[Pkg-javascript-commits] [science.js] 63/87: Include lin and stats modules in science.js main file

bhuvan krishna bhuvan-guest at moszumanska.debian.org
Thu Dec 8 06:12:00 UTC 2016


This is an automated email from the git hooks/post-receive script.

bhuvan-guest pushed a commit to branch master
in repository science.js.

commit 1290c2a7884680a4c9b4331fb23830c3f644736d
Author: Kristofer Monisit <kmonisit at gmail.com>
Date:   Tue Mar 20 12:54:45 2012 +0800

    Include lin and stats modules in science.js main file
---
 Makefile             |   10 +-
 science.js           | 1663 ++++++++++++++++++++++++++++++++++++++++++++++++++
 science.lin.js       |    3 +-
 science.lin.min.js   |    2 +-
 science.min.js       |    2 +-
 science.stats.js     |    3 +-
 science.stats.min.js |    2 +-
 7 files changed, 1672 insertions(+), 13 deletions(-)

diff --git a/Makefile b/Makefile
index 1680b7f..e3d69cd 100644
--- a/Makefile
+++ b/Makefile
@@ -13,6 +13,8 @@ all: \
 .INTERMEDIATE science.js: \
 	src/start.js \
 	science.core.js \
+	science.lin.js \
+	science.stats.js \
 	src/end.js \
 	src/export.js
 
@@ -27,7 +29,6 @@ science.core.js: \
 	src/core/zeroes.js
 
 science.lin.js: \
-	src/start.js \
 	src/lin/lin.js \
 	src/lin/decompose.js \
 	src/lin/cross.js \
@@ -39,11 +40,9 @@ science.lin.js: \
 	src/lin/inverse.js \
 	src/lin/multiply.js \
 	src/lin/transpose.js \
-	src/lin/tridag.js \
-	src/end.js
+	src/lin/tridag.js
 
 science.stats.js: \
-	src/start.js \
 	src/stats/stats.js \
 	src/stats/bandwidth.js \
 	src/stats/distance.js \
@@ -61,8 +60,7 @@ science.stats.js: \
 	src/stats/quantiles.js \
 	src/stats/variance.js \
 	src/stats/distribution.js \
-	src/stats/distribution/gaussian.js \
-	src/end.js
+	src/stats/distribution/gaussian.js
 
 test: all
 	@$(JS_TESTER)
diff --git a/science.js b/science.js
index c34933d..db942e8 100644
--- a/science.js
+++ b/science.js
@@ -69,5 +69,1668 @@ science.zeroes = function(n) {
         this, Array.prototype.slice.call(arguments, 1));
   return a;
 };
+science.lin = {};
+science.lin.decompose = function() {
+
+  function decompose(A) {
+    var n = A.length, // column dimension
+        V = [],
+        d = [],
+        e = [];
+
+    for (var i = 0; i < n; i++) {
+      V[i] = [];
+      d[i] = [];
+      e[i] = [];
+    }
+
+    var symmetric = true;
+    for (var j = 0; j < n; j++) {
+      for (var i = 0; i < n; i++) {
+        if (A[i][j] !== A[j][i]) {
+          symmetric = false;
+          break;
+        }
+      }
+    }
+
+    if (symmetric) {
+      for (var i = 0; i < n; i++) V[i] = A[i].slice();
+
+      // Tridiagonalize.
+      science_lin_decomposeTred2(d, e, V);
+
+      // Diagonalize.
+      science_lin_decomposeTql2(d, e, V);
+    } else {
+      var H = [];
+      for (var i = 0; i < n; i++) H[i] = A[i].slice();
+
+      // Reduce to Hessenberg form.
+      science_lin_decomposeOrthes(H, V);
+
+      // Reduce Hessenberg to real Schur form.
+      science_lin_decomposeHqr2(d, e, H, V);
+    }
+
+    var D = [];
+    for (var i = 0; i < n; i++) {
+      var row = D[i] = [];
+      for (var j = 0; j < n; j++) row[j] = i === j ? d[i] : 0;
+      D[i][e[i] > 0 ? i + 1 : i - 1] = e[i];
+    }
+    return {D: D, V: V};
+  }
+
+  return decompose;
+};
+
+// Symmetric Householder reduction to tridiagonal form.
+function science_lin_decomposeTred2(d, e, V) {
+  // This is derived from the Algol procedures tred2 by
+  // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
+  // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
+  // Fortran subroutine in EISPACK.
+
+  var n = V.length;
+
+  for (var j = 0; j < n; j++) d[j] = V[n - 1][j];
+
+  // Householder reduction to tridiagonal form.
+  for (var i = n - 1; i > 0; i--) {
+    // Scale to avoid under/overflow.
+
+    var scale = 0,
+        h = 0;
+    for (var k = 0; k < i; k++) scale += Math.abs(d[k]);
+    if (scale === 0) {
+      e[i] = d[i - 1];
+      for (var j = 0; j < i; j++) {
+        d[j] = V[i - 1][j];
+        V[i][j] = 0;
+        V[j][i] = 0;
+      }
+    } else {
+      // Generate Householder vector.
+      for (var k = 0; k < i; k++) {
+        d[k] /= scale;
+        h += d[k] * d[k];
+      }
+      var f = d[i - 1];
+      var g = Math.sqrt(h);
+      if (f > 0) g = -g;
+      e[i] = scale * g;
+      h = h - f * g;
+      d[i - 1] = f - g;
+      for (var j = 0; j < i; j++) e[j] = 0;
+
+      // Apply similarity transformation to remaining columns.
+
+      for (var j = 0; j < i; j++) {
+        f = d[j];
+        V[j][i] = f;
+        g = e[j] + V[j][j] * f;
+        for (var k = j+1; k <= i - 1; k++) {
+          g += V[k][j] * d[k];
+          e[k] += V[k][j] * f;
+        }
+        e[j] = g;
+      }
+      f = 0;
+      for (var j = 0; j < i; j++) {
+        e[j] /= h;
+        f += e[j] * d[j];
+      }
+      var hh = f / (h + h);
+      for (var j = 0; j < i; j++) e[j] -= hh * d[j];
+      for (var j = 0; j < i; j++) {
+        f = d[j];
+        g = e[j];
+        for (var k = j; k <= i - 1; k++) V[k][j] -= (f * e[k] + g * d[k]);
+        d[j] = V[i - 1][j];
+        V[i][j] = 0;
+      }
+    }
+    d[i] = h;
+  }
+
+  // Accumulate transformations.
+  for (var i = 0; i < n - 1; i++) {
+    V[n - 1][i] = V[i][i];
+    V[i][i] = 1.0;
+    var h = d[i + 1];
+    if (h != 0) {
+      for (var k = 0; k <= i; k++) d[k] = V[k][i + 1] / h;
+      for (var j = 0; j <= i; j++) {
+        var g = 0;
+        for (var k = 0; k <= i; k++) g += V[k][i + 1] * V[k][j];
+        for (var k = 0; k <= i; k++) V[k][j] -= g * d[k];
+      }
+    }
+    for (var k = 0; k <= i; k++) V[k][i + 1] = 0;
+  }
+  for (var j = 0; j < n; j++) {
+    d[j] = V[n - 1][j];
+    V[n - 1][j] = 0;
+  }
+  V[n - 1][n - 1] = 1;
+  e[0] = 0;
+}
+
+// Symmetric tridiagonal QL algorithm.
+function science_lin_decomposeTql2(d, e, V) {
+  // This is derived from the Algol procedures tql2, by
+  // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
+  // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
+  // Fortran subroutine in EISPACK.
+
+  var n = V.length;
+
+  for (var i = 1; i < n; i++) e[i - 1] = e[i];
+  e[n - 1] = 0;
+
+  var f = 0;
+  var tst1 = 0;
+  var eps = 1e-12;
+  for (var l = 0; l < n; l++) {
+    // Find small subdiagonal element
+    tst1 = Math.max(tst1, Math.abs(d[l]) + Math.abs(e[l]));
+    var m = l;
+    while (m < n) {
+      if (Math.abs(e[m]) <= eps*tst1) { break; }
+      m++;
+    }
+
+    // If m == l, d[l] is an eigenvalue,
+    // otherwise, iterate.
+    if (m > l) {
+      var iter = 0;
+      do {
+        iter++;  // (Could check iteration count here.)
+
+        // Compute implicit shift
+        var g = d[l];
+        var p = (d[l + 1] - g) / (2 * e[l]);
+        var r = science.hypot(p, 1);
+        if (p < 0) r = -r;
+        d[l] = e[l] / (p + r);
+        d[l + 1] = e[l] * (p + r);
+        var dl1 = d[l + 1];
+        var h = g - d[l];
+        for (var i = l+2; i < n; i++) d[i] -= h;
+        f += h;
+
+        // Implicit QL transformation.
+        p = d[m];
+        var c = 1;
+        var c2 = c;
+        var c3 = c;
+        var el1 = e[l + 1];
+        var s = 0;
+        var s2 = 0;
+        for (var i = m - 1; i >= l; i--) {
+          c3 = c2;
+          c2 = c;
+          s2 = s;
+          g = c * e[i];
+          h = c * p;
+          r = science.hypot(p,e[i]);
+          e[i + 1] = s * r;
+          s = e[i] / r;
+          c = p / r;
+          p = c * d[i] - s * g;
+          d[i + 1] = h + s * (c * g + s * d[i]);
+
+          // Accumulate transformation.
+          for (var k = 0; k < n; k++) {
+            h = V[k][i + 1];
+            V[k][i + 1] = s * V[k][i] + c * h;
+            V[k][i] = c * V[k][i] - s * h;
+          }
+        }
+        p = -s * s2 * c3 * el1 * e[l] / dl1;
+        e[l] = s * p;
+        d[l] = c * p;
+
+        // Check for convergence.
+      } while (Math.abs(e[l]) > eps*tst1);
+    }
+    d[l] = d[l] + f;
+    e[l] = 0;
+  }
+
+  // Sort eigenvalues and corresponding vectors.
+  for (var i = 0; i < n - 1; i++) {
+    var k = i;
+    var p = d[i];
+    for (var j = i + 1; j < n; j++) {
+      if (d[j] < p) {
+        k = j;
+        p = d[j];
+      }
+    }
+    if (k != i) {
+      d[k] = d[i];
+      d[i] = p;
+      for (var j = 0; j < n; j++) {
+        p = V[j][i];
+        V[j][i] = V[j][k];
+        V[j][k] = p;
+      }
+    }
+  }
+}
+
+// Nonsymmetric reduction to Hessenberg form.
+function science_lin_decomposeOrthes(H, V) {
+  // This is derived from the Algol procedures orthes and ortran,
+  // by Martin and Wilkinson, Handbook for Auto. Comp.,
+  // Vol.ii-Linear Algebra, and the corresponding
+  // Fortran subroutines in EISPACK.
+
+  var n = H.length;
+  var ort = [];
+
+  var low = 0;
+  var high = n - 1;
+
+  for (var m = low + 1; m < high; m++) {
+    // Scale column.
+    var scale = 0;
+    for (var i = m; i <= high; i++) scale += Math.abs(H[i][m - 1]);
+
+    if (scale !== 0) {
+      // Compute Householder transformation.
+      var h = 0;
+      for (var i = high; i >= m; i--) {
+        ort[i] = H[i][m - 1] / scale;
+        h += ort[i] * ort[i];
+      }
+      var g = Math.sqrt(h);
+      if (ort[m] > 0) g = -g;
+      h = h - ort[m] * g;
+      ort[m] = ort[m] - g;
+
+      // Apply Householder similarity transformation
+      // H = (I-u*u'/h)*H*(I-u*u')/h)
+      for (var j = m; j < n; j++) {
+        var f = 0;
+        for (var i = high; i >= m; i--) f += ort[i] * H[i][j];
+        f /= h;
+        for (var i = m; i <= high; i++) H[i][j] -= f * ort[i];
+      }
+
+      for (var i = 0; i <= high; i++) {
+        var f = 0;
+        for (var j = high; j >= m; j--) f += ort[j] * H[i][j];
+        f /= h;
+        for (var j = m; j <= high; j++) H[i][j] -= f * ort[j];
+      }
+      ort[m] = scale * ort[m];
+      H[m][m - 1] = scale * g;
+    }
+  }
+
+  // Accumulate transformations (Algol's ortran).
+  for (var i = 0; i < n; i++) {
+    for (var j = 0; j < n; j++) V[i][j] = i === j ? 1 : 0;
+  }
+
+  for (var m = high-1; m >= low+1; m--) {
+    if (H[m][m - 1] !== 0) {
+      for (var i = m + 1; i <= high; i++) ort[i] = H[i][m - 1];
+      for (var j = m; j <= high; j++) {
+        var g = 0;
+        for (var i = m; i <= high; i++) g += ort[i] * V[i][j];
+        // Double division avoids possible underflow
+        g = (g / ort[m]) / H[m][m - 1];
+        for (var i = m; i <= high; i++) V[i][j] += g * ort[i];
+      }
+    }
+  }
+}
+
+// Nonsymmetric reduction from Hessenberg to real Schur form.
+function science_lin_decomposeHqr2(d, e, H, V) {
+  // This is derived from the Algol procedure hqr2,
+  // by Martin and Wilkinson, Handbook for Auto. Comp.,
+  // Vol.ii-Linear Algebra, and the corresponding
+  // Fortran subroutine in EISPACK.
+
+  var nn = H.length,
+      n = nn - 1,
+      low = 0,
+      high = nn - 1,
+      eps = 1e-12,
+      exshift = 0,
+      p = 0,
+      q = 0,
+      r = 0,
+      s = 0,
+      z = 0,
+      t,
+      w,
+      x,
+      y;
+
+  // Store roots isolated by balanc and compute matrix norm
+  var norm = 0;
+  for (var i = 0; i < nn; i++) {
+    if (i < low || i > high) {
+      d[i] = H[i][i];
+      e[i] = 0;
+    }
+    for (var j = Math.max(i - 1, 0); j < nn; j++) norm += Math.abs(H[i][j]);
+  }
+
+  // Outer loop over eigenvalue index
+  var iter = 0;
+  while (n >= low) {
+    // Look for single small sub-diagonal element
+    var l = n;
+    while (l > low) {
+      s = Math.abs(H[l - 1][l - 1]) + Math.abs(H[l][l]);
+      if (s === 0) s = norm;
+      if (Math.abs(H[l][l - 1]) < eps * s) break;
+      l--;
+    }
+
+    // Check for convergence
+    // One root found
+    if (l === n) {
+      H[n][n] = H[n][n] + exshift;
+      d[n] = H[n][n];
+      e[n] = 0;
+      n--;
+      iter = 0;
+
+    // Two roots found
+    } else if (l === n - 1) {
+      w = H[n][n - 1] * H[n - 1][n];
+      p = (H[n - 1][n - 1] - H[n][n]) / 2;
+      q = p * p + w;
+      z = Math.sqrt(Math.abs(q));
+      H[n][n] = H[n][n] + exshift;
+      H[n - 1][n - 1] = H[n - 1][n - 1] + exshift;
+      x = H[n][n];
+
+      // Real pair
+      if (q >= 0) {
+        z = p + (p >= 0 ? z : -z);
+        d[n - 1] = x + z;
+        d[n] = d[n - 1];
+        if (z !== 0) d[n] = x - w / z;
+        e[n - 1] = 0;
+        e[n] = 0;
+        x = H[n][n - 1];
+        s = Math.abs(x) + Math.abs(z);
+        p = x / s;
+        q = z / s;
+        r = Math.sqrt(p * p+q * q);
+        p /= r;
+        q /= r;
+
+        // Row modification
+        for (var j = n - 1; j < nn; j++) {
+          z = H[n - 1][j];
+          H[n - 1][j] = q * z + p * H[n][j];
+          H[n][j] = q * H[n][j] - p * z;
+        }
+
+        // Column modification
+        for (var i = 0; i <= n; i++) {
+          z = H[i][n - 1];
+          H[i][n - 1] = q * z + p * H[i][n];
+          H[i][n] = q * H[i][n] - p * z;
+        }
+
+        // Accumulate transformations
+        for (var i = low; i <= high; i++) {
+          z = V[i][n - 1];
+          V[i][n - 1] = q * z + p * V[i][n];
+          V[i][n] = q * V[i][n] - p * z;
+        }
+
+        // Complex pair
+      } else {
+        d[n - 1] = x + p;
+        d[n] = x + p;
+        e[n - 1] = z;
+        e[n] = -z;
+      }
+      n = n - 2;
+      iter = 0;
+
+      // No convergence yet
+    } else {
+
+      // Form shift
+      x = H[n][n];
+      y = 0;
+      w = 0;
+      if (l < n) {
+        y = H[n - 1][n - 1];
+        w = H[n][n - 1] * H[n - 1][n];
+      }
+
+      // Wilkinson's original ad hoc shift
+      if (iter == 10) {
+        exshift += x;
+        for (var i = low; i <= n; i++) {
+          H[i][i] -= x;
+        }
+        s = Math.abs(H[n][n - 1]) + Math.abs(H[n - 1][n-2]);
+        x = y = 0.75 * s;
+        w = -0.4375 * s * s;
+      }
+
+      // MATLAB's new ad hoc shift
+      if (iter == 30) {
+        s = (y - x) / 2.0;
+        s = s * s + w;
+        if (s > 0) {
+          s = Math.sqrt(s);
+          if (y < x) {
+            s = -s;
+          }
+          s = x - w / ((y - x) / 2.0 + s);
+          for (var i = low; i <= n; i++) {
+            H[i][i] -= s;
+          }
+          exshift += s;
+          x = y = w = 0.964;
+        }
+      }
+
+      iter++;   // (Could check iteration count here.)
+
+      // Look for two consecutive small sub-diagonal elements
+      var m = n-2;
+      while (m >= l) {
+        z = H[m][m];
+        r = x - z;
+        s = y - z;
+        p = (r * s - w) / H[m + 1][m] + H[m][m + 1];
+        q = H[m + 1][m + 1] - z - r - s;
+        r = H[m+2][m + 1];
+        s = Math.abs(p) + Math.abs(q) + Math.abs(r);
+        p = p / s;
+        q = q / s;
+        r = r / s;
+        if (m == l) break;
+        if (Math.abs(H[m][m - 1]) * (Math.abs(q) + Math.abs(r)) <
+          eps * (Math.abs(p) * (Math.abs(H[m - 1][m - 1]) + Math.abs(z) +
+          Math.abs(H[m + 1][m + 1])))) {
+            break;
+        }
+        m--;
+      }
+
+      for (var i = m+2; i <= n; i++) {
+        H[i][i-2] = 0;
+        if (i > m+2) H[i][i-3] = 0;
+      }
+
+      // Double QR step involving rows l:n and columns m:n
+      for (var k = m; k <= n - 1; k++) {
+        var notlast = (k != n - 1);
+        if (k != m) {
+          p = H[k][k - 1];
+          q = H[k + 1][k - 1];
+          r = (notlast ? H[k + 2][k - 1] : 0);
+          x = Math.abs(p) + Math.abs(q) + Math.abs(r);
+          if (x != 0) {
+            p /= x;
+            q /= x;
+            r /= x;
+          }
+        }
+        if (x == 0) break;
+        s = Math.sqrt(p * p + q * q + r * r);
+        if (p < 0) { s = -s; }
+        if (s != 0) {
+          if (k != m) H[k][k - 1] = -s * x;
+          else if (l != m) H[k][k - 1] = -H[k][k - 1];
+          p += s;
+          x = p / s;
+          y = q / s;
+          z = r / s;
+          q /= p;
+          r /= p;
+
+          // Row modification
+          for (var j = k; j < nn; j++) {
+            p = H[k][j] + q * H[k + 1][j];
+            if (notlast) {
+              p = p + r * H[k + 2][j];
+              H[k + 2][j] = H[k + 2][j] - p * z;
+            }
+            H[k][j] = H[k][j] - p * x;
+            H[k + 1][j] = H[k + 1][j] - p * y;
+          }
+
+          // Column modification
+          for (var i = 0; i <= Math.min(n, k + 3); i++) {
+            p = x * H[i][k] + y * H[i][k + 1];
+            if (notlast) {
+              p += z * H[i][k + 2];
+              H[i][k + 2] = H[i][k + 2] - p * r;
+            }
+            H[i][k] = H[i][k] - p;
+            H[i][k + 1] = H[i][k + 1] - p * q;
+          }
+
+          // Accumulate transformations
+          for (var i = low; i <= high; i++) {
+            p = x * V[i][k] + y * V[i][k + 1];
+            if (notlast) {
+              p = p + z * V[i][k + 2];
+              V[i][k + 2] = V[i][k + 2] - p * r;
+            }
+            V[i][k] = V[i][k] - p;
+            V[i][k + 1] = V[i][k + 1] - p * q;
+          }
+        }  // (s != 0)
+      }  // k loop
+    }  // check convergence
+  }  // while (n >= low)
+
+  // Backsubstitute to find vectors of upper triangular form
+  if (norm == 0) { return; }
+
+  for (n = nn - 1; n >= 0; n--) {
+    p = d[n];
+    q = e[n];
+
+    // Real vector
+    if (q == 0) {
+      var l = n;
+      H[n][n] = 1.0;
+      for (var i = n - 1; i >= 0; i--) {
+        w = H[i][i] - p;
+        r = 0;
+        for (var j = l; j <= n; j++) { r = r + H[i][j] * H[j][n]; }
+        if (e[i] < 0) {
+          z = w;
+          s = r;
+        } else {
+          l = i;
+          if (e[i] === 0) {
+            H[i][n] = -r / (w !== 0 ? w : eps * norm);
+          } else {
+            // Solve real equations
+            x = H[i][i + 1];
+            y = H[i + 1][i];
+            q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
+            t = (x * s - z * r) / q;
+            H[i][n] = t;
+            if (Math.abs(x) > Math.abs(z)) {
+              H[i + 1][n] = (-r - w * t) / x;
+            } else {
+              H[i + 1][n] = (-s - y * t) / z;
+            }
+          }
+
+          // Overflow control
+          t = Math.abs(H[i][n]);
+          if ((eps * t) * t > 1) {
+            for (var j = i; j <= n; j++) H[j][n] = H[j][n] / t;
+          }
+        }
+      }
+    // Complex vector
+    } else if (q < 0) {
+      var l = n - 1;
+
+      // Last vector component imaginary so matrix is triangular
+      if (Math.abs(H[n][n - 1]) > Math.abs(H[n - 1][n])) {
+        H[n - 1][n - 1] = q / H[n][n - 1];
+        H[n - 1][n] = -(H[n][n] - p) / H[n][n - 1];
+      } else {
+        var zz = science_lin_decomposeCdiv(0, -H[n - 1][n], H[n - 1][n - 1] - p, q);
+        H[n - 1][n - 1] = zz[0];
+        H[n - 1][n] = zz[1];
+      }
+      H[n][n - 1] = 0;
+      H[n][n] = 1;
+      for (var i = n-2; i >= 0; i--) {
+        var ra = 0,
+            sa = 0,
+            vr,
+            vi;
+        for (var j = l; j <= n; j++) {
+          ra = ra + H[i][j] * H[j][n - 1];
+          sa = sa + H[i][j] * H[j][n];
+        }
+        w = H[i][i] - p;
+
+        if (e[i] < 0) {
+          z = w;
+          r = ra;
+          s = sa;
+        } else {
+          l = i;
+          if (e[i] == 0) {
+            var zz = science_lin_decomposeCdiv(-ra,-sa,w,q);
+            H[i][n - 1] = zz[0];
+            H[i][n] = zz[1];
+          } else {
+            // Solve complex equations
+            x = H[i][i + 1];
+            y = H[i + 1][i];
+            vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
+            vi = (d[i] - p) * 2.0 * q;
+            if (vr == 0 & vi == 0) {
+              vr = eps * norm * (Math.abs(w) + Math.abs(q) +
+                Math.abs(x) + Math.abs(y) + Math.abs(z));
+            }
+            var zz = science_lin_decomposeCdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
+            H[i][n - 1] = zz[0];
+            H[i][n] = zz[1];
+            if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
+              H[i + 1][n - 1] = (-ra - w * H[i][n - 1] + q * H[i][n]) / x;
+              H[i + 1][n] = (-sa - w * H[i][n] - q * H[i][n - 1]) / x;
+            } else {
+              var zz = science_lin_decomposeCdiv(-r-y*H[i][n - 1],-s-y*H[i][n],z,q);
+              H[i + 1][n - 1] = zz[0];
+              H[i + 1][n] = zz[1];
+            }
+          }
+
+          // Overflow control
+          t = Math.max(Math.abs(H[i][n - 1]),Math.abs(H[i][n]));
+          if ((eps * t) * t > 1) {
+            for (var j = i; j <= n; j++) {
+              H[j][n - 1] = H[j][n - 1] / t;
+              H[j][n] = H[j][n] / t;
+            }
+          }
+        }
+      }
+    }
+  }
+
+  // Vectors of isolated roots
+  for (var i = 0; i < nn; i++) {
+    if (i < low || i > high) {
+      for (var j = i; j < nn; j++) V[i][j] = H[i][j];
+    }
+  }
+
+  // Back transformation to get eigenvectors of original matrix
+  for (var j = nn - 1; j >= low; j--) {
+    for (var i = low; i <= high; i++) {
+      z = 0;
+      for (var k = low; k <= Math.min(j, high); k++) z += V[i][k] * H[k][j];
+      V[i][j] = z;
+    }
+  }
+}
+
+// Complex scalar division.
+function science_lin_decomposeCdiv(xr, xi, yr, yi) {
+  if (Math.abs(yr) > Math.abs(yi)) {
+    var r = yi / yr,
+        d = yr + r * yi;
+    return [(xr + r * xi) / d, (xi - r * xr) / d];
+  } else {
+    var r = yr / yi,
+        d = yi + r * yr;
+    return [(r * xr + xi) / d, (r * xi - xr) / d];
+  }
+}
+science.lin.cross = function(a, b) {
+  // TODO how to handle non-3D vectors?
+  // TODO handle 7D vectors?
+  return [
+    a[1] * b[2] - a[2] * b[1],
+    a[2] * b[0] - a[0] * b[2],
+    a[0] * b[1] - a[1] * b[0]
+  ];
+};
+science.lin.dot = function(a, b) {
+  var s = 0,
+      i = -1,
+      n = Math.min(a.length, b.length);
+  while (++i < n) s += a[i] * b[i];
+  return s;
+};
+science.lin.length = function(p) {
+  return Math.sqrt(science.lin.dot(p, p));
+};
+science.lin.normalize = function(p) {
+  var length = science.lin.length(p);
+  return p.map(function(d) { return d / length; });
+};
+// 4x4 matrix determinant.
+science.lin.determinant = function(matrix) {
+  var m = matrix[0].concat(matrix[1]).concat(matrix[2]).concat(matrix[3]);
+  return (
+    m[12] * m[9]  * m[6]  * m[3]  - m[8] * m[13] * m[6]  * m[3]  -
+    m[12] * m[5]  * m[10] * m[3]  + m[4] * m[13] * m[10] * m[3]  +
+    m[8]  * m[5]  * m[14] * m[3]  - m[4] * m[9]  * m[14] * m[3]  -
+    m[12] * m[9]  * m[2]  * m[7]  + m[8] * m[13] * m[2]  * m[7]  +
+    m[12] * m[1]  * m[10] * m[7]  - m[0] * m[13] * m[10] * m[7]  -
+    m[8]  * m[1]  * m[14] * m[7]  + m[0] * m[9]  * m[14] * m[7]  +
+    m[12] * m[5]  * m[2]  * m[11] - m[4] * m[13] * m[2]  * m[11] -
+    m[12] * m[1]  * m[6]  * m[11] + m[0] * m[13] * m[6]  * m[11] +
+    m[4]  * m[1]  * m[14] * m[11] - m[0] * m[5]  * m[14] * m[11] -
+    m[8]  * m[5]  * m[2]  * m[15] + m[4] * m[9]  * m[2]  * m[15] +
+    m[8]  * m[1]  * m[6]  * m[15] - m[0] * m[9]  * m[6]  * m[15] -
+    m[4]  * m[1]  * m[10] * m[15] + m[0] * m[5]  * m[10] * m[15]);
+};
+// Performs in-place Gauss-Jordan elimination.
+//
+// Based on Jarno Elonen's Python version (public domain):
+// http://elonen.iki.fi/code/misc-notes/python-gaussj/index.html
+science.lin.gaussjordan = function(m, eps) {
+  if (!eps) eps = 1e-10;
+
+  var h = m.length,
+      w = m[0].length,
+      y = -1,
+      y2,
+      x;
+
+  while (++y < h) {
+    var maxrow = y;
+
+    // Find max pivot.
+    y2 = y; while (++y2 < h) {
+      if (Math.abs(m[y2][y]) > Math.abs(m[maxrow][y]))
+        maxrow = y2;
+    }
+
+    // Swap.
+    var tmp = m[y];
+    m[y] = m[maxrow];
+    m[maxrow] = tmp;
+
+    // Singular?
+    if (Math.abs(m[y][y]) <= eps) return false;
+
+    // Eliminate column y.
+    y2 = y; while (++y2 < h) {
+      var c = m[y2][y] / m[y][y];
+      x = y - 1; while (++x < w) {
+        m[y2][x] -= m[y][x] * c;
+      }
+    }
+  }
+
+  // Backsubstitute.
+  y = h; while (--y >= 0) {
+    var c = m[y][y];
+    y2 = -1; while (++y2 < y) {
+      x = w; while (--x >= y) {
+        m[y2][x] -=  m[y][x] * m[y2][y] / c;
+      }
+    }
+    m[y][y] /= c;
+    // Normalize row y.
+    x = h - 1; while (++x < w) {
+      m[y][x] /= c;
+    }
+  }
+  return true;
+};
+// Find matrix inverse using Gauss-Jordan.
+science.lin.inverse = function(m) {
+  var n = m.length,
+      i = -1;
+
+  // Check if the matrix is square.
+  if (n !== m[0].length) return;
+
+  // Augment with identity matrix I to get AI.
+  m = m.map(function(row, i) {
+    var identity = new Array(n),
+        j = -1;
+    while (++j < n) identity[j] = i === j ? 1 : 0;
+    return row.concat(identity);
+  });
+
+  // Compute IA^-1.
+  science.lin.gaussjordan(m);
+
+  // Remove identity matrix I to get A^-1.
+  while (++i < n) {
+    m[i] = m[i].slice(n);
+  }
+
+  return m;
+};
+science.lin.multiply = function(a, b) {
+  var m = a.length,
+      n = b[0].length,
+      p = b.length,
+      i = -1,
+      j,
+      k;
+  if (p !== a[0].length) throw {"error": "columns(a) != rows(b); " + a[0].length + " != " + p};
+  var ab = new Array(m);
+  while (++i < m) {
+    ab[i] = new Array(n);
+    j = -1; while(++j < n) {
+      var s = 0;
+      k = -1; while (++k < p) s += a[i][k] * b[k][j];
+      ab[i][j] = s;
+    }
+  }
+  return ab;
+};
+science.lin.transpose = function(a) {
+  var m = a.length,
+      n = a[0].length,
+      i = -1,
+      j,
+      b = new Array(n);
+  while (++i < n) {
+    b[i] = new Array(m);
+    j = -1; while (++j < m) b[i][j] = a[j][i];
+  }
+  return b;
+};
+/**
+ * Solves tridiagonal systems of linear equations.
+ *
+ * Source: http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
+ *
+ * @param {number[]} a
+ * @param {number[]} b
+ * @param {number[]} c
+ * @param {number[]} d
+ * @param {number[]} x
+ * @param {number} n
+ */
+science.lin.tridag = function(a, b, c, d, x, n) {
+  var i,
+      m;
+  for (i = 1; i < n; i++) {
+    m = a[i] / b[i - 1];
+    b[i] -= m * c[i - 1];
+    d[i] -= m * d[i - 1];
+  }
+  x[n - 1] = d[n - 1] / b[n - 1];
+  for (i = n - 2; i >= 0; i--) {
+    x[i] = (d[i] - c[i] * x[i + 1]) / b[i];
+  }
+};
+science.stats = {};
+// Bandwidth selectors for Gaussian kernels.
+// Based on R's implementations in `stats.bw`.
+science.stats.bandwidth = {
+
+  // Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.
+  nrd0: function(x) {
+    var hi = Math.sqrt(science.stats.variance(x));
+    if (!(lo = Math.min(hi, science.stats.iqr(x) / 1.34)))
+      (lo = hi) || (lo = Math.abs(x[1])) || (lo = 1);
+    return .9 * lo * Math.pow(x.length, -.2);
+  },
+
+  // Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and
+  // Visualization. Wiley.
+  nrd: function(x) {
+    var h = science.stats.iqr(x) / 1.34;
+    return 1.06 * Math.min(Math.sqrt(science.stats.variance(x)), h)
+      * Math.pow(x.length, -1/5);
+  }
+};
+science.stats.distance = {
+  euclidean: function(a, b) {
+    var n = a.length,
+        i = -1,
+        s = 0,
+        x;
+    while (++i < n) {
+      x = a[i] - b[i];
+      s += x * x;
+    }
+    return Math.sqrt(s);
+  },
+  manhattan: function(a, b) {
+    var n = a.length,
+        i = -1,
+        s = 0;
+    while (++i < n) s += Math.abs(a[i] - b[i]);
+    return s;
+  },
+  minkowski: function(p) {
+    return function(a, b) {
+      var n = a.length,
+          i = -1,
+          s = 0;
+      while (++i < n) s += Math.pow(Math.abs(a[i] - b[i]), p);
+      return Math.pow(s, 1 / p);
+    };
+  },
+  chebyshev: function(a, b) {
+    var n = a.length,
+        i = -1,
+        max = 0,
+        x;
+    while (++i < n) {
+      x = Math.abs(a[i] - b[i]);
+      if (x > max) max = x;
+    }
+    return max;
+  },
+  hamming: function(a, b) {
+    var n = a.length,
+        i = -1,
+        d = 0;
+    while (++i < n) if (a[i] !== b[i]) d++;
+    return d;
+  },
+  jaccard: function(a, b) {
+    var n = a.length,
+        i = -1,
+        s = 0;
+    while (++i < n) if (a[i] === b[i]) s++;
+    return s / n;
+  },
+  braycurtis: function(a, b) {
+    var n = a.length,
+        i = -1,
+        s0 = 0,
+        s1 = 0,
+        ai,
+        bi;
+    while (++i < n) {
+      ai = a[i];
+      bi = b[i];
+      s0 += Math.abs(ai - bi);
+      s1 += Math.abs(ai + bi);
+    }
+    return s0 / s1;
+  }
+};
+// Based on implementation in http://picomath.org/.
+science.stats.erf = function(x) {
+  var a1 =  0.254829592,
+      a2 = -0.284496736,
+      a3 =  1.421413741,
+      a4 = -1.453152027,
+      a5 =  1.061405429,
+      p  =  0.3275911;
+
+  // Save the sign of x
+  var sign = x < 0 ? -1 : 1;
+  if (x < 0) {
+    sign = -1;
+    x = -x;
+  }
+
+  // A&S formula 7.1.26
+  var t = 1 / (1 + p * x);
+  return sign * (
+    1 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1)
+    * t * Math.exp(-x * x));
+};
+science.stats.phi = function(x) {
+  return .5 * (1 + science.stats.erf(x / Math.SQRT2));
+};
+// See <http://en.wikipedia.org/wiki/Kernel_(statistics)>.
+science.stats.kernel = {
+  uniform: function(u) {
+    if (u <= 1 && u >= -1) return .5;
+    return 0;
+  },
+  triangular: function(u) {
+    if (u <= 1 && u >= -1) return 1 - Math.abs(u);
+    return 0;
+  },
+  epanechnikov: function(u) {
+    if (u <= 1 && u >= -1) return .75 * (1 - u * u);
+    return 0;
+  },
+  quartic: function(u) {
+    if (u <= 1 && u >= -1) {
+      var tmp = 1 - u * u;
+      return (15 / 16) * tmp * tmp;
+    }
+    return 0;
+  },
+  triweight: function(u) {
+    if (u <= 1 && u >= -1) {
+      var tmp = 1 - u * u;
+      return (35 / 32) * tmp * tmp * tmp;
+    }
+    return 0;
+  },
+  gaussian: function(u) {
+    return 1 / Math.sqrt(2 * Math.PI) * Math.exp(-.5 * u * u);
+  },
+  cosine: function(u) {
+    if (u <= 1 && u >= -1) return Math.PI / 4 * Math.cos(Math.PI / 2 * u);
+    return 0;
+  }
+};
+// http://exploringdata.net/den_trac.htm
+science.stats.kde = function() {
+  var kernel = science.stats.kernel.gaussian,
+      sample = [],
+      bandwidth = science.stats.bandwidth.nrd;
+
+  function kde(points, i) {
+    var bw = bandwidth.call(this, sample);
+    return points.map(function(x) {
+      var i = -1,
+          y = 0,
+          n = sample.length;
+      while (++i < n) {
+        y += kernel((x - sample[i]) / bw);
+      }
+      return [x, y / bw / n];
+    });
+  }
+
+  kde.kernel = function(x) {
+    if (!arguments.length) return kernel;
+    kernel = x;
+    return kde;
+  };
+
+  kde.sample = function(x) {
+    if (!arguments.length) return sample;
+    sample = x;
+    return kde;
+  };
+
+  kde.bandwidth = function(x) {
+    if (!arguments.length) return bandwidth;
+    bandwidth = science.functor(x);
+    return kde;
+  };
+
+  return kde;
+};
+// Based on figue implementation by Jean-Yves Delort.
+// http://code.google.com/p/figue/
+science.stats.kmeans = function() {
+  var distance = science.stats.distance.euclidean,
+      maxIterations = 1000,
+      k = 1;
+
+  function kmeans(vectors) {
+    var n = vectors.length,
+        assignments = [],
+        clusterSizes = [],
+        repeat = 1,
+        iterations = 0,
+        centroids = science_stats_kmeansRandom(k, vectors),
+        newCentroids,
+        i,
+        j,
+        x,
+        d,
+        min,
+        best;
+
+    while (repeat && iterations < maxIterations) {
+      // Assignment step.
+      j = -1; while (++j < k) {
+        clusterSizes[j] = 0;
+      }
+
+      i = -1; while (++i < n) {
+        x = vectors[i];
+        min = Infinity;
+        j = -1; while (++j < k) {
+          d = distance.call(this, centroids[j], x);
+          if (d < min) {
+            min = d;
+            best = j;
+          }
+        }
+        clusterSizes[assignments[i] = best]++;
+      }
+
+      // Update centroids step.
+      newCentroids = [];
+      i = -1; while (++i < n) {
+        x = assignments[i];
+        d = newCentroids[x];
+        if (d == null) newCentroids[x] = vectors[i].slice();
+        else {
+          j = -1; while (++j < d.length) {
+            d[j] += vectors[i][j];
+          }
+        }
+      }
+      j = -1; while (++j < k) {
+        x = newCentroids[j];
+        d = 1 / clusterSizes[j];
+        i = -1; while (++i < x.length) x[i] *= d;
+      }
+
+      // Check convergence.
+      repeat = 0;
+      j = -1; while (++j < k) {
+        if (!science_stats_kmeansCompare(newCentroids[j], centroids[j])) {
+          repeat = 1;
+          break;
+        }
+      }
+      centroids = newCentroids;
+      iterations++;
+    }
+    return {assignments: assignments, centroids: centroids};
+  }
+
+  kmeans.k = function(x) {
+    if (!arguments.length) return k;
+    k = x;
+    return kmeans;
+  };
+
+  kmeans.distance = function(x) {
+    if (!arguments.length) return distance;
+    distance = x;
+    return kmeans;
+  };
+
+  return kmeans;
+};
+
+function science_stats_kmeansCompare(a, b) {
+  if (!a || !b || a.length !== b.length) return false;
+  var n = a.length,
+      i = -1;
+  while (++i < n) if (a[i] !== b[i]) return false;
+  return true;
+}
+
+// Returns an array of k distinct vectors randomly selected from the input
+// array of vectors. Returns null if k > n or if there are less than k distinct
+// objects in vectors.
+function science_stats_kmeansRandom(k, vectors) {
+  var n = vectors.length;
+  if (k > n) return null;
+  
+  var selected_vectors = [];
+  var selected_indices = [];
+  var tested_indices = {};
+  var tested = 0;
+  var selected = 0;
+  var i,
+      vector,
+      select;
+
+  while (selected < k) {
+    if (tested === n) return null;
+    
+    var random_index = Math.floor(Math.random() * n);
+    if (random_index in tested_indices) continue;
+    
+    tested_indices[random_index] = 1;
+    tested++;
+    vector = vectors[random_index];
+    select = true;
+    for (i = 0; i < selected; i++) {
+      if (science_stats_kmeansCompare(vector, selected_vectors[i])) {
+        select = false;
+        break;
+      }
+    }
+    if (select) {
+      selected_vectors[selected] = vector;
+      selected_indices[selected] = random_index;
+      selected++;
+    }
+  }
+  return selected_vectors;
+}
+science.stats.hcluster = function() {
+  var distance = science.stats.distance.euclidean,
+      linkage = "simple"; // simple, complete or average
+
+  function hcluster(vectors) {
+    var n = vectors.length,
+        dMin = [],
+        cSize = [],
+        distMatrix = [],
+        clusters = [],
+        c1,
+        c2,
+        c1Cluster,
+        c2Cluster,
+        p,
+        root,
+        i,
+        j;
+
+    // Initialise distance matrix and vector of closest clusters.
+    i = -1; while (++i < n) {
+      dMin[i] = 0;
+      distMatrix[i] = [];
+      j = -1; while (++j < n) {
+        distMatrix[i][j] = i === j ? Infinity : distance(vectors[i] , vectors[j]);
+        if (distMatrix[i][dMin[i]] > distMatrix[i][j]) dMin[i] = j;
+      }
+    }
+
+    // create leaves of the tree
+    i = -1; while (++i < n) {
+      clusters[i] = [];
+      clusters[i][0] = {
+        left: null,
+        right: null,
+        dist: 0,
+        centroid: vectors[i],
+        size: 1,
+        depth: 0
+      };
+      cSize[i] = 1;
+    }
+
+    // Main loop
+    for (p = 0; p < n-1; p++) {
+      // find the closest pair of clusters
+      c1 = 0;
+      for (i = 0; i < n; i++) {
+        if (distMatrix[i][dMin[i]] < distMatrix[c1][dMin[c1]]) c1 = i;
+      }
+      c2 = dMin[c1];
+
+      // create node to store cluster info 
+      c1Cluster = clusters[c1][0];
+      c2Cluster = clusters[c2][0];
+
+      newCluster = {
+        left: c1Cluster,
+        right: c2Cluster,
+        dist: distMatrix[c1][c2],
+        centroid: calculateCentroid(c1Cluster.size, c1Cluster.centroid,
+          c2Cluster.size, c2Cluster.centroid),
+        size: c1Cluster.size + c2Cluster.size,
+        depth: 1 + Math.max(c1Cluster.depth, c2Cluster.depth)
+      };
+      clusters[c1].splice(0, 0, newCluster);
+      cSize[c1] += cSize[c2];
+
+      // overwrite row c1 with respect to the linkage type
+      for (j = 0; j < n; j++) {
+        switch (linkage) {
+          case "single":
+            if (distMatrix[c1][j] > distMatrix[c2][j])
+              distMatrix[j][c1] = distMatrix[c1][j] = distMatrix[c2][j];
+            break;
+          case "complete":
+            if (distMatrix[c1][j] < distMatrix[c2][j])
+              distMatrix[j][c1] = distMatrix[c1][j] = distMatrix[c2][j];
+            break;
+          case "average":
+            distMatrix[j][c1] = distMatrix[c1][j] = (cSize[c1] * distMatrix[c1][j] + cSize[c2] * distMatrix[c2][j]) / (cSize[c1] + cSize[j]);
+            break;
+        }
+      }
+      distMatrix[c1][c1] = Infinity;
+
+      // infinity ­out old row c2 and column c2
+      for (i = 0; i < n; i++)
+        distMatrix[i][c2] = distMatrix[c2][i] = Infinity;
+
+      // update dmin and replace ones that previous pointed to c2 to point to c1
+      for (j = 0; j < n; j++) {
+        if (dMin[j] == c2) dMin[j] = c1;
+        if (distMatrix[c1][j] < distMatrix[c1][dMin[c1]]) dMin[c1] = j;
+      }
+
+      // keep track of the last added cluster
+      root = newCluster;
+    }
+
+    return root;
+  }
+
+  hcluster.distance = function(x) {
+    if (!arguments.length) return distance;
+    distance = x;
+    return hcluster;
+  };
+
+  return hcluster;
+};
+
+function calculateCentroid(c1Size, c1Centroid, c2Size, c2Centroid) {
+  var newCentroid = [],
+      newSize = c1Size + c2Size,
+      n = c1Centroid.length,
+      i = -1;
+  while (++i < n) {
+    newCentroid[i] = (c1Size * c1Centroid[i] + c2Size * c2Centroid[i]) / newSize;
+  }
+  return newCentroid;
+}
+science.stats.iqr = function(x) {
+  var quartiles = science.stats.quantiles(x, [.25, .75]);
+  return quartiles[1] - quartiles[0];
+};
+// Based on org.apache.commons.math.analysis.interpolation.LoessInterpolator
+// from http://commons.apache.org/math/
+science.stats.loess = function() {    
+  var bandwidth = .3,
+      robustnessIters = 2,
+      accuracy = 1e-12;
+
+  function smooth(xval, yval, weights) {
+    var n = xval.length,
+        i;
+
+    if (n !== yval.length) throw {error: "Mismatched array lengths"};
+    if (n == 0) throw {error: "At least one point required."};
+
+    if (arguments.length < 3) {
+      weights = [];
+      i = -1; while (++i < n) weights[i] = 1;
+    }
+
+    science_stats_loessFiniteReal(xval);
+    science_stats_loessFiniteReal(yval);
+    science_stats_loessFiniteReal(weights);
+    science_stats_loessStrictlyIncreasing(xval);
+
+    if (n == 1) return [yval[0]];
+    if (n == 2) return [yval[0], yval[1]];
+
+    var bandwidthInPoints = Math.floor(bandwidth * n);
+
+    if (bandwidthInPoints < 2) throw {error: "Bandwidth too small."};
+
+    var res = [],
+        residuals = [],
+        robustnessWeights = [];
+
+    // Do an initial fit and 'robustnessIters' robustness iterations.
+    // This is equivalent to doing 'robustnessIters+1' robustness iterations
+    // starting with all robustness weights set to 1.
+    i = -1; while (++i < n) {
+      res[i] = 0;
+      residuals[i] = 0;
+      robustnessWeights[i] = 1;
+    }
+
+    var iter = -1;
+    while (++iter <= robustnessIters) {
+      var bandwidthInterval = [0, bandwidthInPoints - 1];
+      // At each x, compute a local weighted linear regression
+      var x;
+      i = -1; while (++i < n) {
+        x = xval[i];
+
+        // Find out the interval of source points on which
+        // a regression is to be made.
+        if (i > 0) {
+          science_stats_loessUpdateBandwidthInterval(xval, weights, i, bandwidthInterval);
+        }
+
+        var ileft = bandwidthInterval[0],
+            iright = bandwidthInterval[1];
+
+        // Compute the point of the bandwidth interval that is
+        // farthest from x
+        var edge = (xval[i] - xval[ileft]) > (xval[iright] - xval[i]) ? ileft : iright;
+
+        // Compute a least-squares linear fit weighted by
+        // the product of robustness weights and the tricube
+        // weight function.
+        // See http://en.wikipedia.org/wiki/Linear_regression
+        // (section "Univariate linear case")
+        // and http://en.wikipedia.org/wiki/Weighted_least_squares
+        // (section "Weighted least squares")
+        var sumWeights = 0,
+            sumX = 0,
+            sumXSquared = 0,
+            sumY = 0,
+            sumXY = 0,
+            denom = Math.abs(1 / (xval[edge] - x));
+
+        for (var k = ileft; k <= iright; ++k) {
+          var xk   = xval[k],
+              yk   = yval[k],
+              dist = k < i ? x - xk : xk - x,
+              w    = science_stats_loessTricube(dist * denom) * robustnessWeights[k] * weights[k],
+              xkw  = xk * w;
+          sumWeights += w;
+          sumX += xkw;
+          sumXSquared += xk * xkw;
+          sumY += yk * w;
+          sumXY += yk * xkw;
+        }
+
+        var meanX = sumX / sumWeights,
+            meanY = sumY / sumWeights,
+            meanXY = sumXY / sumWeights,
+            meanXSquared = sumXSquared / sumWeights;
+
+        var beta = (Math.sqrt(Math.abs(meanXSquared - meanX * meanX)) < accuracy)
+            ? 0 : ((meanXY - meanX * meanY) / (meanXSquared - meanX * meanX));
+
+        var alpha = meanY - beta * meanX;
+
+        res[i] = beta * x + alpha;
+        residuals[i] = Math.abs(yval[i] - res[i]);
+      }
+
+      // No need to recompute the robustness weights at the last
+      // iteration, they won't be needed anymore
+      if (iter === robustnessIters) {
+        break;
+      }
+
+      // Recompute the robustness weights.
+
+      // Find the median residual.
+      var sortedResiduals = residuals.slice();
+      sortedResiduals.sort();
+      var medianResidual = sortedResiduals[Math.floor(n / 2)];
+
+      if (Math.abs(medianResidual) < accuracy)
+        break;
+
+      var arg,
+          w;
+      i = -1; while (++i < n) {
+        arg = residuals[i] / (6 * medianResidual);
+        robustnessWeights[i] = (arg >= 1) ? 0 : ((w = 1 - arg * arg) * w);
+      }
+    }
+
+    return res;
+  }
+
+  smooth.bandwidth = function(x) {
+    if (!arguments.length) return x;
+    bandwidth = x;
+    return smooth;
+  };
+
+  smooth.robustnessIterations = function(x) {
+    if (!arguments.length) return x;
+    robustnessIters = x;
+    return smooth;
+  };
+
+  smooth.accuracy = function(x) {
+    if (!arguments.length) return x;
+    accuracy = x;
+    return smooth;
+  };
+
+  return smooth;
+};
+
+function science_stats_loessFiniteReal(values) {
+  var n = values.length,
+      i = -1;
+
+  while (++i < n) if (!isFinite(values[i])) return false;
+
+  return true;
+}
+
+function science_stats_loessStrictlyIncreasing(xval) {
+  var n = xval.length,
+      i = 0;
+
+  while (++i < n) if (xval[i - 1] >= xval[i]) return false;
+
+  return true;
+}
+
+// Compute the tricube weight function.
+// http://en.wikipedia.org/wiki/Local_regression#Weight_function
+function science_stats_loessTricube(x) {
+  return (x = 1 - x * x * x) * x * x;
+}
+
+// Given an index interval into xval that embraces a certain number of
+// points closest to xval[i-1], update the interval so that it embraces
+// the same number of points closest to xval[i], ignoring zero weights.
+function science_stats_loessUpdateBandwidthInterval(
+  xval, weights, i, bandwidthInterval) {
+
+  var left = bandwidthInterval[0],
+      right = bandwidthInterval[1];
+
+  // The right edge should be adjusted if the next point to the right
+  // is closer to xval[i] than the leftmost point of the current interval
+  var nextRight = science_stats_loessNextNonzero(weights, right);
+  if ((nextRight < xval.length) && (xval[nextRight] - xval[i]) < (xval[i] - xval[left])) {
+    var nextLeft = science_stats_loessNextNonzero(weights, left);
+    bandwidthInterval[0] = nextLeft;
+    bandwidthInterval[1] = nextRight;
+  }
+}
+
+function science_stats_loessNextNonzero(weights, i) {
+  var j = i + 1;
+  while (j < weights.length && weights[j] === 0) j++;
+  return j;
+}
+// Welford's algorithm.
+science.stats.mean = function(x) {
+  var n = x.length;
+  if (n === 0) return NaN;
+  var m = 0,
+      i = -1;
+  while (++i < n) m += (x[i] - m) / (i + 1);
+  return m;
+};
+science.stats.median = function(x) {
+  return science.stats.quantiles(x, [.5])[0];
+};
+science.stats.mode = function(x) {
+  x = x.slice().sort(science.ascending);
+  var mode,
+      n = x.length,
+      i = -1,
+      l = i,
+      last = null,
+      max = 0,
+      tmp,
+      v;
+  while (++i < n) {
+    if ((v = x[i]) !== last) {
+      if ((tmp = i - l) > max) {
+        max = tmp;
+        mode = last;
+      }
+      last = v;
+      l = i;
+    }
+  }
+  return mode;
+};
+// Uses R's quantile algorithm type=7.
+science.stats.quantiles = function(d, quantiles) {
+  d = d.slice().sort(science.ascending);
+  var n_1 = d.length - 1;
+  return quantiles.map(function(q) {
+    if (q === 0) return d[0];
+    else if (q === 1) return d[n_1];
+
+    var index = 1 + q * n_1,
+        lo = Math.floor(index),
+        h = index - lo,
+        a = d[lo - 1];
+
+    return h === 0 ? a : a + h * (d[lo] - a);
+  });
+};
+// Unbiased estimate of a sample's variance.
+// Also known as the sample variance, where the denominator is n - 1.
+science.stats.variance = function(x) {
+  var n = x.length;
+  if (n < 1) return NaN;
+  if (n === 1) return 0;
+  var mean = science.stats.mean(x),
+      i = -1,
+      s = 0;
+  while (++i < n) {
+    var v = x[i] - mean;
+    s += v * v;
+  }
+  return s / (n - 1);
+};
+science.stats.distribution = {
+};
+// From http://www.colingodsey.com/javascript-gaussian-random-number-generator/
+// Uses the Box-Muller Transform.
+science.stats.distribution.gaussian = function() {
+  var random = Math.random,
+      mean = 0,
+      sigma = 1,
+      variance = 1;
+
+  function gaussian() {
+    var x1,
+        x2,
+        rad,
+        y1;
+
+    do {
+      x1 = 2 * random() - 1;
+      x2 = 2 * random() - 1;
+      rad = x1 * x1 + x2 * x2;
+    } while (rad >= 1 || rad === 0);
+
+    return mean + sigma * x1 * Math.sqrt(-2 * Math.log(rad) / rad);
+  }
+
+  gaussian.pdf = function(x) {
+    x = (x - mu) / sigma;
+    return science_stats_distribution_gaussianConstant * Math.exp(-.5 * x * x) / sigma;
+  };
+
+  gaussian.cdf = function(x) {
+    x = (x - mu) / sigma;
+    return .5 * (1 + science.stats.erf(x / Math.SQRT2));
+  };
+
+  gaussian.mean = function(x) {
+    if (!arguments.length) return mean;
+    mean = +x;
+    return gaussian;
+  };
+
+  gaussian.variance = function(x) {
+    if (!arguments.length) return variance;
+    sigma = Math.sqrt(variance = +x);
+    return gaussian;
+  };
+
+  gaussian.random = function(x) {
+    if (!arguments.length) return random;
+    random = x;
+    return gaussian;
+  };
+
+  return gaussian;
+};
+
+science_stats_distribution_gaussianConstant = 1 / Math.sqrt(2 * Math.PI);
 })();
 exports.science = science;
diff --git a/science.lin.js b/science.lin.js
index 698e1c6..7ed8fc0 100644
--- a/science.lin.js
+++ b/science.lin.js
@@ -1,4 +1,4 @@
-(function(){science.lin = {};
+science.lin = {};
 science.lin.decompose = function() {
 
   function decompose(A) {
@@ -885,4 +885,3 @@ science.lin.tridag = function(a, b, c, d, x, n) {
     x[i] = (d[i] - c[i] * x[i + 1]) / b[i];
   }
 };
-})();
diff --git a/science.lin.min.js b/science.lin.min.js
index aa0bbbd..f486582 100644
--- a/science.lin.min.js
+++ b/science.lin.min.js
@@ -1 +1 @@
-(function(){function a(a,b,c){var d=c.length;for(var e=0;e<d;e++)a[e]=c[d-1][e];for(var f=d-1;f>0;f--){var g=0,h=0;for(var i=0;i<f;i++)g+=Math.abs(a[i]);if(g===0){b[f]=a[f-1];for(var e=0;e<f;e++)a[e]=c[f-1][e],c[f][e]=0,c[e][f]=0}else{for(var i=0;i<f;i++)a[i]/=g,h+=a[i]*a[i];var j=a[f-1],k=Math.sqrt(h);j>0&&(k=-k),b[f]=g*k,h-=j*k,a[f-1]=j-k;for(var e=0;e<f;e++)b[e]=0;for(var e=0;e<f;e++){j=a[e],c[e][f]=j,k=b[e]+c[e][e]*j;for(var i=e+1;i<=f-1;i++)k+=c[i][e]*a[i],b[i]+=c[i][e]*j;b[e]=k}j=0 [...]
\ No newline at end of file
+function science_lin_decomposeTred2(a,b,c){var d=c.length;for(var e=0;e<d;e++)a[e]=c[d-1][e];for(var f=d-1;f>0;f--){var g=0,h=0;for(var i=0;i<f;i++)g+=Math.abs(a[i]);if(g===0){b[f]=a[f-1];for(var e=0;e<f;e++)a[e]=c[f-1][e],c[f][e]=0,c[e][f]=0}else{for(var i=0;i<f;i++)a[i]/=g,h+=a[i]*a[i];var j=a[f-1],k=Math.sqrt(h);j>0&&(k=-k),b[f]=g*k,h-=j*k,a[f-1]=j-k;for(var e=0;e<f;e++)b[e]=0;for(var e=0;e<f;e++){j=a[e],c[e][f]=j,k=b[e]+c[e][e]*j;for(var i=e+1;i<=f-1;i++)k+=c[i][e]*a[i],b[i]+=c[i][e] [...]
\ No newline at end of file
diff --git a/science.min.js b/science.min.js
index bfcb2a2..6ac785f 100644
--- a/science.min.js
+++ b/science.min.js
@@ -1 +1 @@
-(function(){science={version:"1.8.0"},science.ascending=function(a,b){return a-b},science.EULER=.5772156649015329,science.expm1=function(a){return a<1e-5&&a>-0.00001?a+.5*a*a:Math.exp(a)-1},science.functor=function(a){return typeof a=="function"?a:function(){return a}},science.hypot=function(a,b){a=Math.abs(a),b=Math.abs(b);var c,d;a>b?(c=a,d=b):(c=b,d=a);var e=d/c;return c*Math.sqrt(1+e*e)},science.quadratic=function(){function b(b,c,d){var e=c*c-4*b*d;return e>0?(e=Math.sqrt(e)/(2*b),a [...]
\ No newline at end of file
+(function(){function a(a,b,c){var d=c.length;for(var e=0;e<d;e++)a[e]=c[d-1][e];for(var f=d-1;f>0;f--){var g=0,h=0;for(var i=0;i<f;i++)g+=Math.abs(a[i]);if(g===0){b[f]=a[f-1];for(var e=0;e<f;e++)a[e]=c[f-1][e],c[f][e]=0,c[e][f]=0}else{for(var i=0;i<f;i++)a[i]/=g,h+=a[i]*a[i];var j=a[f-1],k=Math.sqrt(h);j>0&&(k=-k),b[f]=g*k,h-=j*k,a[f-1]=j-k;for(var e=0;e<f;e++)b[e]=0;for(var e=0;e<f;e++){j=a[e],c[e][f]=j,k=b[e]+c[e][e]*j;for(var i=e+1;i<=f-1;i++)k+=c[i][e]*a[i],b[i]+=c[i][e]*j;b[e]=k}j=0 [...]
\ No newline at end of file
diff --git a/science.stats.js b/science.stats.js
index 4360115..c07c4bb 100644
--- a/science.stats.js
+++ b/science.stats.js
@@ -1,4 +1,4 @@
-(function(){science.stats = {};
+science.stats = {};
 // Bandwidth selectors for Gaussian kernels.
 // Based on R's implementations in `stats.bw`.
 science.stats.bandwidth = {
@@ -774,4 +774,3 @@ science.stats.distribution.gaussian = function() {
 };
 
 science_stats_distribution_gaussianConstant = 1 / Math.sqrt(2 * Math.PI);
-})();
diff --git a/science.stats.min.js b/science.stats.min.js
index b446a02..54bbe58 100644
--- a/science.stats.min.js
+++ b/science.stats.min.js
@@ -1 +1 @@
-(function(){function a(a,b){if(!a||!b||a.length!==b.length)return!1;var c=a.length,d=-1;while(++d<c)if(a[d]!==b[d])return!1;return!0}function b(b,c){var d=c.length;if(b>d)return null;var e=[],f=[],g={},h=0,i=0,j,k,l;while(i<b){if(h===d)return null;var m=Math.floor(Math.random()*d);if(m in g)continue;g[m]=1,h++,k=c[m],l=!0;for(j=0;j<i;j++)if(a(k,e[j])){l=!1;break}l&&(e[i]=k,f[i]=m,i++)}return e}function c(a,b,c,d){var e=[],f=a+c,g=b.length,h=-1;while(++h<g)e[h]=(a*b[h]+c*d[h])/f;return e} [...]
\ No newline at end of file
+function science_stats_kmeansCompare(a,b){if(!a||!b||a.length!==b.length)return!1;var c=a.length,d=-1;while(++d<c)if(a[d]!==b[d])return!1;return!0}function science_stats_kmeansRandom(a,b){var c=b.length;if(a>c)return null;var d=[],e=[],f={},g=0,h=0,i,j,k;while(h<a){if(g===c)return null;var l=Math.floor(Math.random()*c);if(l in f)continue;f[l]=1,g++,j=b[l],k=!0;for(i=0;i<h;i++)if(science_stats_kmeansCompare(j,d[i])){k=!1;break}k&&(d[h]=j,e[h]=l,h++)}return d}function calculateCentroid(a,b [...]
\ No newline at end of file

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-javascript/science.js.git



More information about the Pkg-javascript-commits mailing list