[Debian-med-packaging] Bug#896025: python-mne FTBFS with python-matplotlib 2.2.2-1

Adrian Bunk bunk at debian.org
Wed Apr 18 21:42:25 BST 2018


Source: python-mne
Version: 0.15.2+dfsg-2
Severity: serious

https://tests.reproducible-builds.org/debian/rb-pkg/unstable/amd64/python-mne.html

...
=================================== FAILURES ===================================
___________________ [doctest] mne.viz.misc.plot_ideal_filter ___________________
840     .. versionadded:: 0.14
841 
842     Examples
843     --------
844     Plot a simple ideal band-pass filter::
845 
846         >>> from mne.viz import plot_ideal_filter
847         >>> freq = [0, 1, 40, 50]
848         >>> gain = [0, 1, 1, 0]
849         >>> plot_ideal_filter(freq, gain, flim=(0.1, 100))  #doctest: +ELLIPSIS
Expected:
    <matplotlib.figure.Figure object at ...>
Got:
    <Figure size 640x480 with 1 Axes>

/build/1st/python-mne-0.15.2+dfsg/mne/viz/misc.py:849: DocTestFailure
________________________ test_plot_connectivity_circle _________________________

    def test_plot_connectivity_circle():
        """Test plotting connectivity circle
        """
        import matplotlib.pyplot as plt
        node_order = ['frontalpole-lh', 'parsorbitalis-lh',
                      'lateralorbitofrontal-lh', 'rostralmiddlefrontal-lh',
                      'medialorbitofrontal-lh', 'parstriangularis-lh',
                      'rostralanteriorcingulate-lh', 'temporalpole-lh',
                      'parsopercularis-lh', 'caudalanteriorcingulate-lh',
                      'entorhinal-lh', 'superiorfrontal-lh', 'insula-lh',
                      'caudalmiddlefrontal-lh', 'superiortemporal-lh',
                      'parahippocampal-lh', 'middletemporal-lh',
                      'inferiortemporal-lh', 'precentral-lh',
                      'transversetemporal-lh', 'posteriorcingulate-lh',
                      'fusiform-lh', 'postcentral-lh', 'bankssts-lh',
                      'supramarginal-lh', 'isthmuscingulate-lh', 'paracentral-lh',
                      'lingual-lh', 'precuneus-lh', 'inferiorparietal-lh',
                      'superiorparietal-lh', 'pericalcarine-lh',
                      'lateraloccipital-lh', 'cuneus-lh', 'cuneus-rh',
                      'lateraloccipital-rh', 'pericalcarine-rh',
                      'superiorparietal-rh', 'inferiorparietal-rh', 'precuneus-rh',
                      'lingual-rh', 'paracentral-rh', 'isthmuscingulate-rh',
                      'supramarginal-rh', 'bankssts-rh', 'postcentral-rh',
                      'fusiform-rh', 'posteriorcingulate-rh',
                      'transversetemporal-rh', 'precentral-rh',
                      'inferiortemporal-rh', 'middletemporal-rh',
                      'parahippocampal-rh', 'superiortemporal-rh',
                      'caudalmiddlefrontal-rh', 'insula-rh', 'superiorfrontal-rh',
                      'entorhinal-rh', 'caudalanteriorcingulate-rh',
                      'parsopercularis-rh', 'temporalpole-rh',
                      'rostralanteriorcingulate-rh', 'parstriangularis-rh',
                      'medialorbitofrontal-rh', 'rostralmiddlefrontal-rh',
                      'lateralorbitofrontal-rh', 'parsorbitalis-rh',
                      'frontalpole-rh']
        label_names = ['bankssts-lh', 'bankssts-rh', 'caudalanteriorcingulate-lh',
                       'caudalanteriorcingulate-rh', 'caudalmiddlefrontal-lh',
                       'caudalmiddlefrontal-rh', 'cuneus-lh', 'cuneus-rh',
                       'entorhinal-lh', 'entorhinal-rh', 'frontalpole-lh',
                       'frontalpole-rh', 'fusiform-lh', 'fusiform-rh',
                       'inferiorparietal-lh', 'inferiorparietal-rh',
                       'inferiortemporal-lh', 'inferiortemporal-rh', 'insula-lh',
                       'insula-rh', 'isthmuscingulate-lh', 'isthmuscingulate-rh',
                       'lateraloccipital-lh', 'lateraloccipital-rh',
                       'lateralorbitofrontal-lh', 'lateralorbitofrontal-rh',
                       'lingual-lh', 'lingual-rh', 'medialorbitofrontal-lh',
                       'medialorbitofrontal-rh', 'middletemporal-lh',
                       'middletemporal-rh', 'paracentral-lh', 'paracentral-rh',
                       'parahippocampal-lh', 'parahippocampal-rh',
                       'parsopercularis-lh', 'parsopercularis-rh',
                       'parsorbitalis-lh', 'parsorbitalis-rh',
                       'parstriangularis-lh', 'parstriangularis-rh',
                       'pericalcarine-lh', 'pericalcarine-rh', 'postcentral-lh',
                       'postcentral-rh', 'posteriorcingulate-lh',
                       'posteriorcingulate-rh', 'precentral-lh', 'precentral-rh',
                       'precuneus-lh', 'precuneus-rh',
                       'rostralanteriorcingulate-lh',
                       'rostralanteriorcingulate-rh', 'rostralmiddlefrontal-lh',
                       'rostralmiddlefrontal-rh', 'superiorfrontal-lh',
                       'superiorfrontal-rh', 'superiorparietal-lh',
                       'superiorparietal-rh', 'superiortemporal-lh',
                       'superiortemporal-rh', 'supramarginal-lh',
                       'supramarginal-rh', 'temporalpole-lh', 'temporalpole-rh',
                       'transversetemporal-lh', 'transversetemporal-rh']
    
        group_boundaries = [0, len(label_names) / 2]
        node_angles = circular_layout(label_names, node_order, start_pos=90,
                                      group_boundaries=group_boundaries)
        con = np.random.RandomState(0).randn(68, 68)
        plot_connectivity_circle(con, label_names, n_lines=300,
>                                node_angles=node_angles, title='test',
                                 )

con        = array([[ 1.76405235,  0.40015721,  0.97873798, ..., -0.40178094,
        -1.63... 1.19712845, -1.63770629, ..., -1.35486121,
        -0.52109948,  1.88316415]])
group_boundaries = [0, 34]
label_names = ['bankssts-lh', 'bankssts-rh', 'caudalanteriorcingulate-lh', 'caudalanteriorcingulate-rh', 'caudalmiddlefrontal-lh', 'caudalmiddlefrontal-rh', ...]
node_angles = array([ 212.5,  327.5,  142.5,  397.5,  162.5,  377.5,  262.5,  277.5,
       ... 292.5,  167.5,  372.5,  217.5,  322.5,
        132.5,  407.5,  192.5,  347.5])
node_order = ['frontalpole-lh', 'parsorbitalis-lh', 'lateralorbitofrontal-lh', 'rostralmiddlefrontal-lh', 'medialorbitofrontal-lh', 'parstriangularis-lh', ...]
plt        = <module 'matplotlib.pyplot' from '/usr/lib/python2.7/dist-packages/matplotlib/pyplot.pyc'>

mne/viz/tests/test_circle.py:87: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

con = array([[ 1.76405235,  0.40015721,  0.97873798, ..., -0.40178094,
        -1.63... 1.19712845, -1.63770629, ..., -1.35486121,
        -0.52109948,  1.88316415]])
node_names = ['bankssts-lh', 'bankssts-rh', 'caudalanteriorcingulate-lh', 'caudalanteriorcingulate-rh', 'caudalmiddlefrontal-lh', 'caudalmiddlefrontal-rh', ...]
indices = None, n_lines = 300
node_angles = array([ 3.70882466,  5.7159533 ,  2.48709418,  6.93768378,  2.83616003,
      ...09112,  5.62868684,  2.31256126,
        7.1122167 ,  3.35975881,  6.06501915])
node_width = 0.087266462599715489, node_colors = None, facecolor = 'black'
textcolor = 'white', node_edgecolor = 'black', linewidth = 1.5, colormap = 'hot'
vmin = None, vmax = None, colorbar = True, title = 'test', colorbar_size = 0.2
colorbar_pos = (-0.3, 0.1), fontsize_title = 12, fontsize_names = 8
fontsize_colorbar = 8, padding = 6.0, fig = None, subplot = 111
interactive = True, node_linewidth = 2.0, show = True

    def plot_connectivity_circle(con, node_names, indices=None, n_lines=None,
                                 node_angles=None, node_width=None,
                                 node_colors=None, facecolor='black',
                                 textcolor='white', node_edgecolor='black',
                                 linewidth=1.5, colormap='hot', vmin=None,
                                 vmax=None, colorbar=True, title=None,
                                 colorbar_size=0.2, colorbar_pos=(-0.3, 0.1),
                                 fontsize_title=12, fontsize_names=8,
                                 fontsize_colorbar=8, padding=6.,
                                 fig=None, subplot=111, interactive=True,
                                 node_linewidth=2., show=True):
        """Visualize connectivity as a circular graph.
    
        Note: This code is based on the circle graph example by Nicolas P. Rougier
        http://www.labri.fr/perso/nrougier/coding/.
    
        Parameters
        ----------
        con : array
            Connectivity scores. Can be a square matrix, or a 1D array. If a 1D
            array is provided, "indices" has to be used to define the connection
            indices.
        node_names : list of str
            Node names. The order corresponds to the order in con.
        indices : tuple of arrays | None
            Two arrays with indices of connections for which the connections
            strenghts are defined in con. Only needed if con is a 1D array.
        n_lines : int | None
            If not None, only the n_lines strongest connections (strength=abs(con))
            are drawn.
        node_angles : array, shape=(len(node_names,)) | None
            Array with node positions in degrees. If None, the nodes are equally
            spaced on the circle. See mne.viz.circular_layout.
        node_width : float | None
            Width of each node in degrees. If None, the minimum angle between any
            two nodes is used as the width.
        node_colors : list of tuples | list of str
            List with the color to use for each node. If fewer colors than nodes
            are provided, the colors will be repeated. Any color supported by
            matplotlib can be used, e.g., RGBA tuples, named colors.
        facecolor : str
            Color to use for background. See matplotlib.colors.
        textcolor : str
            Color to use for text. See matplotlib.colors.
        node_edgecolor : str
            Color to use for lines around nodes. See matplotlib.colors.
        linewidth : float
            Line width to use for connections.
        colormap : str
            Colormap to use for coloring the connections.
        vmin : float | None
            Minimum value for colormap. If None, it is determined automatically.
        vmax : float | None
            Maximum value for colormap. If None, it is determined automatically.
        colorbar : bool
            Display a colorbar or not.
        title : str
            The figure title.
        colorbar_size : float
            Size of the colorbar.
        colorbar_pos : 2-tuple
            Position of the colorbar.
        fontsize_title : int
            Font size to use for title.
        fontsize_names : int
            Font size to use for node names.
        fontsize_colorbar : int
            Font size to use for colorbar.
        padding : float
            Space to add around figure to accommodate long labels.
        fig : None | instance of matplotlib.pyplot.Figure
            The figure to use. If None, a new figure with the specified background
            color will be created.
        subplot : int | 3-tuple
            Location of the subplot when creating figures with multiple plots. E.g.
            121 or (1, 2, 1) for 1 row, 2 columns, plot 1. See
            matplotlib.pyplot.subplot.
        interactive : bool
            When enabled, left-click on a node to show only connections to that
            node. Right-click shows all connections.
        node_linewidth : float
            Line with for nodes.
        show : bool
            Show figure if True.
    
        Returns
        -------
        fig : instance of matplotlib.pyplot.Figure
            The figure handle.
        axes : instance of matplotlib.axes.PolarAxesSubplot
            The subplot handle.
        """
        import matplotlib.pyplot as plt
        import matplotlib.path as m_path
        import matplotlib.patches as m_patches
    
        n_nodes = len(node_names)
    
        if node_angles is not None:
            if len(node_angles) != n_nodes:
                raise ValueError('node_angles has to be the same length '
                                 'as node_names')
            # convert it to radians
            node_angles = node_angles * np.pi / 180
        else:
            # uniform layout on unit circle
            node_angles = np.linspace(0, 2 * np.pi, n_nodes, endpoint=False)
    
        if node_width is None:
            # widths correspond to the minimum angle between two nodes
            dist_mat = node_angles[None, :] - node_angles[:, None]
            dist_mat[np.diag_indices(n_nodes)] = 1e9
            node_width = np.min(np.abs(dist_mat))
        else:
            node_width = node_width * np.pi / 180
    
        if node_colors is not None:
            if len(node_colors) < n_nodes:
                node_colors = cycle(node_colors)
        else:
            # assign colors using colormap
            node_colors = [plt.cm.spectral(i / float(n_nodes))
>                          for i in range(n_nodes)]
E           AttributeError: 'module' object has no attribute 'spectral'

colorbar   = True
colorbar_pos = (-0.3, 0.1)
colorbar_size = 0.2
colormap   = 'hot'
con        = array([[ 1.76405235,  0.40015721,  0.97873798, ..., -0.40178094,
        -1.63... 1.19712845, -1.63770629, ..., -1.35486121,
        -0.52109948,  1.88316415]])
dist_mat   = array([[  1.00000000e+09,   2.00712864e+00,  -1.22173048e+00, ...,
          3...92497e+00, ...,
          1.04719755e+00,  -2.70526034e+00,   1.00000000e+09]])
facecolor  = 'black'
fig        = None
fontsize_colorbar = 8
fontsize_names = 8
fontsize_title = 12
i          = 0
indices    = None
interactive = True
linewidth  = 1.5
m_patches  = <module 'matplotlib.patches' from '/usr/lib/python2.7/dist-packages/matplotlib/patches.pyc'>
m_path     = <module 'matplotlib.path' from '/usr/lib/python2.7/dist-packages/matplotlib/path.pyc'>
n_lines    = 300
n_nodes    = 68
node_angles = array([ 3.70882466,  5.7159533 ,  2.48709418,  6.93768378,  2.83616003,
      ...09112,  5.62868684,  2.31256126,
        7.1122167 ,  3.35975881,  6.06501915])
node_colors = None
node_edgecolor = 'black'
node_linewidth = 2.0
node_names = ['bankssts-lh', 'bankssts-rh', 'caudalanteriorcingulate-lh', 'caudalanteriorcingulate-rh', 'caudalmiddlefrontal-lh', 'caudalmiddlefrontal-rh', ...]
node_width = 0.087266462599715489
padding    = 6.0
plt        = <module 'matplotlib.pyplot' from '/usr/lib/python2.7/dist-packages/matplotlib/pyplot.pyc'>
show       = True
subplot    = 111
textcolor  = 'white'
title      = 'test'
vmax       = None
vmin       = None

mne/viz/circle.py:246: AttributeError
____________________________ test_plot_epochs_image ____________________________

    def test_plot_epochs_image():
        """Test plotting of epochs image."""
        import matplotlib.pyplot as plt
        epochs = _get_epochs()
        epochs.plot_image(picks=[1, 2])
        overlay_times = [0.1]
        epochs.plot_image(picks=[1], order=[0], overlay_times=overlay_times,
                          vmin=0.01, title="test"
                          )
        epochs.plot_image(picks=[1], overlay_times=overlay_times, vmin=-0.001,
                          vmax=0.001)
        assert_raises(ValueError, epochs.plot_image,
                      picks=[1], overlay_times=[0.1, 0.2])
        assert_raises(ValueError, epochs.plot_image,
                      picks=[1], order=[0, 1])
        assert_raises(ValueError, epochs.plot_image, axes=dict(), group_by=list(),
                      combine='mean')
        assert_raises(ValueError, epochs.plot_image, axes=list(), group_by=dict(),
                      combine='mean')
        with warnings.catch_warnings(record=True):  # deprecated combine as str
            assert_raises(ValueError, epochs.plot_image, combine='error',
                          picks=[1, 2])
        assert_raises(ValueError, epochs.plot_image, units={"hi": 1},
                      scalings={"ho": 1})
        epochs.load_data().pick_types(meg='mag')
        epochs.info.normalize_proj()
        with warnings.catch_warnings(record=True):  # projs
            epochs.plot_image(group_by='type', combine='mean')
            epochs.plot_image(group_by={"1": [1, 2], "2": [1, 2]}, combine='mean')
            epochs.plot_image(vmin=lambda x: x.min())
            assert_raises(ValueError, epochs.plot_image, axes=1, fig=2)
        ts_args = dict(show_sensors=False)
        with warnings.catch_warnings(record=True) as w:
            epochs.plot_image(overlay_times=[1.1], combine="gfp", ts_args=ts_args)
            assert_raises(ValueError, epochs.plot_image, combine='error',
                          ts_args=ts_args)
            warnings.simplefilter('always')
>       assert_equal(len(w), 4)
E       AssertionError: 
E       Items are not equal:
E        ACTUAL: 5
E        DESIRED: 4

epochs     = <Epochs  |  n_events : 1 (all good), tmin : -0.0998976065792 (s), tmax : 1.0006410259 (s), baseline : (None, 0), ~3.0 MB, data loaded>
overlay_times = [0.1]
plt        = <module 'matplotlib.pyplot' from '/usr/lib/python2.7/dist-packages/matplotlib/pyplot.pyc'>
ts_args    = {'show_sensors': False}
w          = [<warnings.WarningMessage object at 0x7f3cef6c6990>, <warnings.WarningMessage object at 0x7f3cef6c68d0>, <warnings.War...x7f3cef6c6110>, <warnings.WarningMessage object at 0x7f3cef496290>, <warnings.WarningMessage object at 0x7f3cf050b650>]

mne/viz/tests/test_epochs.py:147: AssertionError
____________________________ test_plot_annotations _____________________________

    def test_plot_annotations():
        """Test annotation mode of the plotter."""
        raw = _get_raw()
        raw.info['lowpass'] = 10.
        with warnings.catch_warnings(record=True):  # matplotlib
>           _annotation_helper(raw)

raw        = <Raw  |  test_raw.fif, n_channels x n_times : 9 x 14400 (24.0 sec), ~4.0 MB, data loaded>

mne/viz/tests/test_raw.py:213: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

raw = <Raw  |  test_raw.fif, n_channels x n_times : 9 x 14400 (24.0 sec), ~4.0 MB, data loaded>

    def _annotation_helper(raw):
        """Helper for testing interactive annotations."""
        import matplotlib.pyplot as plt
        n_anns = 0 if raw.annotations is None else len(raw.annotations.onset)
    
        fig = raw.plot()
        data_ax = fig.axes[0]
        fig.canvas.key_press_event('a')  # annotation mode
        # modify description
        ann_fig = plt.gcf()
        for key in ' test':
            ann_fig.canvas.key_press_event(key)
        ann_fig.canvas.key_press_event('enter')
    
        ann_fig = plt.gcf()
        # XXX: _fake_click raises an error on Agg backend
>       _annotation_radio_clicked('', ann_fig.radio, data_ax.selector)
E       AttributeError: 'Figure' object has no attribute 'radio'

ann_fig    = <Figure size 450x275 with 0 Axes>
data_ax    = <matplotlib.axes._subplots.AxesSubplot object at 0x7f3d70a59390>
fig        = <Figure size 640x480 with 5 Axes>
key        = 't'
n_anns     = 0
plt        = <module 'matplotlib.pyplot' from '/usr/lib/python2.7/dist-packages/matplotlib/pyplot.pyc'>
raw        = <Raw  |  test_raw.fif, n_channels x n_times : 9 x 14400 (24.0 sec), ~4.0 MB, data loaded>

mne/viz/tests/test_raw.py:65: AttributeError
=============================== warnings summary ===============================
mne/decoding/tests/test_csp.py::test_csp
  /usr/lib/python2.7/dist-packages/matplotlib/contour.py:1173: UserWarning: No contour levels were found within the data range.
    warnings.warn("No contour levels were found"

mne/viz/tests/test_epochs.py::test_plot_epochs_image
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)

mne/viz/tests/test_ica.py::test_plot_ica_properties
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)

mne/viz/tests/test_misc.py::test_plot_events
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)

mne/viz/tests/test_topo.py::test_plot_topo_single_ch
  /usr/lib/python2.7/dist-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.
    warnings.warn(message, mplDeprecation, stacklevel=1)

-- Docs: http://doc.pytest.org/en/latest/warnings.html
====== 4 failed, 448 passed, 270 skipped, 17 warnings in 2385.51 seconds =======
make[1]: *** [debian/rules:26: override_dh_auto_test] Error 1



More information about the Debian-med-packaging mailing list