[Reproducible-builds] Bug#797507: scikit-learn: FTBFS: IndexError: index 1 is out of bounds for axis 0 with size 1

Chris Lamb lamby at debian.org
Mon Aug 31 08:13:47 UTC 2015


Source: scikit-learn
Version: 0.16.1-2
Severity: serious
Justification: fails to build from source
User: reproducible-builds at lists.alioth.debian.org
Usertags: ftbfs
X-Debbugs-Cc: reproducible-builds at lists.alioth.debian.org

Dear Maintainer,

scikit-learn fails to build from source in unstable/amd64:

  [..]
  
  ======================================================================
  ERROR:
  sklearn.tests.test_common.test_non_meta_estimators('KernelRidge',
  <class 'sklearn.kernel_ridge.KernelRidge'>)
  ----------------------------------------------------------------------
  Traceback (most recent call last):
    File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in
    runTest
      self.test(*self.arg)
    File
    "/tmp/buildd/scikit-learn-0.16.1/debian/python-sklearn/usr/lib/python2.7/dist-packages/sklearn/utils/estimator_checks.py",
    line 174, in check_dtype_object
      estimator.fit(X, y.astype(object))
    File
    "/tmp/buildd/scikit-learn-0.16.1/debian/python-sklearn/usr/lib/python2.7/dist-packages/sklearn/kernel_ridge.py",
    line 158, in fit
      copy)
    File
    "/tmp/buildd/scikit-learn-0.16.1/debian/python-sklearn/usr/lib/python2.7/dist-packages/sklearn/linear_model/ridge.py",
    line 145, in _solve_cholesky_kernel
      overwrite_a=False)
    File "/usr/lib/python2.7/dist-packages/scipy/linalg/basic.py", line
    77, in solve
      b1 = _asarray_validated(b, check_finite=check_finite)
    File "/usr/lib/python2.7/dist-packages/scipy/_lib/_util.py", line
    140, in _asarray_validated
      raise ValueError('object arrays are not supported')
  ValueError: object arrays are not supported
  
  ----------------------------------------------------------------------
  Ran 4092 tests in 139.350s
  
  FAILED (SKIP=19, errors=6)
  erion='aic', eps=2.2204460492503131e-16,
        fit_intercept=True, max_iter=5, normalize=True,
        precompute='auto',
        verbose=False)
  LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,
  normalize=False)
  LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True,
       intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=20,
       random_state=0, tol=0.0001, verbose=0)
  MultiTaskElasticNet(alpha=0.01, copy_X=True, fit_intercept=True,
  l1_ratio=0.5,
            max_iter=5, normalize=False, random_state=0,
            selection='cyclic',
            tol=0.0001, warm_start=False)
  MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001,
             fit_intercept=True, l1_ratio=0.5, max_iter=5, n_alphas=100,
             n_jobs=1, normalize=False, random_state=0,
             selection='cyclic',
             tol=0.0001, verbose=0)
  MultiTaskLasso(alpha=0.01, copy_X=True, fit_intercept=True,
  max_iter=5,
          normalize=False, random_state=0, selection='cyclic',
          tol=0.0001,
          warm_start=False)
  MultiTaskLassoCV(alphas=None, copy_X=True, cv=None, eps=0.001,
           fit_intercept=True, max_iter=5, n_alphas=100, n_jobs=1,
           normalize=False, random_state=0, selection='cyclic',
           tol=0.0001,
           verbose=False)
  NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma=0.0,
  kernel='rbf',
     max_iter=-1, nu=0.5, shrinking=True, tol=0.001, verbose=False)
  OrthogonalMatchingPursuit(fit_intercept=True, n_nonzero_coefs=None,
               normalize=True, precompute='auto', tol=None)
  OrthogonalMatchingPursuitCV(copy=True, cv=None, fit_intercept=True,
                max_iter=None, n_jobs=1, normalize=True, verbose=False)
  PLSRegression(copy=True, max_iter=5, n_components=2, scale=True,
  tol=1e-06)
  PassiveAggressiveRegressor(C=0.01, class_weight=None, epsilon=0.1,
                fit_intercept=True, loss='epsilon_insensitive',
                n_iter=5,
                random_state=0, shuffle=True, verbose=0,
                warm_start=False)
  RadiusNeighborsRegressor(algorithm='auto', leaf_size=30,
  metric='minkowski',
               metric_params=None, p=2, radius=1.0, weights='uniform')
  RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
             max_features='auto', max_leaf_nodes=None,
             min_samples_leaf=1,
             min_samples_split=2, min_weight_fraction_leaf=0.0,
             n_estimators=5, n_jobs=1, oob_score=False, random_state=0,
             verbose=0, warm_start=False)
  Ridge(alpha=0.01, copy_X=True, fit_intercept=True, max_iter=None,
     normalize=False, solver='auto', tol=0.001)
  RidgeCV(alphas=array([  0.1,   1. ,  10. ]), cv=None,
  fit_intercept=True,
      gcv_mode=None, normalize=False, scoring=None,
      store_cv_values=False)
  SGDRegressor(alpha=0.01, average=False, epsilon=0.1, eta0=0.01,
         fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling',
         loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25,
         random_state=0, shuffle=True, verbose=0, warm_start=False)
  SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,
  gamma=0.0,
    kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
  TheilSenRegressor(copy_X=True, fit_intercept=True, max_iter=5,
           max_subpopulation=100, n_jobs=1, n_subsamples=None,
           random_state=0, tol=0.001, verbose=False)
  debian/rules:45: recipe for target 'python-test2.7' failed
  make[1]: *** [python-test2.7] Error 1
  make[1]: Leaving directory '/tmp/buildd/scikit-learn-0.16.1'
  debian/rules:23: recipe for target 'binary' failed
  make: *** [binary] Error 2
  dpkg-buildpackage: error: fakeroot debian/rules binary gave error exit
  status 2

  [..]

The full build log is attached or can be viewed here:

    https://reproducible.debian.net/logs/unstable/amd64/scikit-learn_0.16.1-2.build1.log.gz


Regards,

-- 
      ,''`.
     : :'  :     Chris Lamb
     `. `'`      lamby at debian.org / chris-lamb.co.uk
       `-
-------------- next part --------------
An embedded and charset-unspecified text was scrubbed...
Name: scikit-learn.0.16.1-2.unstable.amd64.log.txt
URL: <http://lists.alioth.debian.org/pipermail/reproducible-builds/attachments/20150831/ec39807b/attachment.txt>


More information about the Reproducible-builds mailing list