[Git][debian-gis-team/xsar][master] 5 commits: New upstream version 2024.05.15

Antonio Valentino (@antonio.valentino) gitlab at salsa.debian.org
Fri May 17 06:46:54 BST 2024



Antonio Valentino pushed to branch master at Debian GIS Project / xsar


Commits:
7d9126e8 by Antonio Valentino at 2024-05-17T05:36:18+00:00
New upstream version 2024.05.15
- - - - -
59d870a1 by Antonio Valentino at 2024-05-17T05:36:21+00:00
Update upstream source from tag 'upstream/2024.05.15'

Update to upstream version '2024.05.15'
with Debian dir 101f9fd9666e0d2ba3ce6e3e6da35aa98468acb2
- - - - -
095576a4 by Antonio Valentino at 2024-05-17T05:37:03+00:00
New upstrean release

- - - - -
d8acee48 by Antonio Valentino at 2024-05-17T05:42:04+00:00
Update Recomments field in d/control

- - - - -
7cf5514d by Antonio Valentino at 2024-05-17T05:42:48+00:00
Set distribution to unstable

- - - - -


8 changed files:

- .git_archival.txt
- README.md
- debian/changelog
- debian/control
- docs/examples/projections.ipynb
- docs/examples/xsar_tops_slc.ipynb
- src/xsar/config.yml
- src/xsar/sentinel1_dataset.py


Changes:

=====================================
.git_archival.txt
=====================================
@@ -1 +1 @@
-ref-names: HEAD -> develop, tag: 2024.04.24
\ No newline at end of file
+ref-names: tag: 2024.05.15
\ No newline at end of file


=====================================
README.md
=====================================
@@ -3,7 +3,18 @@
 
 Synthetic Aperture Radar (SAR) Level-1 GRD python mapper for efficient xarray/dask based processing
 
- 
+This python library allow to apply different operation on SAR images such as:
+ - calibration
+ - de-noising
+ - re-sampling
+
+The library is working regardless it is a **Sentinel-1**, a **RadarSAT-2** or a **RCM** product.
+
+The library is providing variables such as `longitude` , `latitude`, `incidence_angle` or `sigma0` at native product resolution or coarser resolution.
+
+The library perform resampling that are suitable for GRD (i.e. ground projected) SAR images. The same method is used for WV SLC, and one can consider the approximation still valid because the WV image is only 20 km X 20 km.
+
+But for TOPS (IW or EW) SLC products we recommend to use [xsarslc](https://github.com/umr-lops/xsar_slc.git)
 
 # Install
 
@@ -12,7 +23,7 @@ Synthetic Aperture Radar (SAR) Level-1 GRD python mapper for efficient xarray/da
 1) Install `xsar` (without the readers)
 
 For a faster installation and less conflicts between packages, it is better
-to make the installation with `mamba`
+to make the installation with `micromamba`
 
 ```bash
 conda install -c conda-forge mamba
@@ -21,14 +32,14 @@ conda install -c conda-forge mamba
 2) install `xsar` (without the readers)
 
 ```bash
-mamba install -c conda-forge xsar
+micromamba install -c conda-forge xsar
 ```
 3) Add optional dependencies
 
 - Add use of Radarsat-2 :
 
 ```bash
-mamba install -c conda-forge xradarsat2
+micromamba install -c conda-forge xradarsat2
 ```
 
 - Add use of RCM (RadarSat Constellation Mission)
@@ -40,7 +51,7 @@ pip install xarray-safe-rcm
 - Add use of Sentinel-1
 
 ```bash
-mamba install -c conda-forge xarray-safe-s1
+micromamba install -c conda-forge xarray-safe-s1
 ```
 
 ## Pypi
@@ -125,4 +136,3 @@ Attributes: (12/14)
 # More information
 
 For more install options and to use xsar, see [documentation](https://cyclobs.ifremer.fr/static/sarwing_datarmor/xsar/)
-


=====================================
debian/changelog
=====================================
@@ -1,3 +1,12 @@
+xsar (2024.05.15-1) unstable; urgency=medium
+
+  * New upstream release.
+  * debian/control:
+    - Recommend python3-xarray-safe-rcm, python3-xarray-safe-s1,
+      and python3-xradarsat2.
+
+ -- Antonio Valentino <antonio.valentino at tiscali.it>  Fri, 17 May 2024 05:42:35 +0000
+
 xsar (2024.04.24-1) unstable; urgency=medium
 
   * New upstream release.


=====================================
debian/control
=====================================
@@ -64,5 +64,8 @@ Package: python3-xsar
 Architecture: all
 Depends: ${misc:Depends},
          ${python3:Depends}
+Recommends: python3-xarray-safe-rcm,
+            python3-xarray-safe-s1,
+            python3-xradarsat2
 Description: ${source:Synopsis}
  ${source:Extended-Description}


=====================================
docs/examples/projections.ipynb
=====================================
@@ -146,7 +146,7 @@
    "source": [
     "sigma0_image = gv.Image(sigma0_proj.sel(pol='VV')).opts(alpha=0.3, cmap='gray', clim=(0,0.05))\n",
     "#(gv.tile_sources.Wikipedia * gv.feature.land.options(scale='50m') * sigma0_image).opts(width=600,height=600)\n",
-    "(gv.tile_sources.Wikipedia * sigma0_image * gv.feature.coastline.options(scale='10m')).opts(width=600,height=600)"
+    "(gv.tile_sources.EsriImagery * sigma0_image * gv.feature.coastline.options(scale='10m')).opts(width=600,height=600)"
    ]
   },
   {
@@ -170,7 +170,9 @@
    },
    "outputs": [],
    "source": [
-    "sigma0_proj.sel(pol='VV').rio.to_raster('/tmp/sigma0_nocolor.tiff')"
+    "s0vvproj = sigma0_proj.sel(pol='VV')\n",
+    "s0vvproj.attrs['name'] = 'sigma0 VV projected using rioxarray'\n",
+    "s0vvproj.rio.to_raster('/tmp/sigma0_nocolor.tiff')"
    ]
   },
   {
@@ -195,7 +197,7 @@
     "tmp = rioxarray.open_rasterio('/tmp/sigma0_nocolor.tiff')\n",
     "tmp = tmp.rename('sigma0_nocolor')\n",
     "tmp2 = gv.util.from_xarray(tmp)\n",
-    "gv.tile_sources.Wikipedia * gv.Image(tmp2,vdims='sigma0_nocolor',kdims=['x','y']).opts(alpha=0.7, cmap='gray', clim=(0,0.05),colorbar=True,width=500,height=200)"
+    "gv.tile_sources.EsriImagery * gv.Image(tmp2,kdims=['x','y']).opts(alpha=0.7, cmap='gray', clim=(0,0.05),colorbar=True,width=500,height=200) # vdims='sigma0_nocolor'"
    ]
   },
   {
@@ -250,7 +252,9 @@
     "rgb_sigma0.name = 'sigma0_rgba'\n",
     "xsar_obj.datatree['measurement'] = xsar_obj.datatree['measurement'].assign(xr.merge([xsar_obj.dataset,rgb_sigma0]))\n",
     "xsar_obj.recompute_attrs()\n",
-    "xsar_obj.dataset['sigma0_rgba'].rio.reproject('epsg:4326',shape=(1000,1000),nodata=0).rio.to_raster('/tmp/sigma0_color.tiff')"
+    "s0rgba = xsar_obj.dataset['sigma0_rgba'].rio.reproject('epsg:4326',shape=(1000,1000),nodata=0)\n",
+    "s0rgba.attrs['name'] = 'sigma0 RGBA projected using rioxarray'\n",
+    "s0rgba.rio.to_raster('/tmp/sigma0_color.tiff')"
    ]
   },
   {
@@ -265,11 +269,12 @@
     "# there is a transparency bug in geoviews (https://github.com/holoviz/geoviews/issues/571)\n",
     "# but if loading this tiff in google earth, it should render properly\n",
     "tmp = rioxarray.open_rasterio('/tmp/sigma0_color.tiff')\n",
-    "tmp = tmp.rename('sigma0_color').isel(band=0)\n",
-    "tmp2 = gv.util.from_xarray(tmp)\n",
-    "print(tmp2)\n",
+    "tmp = tmp.rename('sigma0_color').isel(band=1)\n",
+    "print(tmp)\n",
+    "# tmp2 = gv.util.from_xarray(tmp,vdims='sigma0_color')\n",
+    "# print('empt2\\n====================',tmp2)\n",
     "# (gv.tile_sources.Wikipedia * gv.load_tiff('/tmp/sigma0_color.tiff')).opts(width=600,height=600)\n",
-    "(gv.tile_sources.Wikipedia * gv.Image(tmp2,vdims='sigma0_color',kdims=['x','y']).opts(cmap='magma',colorbar=True)).opts(width=600,height=600)"
+    "(gv.tile_sources.EsriImagery * gv.Image(tmp,vdims='sigma0_color',kdims=['x','y']).opts(cmap='magma',colorbar=True,tools=['hover'])).opts(width=600,height=600) # "
    ]
   },
   {
@@ -390,7 +395,7 @@
    "source": [
     "merged_lonlat = merged_grid.rio.reproject(4326)\n",
     "(\n",
-    "    gv.tile_sources.Wikipedia * gv.Image(merged_lonlat['spd']).opts(cmap='jet', alpha=0.3) \n",
+    "    gv.tile_sources.EsriImagery * gv.Image(merged_lonlat['spd']).opts(cmap='jet', alpha=0.3) \n",
     "    * gv.Image(merged_lonlat['sigma0']).opts(cmap='gray', clim=(0,0.05), alpha=0.7)\n",
     ").opts(width=600,height=600)\n",
     "                                                           "


=====================================
docs/examples/xsar_tops_slc.ipynb
=====================================
@@ -83,7 +83,7 @@
     "#gv.tile_sources.Wikipedia*gv.Polygons(multids.bursts(only_valid_location=True)['geometry']).opts(width=800,height=450,alpha=0.5)\n",
     "import pandas as pd\n",
     "tmp = pd.concat([xsar.Sentinel1Dataset(onesubswath).get_bursts_polygons(only_valid_location=True) for onesubswath in multids.subdatasets.index])\n",
-    "gv.tile_sources.Wikipedia*gv.Polygons(tmp['geometry']).opts(width=800,height=450,alpha=0.5)\n"
+    "gv.tile_sources.EsriImagery*gv.Polygons(tmp['geometry']).opts(width=800,height=450,alpha=0.5)\n"
    ]
   },
   {
@@ -94,7 +94,7 @@
    "outputs": [],
    "source": [
     "tmp2 = pd.concat([xsar.Sentinel1Dataset(onesubswath).get_bursts_polygons(only_valid_location=False) for onesubswath in multids.subdatasets.index])\n",
-    "gv.tile_sources.Wikipedia*gv.Polygons(tmp2['geometry']).opts(width=800,height=450,alpha=0.2)*gv.Polygons(tmp['geometry']).opts(width=800,height=450,alpha=0.2)\n"
+    "gv.tile_sources.EsriImagery*gv.Polygons(tmp2['geometry']).opts(width=800,height=450,alpha=0.2)*gv.Polygons(tmp['geometry']).opts(width=800,height=450,alpha=0.2)\n"
    ]
   },
   {
@@ -261,7 +261,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "s1ds.apply_calibration_and_denoising()\n",
+    "s1ds.apply_calibration_and_denoising() \n",
     "s1ds.dataset"
    ]
   },
@@ -428,7 +428,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.8"
+   "version": "3.9.15"
   },
   "toc-autonumbering": true
  },


=====================================
src/xsar/config.yml
=====================================
@@ -1,6 +1,7 @@
 # default data dir for tests and examples
 data_dir: /tmp
 auxiliary_dir:
+path_auxiliary_df: 
 
 auxiliary_names:    
     S1B:     


=====================================
src/xsar/sentinel1_dataset.py
=====================================
@@ -13,7 +13,7 @@ from scipy.interpolate import interp1d
 from shapely.geometry import box
 
 from .utils import timing, map_blocks_coords, BlockingActorProxy, merge_yaml, \
-    to_lon180, config
+    to_lon180, config, datetime
 from .sentinel1_meta import Sentinel1Meta
 from .ipython_backends import repr_mimebundle
 import datatree
@@ -40,6 +40,7 @@ mapping_dataset_geoloc = {'latitude': 'latitude',
                           'altitude': 'height',
                           'azimuth_time': 'azimuthTime',
                           'slant_range_time': 'slantRangeTime',
+                          'offboresight': 'offboresightAngle',
                           }
 
 
@@ -95,11 +96,10 @@ class Sentinel1Dataset(BaseDataset):
                  resampling=rasterio.enums.Resampling.rms,
                  luts=False, chunks={'line': 5000, 'sample': 5000},
                  dtypes=None, patch_variable=True, lazyloading=True,
-                 recalibration=False, aux_config_name='v_IPF_36'):
+                 recalibration=False):
         # default dtypes
         if dtypes is not None:
             self._dtypes.update(dtypes)
-
         # default meta for map_blocks output.
         # as asarray is imported from numpy, it's a numpy array.
         # but if later we decide to import asarray from cupy, il will be a cupy.array (gpu)
@@ -139,6 +139,16 @@ class Sentinel1Dataset(BaseDataset):
         # geoloc
         geoloc = self.sar_meta.geoloc
         geoloc.attrs['history'] = 'annotations'
+        geoloc["offboresightAngle"] = geoloc.elevationAngle - \
+            (30.1833947 * geoloc.latitude ** 0 + \
+            0.0082998714 * geoloc.latitude ** 1 - \
+            0.00031181534 * geoloc.latitude ** 2 - \
+            0.0943533e-07 * geoloc.latitude ** 3 + \
+            3.0191435e-08 * geoloc.latitude ** 4 + \
+            4.968415428e-12 *geoloc.latitude ** 5 - \
+            9.315371305e-13 * geoloc.latitude ** 6) + 29.45
+        geoloc["offboresightAngle"].attrs['comment']='built from elevation angle and latitude'
+        
         # bursts
         bu = self.sar_meta._bursts
         bu.attrs['history'] = 'annotations'
@@ -187,8 +197,6 @@ class Sentinel1Dataset(BaseDataset):
                                                      })
 
         # apply recalibration ?
-
-        self.aux_config_name = aux_config_name
         self.apply_recalibration = recalibration
         if self.apply_recalibration and (self.sar_meta.swath != "EW" and self.sar_meta.swath != "IW"):
             self.apply_recalibration = False
@@ -285,15 +293,19 @@ class Sentinel1Dataset(BaseDataset):
         self.datatree.attrs.update(self.sar_meta.to_dict("all"))
 
         # load land_mask by default for GRD products
+
+        self.add_high_resolution_variables(
+            patch_variable=patch_variable, luts=luts, lazy_loading=lazyloading)
         if 'GRD' in str(self.datatree.attrs['product']):
-            self.add_high_resolution_variables(
-                patch_variable=patch_variable, luts=luts, lazy_loading=lazyloading)
             if self.apply_recalibration:
                 self.select_gains()
             self.apply_calibration_and_denoising()
 
         # added 6 fev 23, to fill  empty attrs
         self.datatree['measurement'].attrs = self.datatree.attrs
+        if self.sar_meta.product == 'SLC' and 'WV' not in self.sar_meta.swath:  # TOPS cases
+            tmp = self.corrected_range_noise_lut(self.datatree)
+            self.datatree['noise_range'].ds = tmp # the corrcted noise_range dataset shold now contain an attrs 'corrected_range_noise_lut'
         self.sliced = False
         """True if dataset is a slice of original L1 dataset"""
 
@@ -303,6 +315,35 @@ class Sentinel1Dataset(BaseDataset):
         # save original bbox
         self._bbox_coords_ori = self._bbox_coords
 
+    def corrected_range_noise_lut(self,dt):
+        """
+        Patch F.Nouguier see https://jira-projects.cls.fr/browse/MPCS-3581 and https://github.com/umr-lops/xsar_slc/issues/175
+        Return range noise lut with corrected line numbering. This function should be used only on the full SLC dataset dt
+        Args:
+            dt (xarray.datatree) : datatree returned by xsar corresponding to one subswath
+        Return:
+            (xarray.dataset) : range noise lut with corrected line number
+        """
+        # Detection of azimuthTime jumps (linked to burst changes). Burst sensingTime should NOT be used since they have erroneous value too !
+        line_shift = 0
+        tt = dt['measurement']['time']
+        i_jump = np.ravel(np.argwhere(np.diff(tt)<np.timedelta64(0))+1) # index of jumps
+        line_jump_meas = dt['measurement']['line'][i_jump] # line number of jumps
+        # line_jump_noise = np.ravel(dt['noise_range']['line'][1:-1].data) # annotated line number of burst begining, this one is corrupted for some S1 TOPS product
+        line_jump_noise = np.ravel(dt['noise_range']['line'][1:1+len(line_jump_meas)].data) # annoted line number of burst begining
+        burst_first_lineshift = line_jump_meas-line_jump_noise
+        if len(np.unique(burst_first_lineshift))==1:
+            line_shift = int(np.unique(burst_first_lineshift)[0])
+            logging.debug('line_shift: %s',line_shift)
+        else:
+            raise ValueError('Inconsistency in line shifting : {}'.format(burst_first_lineshift))
+        res = dt['noise_range'].ds.assign_coords({'line':dt['noise_range']['line']+line_shift})
+        if line_shift==0:
+            res.attrs['corrected_range_noise_lut'] = 'no change'
+        else:
+            res.attrs['corrected_range_noise_lut'] = 'shift : %i lines'%line_shift
+        return res
+
     def select_gains(self):
         """
         attribution of the good swath gain by getting the swath number of each pixel 
@@ -460,7 +501,7 @@ class Sentinel1Dataset(BaseDataset):
             self._dataset = xr.merge(ds_merge_list)
             self._dataset.attrs = attrs
             geoloc_vars = ['altitude', 'azimuth_time', 'slant_range_time',
-                           'incidence', 'elevation', 'longitude', 'latitude']
+                           'incidence', 'elevation', 'longitude', 'latitude', 'offboresight']
 
             for vv in skip_variables:
                 if vv in geoloc_vars:
@@ -468,13 +509,27 @@ class Sentinel1Dataset(BaseDataset):
 
             self._dataset = self._dataset.merge(
                 self._load_from_geoloc(geoloc_vars, lazy_loading=lazy_loading))
-
-            
-            self.add_swath_number()   
+                         
+            if 'GRD' in str(self.datatree.attrs['product']):
+                self.add_swath_number()
                 
-            if self.apply_recalibration:
-                self.add_gains(config["auxiliary_names"][self.sar_meta.short_name.split(":")[-2][0:3]][self.aux_config_name]["AUX_CAL"],
-                               config["auxiliary_names"][self.sar_meta.short_name.split(":")[-2][0:3]][self.aux_config_name]["AUX_PP1"])
+                if self.apply_recalibration:
+                    path_dataframe_aux = config["path_dataframe_aux"]
+                    dataframe_aux = pd.read_csv(path_dataframe_aux)
+
+                    sel_cal = dataframe_aux.loc[(dataframe_aux.sat_name == self.sar_meta.manifest_attrs['satellite']) & 
+                                                (dataframe_aux.aux_type == "CAL") &
+                                                (dataframe_aux.validation_date <= self.sar_meta.start_date)]
+                    sel_cal = sel_cal.sort_values(by = ["validation_date","generation_date"],ascending=False)
+                    path_new_cal = sel_cal.iloc[0].aux_path
+
+                    sel_pp1 = dataframe_aux.loc[(dataframe_aux.sat_name == self.sar_meta.manifest_attrs['satellite']) & 
+                                (dataframe_aux.aux_type == "PP1") 
+                                & (dataframe_aux.validation_date <= self.sar_meta.start_date)]
+                    sel_pp1 = sel_pp1.sort_values(by = ["validation_date","generation_date"],ascending=False)
+                    path_new_pp1 = sel_pp1.iloc[0].aux_path
+
+                    self.add_gains(path_new_cal, path_new_pp1)
 
             rasters = self._load_rasters_vars()
             if rasters is not None:
@@ -526,14 +581,14 @@ class Sentinel1Dataset(BaseDataset):
                                 'line': self._dataset.coords["line"], 'sample': self._dataset.coords["sample"]})
 
         # Supposons que dataset.swaths ait 45 éléments comme mentionné
-        for i in range(len(self.datatree['swath_merging'].swaths)):
+        for i in range(len(self.datatree['swath_merging'].ds['swaths'])):
             y_min, y_max = self.datatree['swath_merging']['firstAzimuthLine'][
                 i], self.datatree['swath_merging']['lastAzimuthLine'][i]
             x_min, x_max = self.datatree['swath_merging']['firstRangeSample'][
                 i], self.datatree['swath_merging']['lastRangeSample'][i]
 
             # Localisation des pixels appartenant à ce swath
-            swath_index = int(self.datatree['swath_merging'].swaths[i])
+            swath_index = int(self.datatree['swath_merging'].ds['swaths'][i])
 
             condition = (self._dataset.line >= y_min) & (self._dataset.line <= y_max) & (
                 self._dataset.sample >= x_min) & (self._dataset.sample <= x_max)
@@ -563,11 +618,11 @@ class Sentinel1Dataset(BaseDataset):
         logger.debug(
             f"doing recalibration with AUX_CAL = {new_aux_cal_name} & AUX_PP1 = {new_aux_pp1_name}")
 
-        path_aux_cal_new = get_path_aux_cal(new_aux_cal_name)
+        path_aux_cal_new = get_path_aux_cal(os.path.basename(new_aux_cal_name))
         path_aux_cal_old = get_path_aux_cal(
             os.path.basename(self.sar_meta.manifest_attrs["aux_cal"]))
 
-        path_aux_pp1_new = get_path_aux_pp1(new_aux_pp1_name)
+        path_aux_pp1_new = get_path_aux_pp1(os.path.basename(new_aux_pp1_name))
         path_aux_pp1_old = get_path_aux_pp1(
             os.path.basename(self.sar_meta.manifest_attrs["aux_pp1"]))
 
@@ -680,7 +735,11 @@ class Sentinel1Dataset(BaseDataset):
 
         self.datatree['recalibration'] = self.datatree['recalibration'].assign(
             self._dataset_recalibration)
-
+        
+        self.datatree['recalibration'].attrs["path_aux_cal_new"] = path_aux_cal_new
+        self.datatree['recalibration'].attrs["path_aux_pp1_new"] = path_aux_pp1_new
+        self.datatree['recalibration'].attrs["path_aux_cal_old"] = path_aux_cal_old
+        self.datatree['recalibration'].attrs["path_aux_pp1_old"] = path_aux_pp1_old
         # return self._dataset
 
     def apply_calibration_and_denoising(self):



View it on GitLab: https://salsa.debian.org/debian-gis-team/xsar/-/compare/4d9253af52014604843483fd0cf65a5fa59b4ec2...7cf5514d85bb73e64f593116539b9b3d10430985

-- 
View it on GitLab: https://salsa.debian.org/debian-gis-team/xsar/-/compare/4d9253af52014604843483fd0cf65a5fa59b4ec2...7cf5514d85bb73e64f593116539b9b3d10430985
You're receiving this email because of your account on salsa.debian.org.


-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://alioth-lists.debian.net/pipermail/pkg-grass-devel/attachments/20240517/589e97ec/attachment-0001.htm>


More information about the Pkg-grass-devel mailing list