[Python-modules-team] Bug#924606: skimage: autopkgtest needs update for new version of python-scipy: ValueError: No warning raised matching: matrix subclass

Paul Gevers elbrus at debian.org
Thu Mar 14 21:08:13 GMT 2019


Source: skimage
Version: 0.14.2-1
Severity: important
User: debian-ci at lists.debian.org
Usertags: needs-update
Control: affects -1 src:python-scipy

[X-Debbugs-CC: debian-ci at lists.debian.org,
python-scipy at packages.debian.org, debian-release at lists.debian.org]

Dear maintainers,

With a recent upload of python-scipy the autopkgtest of skimage fails in
testing when that autopkgtest is run with the binary packages of
python-scipy from unstable. It passes when run with only packages from
testing. In tabular form:
                       pass            fail
python-scipy           from testing    1.1.0-4
skimage                from testing    0.14.2-1
all others             from testing    from testing

The latest upload of python-scipy was an effort to fix the autopkgtest
of python-scipy (see bug 919929 for background info), which was blurred
by loads of deprecation warnings from python-numpy. As part of the
solution, python-scipy was patched to prevent specific deprecation
warnings, but apparently the autopkgtest of skimage relies on these
warnings. I copied some of the output at the bottom of this report.

If I read the text in your error log correctly, you can mark the check
for these warnings as optional. Can you please do that? Or discuss with
the python-scipy maintainers how to resolve this issue.

Paul

https://ci.debian.net/data/autopkgtest/testing/amd64/s/skimage/2107462/log.gz

=================================== FAILURES
===================================
__________________________________ test_2d_bf
__________________________________

    def test_2d_bf():
        lx = 70
        ly = 100
        data, labels = make_2d_syntheticdata(lx, ly)
        with expected_warnings([NUMPY_MATRIX_WARNING]):
>           labels_bf = random_walker(data, labels, beta=90, mode='bf')

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:74:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
__________________________________ test_2d_cg
__________________________________

    def test_2d_cg():
        lx = 70
        ly = 100
        data, labels = make_2d_syntheticdata(lx, ly)
        with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
                                NUMPY_MATRIX_WARNING]):
>           labels_cg = random_walker(data, labels, beta=90, mode='cg')

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:100:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['"cg" mode|numpy.linalg.matrix_rank|\\A\\Z', 'matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
________________________________ test_2d_cg_mg
_________________________________

    def test_2d_cg_mg():
        lx = 70
        ly = 100
        data, labels = make_2d_syntheticdata(lx, ly)
        anticipated_warnings = [
            'scipy.sparse.sparsetools|%s' % PYAMG_OR_SCIPY_WARNING,
            NUMPY_MATRIX_WARNING]
        with expected_warnings(anticipated_warnings):
>           labels_cg_mg = random_walker(data, labels, beta=90,
mode='cg_mg')

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:121:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching =
['scipy.sparse.sparsetools|numpy.linalg.matrix_rank|\\A\\Z|pyamg|\\A\\Z',
'matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
__________________________________ test_types
__________________________________

    def test_types():
        lx = 70
        ly = 100
        data, labels = make_2d_syntheticdata(lx, ly)
        data = 255 * (data - data.min()) // (data.max() - data.min())
        data = data.astype(np.uint8)
        with expected_warnings([PYAMG_OR_SCIPY_WARNING,
NUMPY_MATRIX_WARNING]):
>           labels_cg_mg = random_walker(data, labels, beta=90,
mode='cg_mg')

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:140:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['numpy.linalg.matrix_rank|\\A\\Z|pyamg|\\A\\Z', 'matrix
subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
_____________________________ test_reorder_labels
______________________________

    def test_reorder_labels():
        lx = 70
        ly = 100
        data, labels = make_2d_syntheticdata(lx, ly)
        labels[labels == 2] = 4
        with expected_warnings([NUMPY_MATRIX_WARNING]):
>           labels_bf = random_walker(data, labels, beta=90, mode='bf')

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:152:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
_______________________________ test_2d_inactive
_______________________________

    def test_2d_inactive():
        lx = 70
        ly = 100
        data, labels = make_2d_syntheticdata(lx, ly)
        labels[10:20, 10:20] = -1
        labels[46:50, 33:38] = -2
        with expected_warnings([NUMPY_MATRIX_WARNING]):
>           labels = random_walker(data, labels, beta=90)

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:165:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
___________________________________ test_3d
____________________________________

    def test_3d():
        n = 30
        lx, ly, lz = n, n, n
        data, labels = make_3d_syntheticdata(lx, ly, lz)
        with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
                                NUMPY_MATRIX_WARNING]):
>           labels = random_walker(data, labels, mode='cg')

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:177:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['"cg" mode|numpy.linalg.matrix_rank|\\A\\Z', 'matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
_______________________________ test_3d_inactive
_______________________________

    def test_3d_inactive():
        n = 30
        lx, ly, lz = n, n, n
        data, labels = make_3d_syntheticdata(lx, ly, lz)
        old_labels = np.copy(labels)
        labels[5:25, 26:29, 26:29] = -1
        after_labels = np.copy(labels)
        with expected_warnings(['"cg" mode|CObject type' + '|'
                                + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
>           labels = random_walker(data, labels, mode='cg')

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:192:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['"cg" mode|CObject type|numpy.linalg.matrix_rank|\\A\\Z',
'matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
____________________________ test_multispectral_2d
_____________________________

    def test_multispectral_2d():
        lx, ly = 70, 100
        data, labels = make_2d_syntheticdata(lx, ly)
        data = data[..., np.newaxis].repeat(2, axis=-1)  # Expect
identical output
        with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
                                NUMPY_MATRIX_WARNING]):
            multi_labels = random_walker(data, labels, mode='cg',
>                                        multichannel=True)

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:205:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['"cg" mode|numpy.linalg.matrix_rank|\\A\\Z', 'matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
____________________________ test_multispectral_3d
_____________________________

    def test_multispectral_3d():
        n = 30
        lx, ly, lz = n, n, n
        data, labels = make_3d_syntheticdata(lx, ly, lz)
        data = data[..., np.newaxis].repeat(2, axis=-1)  # Expect
identical output
        with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
                                NUMPY_MATRIX_WARNING]):
            multi_labels = random_walker(data, labels, mode='cg',
>                                        multichannel=True)

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:223:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['"cg" mode|numpy.linalg.matrix_rank|\\A\\Z', 'matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
________________________________ test_spacing_0
________________________________

    def test_spacing_0():
        n = 30
        lx, ly, lz = n, n, n
        data, _ = make_3d_syntheticdata(lx, ly, lz)

        # Rescale `data` along Z axis
        data_aniso = np.zeros((n, n, n // 2))
        for i, yz in enumerate(data):
            data_aniso[i, :, :] = resize(yz, (n, n // 2),
                                         mode='constant',
                                         anti_aliasing=False)

        # Generate new labels
        small_l = int(lx // 5)
        labels_aniso = np.zeros_like(data_aniso)
        labels_aniso[lx // 5, ly // 5, lz // 5] = 1
        labels_aniso[lx // 2 + small_l // 4,
                     ly // 2 - small_l // 4,
                     lz // 4 - small_l // 8] = 2

        # Test with `spacing` kwarg
        with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
                                NUMPY_MATRIX_WARNING]):
            labels_aniso = random_walker(data_aniso, labels_aniso,
mode='cg',
>                                        spacing=(1., 1., 0.5))

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:258:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['"cg" mode|numpy.linalg.matrix_rank|\\A\\Z', 'matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
________________________________ test_spacing_1
________________________________

    @xfail(condition=arch32,
           reason=('Known test failure on 32-bit platforms. See links for '
                   'details: '

'https://github.com/scikit-image/scikit-image/issues/3091 '

'https://github.com/scikit-image/scikit-image/issues/3092'))
    def test_spacing_1():
        n = 30
        lx, ly, lz = n, n, n
        data, _ = make_3d_syntheticdata(lx, ly, lz)

        # Rescale `data` along Y axis
        # `resize` is not yet 3D capable, so this must be done by
looping in 2D.
        data_aniso = np.zeros((n, n * 2, n))
        for i, yz in enumerate(data):
            data_aniso[i, :, :] = resize(yz, (n * 2, n),
                                         mode='constant',
                                         anti_aliasing=False)

        # Generate new labels
        small_l = int(lx // 5)
        labels_aniso = np.zeros_like(data_aniso)
        labels_aniso[lx // 5, ly // 5, lz // 5] = 1
        labels_aniso[lx // 2 + small_l // 4,
                     ly - small_l // 2,
                     lz // 2 - small_l // 4] = 2

        # Test with `spacing` kwarg
        # First, anisotropic along Y
        with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
                                NUMPY_MATRIX_WARNING]):
            labels_aniso = random_walker(data_aniso, labels_aniso,
mode='cg',
>                                        spacing=(1., 2., 1.))

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:294:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['"cg" mode|numpy.linalg.matrix_rank|\\A\\Z', 'matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
_____________________________ test_length2_spacing
_____________________________

    def test_length2_spacing():
        # If this passes without raising an exception (warnings OK), the new
        #   spacing code is working properly.
        np.random.seed(42)
        img = np.ones((10, 10)) + 0.2 * np.random.normal(size=(10, 10))
        labels = np.zeros((10, 10), dtype=np.uint8)
        labels[2, 4] = 1
        labels[6, 8] = 4
        with expected_warnings([NUMPY_MATRIX_WARNING]):
>           random_walker(img, labels, spacing=(1., 2.))

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:349:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError
_____________________________ test_isolated_seeds
______________________________

    def test_isolated_seeds():
        np.random.seed(0)
        a = np.random.random((7, 7))
        mask = - np.ones(a.shape)
        # This pixel is an isolated seed
        mask[1, 1] = 1
        # Unlabeled pixels
        mask[3:, 3:] = 0
        # Seeds connected to unlabeled pixels
        mask[4, 4] = 2
        mask[6, 6] = 1

        # Test that no error is raised, and that labels of isolated
seeds are OK
        with expected_warnings([NUMPY_MATRIX_WARNING]):
>           res = random_walker(a, mask)

/usr/lib/python3/dist-packages/skimage/segmentation/tests/test_random_walker.py:399:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _
/usr/lib/python3.7/contextlib.py:119: in __exit__
    next(self.gen)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

matching = ['matrix subclass']

    @contextmanager
    def expected_warnings(matching):
        """Context for use in testing to catch known warnings matching
regexes

        Parameters
        ----------
        matching : list of strings or compiled regexes
            Regexes for the desired warning to catch

        Examples
        --------
        >>> from skimage import data, img_as_ubyte, img_as_float
        >>> with expected_warnings(['precision loss']):
        ...     d = img_as_ubyte(img_as_float(data.coins()))

        Notes
        -----
        Uses `all_warnings` to ensure all warnings are raised.
        Upon exiting, it checks the recorded warnings for the desired
matching
        pattern(s).
        Raises a ValueError if any match was not found or an unexpected
        warning was raised.
        Allows for three types of behaviors: `and`, `or`, and `optional`
matches.
        This is done to accomodate different build enviroments or loop
conditions
        that may produce different warnings.  The behaviors can be combined.
        If you pass multiple patterns, you get an orderless `and`, where
all of the
        warnings must be raised.
        If you use the `|` operator in a pattern, you can catch one of
several
        warnings.
        Finally, you can use `|\A\Z` in a pattern to signify it as optional.

        """
        if isinstance(matching, str):
            raise ValueError('``matching`` should be a list of strings
and not '
                             'a string itself.')
        with all_warnings() as w:
            # enter context
            yield w
            # exited user context, check the recorded warnings
            # Allow users to provide None
            while None in matching:
                matching.remove(None)
            remaining = [m for m in matching if '\A\Z' not in m.split('|')]
            for warn in w:
                found = False
                for match in matching:
                    if re.search(match, str(warn.message)) is not None:
                        found = True
                        if match in remaining:
                            remaining.remove(match)
                if not found:
                    raise ValueError('Unexpected warning: %s' %
str(warn.message))
            if len(remaining) > 0:
                msg = 'No warning raised matching:\n%s' %
'\n'.join(remaining)
>               raise ValueError(msg)
E               ValueError: No warning raised matching:
E               matrix subclass

/usr/lib/python3/dist-packages/skimage/_shared/_warnings.py:130: ValueError

-------------- next part --------------
A non-text attachment was scrubbed...
Name: signature.asc
Type: application/pgp-signature
Size: 488 bytes
Desc: OpenPGP digital signature
URL: <http://alioth-lists.debian.net/pipermail/python-modules-team/attachments/20190314/297bab5c/attachment-0001.sig>


More information about the Python-modules-team mailing list