the given datasets
     warnings.warn('Cannot pretty-format "{}" coordinates because they 
are not unique among the '

tests/writer_tests/test_cf.py::TestCFWriter::test_link_coords
   /usr/lib/python3/dist-packages/satpy/writers/cf_writer.py:305: 
UserWarning: Coordinate "not_exist" referenced by dataarray var4 does 
not exist, dropping reference.
     warnings.warn('Coordinate "{}" referenced by dataarray {} does not 
exist, dropping reference.'

tests/writer_tests/test_cf.py::TestCFWriter::test_save_with_compression
   /usr/lib/python3/dist-packages/satpy/writers/cf_writer.py:759: 
FutureWarning: The `compression` keyword will soon be deprecated. Please 
use the `encoding` of the DataArrays to tune compression from now on.
     warnings.warn("The `compression` keyword will soon be deprecated. 
Please use the `encoding` of the "

-- Docs: https://docs.pytest.org/en/stable/warnings.html
=========================== short test summary info 
============================
FAILED tests/test_scene.py::TestScene::test_crop - 
numpy.core._exceptions._Ar...
FAILED tests/test_scene.py::TestScene::test_crop_epsg_crs - 
numpy.core._excep...
FAILED tests/test_scene.py::TestScene::test_crop_rgb - 
numpy.core._exceptions...
FAILED tests/test_scene.py::TestSceneAggregation::test_aggregate - 
numpy.core...
FAILED 
tests/test_scene.py::TestSceneAggregation::test_aggregate_with_boundary
FAILED 
tests/reader_tests/test_mimic_TPW2_nc.py::TestMimicTPW2Reader::test_load_mimic
FAILED 
tests/reader_tests/test_modis_l2.py::TestModisL2::test_load_longitude_latitude[modis_l2_nasa_mod35_file-True-False-False-1000]
FAILED 
tests/reader_tests/test_modis_l2.py::TestModisL2::test_load_250m_cloud_mask_dataset[modis_l2_nasa_mod35_file-False]
FAILED tests/reader_tests/test_nwcsaf_msg.py::TestH5NWCSAF::test_get_dataset
FAILED 
tests/reader_tests/test_smos_l2_wind.py::TestSMOSL2WINDReader::test_load_wind_speed
FAILED 
tests/reader_tests/test_tropomi_l2.py::TestTROPOMIL2Reader::test_load_bounds
FAILED 
tests/reader_tests/test_tropomi_l2.py::TestTROPOMIL2Reader::test_load_no2
FAILED 
tests/reader_tests/test_tropomi_l2.py::TestTROPOMIL2Reader::test_load_so2
FAILED 
tests/reader_tests/test_viirs_compact.py::TestCompact::test_distributed
FAILED 
tests/reader_tests/test_viirs_compact.py::TestCompact::test_get_dataset
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_basic_lettered_tiles
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_basic_lettered_tiles_diff_projection
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_lettered_tiles_update_existing
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_lettered_tiles_sector_ref
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_lettered_tiles_no_fit
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_lettered_tiles_no_valid_data
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_lettered_tiles_bad_filename
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_multivar_numbered_tiles_glm[extra_kwargs0-C]
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_multivar_numbered_tiles_glm[extra_kwargs0-F]
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_multivar_numbered_tiles_glm[extra_kwargs1-C]
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_multivar_numbered_tiles_glm[extra_kwargs1-F]
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_multivar_numbered_tiles_glm[extra_kwargs2-C]
FAILED 
tests/writer_tests/test_awips_tiled.py::TestAWIPSTiledWriter::test_multivar_numbered_tiles_glm[extra_kwargs2-F]
FAILED 
tests/writer_tests/test_mitiff.py::TestMITIFFWriter::test_get_test_dataset_three_bands_prereq
FAILED 
tests/writer_tests/test_mitiff.py::TestMITIFFWriter::test_save_dataset_with_bad_value
FAILED 
tests/writer_tests/test_mitiff.py::TestMITIFFWriter::test_save_dataset_with_calibration
FAILED 
tests/writer_tests/test_mitiff.py::TestMITIFFWriter::test_save_one_dataset
FAILED 
tests/writer_tests/test_mitiff.py::TestMITIFFWriter::test_save_one_dataset_sesnor_set
FAILED 
tests/writer_tests/test_mitiff.py::TestMITIFFWriter::test_simple_write
FAILED 
tests/writer_tests/test_mitiff.py::TestMITIFFWriter::test_simple_write_two_bands
FAILED tests/writer_tests/test_ninjogeotiff.py::test_write_and_read_file_RGB
FAILED tests/writer_tests/test_ninjogeotiff.py::test_get_min_gray_value_RGB
FAILED tests/writer_tests/test_ninjogeotiff.py::test_get_max_gray_value_RGB
ERROR 
tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_scene_available_datasets[modis_l1b_nasa_mod021km_file-expected_names0-expected_data_res0-expected_geo_res0]
ERROR 
tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_scene_available_datasets[modis_l1b_imapp_1000m_file-expected_names1-expected_data_res1-expected_geo_res1]
ERROR 
tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_scene_available_datasets[modis_l1b_nasa_mod02hkm_file-expected_names2-expected_data_res2-expected_geo_res2]
ERROR 
tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_scene_available_datasets[modis_l1b_nasa_mod02qkm_file-expected_names3-expected_data_res3-expected_geo_res3]
ERROR 
tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_load_longitude_latitude[modis_l1b_nasa_mod021km_file-True-False-False-1000]
ERROR 
tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_load_longitude_latitude[modis_l1b_imapp_1000m_file-True-False-False-1000]
ERROR 
tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_load_longitude_latitude[modis_l1b_nasa_mod02hkm_file-False-True-True-250]
ERROR 
tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_load_longitude_latitude[modis_l1b_nasa_mod02qkm_file-False-True-True-250]
ERROR 
tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_load_longitude_latitude[modis_l1b_nasa_1km_mod03_files-True-True-True-250]
ERROR 
tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_load_sat_zenith_angle
ERROR tests/reader_tests/test_modis_l1b.py::TestModisL1b::test_load_vis 
- num...
ERROR 
tests/reader_tests/test_modis_l2.py::TestModisL2::test_load_category_dataset[modis_l2_nasa_mod35_mod03_files-loadables0-1000-1000-True]
ERROR 
tests/reader_tests/test_modis_l2.py::TestModisL2::test_load_category_dataset[modis_l2_imapp_mask_byte1_geo_files-loadables1-None-1000-True]
ERROR 
tests/reader_tests/test_modis_l2.py::TestModisL2::test_load_250m_cloud_mask_dataset[modis_l2_nasa_mod35_mod03_files-True]
ERROR 
tests/reader_tests/test_modis_l2.py::TestModisL2::test_load_l2_dataset[modis_l2_imapp_snowmask_geo_files-loadables2-1000-True]
= 38 failed, 1289 passed, 10 skipped, 5 deselected, 4 xfailed, 566 
warnings, 15 errors in 226.63s (0:03:46) =
autopkgtest [11:33:26]: test python3


-------------- next part --------------
A non-text attachment was scrubbed...
Name: OpenPGP_signature
Type: application/pgp-signature
Size: 495 bytes
Desc: OpenPGP digital signature
URL: <http://alioth-lists.debian.net/pipermail/pkg-grass-devel/attachments/20211120/a9b5d53b/attachment-0001.sig>


More information about the Pkg-grass-devel mailing list