[Git][java-team/openrefine-vicino][master] 5 commits: Drop CBZip2OutputStream.patch
Markus Koschany (@apo)
gitlab at salsa.debian.org
Sun Oct 17 15:24:06 BST 2021
Markus Koschany pushed to branch master at Debian Java Maintainers / openrefine-vicino
Commits:
dac2b484 by Markus Koschany at 2021-10-17T16:08:10+02:00
Drop CBZip2OutputStream.patch
- - - - -
f00b13ee by Markus Koschany at 2021-10-17T16:08:21+02:00
Remove ant from B-D.
- - - - -
ec9eaf7e by Markus Koschany at 2021-10-17T16:15:32+02:00
Add new CBZip2OutputStream.patch
- - - - -
68ac6f81 by Markus Koschany at 2021-10-17T16:17:10+02:00
Update debian/copyright
- - - - -
66d8dd7f by Markus Koschany at 2021-10-17T16:21:14+02:00
Update CBZip2OutputStream.patch
- - - - -
3 changed files:
- debian/control
- debian/copyright
- debian/patches/CBZip2OutputStream.patch
Changes:
=====================================
debian/control
=====================================
@@ -5,7 +5,6 @@ Maintainer: Debian Java Maintainers <pkg-java-maintainers at lists.alioth.debian.or
Uploaders:
Markus Koschany <apo at debian.org>
Build-Depends:
- ant,
debhelper-compat (= 13),
default-jdk,
libcommons-compress-java,
=====================================
debian/copyright
=====================================
@@ -6,6 +6,10 @@ Files: *
Copyright: 2006-2010 Massachusetts Institute of Technology and Contributors
License: BSD-3-clause
+Files: src/main/java/org/apache/tools/bzip2/*
+Copyright: Apache Foundation
+License: Apache-2.0
+
Files: debian/*
Copyright: 2021, Markus Koschany <apo at debian.org>
License: BSD-3-clause
@@ -39,3 +43,6 @@ License: BSD-3-clause
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
+License: Apache-2.0
+ On Debian systems the full license text of the Apache License 2.0 can be found
+ at /usr/share/common-licenses/Apache-2.0.
=====================================
debian/patches/CBZip2OutputStream.patch
=====================================
@@ -1,29 +1,21 @@
From: Markus Koschany <apo at debian.org>
-Date: Fri, 9 Apr 2021 00:00:13 +0200
+Date: Sun, 17 Oct 2021 16:15:16 +0200
Subject: CBZip2OutputStream
-Forwarded: no
---
- pom.xml | 5 +++++
- src/edu/mit/simile/vicino/distances/BZip2Distance.java | 2 +-
- 2 files changed, 6 insertions(+), 1 deletion(-)
+ .../mit/simile/vicino/distances/BZip2Distance.java | 2 +-
+ .../org/apache/tools/bzip2/BZip2Constants.java | 109 ++
+ .../java/org/apache/tools/bzip2/BlockSort.java | 1072 +++++++++++++
+ .../org/apache/tools/bzip2/CBZip2InputStream.java | 1059 +++++++++++++
+ .../org/apache/tools/bzip2/CBZip2OutputStream.java | 1575 ++++++++++++++++++++
+ src/main/java/org/apache/tools/bzip2/CRC.java | 141 ++
+ 6 files changed, 3957 insertions(+), 1 deletion(-)
+ create mode 100644 src/main/java/org/apache/tools/bzip2/BZip2Constants.java
+ create mode 100644 src/main/java/org/apache/tools/bzip2/BlockSort.java
+ create mode 100644 src/main/java/org/apache/tools/bzip2/CBZip2InputStream.java
+ create mode 100644 src/main/java/org/apache/tools/bzip2/CBZip2OutputStream.java
+ create mode 100644 src/main/java/org/apache/tools/bzip2/CRC.java
-diff --git a/pom.xml b/pom.xml
-index 8543d9f..3e76830 100644
---- a/pom.xml
-+++ b/pom.xml
-@@ -53,6 +53,11 @@
- <artifactId>commons-compress</artifactId>
- <version>20050911</version>
- </dependency>
-+ <dependency>
-+ <groupId>org.apache.ant</groupId>
-+ <artifactId>ant</artifactId>
-+ <version>1.10.9</version>
-+ </dependency>
- </dependencies>
- <build>
- <plugins>
diff --git a/src/edu/mit/simile/vicino/distances/BZip2Distance.java b/src/edu/mit/simile/vicino/distances/BZip2Distance.java
index 60fdc73..1c9b8ae 100644
--- a/src/edu/mit/simile/vicino/distances/BZip2Distance.java
@@ -37,3 +29,3989 @@ index 60fdc73..1c9b8ae 100644
public class BZip2Distance extends PseudoMetricDistance {
+diff --git a/src/main/java/org/apache/tools/bzip2/BZip2Constants.java b/src/main/java/org/apache/tools/bzip2/BZip2Constants.java
+new file mode 100644
+index 0000000..9f6dce5
+--- /dev/null
++++ b/src/main/java/org/apache/tools/bzip2/BZip2Constants.java
+@@ -0,0 +1,109 @@
++/*
++ * Licensed to the Apache Software Foundation (ASF) under one or more
++ * contributor license agreements. See the NOTICE file distributed with
++ * this work for additional information regarding copyright ownership.
++ * The ASF licenses this file to You under the Apache License, Version 2.0
++ * (the "License"); you may not use this file except in compliance with
++ * the License. You may obtain a copy of the License at
++ *
++ * https://www.apache.org/licenses/LICENSE-2.0
++ *
++ * Unless required by applicable law or agreed to in writing, software
++ * distributed under the License is distributed on an "AS IS" BASIS,
++ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
++ * See the License for the specific language governing permissions and
++ * limitations under the License.
++ *
++ */
++
++/*
++ * This package is based on the work done by Keiron Liddle, Aftex Software
++ * <keiron at aftexsw.com> to whom the Ant project is very grateful for his
++ * great code.
++ */
++
++package org.apache.tools.bzip2;
++
++/**
++ * Base class for both the compress and decompress classes.
++ * Holds common arrays, and static data.
++ * <p>
++ * This interface is public for historical purposes.
++ * You should have no need to use it.
++ * </p>
++ */
++public interface BZip2Constants {
++
++ int baseBlockSize = 100000;
++ int MAX_ALPHA_SIZE = 258;
++ int MAX_CODE_LEN = 23;
++ int RUNA = 0;
++ int RUNB = 1;
++ int N_GROUPS = 6;
++ int G_SIZE = 50;
++ int N_ITERS = 4;
++ int MAX_SELECTORS = (2 + (900000 / G_SIZE));
++ int NUM_OVERSHOOT_BYTES = 20;
++
++ /**
++ * This array really shouldn't be here.
++ * Again, for historical purposes it is.
++ *
++ * <p>FIXME: This array should be in a private or package private
++ * location, since it could be modified by malicious code.</p>
++ */
++ int[] rNums = { //NOSONAR
++ 619, 720, 127, 481, 931, 816, 813, 233, 566, 247,
++ 985, 724, 205, 454, 863, 491, 741, 242, 949, 214,
++ 733, 859, 335, 708, 621, 574, 73, 654, 730, 472,
++ 419, 436, 278, 496, 867, 210, 399, 680, 480, 51,
++ 878, 465, 811, 169, 869, 675, 611, 697, 867, 561,
++ 862, 687, 507, 283, 482, 129, 807, 591, 733, 623,
++ 150, 238, 59, 379, 684, 877, 625, 169, 643, 105,
++ 170, 607, 520, 932, 727, 476, 693, 425, 174, 647,
++ 73, 122, 335, 530, 442, 853, 695, 249, 445, 515,
++ 909, 545, 703, 919, 874, 474, 882, 500, 594, 612,
++ 641, 801, 220, 162, 819, 984, 589, 513, 495, 799,
++ 161, 604, 958, 533, 221, 400, 386, 867, 600, 782,
++ 382, 596, 414, 171, 516, 375, 682, 485, 911, 276,
++ 98, 553, 163, 354, 666, 933, 424, 341, 533, 870,
++ 227, 730, 475, 186, 263, 647, 537, 686, 600, 224,
++ 469, 68, 770, 919, 190, 373, 294, 822, 808, 206,
++ 184, 943, 795, 384, 383, 461, 404, 758, 839, 887,
++ 715, 67, 618, 276, 204, 918, 873, 777, 604, 560,
++ 951, 160, 578, 722, 79, 804, 96, 409, 713, 940,
++ 652, 934, 970, 447, 318, 353, 859, 672, 112, 785,
++ 645, 863, 803, 350, 139, 93, 354, 99, 820, 908,
++ 609, 772, 154, 274, 580, 184, 79, 626, 630, 742,
++ 653, 282, 762, 623, 680, 81, 927, 626, 789, 125,
++ 411, 521, 938, 300, 821, 78, 343, 175, 128, 250,
++ 170, 774, 972, 275, 999, 639, 495, 78, 352, 126,
++ 857, 956, 358, 619, 580, 124, 737, 594, 701, 612,
++ 669, 112, 134, 694, 363, 992, 809, 743, 168, 974,
++ 944, 375, 748, 52, 600, 747, 642, 182, 862, 81,
++ 344, 805, 988, 739, 511, 655, 814, 334, 249, 515,
++ 897, 955, 664, 981, 649, 113, 974, 459, 893, 228,
++ 433, 837, 553, 268, 926, 240, 102, 654, 459, 51,
++ 686, 754, 806, 760, 493, 403, 415, 394, 687, 700,
++ 946, 670, 656, 610, 738, 392, 760, 799, 887, 653,
++ 978, 321, 576, 617, 626, 502, 894, 679, 243, 440,
++ 680, 879, 194, 572, 640, 724, 926, 56, 204, 700,
++ 707, 151, 457, 449, 797, 195, 791, 558, 945, 679,
++ 297, 59, 87, 824, 713, 663, 412, 693, 342, 606,
++ 134, 108, 571, 364, 631, 212, 174, 643, 304, 329,
++ 343, 97, 430, 751, 497, 314, 983, 374, 822, 928,
++ 140, 206, 73, 263, 980, 736, 876, 478, 430, 305,
++ 170, 514, 364, 692, 829, 82, 855, 953, 676, 246,
++ 369, 970, 294, 750, 807, 827, 150, 790, 288, 923,
++ 804, 378, 215, 828, 592, 281, 565, 555, 710, 82,
++ 896, 831, 547, 261, 524, 462, 293, 465, 502, 56,
++ 661, 821, 976, 991, 658, 869, 905, 758, 745, 193,
++ 768, 550, 608, 933, 378, 286, 215, 979, 792, 961,
++ 61, 688, 793, 644, 986, 403, 106, 366, 905, 644,
++ 372, 567, 466, 434, 645, 210, 389, 550, 919, 135,
++ 780, 773, 635, 389, 707, 100, 626, 958, 165, 504,
++ 920, 176, 193, 713, 857, 265, 203, 50, 668, 108,
++ 645, 990, 626, 197, 510, 357, 358, 850, 858, 364,
++ 936, 638
++ };
++}
+diff --git a/src/main/java/org/apache/tools/bzip2/BlockSort.java b/src/main/java/org/apache/tools/bzip2/BlockSort.java
+new file mode 100644
+index 0000000..01439e1
+--- /dev/null
++++ b/src/main/java/org/apache/tools/bzip2/BlockSort.java
+@@ -0,0 +1,1072 @@
++/*
++ * Licensed to the Apache Software Foundation (ASF) under one
++ * or more contributor license agreements. See the NOTICE file
++ * distributed with this work for additional information
++ * regarding copyright ownership. The ASF licenses this file
++ * to you under the Apache License, Version 2.0 (the
++ * "License"); you may not use this file except in compliance
++ * with the License. You may obtain a copy of the License at
++ *
++ * https://www.apache.org/licenses/LICENSE-2.0
++ *
++ * Unless required by applicable law or agreed to in writing,
++ * software distributed under the License is distributed on an
++ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
++ * KIND, either express or implied. See the License for the
++ * specific language governing permissions and limitations
++ * under the License.
++ */
++package org.apache.tools.bzip2;
++
++import java.util.BitSet;
++
++/**
++ * Encapsulates the Burrows-Wheeler sorting algorithm needed by {@link
++ * CBZip2OutputStream}.
++ *
++ * <p>This class is based on a Java port of Julian Seward's
++ * blocksort.c in his libbzip2</p>
++ *
++ * <p>The Burrows-Wheeler transform is a reversible transform of the
++ * original data that is supposed to group similar bytes close to
++ * each other. The idea is to sort all permutations of the input and
++ * only keep the last byte of each permutation. E.g. for "Commons
++ * Compress" you'd get:</p>
++ *
++ * <pre>
++ * CompressCommons
++ * Commons Compress
++ * CompressCommons
++ * essCommons Compr
++ * mmons CompressCo
++ * mons CompressCom
++ * mpressCommons Co
++ * ns CompressCommo
++ * ommons CompressC
++ * ompressCommons C
++ * ons CompressComm
++ * pressCommons Com
++ * ressCommons Comp
++ * s CompressCommon
++ * sCommons Compres
++ * ssCommons Compre
++ * </pre>
++ *
++ * <p>Which results in a new text "ss romooCCmmpnse", in addition the
++ * index of the first line that contained the original text is kept -
++ * in this case it is 1. The idea is that in a long English text all
++ * permutations that start with "he" are likely suffixes of a "the" and
++ * thus they end in "t" leading to a larger block of "t"s that can
++ * better be compressed by the subsequent Move-to-Front, run-length
++ * und Huffman encoding steps.</p>
++ *
++ * <p>For more information see for example:</p>
++ * <ul>
++ * <li><a
++ * href="https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf">Burrows,
++ * M. and Wheeler, D.: A Block-sorting Lossless Data Compression
++ * Algorithm</a></li>
++ * <li><a href="http://webglimpse.net/pubs/suffix.pdf">Manber, U. and
++ * Myers, G.: Suffix arrays: A new method for on-line string
++ * searches</a></li>
++ * <li><a
++ * href="https://www.cs.tufts.edu/~nr/comp150fp/archive/bob-sedgewick/fast-strings.pdf">Bentley,
++ * J.L. and Sedgewick, R.: Fast Algorithms for Sorting and Searching
++ * Strings</a></li>
++ * </ul>
++ *
++ * @NotThreadSafe
++ */
++class BlockSort {
++
++ /*
++ * Some of the constructs used in the C code cannot be ported
++ * literally to Java - for example macros, unsigned types. Some
++ * code has been hand-tuned to improve performance. In order to
++ * avoid memory pressure some structures are reused for several
++ * blocks and some memory is even shared between sorting and the
++ * MTF stage even though either algorithm uses it for its own
++ * purpose.
++ *
++ * Comments preserved from the actual C code are prefixed with
++ * "LBZ2:".
++ */
++
++ /*
++ * 2012-05-20 Stefan Bodewig:
++ *
++ * This class seems to mix several revisions of libbzip2's code.
++ * The mainSort function and those used by it look closer to the
++ * 0.9.5 version but show some variations introduced later. At
++ * the same time the logic of Compress 1.4 to randomize the block
++ * on bad input has been dropped after libbzip2 0.9.0 and replaced
++ * by a fallback sorting algorithm.
++ *
++ * I've added the fallbackSort function of 1.0.6 and tried to
++ * integrate it with the existing code without touching too much.
++ * I've also removed the now unused randomization code.
++ */
++
++ /*
++ * LBZ2: If you are ever unlucky/improbable enough to get a stack
++ * overflow whilst sorting, increase the following constant and
++ * try again. In practice I have never seen the stack go above 27
++ * elems, so the following limit seems very generous.
++ */
++ private static final int QSORT_STACK_SIZE = 1000;
++
++ private static final int FALLBACK_QSORT_STACK_SIZE = 100;
++
++ @SuppressWarnings("unused")
++ private static final int STACK_SIZE =
++ QSORT_STACK_SIZE < FALLBACK_QSORT_STACK_SIZE
++ ? FALLBACK_QSORT_STACK_SIZE : QSORT_STACK_SIZE;
++
++ /*
++ * Used when sorting. If too many long comparisons happen, we stop sorting,
++ * and use fallbackSort instead.
++ */
++ private int workDone;
++ private int workLimit;
++ private boolean firstAttempt;
++
++ private final int[] stack_ll = new int[STACK_SIZE]; // 4000 byte
++ private final int[] stack_hh = new int[STACK_SIZE]; // 4000 byte
++ private final int[] stack_dd = new int[QSORT_STACK_SIZE]; // 4000 byte
++
++ private final int[] mainSort_runningOrder = new int[256]; // 1024 byte
++ private final int[] mainSort_copy = new int[256]; // 1024 byte
++ private final boolean[] mainSort_bigDone = new boolean[256]; // 256 byte
++
++ private final int[] ftab = new int[65537]; // 262148 byte
++
++ /**
++ * Array instance identical to Data's sfmap, both are used only
++ * temporarily and independently, so we do not need to allocate
++ * additional memory.
++ */
++ private final char[] quadrant;
++
++ BlockSort(final CBZip2OutputStream.Data data) {
++ this.quadrant = data.sfmap;
++ }
++
++ void blockSort(final CBZip2OutputStream.Data data, final int last) {
++ this.workLimit = WORK_FACTOR * last;
++ this.workDone = 0;
++ this.firstAttempt = true;
++
++ if (last + 1 < 10000) {
++ fallbackSort(data, last);
++ } else {
++ mainSort(data, last);
++
++ if (this.firstAttempt && (this.workDone > this.workLimit)) {
++ fallbackSort(data, last);
++ }
++ }
++
++ final int[] fmap = data.fmap;
++ data.origPtr = -1;
++ for (int i = 0; i <= last; i++) {
++ if (fmap[i] == 0) {
++ data.origPtr = i;
++ break;
++ }
++ }
++
++ // assert (data.origPtr != -1) : data.origPtr;
++ }
++
++ /**
++ * Adapt fallbackSort to the expected interface of the rest of the
++ * code, in particular deal with the fact that block starts at
++ * offset 1 (in libbzip2 1.0.6 it starts at 0).
++ */
++ final void fallbackSort(final CBZip2OutputStream.Data data,
++ final int last) {
++ data.block[0] = data.block[last + 1];
++ fallbackSort(data.fmap, data.block, last + 1);
++ for (int i = 0; i < last + 1; i++) {
++ --data.fmap[i];
++ }
++ for (int i = 0; i < last + 1; i++) {
++ if (data.fmap[i] == -1) {
++ data.fmap[i] = last;
++ break;
++ }
++ }
++ }
++
++/*---------------------------------------------*/
++
++/*---------------------------------------------*/
++/*--- LBZ2: Fallback O(N log(N)^2) sorting ---*/
++/*--- algorithm, for repetitive blocks ---*/
++/*---------------------------------------------*/
++
++ /*
++ * This is the fallback sorting algorithm libbzip2 1.0.6 uses for
++ * repetitive or very short inputs.
++ *
++ * The idea is inspired by Manber-Myers string suffix sorting
++ * algorithm. First a bucket sort places each permutation of the
++ * block into a bucket based on its first byte. Permutations are
++ * represented by pointers to their first character kept in
++ * (partially) sorted order inside the array ftab.
++ *
++ * The next step visits all buckets in order and performs a
++ * quicksort on all permutations of the bucket based on the index
++ * of the bucket the second byte of the permutation belongs to,
++ * thereby forming new buckets. When arrived here the
++ * permutations are sorted up to the second character and we have
++ * buckets of permutations that are identical up to two
++ * characters.
++ *
++ * Repeat the step of quicksorting each bucket, now based on the
++ * bucket holding the sequence of the third and forth character
++ * leading to four byte buckets. Repeat this doubling of bucket
++ * sizes until all buckets only contain single permutations or the
++ * bucket size exceeds the block size.
++ *
++ * I.e.
++ *
++ * "abraba" form three buckets for the chars "a", "b", and "r" in
++ * the first step with
++ *
++ * fmap = { 'a:' 5, 3, 0, 'b:' 4, 1, 'r', 2 }
++ *
++ * when looking at the bucket of "a"s the second characters are in
++ * the buckets that start with fmap-index 0 (rolled over), 3 and 3
++ * respectively, forming two new buckets "aa" and "ab", so we get
++ *
++ * fmap = { 'aa:' 5, 'ab:' 3, 0, 'ba:' 4, 'br': 1, 'ra:' 2 }
++ *
++ * since the last bucket only contained a single item it didn't
++ * have to be sorted at all.
++ *
++ * There now is just one bucket with more than one permutation
++ * that remains to be sorted. For the permutation that starts
++ * with index 3 the third and forth char are in bucket 'aa' at
++ * index 0 and for the one starting at block index 0 they are in
++ * bucket 'ra' with sort index 5. The fully sorted order then becomes.
++ *
++ * fmap = { 5, 3, 0, 4, 1, 2 }
++ *
++ */
++
++ /**
++ * @param fmap points to the index of the starting point of a
++ * permutation inside the block of data in the current
++ * partially sorted order
++ * @param eclass points from the index of a character inside the
++ * block to the first index in fmap that contains the
++ * bucket of its suffix that is sorted in this step.
++ * @param lo lower boundary of the fmap-interval to be sorted
++ * @param hi upper boundary of the fmap-interval to be sorted
++ */
++ private void fallbackSimpleSort(int[] fmap,
++ int[] eclass,
++ int lo,
++ int hi) {
++ if (lo == hi) {
++ return;
++ }
++
++ int j;
++ if (hi - lo > 3) {
++ for (int i = hi - 4; i >= lo; i--) {
++ int tmp = fmap[i];
++ int ec_tmp = eclass[tmp];
++ for (j = i + 4; j <= hi && ec_tmp > eclass[fmap[j]];
++ j += 4) {
++ fmap[j - 4] = fmap[j];
++ }
++ fmap[j - 4] = tmp;
++ }
++ }
++
++ for (int i = hi - 1; i >= lo; i--) {
++ int tmp = fmap[i];
++ int ec_tmp = eclass[tmp];
++ for (j = i + 1; j <= hi && ec_tmp > eclass[fmap[j]]; j++) {
++ fmap[j - 1] = fmap[j];
++ }
++ fmap[j - 1] = tmp;
++ }
++ }
++
++ private static final int FALLBACK_QSORT_SMALL_THRESH = 10;
++
++ /**
++ * swaps two values in fmap
++ */
++ private void fswap(int[] fmap, int zz1, int zz2) {
++ int zztmp = fmap[zz1];
++ fmap[zz1] = fmap[zz2];
++ fmap[zz2] = zztmp;
++ }
++
++ /**
++ * swaps two intervals starting at yyp1 and yyp2 of length yyn inside fmap.
++ */
++ private void fvswap(int[] fmap, int yyp1, int yyp2, int yyn) {
++ while (yyn > 0) {
++ fswap(fmap, yyp1, yyp2);
++ yyp1++;
++ yyp2++;
++ yyn--;
++ }
++ }
++
++ private int fmin(int a, int b) {
++ return a < b ? a : b;
++ }
++
++ private void fpush(int sp, int lz, int hz) {
++ stack_ll[sp] = lz;
++ stack_hh[sp] = hz;
++ }
++
++ private int[] fpop(int sp) {
++ return new int[] {stack_ll[sp], stack_hh[sp]};
++ }
++
++ /**
++ * @param fmap points to the index of the starting point of a
++ * permutation inside the block of data in the current
++ * partially sorted order
++ * @param eclass points from the index of a character inside the
++ * block to the first index in fmap that contains the
++ * bucket of its suffix that is sorted in this step.
++ * @param loSt lower boundary of the fmap-interval to be sorted
++ * @param hiSt upper boundary of the fmap-interval to be sorted
++ */
++ private void fallbackQSort3(int[] fmap,
++ int[] eclass,
++ int loSt,
++ int hiSt) {
++ int lo, unLo, ltLo, hi, unHi, gtHi, n;
++
++ long r = 0;
++ int sp = 0;
++ fpush(sp++, loSt, hiSt);
++
++ while (sp > 0) {
++ int[] s = fpop(--sp);
++ lo = s[0];
++ hi = s[1];
++
++ if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
++ fallbackSimpleSort(fmap, eclass, lo, hi);
++ continue;
++ }
++
++ /* LBZ2: Random partitioning. Median of 3 sometimes fails to
++ avoid bad cases. Median of 9 seems to help but
++ looks rather expensive. This too seems to work but
++ is cheaper. Guidance for the magic constants
++ 7621 and 32768 is taken from Sedgewick's algorithms
++ book, chapter 35.
++ */
++ r = ((r * 7621) + 1) % 32768;
++ long r3 = r % 3, med;
++ if (r3 == 0) {
++ med = eclass[fmap[lo]];
++ } else if (r3 == 1) {
++ med = eclass[fmap[(lo + hi) >>> 1]];
++ } else {
++ med = eclass[fmap[hi]];
++ }
++
++ unLo = ltLo = lo;
++ unHi = gtHi = hi;
++
++ // looks like the ternary partition attributed to Wegner
++ // in the cited Sedgewick paper
++ while (true) {
++ while (true) {
++ if (unLo > unHi) {
++ break;
++ }
++ n = eclass[fmap[unLo]] - (int) med;
++ if (n == 0) {
++ fswap(fmap, unLo, ltLo);
++ ltLo++;
++ unLo++;
++ continue;
++ }
++ if (n > 0) {
++ break;
++ }
++ unLo++;
++ }
++ while (true) {
++ if (unLo > unHi) {
++ break;
++ }
++ n = eclass[fmap[unHi]] - (int) med;
++ if (n == 0) {
++ fswap(fmap, unHi, gtHi);
++ gtHi--;
++ unHi--;
++ continue;
++ }
++ if (n < 0) {
++ break;
++ }
++ unHi--;
++ }
++ if (unLo > unHi) {
++ break;
++ }
++ fswap(fmap, unLo, unHi);
++ unLo++;
++ unHi--;
++ }
++
++ if (gtHi < ltLo) {
++ continue;
++ }
++
++ n = fmin(ltLo - lo, unLo - ltLo);
++ fvswap(fmap, lo, unLo - n, n);
++ int m = fmin(hi - gtHi, gtHi - unHi);
++ fvswap(fmap, unHi + 1, hi - m + 1, m);
++
++ n = lo + unLo - ltLo - 1;
++ m = hi - (gtHi - unHi) + 1;
++
++ if (n - lo > hi - m) {
++ fpush(sp++, lo, n);
++ fpush(sp++, m, hi);
++ } else {
++ fpush(sp++, m, hi);
++ fpush(sp++, lo, n);
++ }
++ }
++ }
++
++
++/*---------------------------------------------*/
++
++ private int[] eclass;
++
++ private int[] getEclass() {
++ if (eclass == null) {
++ eclass = new int[quadrant.length / 2];
++ }
++ return eclass;
++ }
++
++ /*
++ * The C code uses an array of ints (each int holding 32 flags) to
++ * represents the bucket-start flags (bhtab). It also contains
++ * optimizations to skip over 32 consecutively set or
++ * consecutively unset bits on word boundaries at once. For now
++ * I've chosen to use the simpler but potentially slower code
++ * using BitSet - also in the hope that using the BitSet#nextXXX
++ * methods may be fast enough.
++ */
++
++ /**
++ * @param fmap points to the index of the starting point of a
++ * permutation inside the block of data in the current
++ * partially sorted order
++ * @param block the original data
++ * @param nblock size of the block
++ */
++ final void fallbackSort(int[] fmap, byte[] block, int nblock) {
++ final int[] ftab = new int[257];
++ int H, i, j, k, l, r, cc, cc1;
++ int nNotDone;
++ int nBhtab;
++ final int[] eclass = getEclass();
++
++ for (i = 0; i < nblock; i++) {
++ eclass[i] = 0;
++ }
++ /*--
++ LBZ2: Initial 1-char radix sort to generate
++ initial fmap and initial BH bits.
++ --*/
++ for (i = 0; i < nblock; i++) {
++ ftab[block[i] & 0xff]++;
++ }
++ for (i = 1; i < 257; i++) {
++ ftab[i] += ftab[i - 1];
++ }
++
++ for (i = 0; i < nblock; i++) {
++ j = block[i] & 0xff;
++ k = ftab[j] - 1;
++ ftab[j] = k;
++ fmap[k] = i;
++ }
++
++ nBhtab = 64 + nblock;
++ BitSet bhtab = new BitSet(nBhtab);
++ for (i = 0; i < 256; i++) {
++ bhtab.set(ftab[i]);
++ }
++
++ /*--
++ LBZ2: Inductively refine the buckets. Kind-of an
++ "exponential radix sort" (!), inspired by the
++ Manber-Myers suffix array construction algorithm.
++ --*/
++
++ /*-- LBZ2: set sentinel bits for block-end detection --*/
++ for (i = 0; i < 32; i++) {
++ bhtab.set(nblock + 2 * i);
++ bhtab.clear(nblock + 2 * i + 1);
++ }
++
++ /*-- LBZ2: the log(N) loop --*/
++ H = 1;
++ do {
++
++ j = 0;
++ for (i = 0; i < nblock; i++) {
++ if (bhtab.get(i)) {
++ j = i;
++ }
++ k = fmap[i] - H;
++ if (k < 0) {
++ k += nblock;
++ }
++ eclass[k] = j;
++ }
++
++ nNotDone = 0;
++ r = -1;
++ while (true) {
++
++ /*-- LBZ2: find the next non-singleton bucket --*/
++ k = r + 1;
++ k = bhtab.nextClearBit(k);
++ l = k - 1;
++ if (l >= nblock) {
++ break;
++ }
++ k = bhtab.nextSetBit(k + 1);
++ r = k - 1;
++ if (r >= nblock) {
++ break;
++ }
++
++ /*-- LBZ2: now [l, r] bracket current bucket --*/
++ if (r > l) {
++ nNotDone += (r - l + 1);
++ fallbackQSort3(fmap, eclass, l, r);
++
++ /*-- LBZ2: scan bucket and generate header bits-- */
++ cc = -1;
++ for (i = l; i <= r; i++) {
++ cc1 = eclass[fmap[i]];
++ if (cc != cc1) {
++ bhtab.set(i);
++ cc = cc1;
++ }
++ }
++ }
++ }
++
++ H *= 2;
++ } while (H <= nblock && nNotDone != 0);
++ }
++
++/*---------------------------------------------*/
++
++ /*
++ * LBZ2: Knuth's increments seem to work better than Incerpi-Sedgewick here.
++ * Possibly because the number of elems to sort is usually small, typically
++ * <= 20.
++ */
++ private static final int[] INCS = {1, 4, 13, 40, 121, 364, 1093, 3280,
++ 9841, 29524, 88573, 265720, 797161,
++ 2391484};
++
++ /**
++ * This is the most hammered method of this class.
++ *
++ * <p>
++ * This is the version using unrolled loops. Normally I never use such ones
++ * in Java code. The unrolling has shown a noticeable performance improvement
++ * on JRE 1.4.2 (Linux i586 / HotSpot Client). Of course it depends on the
++ * JIT compiler of the vm.
++ * </p>
++ */
++ private boolean mainSimpleSort(final CBZip2OutputStream.Data dataShadow,
++ final int lo, final int hi, final int d,
++ final int lastShadow) {
++ final int bigN = hi - lo + 1;
++ if (bigN < 2) {
++ return this.firstAttempt && (this.workDone > this.workLimit);
++ }
++
++ int hp = 0;
++ while (INCS[hp] < bigN) {
++ hp++;
++ }
++
++ final int[] fmap = dataShadow.fmap;
++ final char[] quadrant = this.quadrant;
++ final byte[] block = dataShadow.block;
++ final int lastPlus1 = lastShadow + 1;
++ final boolean firstAttemptShadow = this.firstAttempt;
++ final int workLimitShadow = this.workLimit;
++ int workDoneShadow = this.workDone;
++
++ // Following block contains unrolled code which could be shortened by
++ // coding it in additional loops.
++
++ HP: while (--hp >= 0) {
++ final int h = INCS[hp];
++ final int mj = lo + h - 1;
++
++ for (int i = lo + h; i <= hi;) {
++ // copy
++ for (int k = 3; (i <= hi) && (--k >= 0); i++) {
++ final int v = fmap[i];
++ final int vd = v + d;
++ int j = i;
++
++ // for (int a;
++ // (j > mj) && mainGtU((a = fmap[j - h]) + d, vd,
++ // block, quadrant, lastShadow);
++ // j -= h) {
++ // fmap[j] = a;
++ // }
++ //
++ // unrolled version:
++
++ // start inline mainGTU
++ boolean onceRun = false;
++ int a = 0;
++
++ HAMMER: while (true) {
++ if (onceRun) {
++ fmap[j] = a;
++ if ((j -= h) <= mj) { //NOSONAR
++ break;
++ }
++ } else {
++ onceRun = true;
++ }
++
++ a = fmap[j - h];
++ int i1 = a + d;
++ int i2 = vd;
++
++ // following could be done in a loop, but
++ // unrolled it for performance:
++ if (block[i1 + 1] == block[i2 + 1]) {
++ if (block[i1 + 2] == block[i2 + 2]) {
++ if (block[i1 + 3] == block[i2 + 3]) {
++ if (block[i1 + 4] == block[i2 + 4]) {
++ if (block[i1 + 5] == block[i2 + 5]) {
++ if (block[(i1 += 6)] == block[(i2 += 6)]) { //NOSONAR
++ int x = lastShadow;
++ while (x > 0) {
++ x -= 4;
++
++ if (block[i1 + 1] == block[i2 + 1]) {
++ if (quadrant[i1] == quadrant[i2]) {
++ if (block[i1 + 2] == block[i2 + 2]) {
++ if (quadrant[i1 + 1] == quadrant[i2 + 1]) {
++ if (block[i1 + 3] == block[i2 + 3]) {
++ if (quadrant[i1 + 2] == quadrant[i2 + 2]) {
++ if (block[i1 + 4] == block[i2 + 4]) {
++ if (quadrant[i1 + 3] == quadrant[i2 + 3]) {
++ if ((i1 += 4) >= lastPlus1) { //NOSONAR
++ i1 -= lastPlus1;
++ }
++ if ((i2 += 4) >= lastPlus1) { //NOSONAR
++ i2 -= lastPlus1;
++ }
++ workDoneShadow++;
++ } else if ((quadrant[i1 + 3] > quadrant[i2 + 3])) {
++ continue HAMMER;
++ } else {
++ break HAMMER;
++ }
++ } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
++ continue HAMMER;
++ } else {
++ break HAMMER;
++ }
++ } else if ((quadrant[i1 + 2] > quadrant[i2 + 2])) {
++ continue HAMMER;
++ } else {
++ break HAMMER;
++ }
++ } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
++ continue HAMMER;
++ } else {
++ break HAMMER;
++ }
++ } else if ((quadrant[i1 + 1] > quadrant[i2 + 1])) {
++ continue HAMMER;
++ } else {
++ break HAMMER;
++ }
++ } else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
++ continue HAMMER;
++ } else {
++ break HAMMER;
++ }
++ } else if ((quadrant[i1] > quadrant[i2])) {
++ continue HAMMER;
++ } else {
++ break HAMMER;
++ }
++ } else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
++ continue HAMMER;
++ } else {
++ break HAMMER;
++ }
++
++ }
++ break;
++ } // while x > 0
++ else if ((block[i1] & 0xff) <= (block[i2] & 0xff)) {
++ break;
++ }
++ } else if ((block[i1 + 5] & 0xff) <= (block[i2 + 5] & 0xff)) {
++ break;
++ }
++ } else if ((block[i1 + 4] & 0xff) <= (block[i2 + 4] & 0xff)) {
++ break;
++ }
++ } else if ((block[i1 + 3] & 0xff) <= (block[i2 + 3] & 0xff)) {
++ break;
++ }
++ } else if ((block[i1 + 2] & 0xff) <= (block[i2 + 2] & 0xff)) {
++ break;
++ }
++ } else if ((block[i1 + 1] & 0xff) <= (block[i2 + 1] & 0xff)) {
++ break;
++ }
++
++ } // HAMMER
++ // end inline mainGTU
++
++ fmap[j] = v;
++ }
++
++ if (firstAttemptShadow && (i <= hi)
++ && (workDoneShadow > workLimitShadow)) {
++ break HP;
++ }
++ }
++ }
++
++ this.workDone = workDoneShadow;
++ return firstAttemptShadow && (workDoneShadow > workLimitShadow);
++ }
++
++/*--
++ LBZ2: The following is an implementation of
++ an elegant 3-way quicksort for strings,
++ described in a paper "Fast Algorithms for
++ Sorting and Searching Strings", by Robert
++ Sedgewick and Jon L. Bentley.
++--*/
++
++ private static void vswap(int[] fmap, int p1, int p2, int n) {
++ n += p1;
++ while (p1 < n) {
++ int t = fmap[p1];
++ fmap[p1++] = fmap[p2];
++ fmap[p2++] = t;
++ }
++ }
++
++ private static byte med3(byte a, byte b, byte c) {
++ return (a < b) ? (b < c ? b : a < c ? c : a) : (b > c ? b : a > c ? c
++ : a);
++ }
++
++ private static final int SMALL_THRESH = 20;
++ private static final int DEPTH_THRESH = 10;
++ private static final int WORK_FACTOR = 30;
++
++ /**
++ * Method "mainQSort3", file "blocksort.c", BZip2 1.0.2
++ */
++ private void mainQSort3(final CBZip2OutputStream.Data dataShadow,
++ final int loSt, final int hiSt, final int dSt,
++ final int last) {
++ final int[] stack_ll = this.stack_ll;
++ final int[] stack_hh = this.stack_hh;
++ final int[] stack_dd = this.stack_dd;
++ final int[] fmap = dataShadow.fmap;
++ final byte[] block = dataShadow.block;
++
++ stack_ll[0] = loSt;
++ stack_hh[0] = hiSt;
++ stack_dd[0] = dSt;
++
++ for (int sp = 1; --sp >= 0;) {
++ final int lo = stack_ll[sp];
++ final int hi = stack_hh[sp];
++ final int d = stack_dd[sp];
++
++ if ((hi - lo < SMALL_THRESH) || (d > DEPTH_THRESH)) {
++ if (mainSimpleSort(dataShadow, lo, hi, d, last)) {
++ return;
++ }
++ } else {
++ final int d1 = d + 1;
++ final int med = med3(block[fmap[lo] + d1],
++ block[fmap[hi] + d1], block[fmap[(lo + hi) >>> 1] + d1]) & 0xff;
++
++ int unLo = lo;
++ int unHi = hi;
++ int ltLo = lo;
++ int gtHi = hi;
++
++ while (true) {
++ while (unLo <= unHi) {
++ final int n = (block[fmap[unLo] + d1] & 0xff)
++ - med;
++ if (n == 0) {
++ final int temp = fmap[unLo];
++ fmap[unLo++] = fmap[ltLo];
++ fmap[ltLo++] = temp;
++ } else if (n < 0) {
++ unLo++;
++ } else {
++ break;
++ }
++ }
++
++ while (unLo <= unHi) {
++ final int n = (block[fmap[unHi] + d1] & 0xff)
++ - med;
++ if (n == 0) {
++ final int temp = fmap[unHi];
++ fmap[unHi--] = fmap[gtHi];
++ fmap[gtHi--] = temp;
++ } else if (n > 0) {
++ unHi--;
++ } else {
++ break;
++ }
++ }
++
++ if (unLo <= unHi) {
++ final int temp = fmap[unLo];
++ fmap[unLo++] = fmap[unHi];
++ fmap[unHi--] = temp;
++ } else {
++ break;
++ }
++ }
++
++ if (gtHi < ltLo) {
++ stack_ll[sp] = lo;
++ stack_hh[sp] = hi;
++ stack_dd[sp] = d1;
++ sp++;
++ } else {
++ int n = ((ltLo - lo) < (unLo - ltLo)) ? (ltLo - lo)
++ : (unLo - ltLo);
++ vswap(fmap, lo, unLo - n, n);
++ int m = ((hi - gtHi) < (gtHi - unHi)) ? (hi - gtHi)
++ : (gtHi - unHi);
++ vswap(fmap, unLo, hi - m + 1, m);
++
++ n = lo + unLo - ltLo - 1;
++ m = hi - (gtHi - unHi) + 1;
++
++ stack_ll[sp] = lo;
++ stack_hh[sp] = n;
++ stack_dd[sp] = d;
++ sp++;
++
++ stack_ll[sp] = n + 1;
++ stack_hh[sp] = m - 1;
++ stack_dd[sp] = d1;
++ sp++;
++
++ stack_ll[sp] = m;
++ stack_hh[sp] = hi;
++ stack_dd[sp] = d;
++ sp++;
++ }
++ }
++ }
++ }
++
++ private static final int SETMASK = (1 << 21);
++ private static final int CLEARMASK = (~SETMASK);
++
++ final void mainSort(final CBZip2OutputStream.Data dataShadow,
++ final int lastShadow) {
++ final int[] runningOrder = this.mainSort_runningOrder;
++ final int[] copy = this.mainSort_copy;
++ final boolean[] bigDone = this.mainSort_bigDone;
++ final int[] ftab = this.ftab;
++ final byte[] block = dataShadow.block;
++ final int[] fmap = dataShadow.fmap;
++ final char[] quadrant = this.quadrant;
++ final int workLimitShadow = this.workLimit;
++ final boolean firstAttemptShadow = this.firstAttempt;
++
++ // LBZ2: Set up the 2-byte frequency table
++ for (int i = 65537; --i >= 0;) {
++ ftab[i] = 0;
++ }
++
++ /*
++ * In the various block-sized structures, live data runs from 0 to
++ * last+NUM_OVERSHOOT_BYTES inclusive. First, set up the overshoot area
++ * for block.
++ */
++ for (int i = 0; i < BZip2Constants.NUM_OVERSHOOT_BYTES; i++) {
++ block[lastShadow + i + 2] = block[(i % (lastShadow + 1)) + 1];
++ }
++ for (int i = lastShadow + BZip2Constants.NUM_OVERSHOOT_BYTES + 1; --i >= 0;) {
++ quadrant[i] = 0;
++ }
++ block[0] = block[lastShadow + 1];
++
++ // LBZ2: Complete the initial radix sort:
++
++ int c1 = block[0] & 0xff;
++ for (int i = 0; i <= lastShadow; i++) {
++ final int c2 = block[i + 1] & 0xff;
++ ftab[(c1 << 8) + c2]++;
++ c1 = c2;
++ }
++
++ for (int i = 1; i <= 65536; i++) {
++ ftab[i] += ftab[i - 1];
++ }
++
++ c1 = block[1] & 0xff;
++ for (int i = 0; i < lastShadow; i++) {
++ final int c2 = block[i + 2] & 0xff;
++ fmap[--ftab[(c1 << 8) + c2]] = i;
++ c1 = c2;
++ }
++
++ fmap[--ftab[((block[lastShadow + 1] & 0xff) << 8) + (block[1] & 0xff)]] = lastShadow;
++
++ /*
++ * LBZ2: Now ftab contains the first loc of every small bucket. Calculate the
++ * running order, from smallest to largest big bucket.
++ */
++ for (int i = 256; --i >= 0;) {
++ bigDone[i] = false;
++ runningOrder[i] = i;
++ }
++
++ for (int h = 364; h != 1;) { //NOSONAR
++ h /= 3;
++ for (int i = h; i <= 255; i++) {
++ final int vv = runningOrder[i];
++ final int a = ftab[(vv + 1) << 8] - ftab[vv << 8];
++ final int b = h - 1;
++ int j = i;
++ for (int ro = runningOrder[j - h]; (ftab[(ro + 1) << 8] - ftab[ro << 8]) > a; ro = runningOrder[j
++ - h]) {
++ runningOrder[j] = ro;
++ j -= h;
++ if (j <= b) {
++ break;
++ }
++ }
++ runningOrder[j] = vv;
++ }
++ }
++
++ /*
++ * LBZ2: The main sorting loop.
++ */
++ for (int i = 0; i <= 255; i++) {
++ /*
++ * LBZ2: Process big buckets, starting with the least full.
++ */
++ final int ss = runningOrder[i];
++
++ // Step 1:
++ /*
++ * LBZ2: Complete the big bucket [ss] by quicksorting any unsorted small
++ * buckets [ss, j]. Hopefully previous pointer-scanning phases have
++ * already completed many of the small buckets [ss, j], so we don't
++ * have to sort them at all.
++ */
++ for (int j = 0; j <= 255; j++) {
++ final int sb = (ss << 8) + j;
++ final int ftab_sb = ftab[sb];
++ if ((ftab_sb & SETMASK) != SETMASK) {
++ final int lo = ftab_sb & CLEARMASK;
++ final int hi = (ftab[sb + 1] & CLEARMASK) - 1;
++ if (hi > lo) {
++ mainQSort3(dataShadow, lo, hi, 2, lastShadow);
++ if (firstAttemptShadow
++ && (this.workDone > workLimitShadow)) {
++ return;
++ }
++ }
++ ftab[sb] = ftab_sb | SETMASK;
++ }
++ }
++
++ // Step 2:
++ // LBZ2: Now scan this big bucket so as to synthesise the
++ // sorted order for small buckets [t, ss] for all t != ss.
++
++ for (int j = 0; j <= 255; j++) {
++ copy[j] = ftab[(j << 8) + ss] & CLEARMASK;
++ }
++
++ for (int j = ftab[ss << 8] & CLEARMASK, hj = (ftab[(ss + 1) << 8] & CLEARMASK); j < hj; j++) {
++ final int fmap_j = fmap[j];
++ c1 = block[fmap_j] & 0xff;
++ if (!bigDone[c1]) {
++ fmap[copy[c1]] = (fmap_j == 0) ? lastShadow : (fmap_j - 1);
++ copy[c1]++;
++ }
++ }
++
++ for (int j = 256; --j >= 0;) {
++ ftab[(j << 8) + ss] |= SETMASK;
++ }
++
++ // Step 3:
++ /*
++ * LBZ2: The ss big bucket is now done. Record this fact, and update the
++ * quadrant descriptors. Remember to update quadrants in the
++ * overshoot area too, if necessary. The "if (i < 255)" test merely
++ * skips this updating for the last bucket processed, since updating
++ * for the last bucket is pointless.
++ */
++ bigDone[ss] = true;
++
++ if (i < 255) {
++ final int bbStart = ftab[ss << 8] & CLEARMASK;
++ final int bbSize = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart;
++ int shifts = 0;
++
++ while ((bbSize >> shifts) > 65534) {
++ shifts++;
++ }
++
++ for (int j = 0; j < bbSize; j++) {
++ final int a2update = fmap[bbStart + j];
++ final char qVal = (char) (j >> shifts);
++ quadrant[a2update] = qVal;
++ if (a2update < BZip2Constants.NUM_OVERSHOOT_BYTES) {
++ quadrant[a2update + lastShadow + 1] = qVal;
++ }
++ }
++ }
++
++ }
++ }
++
++}
+diff --git a/src/main/java/org/apache/tools/bzip2/CBZip2InputStream.java b/src/main/java/org/apache/tools/bzip2/CBZip2InputStream.java
+new file mode 100644
+index 0000000..8dfbfc6
+--- /dev/null
++++ b/src/main/java/org/apache/tools/bzip2/CBZip2InputStream.java
+@@ -0,0 +1,1059 @@
++/*
++ * Licensed to the Apache Software Foundation (ASF) under one or more
++ * contributor license agreements. See the NOTICE file distributed with
++ * this work for additional information regarding copyright ownership.
++ * The ASF licenses this file to You under the Apache License, Version 2.0
++ * (the "License"); you may not use this file except in compliance with
++ * the License. You may obtain a copy of the License at
++ *
++ * https://www.apache.org/licenses/LICENSE-2.0
++ *
++ * Unless required by applicable law or agreed to in writing, software
++ * distributed under the License is distributed on an "AS IS" BASIS,
++ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
++ * See the License for the specific language governing permissions and
++ * limitations under the License.
++ *
++ */
++
++/*
++ * This package is based on the work done by Keiron Liddle, Aftex Software
++ * <keiron at aftexsw.com> to whom the Ant project is very grateful for his
++ * great code.
++ */
++package org.apache.tools.bzip2;
++
++import java.io.IOException;
++import java.io.InputStream;
++
++/**
++ * An input stream that decompresses from the BZip2 format (without the file
++ * header chars) to be read as any other stream.
++ *
++ * <p>The decompression requires large amounts of memory. Thus you
++ * should call the {@link #close() close()} method as soon as
++ * possible, to force <code>CBZip2InputStream</code> to release the
++ * allocated memory. See {@link CBZip2OutputStream
++ * CBZip2OutputStream} for information about memory usage.</p>
++ *
++ * <p><code>CBZip2InputStream</code> reads bytes from the compressed
++ * source stream via the single byte {@link java.io.InputStream#read()
++ * read()} method exclusively. Thus you should consider to use a
++ * buffered source stream.</p>
++ *
++ * <p>Instances of this class are not threadsafe.</p>
++ */
++public class CBZip2InputStream extends InputStream implements BZip2Constants {
++
++ /**
++ * Index of the last char in the block, so the block size == last + 1.
++ */
++ private int last;
++
++ /**
++ * Index in zptr[] of original string after sorting.
++ */
++ private int origPtr;
++
++ /**
++ * always: in the range 0 .. 9.
++ * The current block size is 100000 * this number.
++ */
++ private int blockSize100k;
++
++ private boolean blockRandomised;
++
++ private int bsBuff;
++ private int bsLive;
++ private final CRC crc = new CRC();
++
++ private int nInUse;
++
++ private InputStream in;
++ private final boolean decompressConcatenated;
++
++ private int currentChar = -1;
++
++ private static final int EOF = 0;
++ private static final int START_BLOCK_STATE = 1;
++ private static final int RAND_PART_A_STATE = 2;
++ private static final int RAND_PART_B_STATE = 3;
++ private static final int RAND_PART_C_STATE = 4;
++ private static final int NO_RAND_PART_A_STATE = 5;
++ private static final int NO_RAND_PART_B_STATE = 6;
++ private static final int NO_RAND_PART_C_STATE = 7;
++
++ private int currentState = START_BLOCK_STATE;
++
++ private int storedBlockCRC;
++ private int storedCombinedCRC;
++ private int computedBlockCRC;
++ private int computedCombinedCRC;
++
++ // Variables used by setup* methods exclusively
++
++ private int su_count;
++ private int su_ch2;
++ private int su_chPrev;
++ private int su_i2;
++ private int su_j2;
++ private int su_rNToGo;
++ private int su_rTPos;
++ private int su_tPos;
++ private char su_z;
++
++ /**
++ * All memory intensive stuff.
++ * This field is initialized by initBlock().
++ */
++ private CBZip2InputStream.Data data;
++
++ /**
++ * Constructs a new CBZip2InputStream which decompresses bytes read from
++ * the specified stream. This doesn't support decompressing
++ * concatenated .bz2 files.
++ *
++ * <p>Although BZip2 headers are marked with the magic
++ * <code>"Bz"</code> this constructor expects the next byte in the
++ * stream to be the first one after the magic. Thus callers have
++ * to skip the first two bytes. Otherwise this constructor will
++ * throw an exception. </p>
++ *
++ * @param in InputStream
++ * @throws IOException
++ * if the stream content is malformed or an I/O error occurs.
++ * @throws NullPointerException
++ * if <code>in == null</code>
++ */
++ public CBZip2InputStream(final InputStream in) throws IOException {
++ this(in, false);
++ }
++
++ /**
++ * Constructs a new CBZip2InputStream which decompresses bytes
++ * read from the specified stream.
++ *
++ * <p>Although BZip2 headers are marked with the magic
++ * <code>"Bz"</code> this constructor expects the next byte in the
++ * stream to be the first one after the magic. Thus callers have
++ * to skip the first two bytes. Otherwise this constructor will
++ * throw an exception. </p>
++ *
++ * @param in the InputStream from which this object should be created
++ * @param decompressConcatenated
++ * if true, decompress until the end of the input;
++ * if false, stop after the first .bz2 stream and
++ * leave the input position to point to the next
++ * byte after the .bz2 stream
++ *
++ * @throws IOException
++ * if the stream content is malformed or an I/O error occurs.
++ * @throws NullPointerException
++ * if <code>in == null</code>
++ */
++ public CBZip2InputStream(final InputStream in,
++ final boolean decompressConcatenated)
++ throws IOException {
++ super();
++
++ this.in = in;
++ this.decompressConcatenated = decompressConcatenated;
++
++ init(true);
++ initBlock();
++ setupBlock();
++ }
++
++ /** {@inheritDoc} */
++ @Override
++ public int read() throws IOException {
++ if (this.in != null) {
++ return read0();
++ } else {
++ throw new IOException("stream closed");
++ }
++ }
++
++ /*
++ * (non-Javadoc)
++ *
++ * @see java.io.InputStream#read(byte[], int, int)
++ */
++ @Override
++ public int read(final byte[] dest, final int offs, final int len)
++ throws IOException {
++ if (offs < 0) {
++ throw new IndexOutOfBoundsException("offs(" + offs + ") < 0.");
++ }
++ if (len < 0) {
++ throw new IndexOutOfBoundsException("len(" + len + ") < 0.");
++ }
++ if (offs + len > dest.length) {
++ throw new IndexOutOfBoundsException("offs(" + offs + ") + len("
++ + len + ") > dest.length("
++ + dest.length + ").");
++ }
++ if (this.in == null) {
++ throw new IOException("stream closed");
++ }
++
++ final int hi = offs + len;
++ int destOffs = offs;
++ for (int b; (destOffs < hi) && ((b = read0()) >= 0);) {
++ dest[destOffs++] = (byte) b;
++ }
++
++ return (destOffs == offs) ? -1 : (destOffs - offs);
++ }
++
++ private void makeMaps() {
++ final boolean[] inUse = this.data.inUse;
++ final byte[] seqToUnseq = this.data.seqToUnseq;
++
++ int nInUseShadow = 0;
++
++ for (int i = 0; i < 256; i++) {
++ if (inUse[i]) {
++ seqToUnseq[nInUseShadow++] = (byte) i;
++ }
++ }
++
++ this.nInUse = nInUseShadow;
++ }
++
++ private int read0() throws IOException {
++ final int retChar = this.currentChar;
++
++ switch (this.currentState) {
++ case EOF:
++ return -1;
++
++ case START_BLOCK_STATE:
++ throw new IllegalStateException();
++
++ case RAND_PART_A_STATE:
++ throw new IllegalStateException();
++
++ case RAND_PART_B_STATE:
++ setupRandPartB();
++ break;
++
++ case RAND_PART_C_STATE:
++ setupRandPartC();
++ break;
++
++ case NO_RAND_PART_A_STATE:
++ throw new IllegalStateException();
++
++ case NO_RAND_PART_B_STATE:
++ setupNoRandPartB();
++ break;
++
++ case NO_RAND_PART_C_STATE:
++ setupNoRandPartC();
++ break;
++
++ default:
++ throw new IllegalStateException();
++ }
++
++ return retChar;
++ }
++
++ private boolean init(boolean isFirstStream) throws IOException {
++ if (null == in) {
++ throw new IOException("No InputStream");
++ }
++
++ if (isFirstStream) {
++ if (in.available() == 0) {
++ throw new IOException("Empty InputStream");
++ }
++ } else {
++ int magic0 = this.in.read();
++ if (magic0 == -1) {
++ return false;
++ }
++ int magic1 = this.in.read();
++ if (magic0 != 'B' || magic1 != 'Z') {
++ throw new IOException("Garbage after a valid BZip2 stream");
++ }
++ }
++
++ int magic2 = this.in.read();
++ if (magic2 != 'h') {
++ throw new IOException(isFirstStream
++ ? "Stream is not in the BZip2 format"
++ : "Garbage after a valid BZip2 stream");
++ }
++
++ int blockSize = this.in.read();
++ if (blockSize < '1' || blockSize > '9') {
++ throw new IOException("Stream is not BZip2 formatted: illegal "
++ + "blocksize " + (char) blockSize);
++ }
++
++ this.blockSize100k = blockSize - '0';
++
++ this.bsLive = 0;
++ this.computedCombinedCRC = 0;
++
++ return true;
++ }
++
++ private void initBlock() throws IOException {
++ char magic0;
++ char magic1;
++ char magic2;
++ char magic3;
++ char magic4;
++ char magic5;
++
++ while (true) {
++ // Get the block magic bytes.
++ magic0 = bsGetUByte();
++ magic1 = bsGetUByte();
++ magic2 = bsGetUByte();
++ magic3 = bsGetUByte();
++ magic4 = bsGetUByte();
++ magic5 = bsGetUByte();
++
++ // If isn't end of stream magic, break out of the loop.
++ if (magic0 != 0x17 || magic1 != 0x72 || magic2 != 0x45
++ || magic3 != 0x38 || magic4 != 0x50 || magic5 != 0x90) {
++ break;
++ }
++
++ // End of stream was reached. Check the combined CRC and
++ // advance to the next .bz2 stream if decoding concatenated
++ // streams.
++ if (complete()) {
++ return;
++ }
++ }
++
++ if (magic0 != 0x31 || // '1'
++ magic1 != 0x41 || // ')'
++ magic2 != 0x59 || // 'Y'
++ magic3 != 0x26 || // '&'
++ magic4 != 0x53 || // 'S'
++ magic5 != 0x59 // 'Y'
++ ) {
++ this.currentState = EOF;
++ throw new IOException("bad block header");
++ } else {
++ this.storedBlockCRC = bsGetInt();
++ this.blockRandomised = bsR(1) == 1;
++
++ /**
++ * Allocate data here instead in constructor, so we do not
++ * allocate it if the input file is empty.
++ */
++ if (this.data == null) {
++ this.data = new Data(this.blockSize100k);
++ }
++
++ // currBlockNo++;
++ getAndMoveToFrontDecode();
++
++ this.crc.initialiseCRC();
++ this.currentState = START_BLOCK_STATE;
++ }
++ }
++
++ private void endBlock() {
++ this.computedBlockCRC = this.crc.getFinalCRC();
++
++ // A bad CRC is considered a fatal error.
++ if (this.storedBlockCRC != this.computedBlockCRC) {
++ // make next blocks readable without error
++ // (repair feature, not yet documented, not tested)
++ this.computedCombinedCRC
++ = (this.storedCombinedCRC << 1)
++ | (this.storedCombinedCRC >>> 31);
++ this.computedCombinedCRC ^= this.storedBlockCRC;
++
++ reportCRCError();
++ }
++
++ this.computedCombinedCRC
++ = (this.computedCombinedCRC << 1)
++ | (this.computedCombinedCRC >>> 31);
++ this.computedCombinedCRC ^= this.computedBlockCRC;
++ }
++
++ private boolean complete() throws IOException {
++ this.storedCombinedCRC = bsGetInt();
++ this.currentState = EOF;
++ this.data = null;
++
++ if (this.storedCombinedCRC != this.computedCombinedCRC) {
++ reportCRCError();
++ }
++
++ // Look for the next .bz2 stream if decompressing
++ // concatenated files.
++ return !decompressConcatenated || !init(false);
++ }
++
++ @Override
++ public void close() throws IOException {
++ InputStream inShadow = this.in;
++ if (inShadow != null) {
++ try {
++ if (inShadow != System.in) {
++ inShadow.close();
++ }
++ } finally {
++ this.data = null;
++ this.in = null;
++ }
++ }
++ }
++
++ private int bsR(final int n) throws IOException {
++ int bsLiveShadow = this.bsLive;
++ int bsBuffShadow = this.bsBuff;
++
++ if (bsLiveShadow < n) {
++ final InputStream inShadow = this.in;
++ do {
++ int thech = inShadow.read();
++
++ if (thech < 0) {
++ throw new IOException("unexpected end of stream");
++ }
++
++ bsBuffShadow = (bsBuffShadow << 8) | thech;
++ bsLiveShadow += 8;
++ } while (bsLiveShadow < n);
++
++ this.bsBuff = bsBuffShadow;
++ }
++
++ this.bsLive = bsLiveShadow - n;
++ return (bsBuffShadow >> (bsLiveShadow - n)) & ((1 << n) - 1);
++ }
++
++ private boolean bsGetBit() throws IOException {
++ int bsLiveShadow = this.bsLive;
++ int bsBuffShadow = this.bsBuff;
++
++ if (bsLiveShadow < 1) {
++ int thech = this.in.read();
++
++ if (thech < 0) {
++ throw new IOException("unexpected end of stream");
++ }
++
++ bsBuffShadow = (bsBuffShadow << 8) | thech;
++ bsLiveShadow += 8;
++ this.bsBuff = bsBuffShadow;
++ }
++
++ this.bsLive = bsLiveShadow - 1;
++ return ((bsBuffShadow >> (bsLiveShadow - 1)) & 1) != 0;
++ }
++
++ private char bsGetUByte() throws IOException {
++ return (char) bsR(8);
++ }
++
++ private int bsGetInt() throws IOException {
++ return (((((bsR(8) << 8) | bsR(8)) << 8) | bsR(8)) << 8) | bsR(8);
++ }
++
++ /**
++ * Called by createHuffmanDecodingTables() exclusively.
++ */
++ private static void hbCreateDecodeTables(final int[] limit,
++ final int[] base,
++ final int[] perm,
++ final char[] length,
++ final int minLen,
++ final int maxLen,
++ final int alphaSize) {
++ for (int i = minLen, pp = 0; i <= maxLen; i++) {
++ for (int j = 0; j < alphaSize; j++) {
++ if (length[j] == i) {
++ perm[pp++] = j;
++ }
++ }
++ }
++
++ for (int i = MAX_CODE_LEN; --i > 0;) {
++ base[i] = 0;
++ limit[i] = 0;
++ }
++
++ for (int i = 0; i < alphaSize; i++) {
++ base[length[i] + 1]++;
++ }
++
++ for (int i = 1, b = base[0]; i < MAX_CODE_LEN; i++) {
++ b += base[i];
++ base[i] = b;
++ }
++
++ for (int i = minLen, vec = 0, b = base[i]; i <= maxLen; i++) {
++ final int nb = base[i + 1];
++ vec += nb - b;
++ b = nb;
++ limit[i] = vec - 1;
++ vec <<= 1;
++ }
++
++ for (int i = minLen + 1; i <= maxLen; i++) {
++ base[i] = ((limit[i - 1] + 1) << 1) - base[i];
++ }
++ }
++
++ private void recvDecodingTables() throws IOException {
++ final Data dataShadow = this.data;
++ final boolean[] inUse = dataShadow.inUse;
++ final byte[] pos = dataShadow.recvDecodingTables_pos;
++ final byte[] selector = dataShadow.selector;
++ final byte[] selectorMtf = dataShadow.selectorMtf;
++
++ int inUse16 = 0;
++
++ /* Receive the mapping table */
++ for (int i = 0; i < 16; i++) {
++ if (bsGetBit()) {
++ inUse16 |= 1 << i;
++ }
++ }
++
++ for (int i = 256; --i >= 0;) {
++ inUse[i] = false;
++ }
++
++ for (int i = 0; i < 16; i++) {
++ if ((inUse16 & (1 << i)) != 0) {
++ final int i16 = i << 4;
++ for (int j = 0; j < 16; j++) {
++ if (bsGetBit()) {
++ inUse[i16 + j] = true;
++ }
++ }
++ }
++ }
++
++ makeMaps();
++ final int alphaSize = this.nInUse + 2;
++
++ /* Now the selectors */
++ final int nGroups = bsR(3);
++ final int nSelectors = bsR(15);
++
++ for (int i = 0; i < nSelectors; i++) {
++ int j = 0;
++ while (bsGetBit()) {
++ j++;
++ }
++ selectorMtf[i] = (byte) j;
++ }
++
++ /* Undo the MTF values for the selectors. */
++ for (int v = nGroups; --v >= 0;) {
++ pos[v] = (byte) v;
++ }
++
++ for (int i = 0; i < nSelectors; i++) {
++ int v = selectorMtf[i] & 0xff;
++ final byte tmp = pos[v];
++ while (v > 0) {
++ // nearly all times v is zero, 4 in most other cases
++ pos[v] = pos[v - 1];
++ v--;
++ }
++ pos[0] = tmp;
++ selector[i] = tmp;
++ }
++
++ final char[][] len = dataShadow.temp_charArray2d;
++
++ /* Now the coding tables */
++ for (int t = 0; t < nGroups; t++) {
++ int curr = bsR(5);
++ final char[] len_t = len[t];
++ for (int i = 0; i < alphaSize; i++) {
++ while (bsGetBit()) {
++ curr += bsGetBit() ? -1 : 1;
++ }
++ len_t[i] = (char) curr;
++ }
++ }
++
++ // finally create the Huffman tables
++ createHuffmanDecodingTables(alphaSize, nGroups);
++ }
++
++ /**
++ * Called by recvDecodingTables() exclusively.
++ */
++ private void createHuffmanDecodingTables(final int alphaSize,
++ final int nGroups) {
++ final Data dataShadow = this.data;
++ final char[][] len = dataShadow.temp_charArray2d;
++ final int[] minLens = dataShadow.minLens;
++ final int[][] limit = dataShadow.limit;
++ final int[][] base = dataShadow.base;
++ final int[][] perm = dataShadow.perm;
++
++ for (int t = 0; t < nGroups; t++) {
++ int minLen = 32;
++ int maxLen = 0;
++ final char[] len_t = len[t];
++ for (int i = alphaSize; --i >= 0;) {
++ final char lent = len_t[i];
++ if (lent > maxLen) {
++ maxLen = lent;
++ }
++ if (lent < minLen) {
++ minLen = lent;
++ }
++ }
++ hbCreateDecodeTables(limit[t], base[t], perm[t], len[t], minLen,
++ maxLen, alphaSize);
++ minLens[t] = minLen;
++ }
++ }
++
++ private void getAndMoveToFrontDecode() throws IOException {
++ this.origPtr = bsR(24);
++ recvDecodingTables();
++
++ final InputStream inShadow = this.in;
++ final Data dataShadow = this.data;
++ final byte[] ll8 = dataShadow.ll8;
++ final int[] unzftab = dataShadow.unzftab;
++ final byte[] selector = dataShadow.selector;
++ final byte[] seqToUnseq = dataShadow.seqToUnseq;
++ final char[] yy = dataShadow.getAndMoveToFrontDecode_yy;
++ final int[] minLens = dataShadow.minLens;
++ final int[][] limit = dataShadow.limit;
++ final int[][] base = dataShadow.base;
++ final int[][] perm = dataShadow.perm;
++ final int limitLast = this.blockSize100k * 100000;
++
++ /*
++ Setting up the unzftab entries here is not strictly
++ necessary, but it does save having to do it later
++ in a separate pass, and so saves a block's worth of
++ cache misses.
++ */
++ for (int i = 256; --i >= 0;) {
++ yy[i] = (char) i;
++ unzftab[i] = 0;
++ }
++
++ int groupNo = 0;
++ int groupPos = G_SIZE - 1;
++ final int eob = this.nInUse + 1;
++ int nextSym = getAndMoveToFrontDecode0(0);
++ int bsBuffShadow = this.bsBuff;
++ int bsLiveShadow = this.bsLive;
++ int lastShadow = -1;
++ int zt = selector[groupNo] & 0xff;
++ int[] base_zt = base[zt];
++ int[] limit_zt = limit[zt];
++ int[] perm_zt = perm[zt];
++ int minLens_zt = minLens[zt];
++
++ while (nextSym != eob) {
++ if (nextSym == RUNA || nextSym == RUNB) {
++ int s = -1;
++
++ for (int n = 1; true; n <<= 1) {
++ if (nextSym == RUNA) {
++ s += n;
++ } else if (nextSym == RUNB) {
++ s += n << 1;
++ } else {
++ break;
++ }
++
++ if (groupPos == 0) {
++ groupPos = G_SIZE - 1;
++ zt = selector[++groupNo] & 0xff;
++ base_zt = base[zt];
++ limit_zt = limit[zt];
++ perm_zt = perm[zt];
++ minLens_zt = minLens[zt];
++ } else {
++ groupPos--;
++ }
++
++ int zn = minLens_zt;
++
++ // Inlined:
++ // int zvec = bsR(zn);
++ while (bsLiveShadow < zn) {
++ final int thech = inShadow.read();
++ if (thech >= 0) {
++ bsBuffShadow = (bsBuffShadow << 8) | thech;
++ bsLiveShadow += 8;
++ } else {
++ throw new IOException("unexpected end of stream");
++ }
++ }
++ int zvec = (bsBuffShadow >> (bsLiveShadow - zn)) & ((1 << zn) - 1);
++ bsLiveShadow -= zn;
++
++ while (zvec > limit_zt[zn]) {
++ zn++;
++ while (bsLiveShadow < 1) {
++ final int thech = inShadow.read();
++ if (thech >= 0) {
++ bsBuffShadow = (bsBuffShadow << 8) | thech;
++ bsLiveShadow += 8;
++ } else {
++ throw new IOException("unexpected end of stream");
++ }
++ }
++ bsLiveShadow--;
++ zvec = (zvec << 1) | ((bsBuffShadow >> bsLiveShadow) & 1);
++ }
++ nextSym = perm_zt[zvec - base_zt[zn]];
++ }
++
++ final byte ch = seqToUnseq[yy[0]];
++ unzftab[ch & 0xff] += s + 1;
++
++ while (s-- >= 0) {
++ ll8[++lastShadow] = ch;
++ }
++
++ if (lastShadow >= limitLast) {
++ throw new IOException("block overrun");
++ }
++ } else {
++ if (++lastShadow >= limitLast) {
++ throw new IOException("block overrun");
++ }
++
++ final char tmp = yy[nextSym - 1];
++ unzftab[seqToUnseq[tmp] & 0xff]++;
++ ll8[lastShadow] = seqToUnseq[tmp];
++
++ /*
++ This loop is hammered during decompression,
++ hence avoid native method call overhead of
++ System.arraycopy for very small ranges to copy.
++ */
++ if (nextSym <= 16) {
++ for (int j = nextSym - 1; j > 0;) {
++ yy[j] = yy[--j];
++ }
++ } else {
++ System.arraycopy(yy, 0, yy, 1, nextSym - 1);
++ }
++
++ yy[0] = tmp;
++
++ if (groupPos == 0) {
++ groupPos = G_SIZE - 1;
++ zt = selector[++groupNo] & 0xff;
++ base_zt = base[zt];
++ limit_zt = limit[zt];
++ perm_zt = perm[zt];
++ minLens_zt = minLens[zt];
++ } else {
++ groupPos--;
++ }
++
++ int zn = minLens_zt;
++
++ // Inlined:
++ // int zvec = bsR(zn);
++ while (bsLiveShadow < zn) {
++ final int thech = inShadow.read();
++ if (thech >= 0) {
++ bsBuffShadow = (bsBuffShadow << 8) | thech;
++ bsLiveShadow += 8;
++ } else {
++ throw new IOException("unexpected end of stream");
++ }
++ }
++ int zvec = (bsBuffShadow >> (bsLiveShadow - zn)) & ((1 << zn) - 1);
++ bsLiveShadow -= zn;
++
++ while (zvec > limit_zt[zn]) {
++ zn++;
++ while (bsLiveShadow < 1) {
++ final int thech = inShadow.read();
++ if (thech >= 0) {
++ bsBuffShadow = (bsBuffShadow << 8) | thech;
++ bsLiveShadow += 8;
++ } else {
++ throw new IOException("unexpected end of stream");
++ }
++ }
++ bsLiveShadow--;
++ zvec = (zvec << 1) | ((bsBuffShadow >> bsLiveShadow) & 1);
++ }
++ nextSym = perm_zt[zvec - base_zt[zn]];
++ }
++ }
++
++ this.last = lastShadow;
++ this.bsLive = bsLiveShadow;
++ this.bsBuff = bsBuffShadow;
++ }
++
++ private int getAndMoveToFrontDecode0(final int groupNo)
++ throws IOException {
++ final InputStream inShadow = this.in;
++ final Data dataShadow = this.data;
++ final int zt = dataShadow.selector[groupNo] & 0xff;
++ final int[] limit_zt = dataShadow.limit[zt];
++ int zn = dataShadow.minLens[zt];
++ int zvec = bsR(zn);
++ int bsLiveShadow = this.bsLive;
++ int bsBuffShadow = this.bsBuff;
++
++ while (zvec > limit_zt[zn]) {
++ zn++;
++ while (bsLiveShadow < 1) {
++ final int thech = inShadow.read();
++
++ if (thech >= 0) {
++ bsBuffShadow = (bsBuffShadow << 8) | thech;
++ bsLiveShadow += 8;
++ } else {
++ throw new IOException("unexpected end of stream");
++ }
++ }
++ bsLiveShadow--;
++ zvec = (zvec << 1) | ((bsBuffShadow >> bsLiveShadow) & 1);
++ }
++
++ this.bsLive = bsLiveShadow;
++ this.bsBuff = bsBuffShadow;
++
++ return dataShadow.perm[zt][zvec - dataShadow.base[zt][zn]];
++ }
++
++ private void setupBlock() throws IOException {
++ if (this.data == null) {
++ return;
++ }
++
++ final int[] cftab = this.data.cftab;
++ final int[] tt = this.data.initTT(this.last + 1);
++ final byte[] ll8 = this.data.ll8;
++ cftab[0] = 0;
++ System.arraycopy(this.data.unzftab, 0, cftab, 1, 256);
++
++ for (int i = 1, c = cftab[0]; i <= 256; i++) {
++ c += cftab[i];
++ cftab[i] = c;
++ }
++
++ for (int i = 0, lastShadow = this.last; i <= lastShadow; i++) {
++ tt[cftab[ll8[i] & 0xff]++] = i;
++ }
++
++ if (this.origPtr < 0 || this.origPtr >= tt.length) {
++ throw new IOException("stream corrupted");
++ }
++
++ this.su_tPos = tt[this.origPtr];
++ this.su_count = 0;
++ this.su_i2 = 0;
++ this.su_ch2 = 256; /* not a char and not EOF */
++
++ if (this.blockRandomised) {
++ this.su_rNToGo = 0;
++ this.su_rTPos = 0;
++ setupRandPartA();
++ } else {
++ setupNoRandPartA();
++ }
++ }
++
++ private void setupRandPartA() throws IOException {
++ if (this.su_i2 <= this.last) {
++ this.su_chPrev = this.su_ch2;
++ int su_ch2Shadow = this.data.ll8[this.su_tPos] & 0xff;
++ this.su_tPos = this.data.tt[this.su_tPos];
++ if (this.su_rNToGo == 0) {
++ this.su_rNToGo = BZip2Constants.rNums[this.su_rTPos] - 1;
++ if (++this.su_rTPos == 512) {
++ this.su_rTPos = 0;
++ }
++ } else {
++ this.su_rNToGo--;
++ }
++ this.su_ch2 = su_ch2Shadow ^= (this.su_rNToGo == 1) ? 1 : 0;
++ this.su_i2++;
++ this.currentChar = su_ch2Shadow;
++ this.currentState = RAND_PART_B_STATE;
++ this.crc.updateCRC(su_ch2Shadow);
++ } else {
++ endBlock();
++ initBlock();
++ setupBlock();
++ }
++ }
++
++ private void setupNoRandPartA() throws IOException {
++ if (this.su_i2 <= this.last) {
++ this.su_chPrev = this.su_ch2;
++ int su_ch2Shadow = this.data.ll8[this.su_tPos] & 0xff;
++ this.su_ch2 = su_ch2Shadow;
++ this.su_tPos = this.data.tt[this.su_tPos];
++ this.su_i2++;
++ this.currentChar = su_ch2Shadow;
++ this.currentState = NO_RAND_PART_B_STATE;
++ this.crc.updateCRC(su_ch2Shadow);
++ } else {
++ this.currentState = NO_RAND_PART_A_STATE;
++ endBlock();
++ initBlock();
++ setupBlock();
++ }
++ }
++
++ private void setupRandPartB() throws IOException {
++ if (this.su_ch2 != this.su_chPrev) {
++ this.currentState = RAND_PART_A_STATE;
++ this.su_count = 1;
++ setupRandPartA();
++ } else if (++this.su_count >= 4) {
++ this.su_z = (char) (this.data.ll8[this.su_tPos] & 0xff);
++ this.su_tPos = this.data.tt[this.su_tPos];
++ if (this.su_rNToGo == 0) {
++ this.su_rNToGo = BZip2Constants.rNums[this.su_rTPos] - 1;
++ if (++this.su_rTPos == 512) {
++ this.su_rTPos = 0;
++ }
++ } else {
++ this.su_rNToGo--;
++ }
++ this.su_j2 = 0;
++ this.currentState = RAND_PART_C_STATE;
++ if (this.su_rNToGo == 1) {
++ this.su_z ^= 1;
++ }
++ setupRandPartC();
++ } else {
++ this.currentState = RAND_PART_A_STATE;
++ setupRandPartA();
++ }
++ }
++
++ private void setupRandPartC() throws IOException {
++ if (this.su_j2 < this.su_z) {
++ this.currentChar = this.su_ch2;
++ this.crc.updateCRC(this.su_ch2);
++ this.su_j2++;
++ } else {
++ this.currentState = RAND_PART_A_STATE;
++ this.su_i2++;
++ this.su_count = 0;
++ setupRandPartA();
++ }
++ }
++
++ private void setupNoRandPartB() throws IOException {
++ if (this.su_ch2 != this.su_chPrev) {
++ this.su_count = 1;
++ setupNoRandPartA();
++ } else if (++this.su_count >= 4) {
++ this.su_z = (char) (this.data.ll8[this.su_tPos] & 0xff);
++ this.su_tPos = this.data.tt[this.su_tPos];
++ this.su_j2 = 0;
++ setupNoRandPartC();
++ } else {
++ setupNoRandPartA();
++ }
++ }
++
++ private void setupNoRandPartC() throws IOException {
++ if (this.su_j2 < this.su_z) {
++ int su_ch2Shadow = this.su_ch2;
++ this.currentChar = su_ch2Shadow;
++ this.crc.updateCRC(su_ch2Shadow);
++ this.su_j2++;
++ this.currentState = NO_RAND_PART_C_STATE;
++ } else {
++ this.su_i2++;
++ this.su_count = 0;
++ setupNoRandPartA();
++ }
++ }
++
++ private static final class Data {
++
++ // (with blockSize 900k)
++ final boolean[] inUse = new boolean[256]; // 256 byte
++
++ final byte[] seqToUnseq = new byte[256]; // 256 byte
++ final byte[] selector = new byte[MAX_SELECTORS]; // 18002 byte
++ final byte[] selectorMtf = new byte[MAX_SELECTORS]; // 18002 byte
++
++ /**
++ * Freq table collected to save a pass over the data during
++ * decompression.
++ */
++ final int[] unzftab = new int[256]; // 1024 byte
++
++ final int[][] limit = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192 byte
++ final int[][] base = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192 byte
++ final int[][] perm = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192 byte
++ final int[] minLens = new int[N_GROUPS]; // 24 byte
++
++ final int[] cftab = new int[257]; // 1028 byte
++ final char[] getAndMoveToFrontDecode_yy = new char[256]; // 512 byte
++ final char[][] temp_charArray2d = new char[N_GROUPS][MAX_ALPHA_SIZE]; // 3096 byte
++ final byte[] recvDecodingTables_pos = new byte[N_GROUPS]; // 6 byte
++ //---------------
++ // 60798 byte
++
++ int[] tt; // 3600000 byte
++ byte[] ll8; // 900000 byte
++ //---------------
++ // 4560782 byte
++ //===============
++
++ Data(int blockSize100k) {
++ super();
++
++ this.ll8 = new byte[blockSize100k * BZip2Constants.baseBlockSize];
++ }
++
++ /**
++ * Initializes the {@link #tt} array.
++ *
++ * This method is called when the required length of the array
++ * is known. I don't initialize it at construction time to
++ * avoid unnecessary memory allocation when compressing small
++ * files.
++ */
++ final int[] initTT(int length) {
++ int[] ttShadow = this.tt;
++
++ // tt.length should always be >= length, but theoretically
++ // it can happen, if the compressor mixed small and large
++ // blocks. Normally only the last block will be smaller
++ // than others.
++ if (ttShadow == null || ttShadow.length < length) {
++ this.tt = ttShadow = new int[length];
++ }
++
++ return ttShadow;
++ }
++
++ }
++
++ private static void reportCRCError() {
++ // The clean way would be to throw an exception.
++ //throw new IOException("crc error");
++
++ // Just print a message, like the previous versions of this class did
++ System.err.println("BZip2 CRC error");
++ }
++
++}
+diff --git a/src/main/java/org/apache/tools/bzip2/CBZip2OutputStream.java b/src/main/java/org/apache/tools/bzip2/CBZip2OutputStream.java
+new file mode 100644
+index 0000000..7919a6a
+--- /dev/null
++++ b/src/main/java/org/apache/tools/bzip2/CBZip2OutputStream.java
+@@ -0,0 +1,1575 @@
++/*
++ * Licensed to the Apache Software Foundation (ASF) under one or more
++ * contributor license agreements. See the NOTICE file distributed with
++ * this work for additional information regarding copyright ownership.
++ * The ASF licenses this file to You under the Apache License, Version 2.0
++ * (the "License"); you may not use this file except in compliance with
++ * the License. You may obtain a copy of the License at
++ *
++ * https://www.apache.org/licenses/LICENSE-2.0
++ *
++ * Unless required by applicable law or agreed to in writing, software
++ * distributed under the License is distributed on an "AS IS" BASIS,
++ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
++ * See the License for the specific language governing permissions and
++ * limitations under the License.
++ *
++ */
++
++/*
++ * This package is based on the work done by Keiron Liddle, Aftex Software
++ * <keiron at aftexsw.com> to whom the Ant project is very grateful for his
++ * great code.
++ */
++
++package org.apache.tools.bzip2;
++
++import java.io.IOException;
++import java.io.OutputStream;
++
++/**
++ * An output stream that compresses into the BZip2 format (without the file
++ * header chars) into another stream.
++ *
++ * <p>
++ * The compression requires large amounts of memory. Thus you should call the
++ * {@link #close() close()} method as soon as possible, to force
++ * <code>CBZip2OutputStream</code> to release the allocated memory.
++ * </p>
++ *
++ * <p>You can shrink the amount of allocated memory and maybe raise
++ * the compression speed by choosing a lower blocksize, which in turn
++ * may cause a lower compression ratio. You can avoid unnecessary
++ * memory allocation by avoiding using a blocksize which is bigger
++ * than the size of the input.</p>
++ *
++ * <p>You can compute the memory usage for compressing by the
++ * following formula:</p>
++ *
++ * <pre>
++ * <code>400k + (9 * blocksize)</code>.
++ * </pre>
++ *
++ * <p>To get the memory required for decompression by {@link
++ * CBZip2InputStream CBZip2InputStream} use</p>
++ *
++ * <pre>
++ * <code>65k + (5 * blocksize)</code>.
++ * </pre>
++ *
++ * <table style="border:1px solid black">
++ * <caption>Memory usage by blocksize</caption>
++ * <tr>
++ * <th style="text-align:right">Blocksize</th>
++ * <th style="text-align:right">Compression<br>memory usage</th>
++ * <th style="text-align:right">Decompression<br>memory usage</th>
++ * </tr>
++ * <tr>
++ * <td style="text-align:right">100k</td>
++ * <td style="text-align:right">1300k</td>
++ * <td style="text-align:right">565k</td>
++ * </tr>
++ * <tr>
++ * <td style="text-align:right">200k</td>
++ * <td style="text-align:right">2200k</td>
++ * <td style="text-align:right">1065k</td>
++ * </tr>
++ * <tr>
++ * <td style="text-align:right">300k</td>
++ * <td style="text-align:right">3100k</td>
++ * <td style="text-align:right">1565k</td>
++ * </tr>
++ * <tr>
++ * <td style="text-align:right">400k</td>
++ * <td style="text-align:right">4000k</td>
++ * <td style="text-align:right">2065k</td>
++ * </tr>
++ * <tr>
++ * <td style="text-align:right">500k</td>
++ * <td style="text-align:right">4900k</td>
++ * <td style="text-align:right">2565k</td>
++ * </tr>
++ * <tr>
++ * <td style="text-align:right">600k</td>
++ * <td style="text-align:right">5800k</td>
++ * <td style="text-align:right">3065k</td>
++ * </tr>
++ * <tr>
++ * <td style="text-align:right">700k</td>
++ * <td style="text-align:right">6700k</td>
++ * <td style="text-align:right">3565k</td>
++ * </tr>
++ * <tr>
++ * <td style="text-align:right">800k</td>
++ * <td style="text-align:right">7600k</td>
++ * <td style="text-align:right">4065k</td>
++ * </tr>
++ * <tr>
++ * <td style="text-align:right">900k</td>
++ * <td style="text-align:right">8500k</td>
++ * <td style="text-align:right">4565k</td>
++ * </tr>
++ * </table>
++ *
++ * <p>
++ * For decompression <code>CBZip2InputStream</code> allocates less memory if the
++ * bzipped input is smaller than one block.
++ * </p>
++ *
++ * <p>
++ * Instances of this class are not threadsafe.
++ * </p>
++ *
++ * <p>
++ * TODO: Update to BZip2 1.0.1
++ * </p>
++ *
++ */
++public class CBZip2OutputStream extends OutputStream
++ implements BZip2Constants {
++
++ /**
++ * The minimum supported blocksize <code> == 1</code>.
++ */
++ public static final int MIN_BLOCKSIZE = 1;
++
++ /**
++ * The maximum supported blocksize <code> == 9</code>.
++ */
++ public static final int MAX_BLOCKSIZE = 9;
++
++ /**
++ * This constant is accessible by subclasses for historical
++ * purposes. If you don't know what it means then you don't need
++ * it.
++ */
++ protected static final int SETMASK = (1 << 21);
++
++ /**
++ * This constant is accessible by subclasses for historical
++ * purposes. If you don't know what it means then you don't need
++ * it.
++ */
++ protected static final int CLEARMASK = (~SETMASK);
++
++ /**
++ * This constant is accessible by subclasses for historical
++ * purposes. If you don't know what it means then you don't need
++ * it.
++ */
++ protected static final int GREATER_ICOST = 15;
++
++ /**
++ * This constant is accessible by subclasses for historical
++ * purposes. If you don't know what it means then you don't need
++ * it.
++ */
++ protected static final int LESSER_ICOST = 0;
++
++ /**
++ * This constant is accessible by subclasses for historical
++ * purposes. If you don't know what it means then you don't need
++ * it.
++ */
++ protected static final int SMALL_THRESH = 20;
++
++ /**
++ * This constant is accessible by subclasses for historical
++ * purposes. If you don't know what it means then you don't need
++ * it.
++ */
++ protected static final int DEPTH_THRESH = 10;
++
++ /**
++ * This constant is accessible by subclasses for historical
++ * purposes. If you don't know what it means then you don't need
++ * it.
++ */
++ protected static final int WORK_FACTOR = 30;
++
++ /**
++ * This constant is accessible by subclasses for historical
++ * purposes. If you don't know what it means then you don't need
++ * it.
++ * <p>If you are ever unlucky/improbable enough to get a stack
++ * overflow whilst sorting, increase the following constant and
++ * try again. In practice I have never seen the stack go above 27
++ * elems, so the following limit seems very generous.</p>
++ */
++ protected static final int QSORT_STACK_SIZE = 1000;
++
++ /**
++ * Knuth's increments seem to work better than Incerpi-Sedgewick here.
++ * Possibly because the number of elems to sort is usually small, typically
++ * <= 20.
++ */
++ @SuppressWarnings("unused")
++ private static final int[] INCS = {1, 4, 13, 40, 121, 364, 1093, 3280,
++ 9841, 29524, 88573, 265720, 797161,
++ 2391484};
++
++ /**
++ * This method is accessible by subclasses for historical
++ * purposes. If you don't know what it does then you don't need
++ * it.
++ *
++ * @param len char[]
++ * @param freq char[]
++ * @param alphaSize int
++ * @param maxLen int
++ */
++ protected static void hbMakeCodeLengths(char[] len, int[] freq,
++ int alphaSize, int maxLen) {
++ /*
++ * Nodes and heap entries run from 1. Entry 0 for both the heap and
++ * nodes is a sentinel.
++ */
++ final int[] heap = new int[MAX_ALPHA_SIZE * 2];
++ final int[] weight = new int[MAX_ALPHA_SIZE * 2];
++ final int[] parent = new int[MAX_ALPHA_SIZE * 2];
++
++ for (int i = alphaSize; --i >= 0;) {
++ weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
++ }
++
++ for (boolean tooLong = true; tooLong;) {
++ tooLong = false;
++
++ int nNodes = alphaSize;
++ int nHeap = 0;
++ heap[0] = 0;
++ weight[0] = 0;
++ parent[0] = -2;
++
++ for (int i = 1; i <= alphaSize; i++) {
++ parent[i] = -1;
++ nHeap++;
++ heap[nHeap] = i;
++
++ int zz = nHeap;
++ int tmp = heap[zz];
++ while (weight[tmp] < weight[heap[zz >> 1]]) {
++ heap[zz] = heap[zz >> 1];
++ zz >>= 1;
++ }
++ heap[zz] = tmp;
++ }
++
++ // assert (nHeap < (MAX_ALPHA_SIZE + 2)) : nHeap;
++
++ while (nHeap > 1) {
++ int n1 = heap[1];
++ heap[1] = heap[nHeap];
++ nHeap--;
++
++ int yy = 0;
++ int zz = 1;
++ int tmp = heap[1];
++
++ while (true) {
++ yy = zz << 1;
++
++ if (yy > nHeap) {
++ break;
++ }
++
++ if ((yy < nHeap)
++ && (weight[heap[yy + 1]] < weight[heap[yy]])) {
++ yy++;
++ }
++
++ if (weight[tmp] < weight[heap[yy]]) {
++ break;
++ }
++
++ heap[zz] = heap[yy];
++ zz = yy;
++ }
++
++ heap[zz] = tmp;
++
++ int n2 = heap[1];
++ heap[1] = heap[nHeap];
++ nHeap--;
++
++ yy = 0;
++ zz = 1;
++ tmp = heap[1];
++
++ while (true) {
++ yy = zz << 1;
++
++ if (yy > nHeap) {
++ break;
++ }
++
++ if ((yy < nHeap)
++ && (weight[heap[yy + 1]] < weight[heap[yy]])) {
++ yy++;
++ }
++
++ if (weight[tmp] < weight[heap[yy]]) {
++ break;
++ }
++
++ heap[zz] = heap[yy];
++ zz = yy;
++ }
++
++ heap[zz] = tmp;
++ nNodes++;
++ parent[n1] = parent[n2] = nNodes;
++
++ final int weight_n1 = weight[n1];
++ final int weight_n2 = weight[n2];
++ weight[nNodes] = (((weight_n1 & 0xffffff00)
++ + (weight_n2 & 0xffffff00))
++ |
++ (1 + (((weight_n1 & 0x000000ff)
++ > (weight_n2 & 0x000000ff))
++ ? (weight_n1 & 0x000000ff)
++ : (weight_n2 & 0x000000ff))
++ ));
++
++ parent[nNodes] = -1;
++ nHeap++;
++ heap[nHeap] = nNodes;
++
++ tmp = 0;
++ zz = nHeap;
++ tmp = heap[zz];
++ final int weight_tmp = weight[tmp];
++ while (weight_tmp < weight[heap[zz >> 1]]) {
++ heap[zz] = heap[zz >> 1];
++ zz >>= 1;
++ }
++ heap[zz] = tmp;
++
++ }
++
++ // assert (nNodes < (MAX_ALPHA_SIZE * 2)) : nNodes;
++
++ for (int i = 1; i <= alphaSize; i++) {
++ int j = 0;
++ int k = i;
++
++ for (int parent_k; (parent_k = parent[k]) >= 0;) {
++ k = parent_k;
++ j++;
++ }
++
++ len[i - 1] = (char) j;
++ if (j > maxLen) {
++ tooLong = true;
++ }
++ }
++
++ if (tooLong) {
++ for (int i = 1; i < alphaSize; i++) {
++ int j = weight[i] >> 8;
++ j = 1 + (j >> 1);
++ weight[i] = j << 8;
++ }
++ }
++ }
++ }
++
++ private static void hbMakeCodeLengths(final byte[] len, final int[] freq,
++ final Data dat, final int alphaSize,
++ final int maxLen) {
++ /*
++ * Nodes and heap entries run from 1. Entry 0 for both the heap and
++ * nodes is a sentinel.
++ */
++ final int[] heap = dat.heap;
++ final int[] weight = dat.weight;
++ final int[] parent = dat.parent;
++
++ for (int i = alphaSize; --i >= 0;) {
++ weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
++ }
++
++ for (boolean tooLong = true; tooLong;) {
++ tooLong = false;
++
++ int nNodes = alphaSize;
++ int nHeap = 0;
++ heap[0] = 0;
++ weight[0] = 0;
++ parent[0] = -2;
++
++ for (int i = 1; i <= alphaSize; i++) {
++ parent[i] = -1;
++ nHeap++;
++ heap[nHeap] = i;
++
++ int zz = nHeap;
++ int tmp = heap[zz];
++ while (weight[tmp] < weight[heap[zz >> 1]]) {
++ heap[zz] = heap[zz >> 1];
++ zz >>= 1;
++ }
++ heap[zz] = tmp;
++ }
++
++ while (nHeap > 1) {
++ int n1 = heap[1];
++ heap[1] = heap[nHeap];
++ nHeap--;
++
++ int yy = 0;
++ int zz = 1;
++ int tmp = heap[1];
++
++ while (true) {
++ yy = zz << 1;
++
++ if (yy > nHeap) {
++ break;
++ }
++
++ if ((yy < nHeap)
++ && (weight[heap[yy + 1]] < weight[heap[yy]])) {
++ yy++;
++ }
++
++ if (weight[tmp] < weight[heap[yy]]) {
++ break;
++ }
++
++ heap[zz] = heap[yy];
++ zz = yy;
++ }
++
++ heap[zz] = tmp;
++
++ int n2 = heap[1];
++ heap[1] = heap[nHeap];
++ nHeap--;
++
++ yy = 0;
++ zz = 1;
++ tmp = heap[1];
++
++ while (true) {
++ yy = zz << 1;
++
++ if (yy > nHeap) {
++ break;
++ }
++
++ if ((yy < nHeap)
++ && (weight[heap[yy + 1]] < weight[heap[yy]])) {
++ yy++;
++ }
++
++ if (weight[tmp] < weight[heap[yy]]) {
++ break;
++ }
++
++ heap[zz] = heap[yy];
++ zz = yy;
++ }
++
++ heap[zz] = tmp;
++ nNodes++;
++ parent[n1] = parent[n2] = nNodes;
++
++ final int weight_n1 = weight[n1];
++ final int weight_n2 = weight[n2];
++ weight[nNodes] = ((weight_n1 & 0xffffff00)
++ + (weight_n2 & 0xffffff00))
++ | (1 + (((weight_n1 & 0x000000ff)
++ > (weight_n2 & 0x000000ff))
++ ? (weight_n1 & 0x000000ff)
++ : (weight_n2 & 0x000000ff)));
++
++ parent[nNodes] = -1;
++ nHeap++;
++ heap[nHeap] = nNodes;
++
++ tmp = 0;
++ zz = nHeap;
++ tmp = heap[zz];
++ final int weight_tmp = weight[tmp];
++ while (weight_tmp < weight[heap[zz >> 1]]) {
++ heap[zz] = heap[zz >> 1];
++ zz >>= 1;
++ }
++ heap[zz] = tmp;
++
++ }
++
++ for (int i = 1; i <= alphaSize; i++) {
++ int j = 0;
++ int k = i;
++
++ for (int parent_k; (parent_k = parent[k]) >= 0;) {
++ k = parent_k;
++ j++;
++ }
++
++ len[i - 1] = (byte) j;
++ if (j > maxLen) {
++ tooLong = true;
++ }
++ }
++
++ if (tooLong) {
++ for (int i = 1; i < alphaSize; i++) {
++ int j = weight[i] >> 8;
++ j = 1 + (j >> 1);
++ weight[i] = j << 8;
++ }
++ }
++ }
++ }
++
++ /**
++ * Index of the last char in the block, so the block size == last + 1.
++ */
++ private int last;
++
++ /**
++ * Always: in the range 0 .. 9. The current block size is 100000 * this
++ * number.
++ */
++ private final int blockSize100k;
++
++ private int bsBuff;
++ private int bsLive;
++ private final CRC crc = new CRC();
++
++ private int nInUse;
++
++ private int nMTF;
++
++ private int currentChar = -1;
++ private int runLength = 0;
++
++ private int blockCRC;
++ private int combinedCRC;
++ private final int allowableBlockSize;
++
++ /**
++ * All memory intensive stuff.
++ */
++ private Data data;
++ private BlockSort blockSorter;
++
++ private OutputStream out;
++
++ /**
++ * Chooses a blocksize based on the given length of the data to compress.
++ *
++ * @param inputLength
++ * The length of the data which will be compressed by
++ * <code>CBZip2OutputStream</code>.
++ * @return The blocksize, between {@link #MIN_BLOCKSIZE} and
++ * {@link #MAX_BLOCKSIZE} both inclusive. For a negative
++ * <code>inputLength</code> this method returns <code>MAX_BLOCKSIZE</code>
++ * always.
++ */
++ public static int chooseBlockSize(long inputLength) {
++ return (inputLength > 0) ? (int) Math
++ .min((inputLength / 132000) + 1, 9) : MAX_BLOCKSIZE;
++ }
++
++ /**
++ * Constructs a new <code>CBZip2OutputStream</code> with a blocksize of 900k.
++ *
++ * <p>
++ * <b>Attention: </b>The caller is responsible to write the two BZip2 magic
++ * bytes <code>"BZ"</code> to the specified stream prior to calling this
++ * constructor.
++ * </p>
++ *
++ * @param out *
++ * the destination stream.
++ *
++ * @throws IOException
++ * if an I/O error occurs in the specified stream.
++ * @throws NullPointerException
++ * if <code>out == null</code>.
++ */
++ public CBZip2OutputStream(final OutputStream out) throws IOException {
++ this(out, MAX_BLOCKSIZE);
++ }
++
++ /**
++ * Constructs a new <code>CBZip2OutputStream</code> with specified blocksize.
++ *
++ * <p>
++ * <b>Attention: </b>The caller is responsible to write the two BZip2 magic
++ * bytes <code>"BZ"</code> to the specified stream prior to calling this
++ * constructor.
++ * </p>
++ *
++ *
++ * @param out
++ * the destination stream.
++ * @param blockSize
++ * the blockSize as 100k units.
++ *
++ * @throws IOException
++ * if an I/O error occurs in the specified stream.
++ * @throws IllegalArgumentException
++ * if <code>(blockSize < 1) || (blockSize > 9)</code>.
++ * @throws NullPointerException
++ * if <code>out == null</code>.
++ *
++ * @see #MIN_BLOCKSIZE
++ * @see #MAX_BLOCKSIZE
++ */
++ public CBZip2OutputStream(final OutputStream out, final int blockSize)
++ throws IOException {
++ super();
++
++ if (blockSize < 1) {
++ throw new IllegalArgumentException("blockSize(" + blockSize
++ + ") < 1");
++ }
++ if (blockSize > 9) {
++ throw new IllegalArgumentException("blockSize(" + blockSize
++ + ") > 9");
++ }
++
++ this.blockSize100k = blockSize;
++ this.out = out;
++
++ /* 20 is just a paranoia constant */
++ this.allowableBlockSize = (this.blockSize100k * BZip2Constants.baseBlockSize) - 20;
++ init();
++ }
++
++ /** {@inheritDoc} */
++ @Override
++ public void write(final int b) throws IOException {
++ if (this.out != null) {
++ write0(b);
++ } else {
++ throw new IOException("closed");
++ }
++ }
++
++ /**
++ * Writes the current byte to the buffer, run-length encoding it
++ * if it has been repeated at least four times (the first step
++ * RLEs sequences of four identical bytes).
++ *
++ * <p>Flushes the current block before writing data if it is
++ * full.</p>
++ *
++ * <p>"write to the buffer" means adding to data.buffer starting
++ * two steps "after" this.last - initially starting at index 1
++ * (not 0) - and updating this.last to point to the last index
++ * written minus 1.</p>
++ */
++ private void writeRun() throws IOException {
++ final int lastShadow = this.last;
++
++ if (lastShadow < this.allowableBlockSize) {
++ final int currentCharShadow = this.currentChar;
++ final Data dataShadow = this.data;
++ dataShadow.inUse[currentCharShadow] = true;
++ final byte ch = (byte) currentCharShadow;
++
++ int runLengthShadow = this.runLength;
++ this.crc.updateCRC(currentCharShadow, runLengthShadow);
++ final byte[] block = dataShadow.block;
++
++ switch (runLengthShadow) {
++ case 1:
++ block[lastShadow + 2] = ch;
++ this.last = lastShadow + 1;
++ break;
++ case 2:
++ block[lastShadow + 2] = ch;
++ block[lastShadow + 3] = ch;
++ this.last = lastShadow + 2;
++ break;
++ case 3:
++ block[lastShadow + 2] = ch;
++ block[lastShadow + 3] = ch;
++ block[lastShadow + 4] = ch;
++ this.last = lastShadow + 3;
++ break;
++ default:
++ runLengthShadow -= 4;
++ dataShadow.inUse[runLengthShadow] = true;
++ block[lastShadow + 2] = ch;
++ block[lastShadow + 3] = ch;
++ block[lastShadow + 4] = ch;
++ block[lastShadow + 5] = ch;
++ block[lastShadow + 6] = (byte) runLengthShadow;
++ this.last = lastShadow + 5;
++ break;
++ }
++ } else {
++ endBlock();
++ initBlock();
++ writeRun();
++ }
++ }
++
++ /**
++ * Overridden to close the stream.
++ */
++ @Override
++ protected void finalize() throws Throwable {
++ finish();
++ super.finalize();
++ }
++
++
++ public void finish() throws IOException {
++ if (out != null) {
++ try {
++ if (this.runLength > 0) {
++ writeRun();
++ }
++ this.currentChar = -1;
++ endBlock();
++ endCompression();
++ } finally {
++ this.out = null;
++ this.data = null;
++ this.blockSorter = null;
++ }
++ }
++ }
++
++ @Override
++ public void close() throws IOException {
++ if (out != null) {
++ OutputStream outShadow = this.out;
++ finish();
++ outShadow.close();
++ }
++ }
++
++ @Override
++ public void flush() throws IOException {
++ OutputStream outShadow = this.out;
++ if (outShadow != null) {
++ outShadow.flush();
++ }
++ }
++
++ private void init() throws IOException {
++ // write magic: done by caller who created this stream
++ // this.out.write('B');
++ // this.out.write('Z');
++
++ this.data = new Data(this.blockSize100k);
++ this.blockSorter = new BlockSort(this.data);
++
++ /*
++ * Write `magic' bytes h indicating file-format == huffmanised, followed
++ * by a digit indicating blockSize100k.
++ */
++ bsPutUByte('h');
++ bsPutUByte('0' + this.blockSize100k);
++
++ this.combinedCRC = 0;
++ initBlock();
++ }
++
++ private void initBlock() {
++ // blockNo++;
++ this.crc.initialiseCRC();
++ this.last = -1;
++ // ch = 0;
++
++ boolean[] inUse = this.data.inUse;
++ for (int i = 256; --i >= 0;) {
++ inUse[i] = false;
++ }
++ }
++
++ private void endBlock() throws IOException {
++ this.blockCRC = this.crc.getFinalCRC();
++ this.combinedCRC = (this.combinedCRC << 1) | (this.combinedCRC >>> 31);
++ this.combinedCRC ^= this.blockCRC;
++
++ // empty block at end of file
++ if (this.last == -1) {
++ return;
++ }
++
++ /* sort the block and establish posn of original string */
++ blockSort();
++
++ /*
++ * A 6-byte block header, the value chosen arbitrarily as 0x314159265359
++ * :-). A 32 bit value does not really give a strong enough guarantee
++ * that the value will not appear by chance in the compressed
++ * datastream. Worst-case probability of this event, for a 900k block,
++ * is about 2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48
++ * bits. For a compressed file of size 100Gb -- about 100000 blocks --
++ * only a 48-bit marker will do. NB: normal compression/ decompression
++ * do not rely on these statistical properties. They are only important
++ * when trying to recover blocks from damaged files.
++ */
++ bsPutUByte(0x31);
++ bsPutUByte(0x41);
++ bsPutUByte(0x59);
++ bsPutUByte(0x26);
++ bsPutUByte(0x53);
++ bsPutUByte(0x59);
++
++ /* Now the block's CRC, so it is in a known place. */
++ bsPutInt(this.blockCRC);
++
++ /* Now a single bit indicating no randomisation. */
++ bsW(1, 0);
++
++ /* Finally, block's contents proper. */
++ moveToFrontCodeAndSend();
++ }
++
++ private void endCompression() throws IOException {
++ /*
++ * Now another magic 48-bit number, 0x177245385090, to indicate the end
++ * of the last block. (sqrt(pi), if you want to know. I did want to use
++ * e, but it contains too much repetition -- 27 18 28 18 28 46 -- for me
++ * to feel statistically comfortable. Call me paranoid.)
++ */
++ bsPutUByte(0x17);
++ bsPutUByte(0x72);
++ bsPutUByte(0x45);
++ bsPutUByte(0x38);
++ bsPutUByte(0x50);
++ bsPutUByte(0x90);
++
++ bsPutInt(this.combinedCRC);
++ bsFinishedWithStream();
++ }
++
++ /**
++ * Returns the blocksize parameter specified at construction time.
++ *
++ * @return int
++ */
++ public final int getBlockSize() {
++ return this.blockSize100k;
++ }
++
++ @Override
++ public void write(final byte[] buf, int offs, final int len)
++ throws IOException {
++ if (offs < 0) {
++ throw new IndexOutOfBoundsException("offs(" + offs + ") < 0.");
++ }
++ if (len < 0) {
++ throw new IndexOutOfBoundsException("len(" + len + ") < 0.");
++ }
++ if (offs + len > buf.length) {
++ throw new IndexOutOfBoundsException("offs(" + offs + ") + len("
++ + len + ") > buf.length("
++ + buf.length + ").");
++ }
++ if (this.out == null) {
++ throw new IOException("stream closed");
++ }
++
++ for (int hi = offs + len; offs < hi;) {
++ write0(buf[offs++]);
++ }
++ }
++
++ /**
++ * Keeps track of the last bytes written and implicitly performs
++ * run-length encoding as the first step of the bzip2 algorithm.
++ */
++ private void write0(int b) throws IOException {
++ if (this.currentChar != -1) {
++ b &= 0xff;
++ if (this.currentChar == b) {
++ if (++this.runLength > 254) {
++ writeRun();
++ this.currentChar = -1;
++ this.runLength = 0;
++ }
++ // else nothing to do
++ } else {
++ writeRun();
++ this.runLength = 1;
++ this.currentChar = b;
++ }
++ } else {
++ this.currentChar = b & 0xff;
++ this.runLength++;
++ }
++ }
++
++ private static void hbAssignCodes(final int[] code, final byte[] length,
++ final int minLen, final int maxLen,
++ final int alphaSize) {
++ int vec = 0;
++ for (int n = minLen; n <= maxLen; n++) {
++ for (int i = 0; i < alphaSize; i++) {
++ if ((length[i] & 0xff) == n) {
++ code[i] = vec;
++ vec++;
++ }
++ }
++ vec <<= 1;
++ }
++ }
++
++ private void bsFinishedWithStream() throws IOException {
++ while (this.bsLive > 0) {
++ int ch = this.bsBuff >> 24;
++ this.out.write(ch); // write 8-bit
++ this.bsBuff <<= 8;
++ this.bsLive -= 8;
++ }
++ }
++
++ private void bsW(final int n, final int v) throws IOException {
++ final OutputStream outShadow = this.out;
++ int bsLiveShadow = this.bsLive;
++ int bsBuffShadow = this.bsBuff;
++
++ while (bsLiveShadow >= 8) {
++ outShadow.write(bsBuffShadow >> 24); // write 8-bit
++ bsBuffShadow <<= 8;
++ bsLiveShadow -= 8;
++ }
++
++ this.bsBuff = bsBuffShadow | (v << (32 - bsLiveShadow - n));
++ this.bsLive = bsLiveShadow + n;
++ }
++
++ private void bsPutUByte(final int c) throws IOException {
++ bsW(8, c);
++ }
++
++ private void bsPutInt(final int u) throws IOException {
++ bsW(8, (u >> 24) & 0xff);
++ bsW(8, (u >> 16) & 0xff);
++ bsW(8, (u >> 8) & 0xff);
++ bsW(8, u & 0xff);
++ }
++
++ private void sendMTFValues() throws IOException {
++ final byte[][] len = this.data.sendMTFValues_len;
++ final int alphaSize = this.nInUse + 2;
++
++ for (int t = N_GROUPS; --t >= 0;) {
++ byte[] len_t = len[t];
++ for (int v = alphaSize; --v >= 0;) {
++ len_t[v] = GREATER_ICOST;
++ }
++ }
++
++ /* Decide how many coding tables to use */
++ // assert (this.nMTF > 0) : this.nMTF;
++ final int nGroups = (this.nMTF < 200) ? 2 : (this.nMTF < 600) ? 3
++ : (this.nMTF < 1200) ? 4 : (this.nMTF < 2400) ? 5 : 6;
++
++ /* Generate an initial set of coding tables */
++ sendMTFValues0(nGroups, alphaSize);
++
++ /*
++ * Iterate up to N_ITERS times to improve the tables.
++ */
++ final int nSelectors = sendMTFValues1(nGroups, alphaSize);
++
++ /* Compute MTF values for the selectors. */
++ sendMTFValues2(nGroups, nSelectors);
++
++ /* Assign actual codes for the tables. */
++ sendMTFValues3(nGroups, alphaSize);
++
++ /* Transmit the mapping table. */
++ sendMTFValues4();
++
++ /* Now the selectors. */
++ sendMTFValues5(nGroups, nSelectors);
++
++ /* Now the coding tables. */
++ sendMTFValues6(nGroups, alphaSize);
++
++ /* And finally, the block data proper */
++ sendMTFValues7();
++ }
++
++ private void sendMTFValues0(final int nGroups, final int alphaSize) {
++ final byte[][] len = this.data.sendMTFValues_len;
++ final int[] mtfFreq = this.data.mtfFreq;
++
++ int remF = this.nMTF;
++ int gs = 0;
++
++ for (int nPart = nGroups; nPart > 0; nPart--) {
++ final int tFreq = remF / nPart;
++ int ge = gs - 1;
++ int aFreq = 0;
++
++ while (aFreq < tFreq && ge < alphaSize - 1) {
++ aFreq += mtfFreq[++ge];
++ }
++
++ if (ge > gs && nPart != nGroups && nPart != 1 && (nGroups - nPart & 1) != 0) {
++ aFreq -= mtfFreq[ge--];
++ }
++
++ final byte[] len_np = len[nPart - 1];
++ for (int v = alphaSize; --v >= 0;) {
++ if (v >= gs && v <= ge) {
++ len_np[v] = LESSER_ICOST;
++ } else {
++ len_np[v] = GREATER_ICOST;
++ }
++ }
++
++ gs = ge + 1;
++ remF -= aFreq;
++ }
++ }
++
++ private int sendMTFValues1(final int nGroups, final int alphaSize) {
++ final Data dataShadow = this.data;
++ final int[][] rfreq = dataShadow.sendMTFValues_rfreq;
++ final int[] fave = dataShadow.sendMTFValues_fave;
++ final short[] cost = dataShadow.sendMTFValues_cost;
++ final char[] sfmap = dataShadow.sfmap;
++ final byte[] selector = dataShadow.selector;
++ final byte[][] len = dataShadow.sendMTFValues_len;
++ final byte[] len_0 = len[0];
++ final byte[] len_1 = len[1];
++ final byte[] len_2 = len[2];
++ final byte[] len_3 = len[3];
++ final byte[] len_4 = len[4];
++ final byte[] len_5 = len[5];
++ final int nMTFShadow = this.nMTF;
++
++ int nSelectors = 0;
++
++ for (int iter = 0; iter < N_ITERS; iter++) {
++ for (int t = nGroups; --t >= 0;) {
++ fave[t] = 0;
++ int[] rfreqt = rfreq[t];
++ for (int i = alphaSize; --i >= 0;) {
++ rfreqt[i] = 0;
++ }
++ }
++
++ nSelectors = 0;
++
++ for (int gs = 0; gs < this.nMTF;) {
++ /* Set group start & end marks. */
++
++ /*
++ * Calculate the cost of this group as coded by each of the
++ * coding tables.
++ */
++
++ final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1);
++
++ if (nGroups == N_GROUPS) {
++ // unrolled version of the else-block
++
++ short cost0 = 0;
++ short cost1 = 0;
++ short cost2 = 0;
++ short cost3 = 0;
++ short cost4 = 0;
++ short cost5 = 0;
++
++ for (int i = gs; i <= ge; i++) {
++ final int icv = sfmap[i];
++ cost0 += len_0[icv] & 0xff;
++ cost1 += len_1[icv] & 0xff;
++ cost2 += len_2[icv] & 0xff;
++ cost3 += len_3[icv] & 0xff;
++ cost4 += len_4[icv] & 0xff;
++ cost5 += len_5[icv] & 0xff;
++ }
++
++ cost[0] = cost0;
++ cost[1] = cost1;
++ cost[2] = cost2;
++ cost[3] = cost3;
++ cost[4] = cost4;
++ cost[5] = cost5;
++
++ } else {
++ for (int t = nGroups; --t >= 0;) {
++ cost[t] = 0;
++ }
++
++ for (int i = gs; i <= ge; i++) {
++ final int icv = sfmap[i];
++ for (int t = nGroups; --t >= 0;) {
++ cost[t] += len[t][icv] & 0xff;
++ }
++ }
++ }
++
++ /*
++ * Find the coding table which is best for this group, and
++ * record its identity in the selector table.
++ */
++ int bt = -1;
++ for (int t = nGroups, bc = 999999999; --t >= 0;) {
++ final int cost_t = cost[t];
++ if (cost_t < bc) {
++ bc = cost_t;
++ bt = t;
++ }
++ }
++
++ fave[bt]++;
++ selector[nSelectors] = (byte) bt;
++ nSelectors++;
++
++ /*
++ * Increment the symbol frequencies for the selected table.
++ */
++ final int[] rfreq_bt = rfreq[bt];
++ for (int i = gs; i <= ge; i++) {
++ rfreq_bt[sfmap[i]]++;
++ }
++
++ gs = ge + 1;
++ }
++
++ /*
++ * Recompute the tables based on the accumulated frequencies.
++ */
++ for (int t = 0; t < nGroups; t++) {
++ hbMakeCodeLengths(len[t], rfreq[t], this.data, alphaSize, 20);
++ }
++ }
++
++ return nSelectors;
++ }
++
++ private void sendMTFValues2(final int nGroups, final int nSelectors) {
++ // assert (nGroups < 8) : nGroups;
++
++ final Data dataShadow = this.data;
++ byte[] pos = dataShadow.sendMTFValues2_pos;
++
++ for (int i = nGroups; --i >= 0;) {
++ pos[i] = (byte) i;
++ }
++
++ for (int i = 0; i < nSelectors; i++) {
++ final byte ll_i = dataShadow.selector[i];
++ byte tmp = pos[0];
++ int j = 0;
++
++ while (ll_i != tmp) {
++ j++;
++ byte tmp2 = tmp;
++ tmp = pos[j];
++ pos[j] = tmp2;
++ }
++
++ pos[0] = tmp;
++ dataShadow.selectorMtf[i] = (byte) j;
++ }
++ }
++
++ private void sendMTFValues3(final int nGroups, final int alphaSize) {
++ int[][] code = this.data.sendMTFValues_code;
++ byte[][] len = this.data.sendMTFValues_len;
++
++ for (int t = 0; t < nGroups; t++) {
++ int minLen = 32;
++ int maxLen = 0;
++ final byte[] len_t = len[t];
++ for (int i = alphaSize; --i >= 0;) {
++ final int l = len_t[i] & 0xff;
++ if (l > maxLen) {
++ maxLen = l;
++ }
++ if (l < minLen) {
++ minLen = l;
++ }
++ }
++
++ // assert (maxLen <= 20) : maxLen;
++ // assert (minLen >= 1) : minLen;
++
++ hbAssignCodes(code[t], len[t], minLen, maxLen, alphaSize);
++ }
++ }
++
++ private void sendMTFValues4() throws IOException {
++ final boolean[] inUse = this.data.inUse;
++ final boolean[] inUse16 = this.data.sentMTFValues4_inUse16;
++
++ for (int i = 16; --i >= 0;) {
++ inUse16[i] = false;
++ final int i16 = i * 16;
++ for (int j = 16; --j >= 0;) {
++ if (inUse[i16 + j]) {
++ inUse16[i] = true;
++ }
++ }
++ }
++
++ for (int i = 0; i < 16; i++) {
++ bsW(1, inUse16[i] ? 1 : 0);
++ }
++
++ final OutputStream outShadow = this.out;
++ int bsLiveShadow = this.bsLive;
++ int bsBuffShadow = this.bsBuff;
++
++ for (int i = 0; i < 16; i++) {
++ if (inUse16[i]) {
++ final int i16 = i * 16;
++ for (int j = 0; j < 16; j++) {
++ // inlined: bsW(1, inUse[i16 + j] ? 1 : 0);
++ while (bsLiveShadow >= 8) {
++ outShadow.write(bsBuffShadow >> 24); // write 8-bit
++ bsBuffShadow <<= 8;
++ bsLiveShadow -= 8;
++ }
++ if (inUse[i16 + j]) {
++ bsBuffShadow |= 1 << (32 - bsLiveShadow - 1);
++ }
++ bsLiveShadow++;
++ }
++ }
++ }
++
++ this.bsBuff = bsBuffShadow;
++ this.bsLive = bsLiveShadow;
++ }
++
++ private void sendMTFValues5(final int nGroups, final int nSelectors)
++ throws IOException {
++ bsW(3, nGroups);
++ bsW(15, nSelectors);
++
++ final OutputStream outShadow = this.out;
++ final byte[] selectorMtf = this.data.selectorMtf;
++
++ int bsLiveShadow = this.bsLive;
++ int bsBuffShadow = this.bsBuff;
++
++ for (int i = 0; i < nSelectors; i++) {
++ for (int j = 0, hj = selectorMtf[i] & 0xff; j < hj; j++) {
++ // inlined: bsW(1, 1);
++ while (bsLiveShadow >= 8) {
++ outShadow.write(bsBuffShadow >> 24);
++ bsBuffShadow <<= 8;
++ bsLiveShadow -= 8;
++ }
++ bsBuffShadow |= 1 << (32 - bsLiveShadow - 1);
++ bsLiveShadow++;
++ }
++
++ // inlined: bsW(1, 0);
++ while (bsLiveShadow >= 8) {
++ outShadow.write(bsBuffShadow >> 24);
++ bsBuffShadow <<= 8;
++ bsLiveShadow -= 8;
++ }
++ // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1);
++ bsLiveShadow++;
++ }
++
++ this.bsBuff = bsBuffShadow;
++ this.bsLive = bsLiveShadow;
++ }
++
++ private void sendMTFValues6(final int nGroups, final int alphaSize)
++ throws IOException {
++ final byte[][] len = this.data.sendMTFValues_len;
++ final OutputStream outShadow = this.out;
++
++ int bsLiveShadow = this.bsLive;
++ int bsBuffShadow = this.bsBuff;
++
++ for (int t = 0; t < nGroups; t++) {
++ byte[] len_t = len[t];
++ int curr = len_t[0] & 0xff;
++
++ // inlined: bsW(5, curr);
++ while (bsLiveShadow >= 8) {
++ outShadow.write(bsBuffShadow >> 24); // write 8-bit
++ bsBuffShadow <<= 8;
++ bsLiveShadow -= 8;
++ }
++ bsBuffShadow |= curr << (32 - bsLiveShadow - 5);
++ bsLiveShadow += 5;
++
++ for (int i = 0; i < alphaSize; i++) {
++ int lti = len_t[i] & 0xff;
++ while (curr < lti) {
++ // inlined: bsW(2, 2);
++ while (bsLiveShadow >= 8) {
++ outShadow.write(bsBuffShadow >> 24); // write 8-bit
++ bsBuffShadow <<= 8;
++ bsLiveShadow -= 8;
++ }
++ bsBuffShadow |= 2 << (32 - bsLiveShadow - 2);
++ bsLiveShadow += 2;
++
++ curr++; /* 10 */
++ }
++
++ while (curr > lti) {
++ // inlined: bsW(2, 3);
++ while (bsLiveShadow >= 8) {
++ outShadow.write(bsBuffShadow >> 24); // write 8-bit
++ bsBuffShadow <<= 8;
++ bsLiveShadow -= 8;
++ }
++ bsBuffShadow |= 3 << (32 - bsLiveShadow - 2);
++ bsLiveShadow += 2;
++
++ curr--; /* 11 */
++ }
++
++ // inlined: bsW(1, 0);
++ while (bsLiveShadow >= 8) {
++ outShadow.write(bsBuffShadow >> 24); // write 8-bit
++ bsBuffShadow <<= 8;
++ bsLiveShadow -= 8;
++ }
++ // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1);
++ bsLiveShadow++;
++ }
++ }
++
++ this.bsBuff = bsBuffShadow;
++ this.bsLive = bsLiveShadow;
++ }
++
++ private void sendMTFValues7() throws IOException {
++ final Data dataShadow = this.data;
++ final byte[][] len = dataShadow.sendMTFValues_len;
++ final int[][] code = dataShadow.sendMTFValues_code;
++ final OutputStream outShadow = this.out;
++ final byte[] selector = dataShadow.selector;
++ final char[] sfmap = dataShadow.sfmap;
++ final int nMTFShadow = this.nMTF;
++
++ int selCtr = 0;
++
++ int bsLiveShadow = this.bsLive;
++ int bsBuffShadow = this.bsBuff;
++
++ for (int gs = 0; gs < nMTFShadow;) {
++ final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1);
++ final int selector_selCtr = selector[selCtr] & 0xff;
++ final int[] code_selCtr = code[selector_selCtr];
++ final byte[] len_selCtr = len[selector_selCtr];
++
++ while (gs <= ge) {
++ final int sfmap_i = sfmap[gs];
++
++ //
++ // inlined: bsW(len_selCtr[sfmap_i] & 0xff,
++ // code_selCtr[sfmap_i]);
++ //
++ while (bsLiveShadow >= 8) {
++ outShadow.write(bsBuffShadow >> 24);
++ bsBuffShadow <<= 8;
++ bsLiveShadow -= 8;
++ }
++ final int n = len_selCtr[sfmap_i] & 0xFF;
++ bsBuffShadow |= code_selCtr[sfmap_i] << (32 - bsLiveShadow - n);
++ bsLiveShadow += n;
++
++ gs++;
++ }
++
++ gs = ge + 1;
++ selCtr++;
++ }
++
++ this.bsBuff = bsBuffShadow;
++ this.bsLive = bsLiveShadow;
++ }
++
++ private void moveToFrontCodeAndSend() throws IOException {
++ bsW(24, this.data.origPtr);
++ generateMTFValues();
++ sendMTFValues();
++ }
++
++ private void blockSort() {
++ blockSorter.blockSort(data, last);
++ }
++
++ /*
++ * Performs Move-To-Front on the Burrows-Wheeler transformed
++ * buffer, storing the MTFed data in data.sfmap in RUNA/RUNB
++ * run-length-encoded form.
++ *
++ * <p>Keeps track of byte frequencies in data.mtfFreq at the same time.</p>
++ */
++ private void generateMTFValues() {
++ final int lastShadow = this.last;
++ final Data dataShadow = this.data;
++ final boolean[] inUse = dataShadow.inUse;
++ final byte[] block = dataShadow.block;
++ final int[] fmap = dataShadow.fmap;
++ final char[] sfmap = dataShadow.sfmap;
++ final int[] mtfFreq = dataShadow.mtfFreq;
++ final byte[] unseqToSeq = dataShadow.unseqToSeq;
++ final byte[] yy = dataShadow.generateMTFValues_yy;
++
++ // make maps
++ int nInUseShadow = 0;
++ for (int i = 0; i < 256; i++) {
++ if (inUse[i]) {
++ unseqToSeq[i] = (byte) nInUseShadow;
++ nInUseShadow++;
++ }
++ }
++ this.nInUse = nInUseShadow;
++
++ final int eob = nInUseShadow + 1;
++
++ for (int i = eob; i >= 0; i--) {
++ mtfFreq[i] = 0;
++ }
++
++ for (int i = nInUseShadow; --i >= 0;) {
++ yy[i] = (byte) i;
++ }
++
++ int wr = 0;
++ int zPend = 0;
++
++ for (int i = 0; i <= lastShadow; i++) {
++ final byte ll_i = unseqToSeq[block[fmap[i]] & 0xff];
++ byte tmp = yy[0];
++ int j = 0;
++
++ while (ll_i != tmp) {
++ j++;
++ byte tmp2 = tmp;
++ tmp = yy[j];
++ yy[j] = tmp2;
++ }
++ yy[0] = tmp;
++
++ if (j == 0) {
++ zPend++;
++ } else {
++ if (zPend > 0) {
++ zPend--;
++ while (true) {
++ if ((zPend & 1) == 0) {
++ sfmap[wr] = RUNA;
++ wr++;
++ mtfFreq[RUNA]++;
++ } else {
++ sfmap[wr] = RUNB;
++ wr++;
++ mtfFreq[RUNB]++;
++ }
++
++ if (zPend >= 2) {
++ zPend = (zPend - 2) >> 1;
++ } else {
++ break;
++ }
++ }
++ zPend = 0;
++ }
++ sfmap[wr] = (char) (j + 1);
++ wr++;
++ mtfFreq[j + 1]++;
++ }
++ }
++
++ if (zPend > 0) {
++ zPend--;
++ while (true) {
++ if ((zPend & 1) == 0) {
++ sfmap[wr] = RUNA;
++ wr++;
++ mtfFreq[RUNA]++;
++ } else {
++ sfmap[wr] = RUNB;
++ wr++;
++ mtfFreq[RUNB]++;
++ }
++
++ if (zPend >= 2) {
++ zPend = (zPend - 2) >> 1;
++ } else {
++ break;
++ }
++ }
++ }
++
++ sfmap[wr] = (char) eob;
++ mtfFreq[eob]++;
++ this.nMTF = wr + 1;
++ }
++
++ static final class Data {
++
++ // with blockSize 900k
++ /* maps unsigned byte => "does it occur in block" */
++ final boolean[] inUse = new boolean[256]; // 256 byte
++ final byte[] unseqToSeq = new byte[256]; // 256 byte
++ final int[] mtfFreq = new int[MAX_ALPHA_SIZE]; // 1032 byte
++ final byte[] selector = new byte[MAX_SELECTORS]; // 18002 byte
++ final byte[] selectorMtf = new byte[MAX_SELECTORS]; // 18002 byte
++
++ final byte[] generateMTFValues_yy = new byte[256]; // 256 byte
++ final byte[][] sendMTFValues_len = new byte[N_GROUPS][MAX_ALPHA_SIZE]; // 1548
++ // byte
++ final int[][] sendMTFValues_rfreq = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192
++ // byte
++ final int[] sendMTFValues_fave = new int[N_GROUPS]; // 24 byte
++ final short[] sendMTFValues_cost = new short[N_GROUPS]; // 12 byte
++ final int[][] sendMTFValues_code = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192
++ // byte
++ final byte[] sendMTFValues2_pos = new byte[N_GROUPS]; // 6 byte
++ final boolean[] sentMTFValues4_inUse16 = new boolean[16]; // 16 byte
++
++ final int[] heap = new int[MAX_ALPHA_SIZE + 2]; // 1040 byte
++ final int[] weight = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte
++ final int[] parent = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte
++
++ // ------------
++ // 333408 byte
++
++ /* holds the RLEd block of original data starting at index 1.
++ * After sorting the last byte added to the buffer is at index
++ * 0. */
++ final byte[] block; // 900021 byte
++ /* maps index in Burrows-Wheeler transformed block => index of
++ * byte in original block */
++ final int[] fmap; // 3600000 byte
++ final char[] sfmap; // 3600000 byte
++ // ------------
++ // 8433529 byte
++ // ============
++
++ /**
++ * Index of original line in Burrows-Wheeler table.
++ *
++ * <p>This is the index in fmap that points to the last byte
++ * of the original data.</p>
++ */
++ int origPtr;
++
++ Data(int blockSize100k) {
++ super();
++
++ final int n = blockSize100k * BZip2Constants.baseBlockSize;
++ this.block = new byte[(n + 1 + NUM_OVERSHOOT_BYTES)];
++ this.fmap = new int[n];
++ this.sfmap = new char[2 * n];
++ }
++
++ }
++
++}
+diff --git a/src/main/java/org/apache/tools/bzip2/CRC.java b/src/main/java/org/apache/tools/bzip2/CRC.java
+new file mode 100644
+index 0000000..9fbb038
+--- /dev/null
++++ b/src/main/java/org/apache/tools/bzip2/CRC.java
+@@ -0,0 +1,141 @@
++/*
++ * Licensed to the Apache Software Foundation (ASF) under one or more
++ * contributor license agreements. See the NOTICE file distributed with
++ * this work for additional information regarding copyright ownership.
++ * The ASF licenses this file to You under the Apache License, Version 2.0
++ * (the "License"); you may not use this file except in compliance with
++ * the License. You may obtain a copy of the License at
++ *
++ * https://www.apache.org/licenses/LICENSE-2.0
++ *
++ * Unless required by applicable law or agreed to in writing, software
++ * distributed under the License is distributed on an "AS IS" BASIS,
++ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
++ * See the License for the specific language governing permissions and
++ * limitations under the License.
++ *
++ */
++
++/*
++ * This package is based on the work done by Keiron Liddle, Aftex Software
++ * <keiron at aftexsw.com> to whom the Ant project is very grateful for his
++ * great code.
++ */
++
++package org.apache.tools.bzip2;
++
++/**
++ * A simple class the hold and calculate the CRC for sanity checking
++ * of the data.
++ *
++ */
++final class CRC {
++ static final int crc32Table[] = { //NOSONAR
++ 0x00000000, 0x04c11db7, 0x09823b6e, 0x0d4326d9,
++ 0x130476dc, 0x17c56b6b, 0x1a864db2, 0x1e475005,
++ 0x2608edb8, 0x22c9f00f, 0x2f8ad6d6, 0x2b4bcb61,
++ 0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd,
++ 0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9,
++ 0x5f15adac, 0x5bd4b01b, 0x569796c2, 0x52568b75,
++ 0x6a1936c8, 0x6ed82b7f, 0x639b0da6, 0x675a1011,
++ 0x791d4014, 0x7ddc5da3, 0x709f7b7a, 0x745e66cd,
++ 0x9823b6e0, 0x9ce2ab57, 0x91a18d8e, 0x95609039,
++ 0x8b27c03c, 0x8fe6dd8b, 0x82a5fb52, 0x8664e6e5,
++ 0xbe2b5b58, 0xbaea46ef, 0xb7a96036, 0xb3687d81,
++ 0xad2f2d84, 0xa9ee3033, 0xa4ad16ea, 0xa06c0b5d,
++ 0xd4326d90, 0xd0f37027, 0xddb056fe, 0xd9714b49,
++ 0xc7361b4c, 0xc3f706fb, 0xceb42022, 0xca753d95,
++ 0xf23a8028, 0xf6fb9d9f, 0xfbb8bb46, 0xff79a6f1,
++ 0xe13ef6f4, 0xe5ffeb43, 0xe8bccd9a, 0xec7dd02d,
++ 0x34867077, 0x30476dc0, 0x3d044b19, 0x39c556ae,
++ 0x278206ab, 0x23431b1c, 0x2e003dc5, 0x2ac12072,
++ 0x128e9dcf, 0x164f8078, 0x1b0ca6a1, 0x1fcdbb16,
++ 0x018aeb13, 0x054bf6a4, 0x0808d07d, 0x0cc9cdca,
++ 0x7897ab07, 0x7c56b6b0, 0x71159069, 0x75d48dde,
++ 0x6b93dddb, 0x6f52c06c, 0x6211e6b5, 0x66d0fb02,
++ 0x5e9f46bf, 0x5a5e5b08, 0x571d7dd1, 0x53dc6066,
++ 0x4d9b3063, 0x495a2dd4, 0x44190b0d, 0x40d816ba,
++ 0xaca5c697, 0xa864db20, 0xa527fdf9, 0xa1e6e04e,
++ 0xbfa1b04b, 0xbb60adfc, 0xb6238b25, 0xb2e29692,
++ 0x8aad2b2f, 0x8e6c3698, 0x832f1041, 0x87ee0df6,
++ 0x99a95df3, 0x9d684044, 0x902b669d, 0x94ea7b2a,
++ 0xe0b41de7, 0xe4750050, 0xe9362689, 0xedf73b3e,
++ 0xf3b06b3b, 0xf771768c, 0xfa325055, 0xfef34de2,
++ 0xc6bcf05f, 0xc27dede8, 0xcf3ecb31, 0xcbffd686,
++ 0xd5b88683, 0xd1799b34, 0xdc3abded, 0xd8fba05a,
++ 0x690ce0ee, 0x6dcdfd59, 0x608edb80, 0x644fc637,
++ 0x7a089632, 0x7ec98b85, 0x738aad5c, 0x774bb0eb,
++ 0x4f040d56, 0x4bc510e1, 0x46863638, 0x42472b8f,
++ 0x5c007b8a, 0x58c1663d, 0x558240e4, 0x51435d53,
++ 0x251d3b9e, 0x21dc2629, 0x2c9f00f0, 0x285e1d47,
++ 0x36194d42, 0x32d850f5, 0x3f9b762c, 0x3b5a6b9b,
++ 0x0315d626, 0x07d4cb91, 0x0a97ed48, 0x0e56f0ff,
++ 0x1011a0fa, 0x14d0bd4d, 0x19939b94, 0x1d528623,
++ 0xf12f560e, 0xf5ee4bb9, 0xf8ad6d60, 0xfc6c70d7,
++ 0xe22b20d2, 0xe6ea3d65, 0xeba91bbc, 0xef68060b,
++ 0xd727bbb6, 0xd3e6a601, 0xdea580d8, 0xda649d6f,
++ 0xc423cd6a, 0xc0e2d0dd, 0xcda1f604, 0xc960ebb3,
++ 0xbd3e8d7e, 0xb9ff90c9, 0xb4bcb610, 0xb07daba7,
++ 0xae3afba2, 0xaafbe615, 0xa7b8c0cc, 0xa379dd7b,
++ 0x9b3660c6, 0x9ff77d71, 0x92b45ba8, 0x9675461f,
++ 0x8832161a, 0x8cf30bad, 0x81b02d74, 0x857130c3,
++ 0x5d8a9099, 0x594b8d2e, 0x5408abf7, 0x50c9b640,
++ 0x4e8ee645, 0x4a4ffbf2, 0x470cdd2b, 0x43cdc09c,
++ 0x7b827d21, 0x7f436096, 0x7200464f, 0x76c15bf8,
++ 0x68860bfd, 0x6c47164a, 0x61043093, 0x65c52d24,
++ 0x119b4be9, 0x155a565e, 0x18197087, 0x1cd86d30,
++ 0x029f3d35, 0x065e2082, 0x0b1d065b, 0x0fdc1bec,
++ 0x3793a651, 0x3352bbe6, 0x3e119d3f, 0x3ad08088,
++ 0x2497d08d, 0x2056cd3a, 0x2d15ebe3, 0x29d4f654,
++ 0xc5a92679, 0xc1683bce, 0xcc2b1d17, 0xc8ea00a0,
++ 0xd6ad50a5, 0xd26c4d12, 0xdf2f6bcb, 0xdbee767c,
++ 0xe3a1cbc1, 0xe760d676, 0xea23f0af, 0xeee2ed18,
++ 0xf0a5bd1d, 0xf464a0aa, 0xf9278673, 0xfde69bc4,
++ 0x89b8fd09, 0x8d79e0be, 0x803ac667, 0x84fbdbd0,
++ 0x9abc8bd5, 0x9e7d9662, 0x933eb0bb, 0x97ffad0c,
++ 0xafb010b1, 0xab710d06, 0xa6322bdf, 0xa2f33668,
++ 0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4
++ };
++
++ CRC() {
++ initialiseCRC();
++ }
++
++ void initialiseCRC() {
++ globalCrc = 0xffffffff;
++ }
++
++ int getFinalCRC() {
++ return ~globalCrc;
++ }
++
++ int getGlobalCRC() {
++ return globalCrc;
++ }
++
++ void setGlobalCRC(int newCrc) {
++ globalCrc = newCrc;
++ }
++
++ void updateCRC(int inCh) {
++ int temp = (globalCrc >> 24) ^ inCh;
++ if (temp < 0) {
++ temp = 256 + temp;
++ }
++ globalCrc = (globalCrc << 8) ^ CRC.crc32Table[temp];
++ }
++
++ void updateCRC(int inCh, int repeat) {
++ int globalCrcShadow = this.globalCrc;
++ while (repeat-- > 0) {
++ int temp = (globalCrcShadow >> 24) ^ inCh;
++ globalCrcShadow = (globalCrcShadow << 8) ^ crc32Table[(temp >= 0)
++ ? temp
++ : (temp + 256)];
++ }
++ this.globalCrc = globalCrcShadow;
++ }
++
++ int globalCrc;
++}
++
View it on GitLab: https://salsa.debian.org/java-team/openrefine-vicino/-/compare/4269c0d720adafff7ba0159e1a2d9aed7f7f0ea1...66d8dd7fcaeacd3a128b70741c551280a716e632
--
View it on GitLab: https://salsa.debian.org/java-team/openrefine-vicino/-/compare/4269c0d720adafff7ba0159e1a2d9aed7f7f0ea1...66d8dd7fcaeacd3a128b70741c551280a716e632
You're receiving this email because of your account on salsa.debian.org.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://alioth-lists.debian.net/pipermail/pkg-java-commits/attachments/20211017/d5cba6ff/attachment.htm>
More information about the pkg-java-commits
mailing list