[pymvpa] Individual measures for subjects
Arman Eshaghi
arman.eshaghi at gmail.com
Fri Jan 31 19:14:40 UTC 2014
and would it be possible to get predicted probabilities instead of just
labeled predictions? Something similar to 'predict_prob' from SVS in
scikit-learn?
On Fri, Jan 31, 2014 at 9:44 PM, Arman Eshaghi <arman.eshaghi at gmail.com>wrote:
> Thanks so much!
>
> All the best,
> Arman
>
>
> On Fri, Jan 31, 2014 at 9:22 PM, Yaroslav Halchenko <debian at onerussian.com
> > wrote:
>
>>
>> On Fri, 31 Jan 2014, Arman Eshaghi wrote:
>>
>> > MyData is structural MRI data coming from fmri_dataset function.
>> There are
>> > two chunks, and similar to clf.predictions (in tutorial), I'm
>> wondering
>> > whether I can get each predicted label, because I want to compare
>> AUC in
>>
>> so each sample is a subject. ok
>> cvte.stats.sets would have sets of original targets and their
>> predictions per each cross-validation split.
>>
>> also if you set your errorfx=None I guess you would also get raw
>> predictions (and possibly original targets) in your results... yeap:
>>
>> In [2]: cv = CrossValidation(kNN(), HalfPartitioner(attr='chunks'),
>> errorfx=None, enable_ca=['stats'])
>>
>> In [3]: from mvpa2.testing.datasets import datasets as tdatasets
>>
>> In [4]: results = cv(tdatasets['uni2small'])
>>
>> In [5]: results
>> Out[5]: <Dataset: 24x1@|S2, <sa: cvfolds,targets>>
>>
>> In [6]: print results.targets, results.samples
>> ['L0' 'L0' 'L0' 'L0' 'L0' 'L0' 'L1' 'L1' 'L1' 'L1' 'L1' 'L1' 'L0' 'L0'
>> 'L0'
>> 'L0' 'L0' 'L0' 'L1' 'L1' 'L1' 'L1' 'L1' 'L1'] [['L0']
>> ['L0']
>> ['L0']
>> ['L0']
>> ['L0']
>> ['L0']
>> ['L1']
>> ['L1']
>> ['L1']
>> ['L1']
>> ['L1']
>> ['L1']
>> ['L0']
>> ['L0']
>> ['L0']
>> ['L0']
>> ['L0']
>> ['L0']
>> ['L0']
>> ['L1']
>> ['L1']
>> ['L1']
>> ['L1']
>> ['L1']]
>>
>> *In [8]: print cv.ca.stats.sets
>> [(array(['L0', 'L0', 'L0', 'L0', 'L0', 'L0', 'L1', 'L1', 'L1', 'L1', 'L1',
>> 'L1'],
>> dtype='|S2'), array(['L0', 'L0', 'L0', 'L0', 'L0', 'L0', 'L1',
>> 'L1', 'L1', 'L1', 'L1',
>> 'L1'],
>> dtype='|S2'), [{'L0': 1.0, 'L1': 1.0}, {'L0': 1.0, 'L1': 1.0},
>> {'L0': 2.0, 'L1': 0.0}, {'L0': 2.0, 'L1': 0.0}, {'L0': 2.0, 'L1': 0.0},
>> {'L0': 2.0, 'L1': 0.0}, {'L0': 0.0, 'L1': 2.0}, {'L0': 0.0, 'L1': 2.0},
>> {'L0': 0.0, 'L1': 2.0}, {'L0': 0.0, 'L1': 2.0}, {'L0': 0.0, 'L1': 2.0},
>> {'L0': 0.0, 'L1': 2.0}]), (array(['L0', 'L0', 'L0', 'L0', 'L0', 'L0', 'L1',
>> 'L1', 'L1', 'L1', 'L1',
>> 'L1'],
>> dtype='|S2'), array(['L0', 'L0', 'L0', 'L0', 'L0', 'L0', 'L0',
>> 'L1', 'L1', 'L1', 'L1',
>> 'L1'],
>> dtype='|S2'), [{'L0': 2.0, 'L1': 0.0}, {'L0': 2.0, 'L1': 0.0},
>> {'L0': 2.0, 'L1': 0.0}, {'L0': 2.0, 'L1': 0.0}, {'L0': 2.0, 'L1': 0.0},
>> {'L0': 2.0, 'L1': 0.0}, {'L0': 2.0, 'L1': 0.0}, {'L0': 0.0, 'L1': 2.0},
>> {'L0': 0.0, 'L1': 2.0}, {'L0': 0.0, 'L1': 2.0}, {'L0': 0.0, 'L1': 2.0},
>> {'L0': 0.0, 'L1': 2.0}])]
>>
>> and here are some snippets for you for AUC (you need a classifier which
>> would provide estimates, not just final decisions):
>>
>> *In [10]: print cv.ca.stats.stats['AUC']
>> [nan, nan]
>>
>> *In [11]: cv = CrossValidation(SMLR(enable_ca=['estimates']),
>> HalfPartitioner(attr='chunks'), errorfx=None, enable_ca=['stats'])
>>
>> In [12]: results = cv(tdatasets['uni2small'])
>>
>> In [13]: print cv.ca.stats.stats['AUC']
>> [1.0, 1.0]
>>
>> In [14]: tdatasets['uni2small'].samples +=
>> np.random.normal(size=tdatasets['uni2small'].shape)*0.5
>>
>> In [15]: results = cv(tdatasets['uni2small'])
>>
>> In [16]: print cv.ca.stats.stats['AUC']
>> [0.81944444444444442, 0.81944444444444442]
>>
>> *In [17]: results = cv(tdatasets['uni4small'])
>>
>> In [18]: print cv.ca.stats.stats['AUC']
>> [1.0, 1.0, 1.0, 1.0]
>>
>> *In [19]: tdatasets['uni4small'].samples +=
>> np.random.normal(size=tdatasets['uni4small'].shape)*0.5
>>
>> In [20]: results = cv(tdatasets['uni4small'])
>>
>> In [21]: print cv.ca.stats.stats['AUC']
>> [0.64814814814814814, 0.68518518518518512, 0.76388888888888884,
>> 0.55092592592592593]
>>
>>
>> --
>> Yaroslav O. Halchenko, Ph.D.
>> http://neuro.debian.net http://www.pymvpa.org http://www.fail2ban.org
>> Senior Research Associate, Psychological and Brain Sciences Dept.
>> Dartmouth College, 419 Moore Hall, Hinman Box 6207, Hanover, NH 03755
>> Phone: +1 (603) 646-9834 Fax: +1 (603) 646-1419
>> WWW: http://www.linkedin.com/in/yarik
>>
>> _______________________________________________
>> Pkg-ExpPsy-PyMVPA mailing list
>> Pkg-ExpPsy-PyMVPA at lists.alioth.debian.org
>> http://lists.alioth.debian.org/cgi-bin/mailman/listinfo/pkg-exppsy-pymvpa
>>
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.alioth.debian.org/pipermail/pkg-exppsy-pymvpa/attachments/20140131/cc224c3a/attachment.html>
More information about the Pkg-ExpPsy-PyMVPA
mailing list