[pktools] 18/375: added pkclassify_svm.cc and pkdsm2shadow.cc

Bas Couwenberg sebastic at xs4all.nl
Wed Dec 3 21:53:54 UTC 2014


This is an automated email from the git hooks/post-receive script.

sebastic-guest pushed a commit to branch upstream-master
in repository pktools.

commit bd1c222b76545fdb5dc310736f1f4fb06b49de68
Author: Pieter Kempeneers <kempenep at gmail.com>
Date:   Wed Oct 31 18:07:25 2012 +0100

    added pkclassify_svm.cc and pkdsm2shadow.cc
---
 README                            |    8 +-
 src/algorithms/SVM_COPYRIGHT      |   31 +
 src/algorithms/svm.cpp            | 3114 +++++++++++++++++++++++++++++++++++++
 src/algorithms/svm.h              |  101 ++
 src/apps/Makefile.am              |    4 +-
 src/apps/Makefile.in              |   48 +-
 src/apps/pkclassify_svm.cc        | 1037 ++++++++++++
 src/apps/pkdsm2shadow.cc          |  148 ++
 src/apps/pkextract.cc             |    4 +-
 src/imageclasses/ImgWriterGdal.cc |    2 +
 10 files changed, 4466 insertions(+), 31 deletions(-)

diff --git a/README b/README
index 12bcc9c..aa8b4ca 100644
--- a/README
+++ b/README
@@ -14,7 +14,7 @@ To install the programs in pktools, refer to the file INSTALL
 
 Change history
 -------------
-June 25 2012, first public release of the code
-September 04 2012, introduced --enable-fann and --enable-las in configuration
-September 13 2012, support spectral filtering (z-dimension) in pkfilter using tapz option
-October 20 2012, support for SVM classifier 
+version 1.0 June 25 2012, first public release of the code
+version 2.1 September 04 2012, introduced --enable-fann and --enable-las in configuration
+version 2.2 September 13 2012, support spectral filtering (z-dimension) in pkfilter using tapz option
+version 2.3 October 20 2012, support for SVM classifier 
diff --git a/src/algorithms/SVM_COPYRIGHT b/src/algorithms/SVM_COPYRIGHT
new file mode 100644
index 0000000..9280fc0
--- /dev/null
+++ b/src/algorithms/SVM_COPYRIGHT
@@ -0,0 +1,31 @@
+
+Copyright (c) 2000-2012 Chih-Chung Chang and Chih-Jen Lin
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+1. Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+
+3. Neither name of copyright holders nor the names of its contributors
+may be used to endorse or promote products derived from this software
+without specific prior written permission.
+
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR
+CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/src/algorithms/svm.cpp b/src/algorithms/svm.cpp
new file mode 100644
index 0000000..5e9fd28
--- /dev/null
+++ b/src/algorithms/svm.cpp
@@ -0,0 +1,3114 @@
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <float.h>
+#include <string.h>
+#include <stdarg.h>
+#include <limits.h>
+#include <locale.h>
+//test
+// #include <iostream>
+#include "svm.h"
+int libsvm_version = LIBSVM_VERSION;
+typedef float Qfloat;
+typedef signed char schar;
+#ifndef min
+template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
+#endif
+#ifndef max
+template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
+#endif
+template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
+template <class S, class T> static inline void clone(T*& dst, S* src, int n)
+{
+	dst = new T[n];
+	memcpy((void *)dst,(void *)src,sizeof(T)*n);
+}
+static inline double powi(double base, int times)
+{
+	double tmp = base, ret = 1.0;
+
+	for(int t=times; t>0; t/=2)
+	{
+		if(t%2==1) ret*=tmp;
+		tmp = tmp * tmp;
+	}
+	return ret;
+}
+#define INF HUGE_VAL
+#define TAU 1e-12
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
+
+static void print_string_stdout(const char *s)
+{
+	fputs(s,stdout);
+	fflush(stdout);
+}
+static void (*svm_print_string) (const char *) = &print_string_stdout;
+#if 1
+static void info(const char *fmt,...)
+{
+	char buf[BUFSIZ];
+	va_list ap;
+	va_start(ap,fmt);
+	vsprintf(buf,fmt,ap);
+	va_end(ap);
+	(*svm_print_string)(buf);
+}
+#else
+static void info(const char *fmt,...) {}
+#endif
+
+//
+// Kernel Cache
+//
+// l is the number of total data items
+// size is the cache size limit in bytes
+//
+class Cache
+{
+public:
+	Cache(int l,long int size);
+	~Cache();
+
+	// request data [0,len)
+	// return some position p where [p,len) need to be filled
+	// (p >= len if nothing needs to be filled)
+	int get_data(const int index, Qfloat **data, int len);
+	void swap_index(int i, int j);	
+private:
+	int l;
+	long int size;
+	struct head_t
+	{
+		head_t *prev, *next;	// a circular list
+		Qfloat *data;
+		int len;		// data[0,len) is cached in this entry
+	};
+
+	head_t *head;
+	head_t lru_head;
+	void lru_delete(head_t *h);
+	void lru_insert(head_t *h);
+};
+
+Cache::Cache(int l_,long int size_):l(l_),size(size_)
+{
+	head = (head_t *)calloc(l,sizeof(head_t));	// initialized to 0
+	size /= sizeof(Qfloat);
+	size -= l * sizeof(head_t) / sizeof(Qfloat);
+	size = max(size, 2 * (long int) l);	// cache must be large enough for two columns
+	lru_head.next = lru_head.prev = &lru_head;
+}
+
+Cache::~Cache()
+{
+	for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
+		free(h->data);
+	free(head);
+}
+
+void Cache::lru_delete(head_t *h)
+{
+	// delete from current location
+	h->prev->next = h->next;
+	h->next->prev = h->prev;
+}
+
+void Cache::lru_insert(head_t *h)
+{
+	// insert to last position
+	h->next = &lru_head;
+	h->prev = lru_head.prev;
+	h->prev->next = h;
+	h->next->prev = h;
+}
+
+int Cache::get_data(const int index, Qfloat **data, int len)
+{
+	head_t *h = &head[index];
+	if(h->len) lru_delete(h);
+	int more = len - h->len;
+
+	if(more > 0)
+	{
+		// free old space
+		while(size < more)
+		{
+			head_t *old = lru_head.next;
+			lru_delete(old);
+			free(old->data);
+			size += old->len;
+			old->data = 0;
+			old->len = 0;
+		}
+
+		// allocate new space
+		h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
+		size -= more;
+		swap(h->len,len);
+	}
+
+	lru_insert(h);
+	*data = h->data;
+	return len;
+}
+
+void Cache::swap_index(int i, int j)
+{
+	if(i==j) return;
+
+	if(head[i].len) lru_delete(&head[i]);
+	if(head[j].len) lru_delete(&head[j]);
+	swap(head[i].data,head[j].data);
+	swap(head[i].len,head[j].len);
+	if(head[i].len) lru_insert(&head[i]);
+	if(head[j].len) lru_insert(&head[j]);
+
+	if(i>j) swap(i,j);
+	for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
+	{
+		if(h->len > i)
+		{
+			if(h->len > j)
+				swap(h->data[i],h->data[j]);
+			else
+			{
+				// give up
+				lru_delete(h);
+				free(h->data);
+				size += h->len;
+				h->data = 0;
+				h->len = 0;
+			}
+		}
+	}
+}
+
+//
+// Kernel evaluation
+//
+// the static method k_function is for doing single kernel evaluation
+// the constructor of Kernel prepares to calculate the l*l kernel matrix
+// the member function get_Q is for getting one column from the Q Matrix
+//
+class QMatrix {
+public:
+	virtual Qfloat *get_Q(int column, int len) const = 0;
+	virtual double *get_QD() const = 0;
+	virtual void swap_index(int i, int j) const = 0;
+	virtual ~QMatrix() {}
+};
+
+class Kernel: public QMatrix {
+public:
+	Kernel(int l, svm_node * const * x, const svm_parameter& param);
+	virtual ~Kernel();
+
+	static double k_function(const svm_node *x, const svm_node *y,
+				 const svm_parameter& param);
+	virtual Qfloat *get_Q(int column, int len) const = 0;
+	virtual double *get_QD() const = 0;
+	virtual void swap_index(int i, int j) const	// no so const...
+	{
+		swap(x[i],x[j]);
+		if(x_square) swap(x_square[i],x_square[j]);
+	}
+protected:
+
+	double (Kernel::*kernel_function)(int i, int j) const;
+
+private:
+	const svm_node **x;
+	double *x_square;
+
+	// svm_parameter
+	const int kernel_type;
+	const int degree;
+	const double gamma;
+	const double coef0;
+
+	static double dot(const svm_node *px, const svm_node *py);
+	double kernel_linear(int i, int j) const
+	{
+		return dot(x[i],x[j]);
+	}
+	double kernel_poly(int i, int j) const
+	{
+		return powi(gamma*dot(x[i],x[j])+coef0,degree);
+	}
+	double kernel_rbf(int i, int j) const
+	{
+		return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
+	}
+	double kernel_sigmoid(int i, int j) const
+	{
+		return tanh(gamma*dot(x[i],x[j])+coef0);
+	}
+	double kernel_precomputed(int i, int j) const
+	{
+		return x[i][(int)(x[j][0].value)].value;
+	}
+};
+
+Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
+:kernel_type(param.kernel_type), degree(param.degree),
+ gamma(param.gamma), coef0(param.coef0)
+{
+	switch(kernel_type)
+	{
+		case LINEAR:
+			kernel_function = &Kernel::kernel_linear;
+			break;
+		case POLY:
+			kernel_function = &Kernel::kernel_poly;
+			break;
+		case RBF:
+			kernel_function = &Kernel::kernel_rbf;
+			break;
+		case SIGMOID:
+			kernel_function = &Kernel::kernel_sigmoid;
+			break;
+		case PRECOMPUTED:
+			kernel_function = &Kernel::kernel_precomputed;
+			break;
+	}
+
+	clone(x,x_,l);
+
+	if(kernel_type == RBF)
+	{
+		x_square = new double[l];
+		for(int i=0;i<l;i++)
+			x_square[i] = dot(x[i],x[i]);
+	}
+	else
+		x_square = 0;
+}
+
+Kernel::~Kernel()
+{
+	delete[] x;
+	delete[] x_square;
+}
+
+double Kernel::dot(const svm_node *px, const svm_node *py)
+{
+	double sum = 0;
+	while(px->index != -1 && py->index != -1)
+	{
+		if(px->index == py->index)
+		{
+			sum += px->value * py->value;
+			++px;
+			++py;
+		}
+		else
+		{
+			if(px->index > py->index)
+				++py;
+			else
+				++px;
+		}			
+	}
+	return sum;
+}
+
+double Kernel::k_function(const svm_node *x, const svm_node *y,
+			  const svm_parameter& param)
+{
+	switch(param.kernel_type)
+	{
+		case LINEAR:
+			return dot(x,y);
+		case POLY:
+			return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
+		case RBF:
+		{
+			double sum = 0;
+			while(x->index != -1 && y->index !=-1)
+			{
+				if(x->index == y->index)
+				{
+					double d = x->value - y->value;
+					sum += d*d;
+					++x;
+					++y;
+				}
+				else
+				{
+					if(x->index > y->index)
+					{	
+						sum += y->value * y->value;
+						++y;
+					}
+					else
+					{
+						sum += x->value * x->value;
+						++x;
+					}
+				}
+			}
+
+			while(x->index != -1)
+			{
+				sum += x->value * x->value;
+				++x;
+			}
+
+			while(y->index != -1)
+			{
+				sum += y->value * y->value;
+				++y;
+			}
+			
+			return exp(-param.gamma*sum);
+		}
+		case SIGMOID:
+			return tanh(param.gamma*dot(x,y)+param.coef0);
+		case PRECOMPUTED:  //x: test (validation), y: SV
+			return x[(int)(y->value)].value;
+		default:
+			return 0;  // Unreachable 
+	}
+}
+
+// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
+// Solves:
+//
+//	min 0.5(\alpha^T Q \alpha) + p^T \alpha
+//
+//		y^T \alpha = \delta
+//		y_i = +1 or -1
+//		0 <= alpha_i <= Cp for y_i = 1
+//		0 <= alpha_i <= Cn for y_i = -1
+//
+// Given:
+//
+//	Q, p, y, Cp, Cn, and an initial feasible point \alpha
+//	l is the size of vectors and matrices
+//	eps is the stopping tolerance
+//
+// solution will be put in \alpha, objective value will be put in obj
+//
+class Solver {
+public:
+	Solver() {};
+	virtual ~Solver() {};
+
+	struct SolutionInfo {
+		double obj;
+		double rho;
+		double upper_bound_p;
+		double upper_bound_n;
+		double r;	// for Solver_NU
+	};
+
+	void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+		   double *alpha_, double Cp, double Cn, double eps,
+		   SolutionInfo* si, int shrinking);
+protected:
+	int active_size;
+	schar *y;
+	double *G;		// gradient of objective function
+	enum { LOWER_BOUND, UPPER_BOUND, FREE };
+	char *alpha_status;	// LOWER_BOUND, UPPER_BOUND, FREE
+	double *alpha;
+	const QMatrix *Q;
+	const double *QD;
+	double eps;
+	double Cp,Cn;
+	double *p;
+	int *active_set;
+	double *G_bar;		// gradient, if we treat free variables as 0
+	int l;
+	bool unshrink;	// XXX
+
+	double get_C(int i)
+	{
+		return (y[i] > 0)? Cp : Cn;
+	}
+	void update_alpha_status(int i)
+	{
+		if(alpha[i] >= get_C(i))
+			alpha_status[i] = UPPER_BOUND;
+		else if(alpha[i] <= 0)
+			alpha_status[i] = LOWER_BOUND;
+		else alpha_status[i] = FREE;
+	}
+	bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
+	bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
+	bool is_free(int i) { return alpha_status[i] == FREE; }
+	void swap_index(int i, int j);
+	void reconstruct_gradient();
+	virtual int select_working_set(int &i, int &j);
+	virtual double calculate_rho();
+	virtual void do_shrinking();
+private:
+	bool be_shrunk(int i, double Gmax1, double Gmax2);	
+};
+
+void Solver::swap_index(int i, int j)
+{
+	Q->swap_index(i,j);
+	swap(y[i],y[j]);
+	swap(G[i],G[j]);
+	swap(alpha_status[i],alpha_status[j]);
+	swap(alpha[i],alpha[j]);
+	swap(p[i],p[j]);
+	swap(active_set[i],active_set[j]);
+	swap(G_bar[i],G_bar[j]);
+}
+
+void Solver::reconstruct_gradient()
+{
+	// reconstruct inactive elements of G from G_bar and free variables
+
+	if(active_size == l) return;
+
+	int i,j;
+	int nr_free = 0;
+
+	for(j=active_size;j<l;j++)
+		G[j] = G_bar[j] + p[j];
+
+	for(j=0;j<active_size;j++)
+		if(is_free(j))
+			nr_free++;
+
+	if(2*nr_free < active_size)
+		info("\nWARNING: using -h 0 may be faster\n");
+
+	if (nr_free*l > 2*active_size*(l-active_size))
+	{
+		for(i=active_size;i<l;i++)
+		{
+			const Qfloat *Q_i = Q->get_Q(i,active_size);
+			for(j=0;j<active_size;j++)
+				if(is_free(j))
+					G[i] += alpha[j] * Q_i[j];
+		}
+	}
+	else
+	{
+		for(i=0;i<active_size;i++)
+			if(is_free(i))
+			{
+				const Qfloat *Q_i = Q->get_Q(i,l);
+				double alpha_i = alpha[i];
+				for(j=active_size;j<l;j++)
+					G[j] += alpha_i * Q_i[j];
+			}
+	}
+}
+
+void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+		   double *alpha_, double Cp, double Cn, double eps,
+		   SolutionInfo* si, int shrinking)
+{
+	this->l = l;
+	this->Q = &Q;
+	QD=Q.get_QD();
+	clone(p, p_,l);
+	clone(y, y_,l);
+	clone(alpha,alpha_,l);
+	this->Cp = Cp;
+	this->Cn = Cn;
+	this->eps = eps;
+	unshrink = false;
+
+	// initialize alpha_status
+	{
+		alpha_status = new char[l];
+		for(int i=0;i<l;i++)
+			update_alpha_status(i);
+	}
+
+	// initialize active set (for shrinking)
+	{
+		active_set = new int[l];
+		for(int i=0;i<l;i++)
+			active_set[i] = i;
+		active_size = l;
+	}
+
+	// initialize gradient
+	{
+		G = new double[l];
+		G_bar = new double[l];
+		int i;
+		for(i=0;i<l;i++)
+		{
+			G[i] = p[i];
+			G_bar[i] = 0;
+		}
+		for(i=0;i<l;i++)
+			if(!is_lower_bound(i))
+			{
+				const Qfloat *Q_i = Q.get_Q(i,l);
+				double alpha_i = alpha[i];
+				int j;
+				for(j=0;j<l;j++)
+					G[j] += alpha_i*Q_i[j];
+				if(is_upper_bound(i))
+					for(j=0;j<l;j++)
+						G_bar[j] += get_C(i) * Q_i[j];
+			}
+	}
+
+	// optimization step
+
+	int iter = 0;
+	int max_iter = max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l);
+	int counter = min(l,1000)+1;
+	
+	while(iter < max_iter)
+	{
+		// show progress and do shrinking
+
+		if(--counter == 0)
+		{
+			counter = min(l,1000);
+			if(shrinking) do_shrinking();
+			info(".");
+		}
+
+		int i,j;
+		if(select_working_set(i,j)!=0)
+		{
+			// reconstruct the whole gradient
+			reconstruct_gradient();
+			// reset active set size and check
+			active_size = l;
+			info("*");
+			if(select_working_set(i,j)!=0)
+				break;
+			else
+				counter = 1;	// do shrinking next iteration
+		}
+		
+		++iter;
+
+		// update alpha[i] and alpha[j], handle bounds carefully
+		
+		const Qfloat *Q_i = Q.get_Q(i,active_size);
+		const Qfloat *Q_j = Q.get_Q(j,active_size);
+
+		double C_i = get_C(i);
+		double C_j = get_C(j);
+
+		double old_alpha_i = alpha[i];
+		double old_alpha_j = alpha[j];
+
+		if(y[i]!=y[j])
+		{
+			double quad_coef = QD[i]+QD[j]+2*Q_i[j];
+			if (quad_coef <= 0)
+				quad_coef = TAU;
+			double delta = (-G[i]-G[j])/quad_coef;
+			double diff = alpha[i] - alpha[j];
+			alpha[i] += delta;
+			alpha[j] += delta;
+			
+			if(diff > 0)
+			{
+				if(alpha[j] < 0)
+				{
+					alpha[j] = 0;
+					alpha[i] = diff;
+				}
+			}
+			else
+			{
+				if(alpha[i] < 0)
+				{
+					alpha[i] = 0;
+					alpha[j] = -diff;
+				}
+			}
+			if(diff > C_i - C_j)
+			{
+				if(alpha[i] > C_i)
+				{
+					alpha[i] = C_i;
+					alpha[j] = C_i - diff;
+				}
+			}
+			else
+			{
+				if(alpha[j] > C_j)
+				{
+					alpha[j] = C_j;
+					alpha[i] = C_j + diff;
+				}
+			}
+		}
+		else
+		{
+			double quad_coef = QD[i]+QD[j]-2*Q_i[j];
+			if (quad_coef <= 0)
+				quad_coef = TAU;
+			double delta = (G[i]-G[j])/quad_coef;
+			double sum = alpha[i] + alpha[j];
+			alpha[i] -= delta;
+			alpha[j] += delta;
+
+			if(sum > C_i)
+			{
+				if(alpha[i] > C_i)
+				{
+					alpha[i] = C_i;
+					alpha[j] = sum - C_i;
+				}
+			}
+			else
+			{
+				if(alpha[j] < 0)
+				{
+					alpha[j] = 0;
+					alpha[i] = sum;
+				}
+			}
+			if(sum > C_j)
+			{
+				if(alpha[j] > C_j)
+				{
+					alpha[j] = C_j;
+					alpha[i] = sum - C_j;
+				}
+			}
+			else
+			{
+				if(alpha[i] < 0)
+				{
+					alpha[i] = 0;
+					alpha[j] = sum;
+				}
+			}
+		}
+
+		// update G
+
+		double delta_alpha_i = alpha[i] - old_alpha_i;
+		double delta_alpha_j = alpha[j] - old_alpha_j;
+		
+		for(int k=0;k<active_size;k++)
+		{
+			G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
+		}
+
+		// update alpha_status and G_bar
+
+		{
+			bool ui = is_upper_bound(i);
+			bool uj = is_upper_bound(j);
+			update_alpha_status(i);
+			update_alpha_status(j);
+			int k;
+			if(ui != is_upper_bound(i))
+			{
+				Q_i = Q.get_Q(i,l);
+				if(ui)
+					for(k=0;k<l;k++)
+						G_bar[k] -= C_i * Q_i[k];
+				else
+					for(k=0;k<l;k++)
+						G_bar[k] += C_i * Q_i[k];
+			}
+
+			if(uj != is_upper_bound(j))
+			{
+				Q_j = Q.get_Q(j,l);
+				if(uj)
+					for(k=0;k<l;k++)
+						G_bar[k] -= C_j * Q_j[k];
+				else
+					for(k=0;k<l;k++)
+						G_bar[k] += C_j * Q_j[k];
+			}
+		}
+	}
+
+	if(iter >= max_iter)
+	{
+		if(active_size < l)
+		{
+			// reconstruct the whole gradient to calculate objective value
+			reconstruct_gradient();
+			active_size = l;
+			info("*");
+		}
+		info("\nWARNING: reaching max number of iterations");
+	}
+
+	// calculate rho
+
+	si->rho = calculate_rho();
+
+	// calculate objective value
+	{
+		double v = 0;
+		int i;
+		for(i=0;i<l;i++)
+			v += alpha[i] * (G[i] + p[i]);
+
+		si->obj = v/2;
+	}
+
+	// put back the solution
+	{
+		for(int i=0;i<l;i++)
+			alpha_[active_set[i]] = alpha[i];
+	}
+
+	// juggle everything back
+	/*{
+		for(int i=0;i<l;i++)
+			while(active_set[i] != i)
+				swap_index(i,active_set[i]);
+				// or Q.swap_index(i,active_set[i]);
+	}*/
+
+	si->upper_bound_p = Cp;
+	si->upper_bound_n = Cn;
+
+	info("\noptimization finished, #iter = %d\n",iter);
+
+	delete[] p;
+	delete[] y;
+	delete[] alpha;
+	delete[] alpha_status;
+	delete[] active_set;
+	delete[] G;
+	delete[] G_bar;
+}
+
+// return 1 if already optimal, return 0 otherwise
+int Solver::select_working_set(int &out_i, int &out_j)
+{
+	// return i,j such that
+	// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+	// j: minimizes the decrease of obj value
+	//    (if quadratic coefficeint <= 0, replace it with tau)
+	//    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+	
+	double Gmax = -INF;
+	double Gmax2 = -INF;
+	int Gmax_idx = -1;
+	int Gmin_idx = -1;
+	double obj_diff_min = INF;
+
+	for(int t=0;t<active_size;t++)
+		if(y[t]==+1)	
+		{
+			if(!is_upper_bound(t))
+				if(-G[t] >= Gmax)
+				{
+					Gmax = -G[t];
+					Gmax_idx = t;
+				}
+		}
+		else
+		{
+			if(!is_lower_bound(t))
+				if(G[t] >= Gmax)
+				{
+					Gmax = G[t];
+					Gmax_idx = t;
+				}
+		}
+
+	int i = Gmax_idx;
+	const Qfloat *Q_i = NULL;
+	if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
+		Q_i = Q->get_Q(i,active_size);
+
+	for(int j=0;j<active_size;j++)
+	{
+		if(y[j]==+1)
+		{
+			if (!is_lower_bound(j))
+			{
+				double grad_diff=Gmax+G[j];
+				if (G[j] >= Gmax2)
+					Gmax2 = G[j];
+				if (grad_diff > 0)
+				{
+					double obj_diff; 
+					double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
+					if (quad_coef > 0)
+						obj_diff = -(grad_diff*grad_diff)/quad_coef;
+					else
+						obj_diff = -(grad_diff*grad_diff)/TAU;
+
+					if (obj_diff <= obj_diff_min)
+					{
+						Gmin_idx=j;
+						obj_diff_min = obj_diff;
+					}
+				}
+			}
+		}
+		else
+		{
+			if (!is_upper_bound(j))
+			{
+				double grad_diff= Gmax-G[j];
+				if (-G[j] >= Gmax2)
+					Gmax2 = -G[j];
+				if (grad_diff > 0)
+				{
+					double obj_diff; 
+					double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
+					if (quad_coef > 0)
+						obj_diff = -(grad_diff*grad_diff)/quad_coef;
+					else
+						obj_diff = -(grad_diff*grad_diff)/TAU;
+
+					if (obj_diff <= obj_diff_min)
+					{
+						Gmin_idx=j;
+						obj_diff_min = obj_diff;
+					}
+				}
+			}
+		}
+	}
+
+	if(Gmax+Gmax2 < eps)
+		return 1;
+
+	out_i = Gmax_idx;
+	out_j = Gmin_idx;
+	return 0;
+}
+
+bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
+{
+	if(is_upper_bound(i))
+	{
+		if(y[i]==+1)
+			return(-G[i] > Gmax1);
+		else
+			return(-G[i] > Gmax2);
+	}
+	else if(is_lower_bound(i))
+	{
+		if(y[i]==+1)
+			return(G[i] > Gmax2);
+		else	
+			return(G[i] > Gmax1);
+	}
+	else
+		return(false);
+}
+
+void Solver::do_shrinking()
+{
+	int i;
+	double Gmax1 = -INF;		// max { -y_i * grad(f)_i | i in I_up(\alpha) }
+	double Gmax2 = -INF;		// max { y_i * grad(f)_i | i in I_low(\alpha) }
+
+	// find maximal violating pair first
+	for(i=0;i<active_size;i++)
+	{
+		if(y[i]==+1)	
+		{
+			if(!is_upper_bound(i))	
+			{
+				if(-G[i] >= Gmax1)
+					Gmax1 = -G[i];
+			}
+			if(!is_lower_bound(i))	
+			{
+				if(G[i] >= Gmax2)
+					Gmax2 = G[i];
+			}
+		}
+		else	
+		{
+			if(!is_upper_bound(i))	
+			{
+				if(-G[i] >= Gmax2)
+					Gmax2 = -G[i];
+			}
+			if(!is_lower_bound(i))	
+			{
+				if(G[i] >= Gmax1)
+					Gmax1 = G[i];
+			}
+		}
+	}
+
+	if(unshrink == false && Gmax1 + Gmax2 <= eps*10) 
+	{
+		unshrink = true;
+		reconstruct_gradient();
+		active_size = l;
+		info("*");
+	}
+
+	for(i=0;i<active_size;i++)
+		if (be_shrunk(i, Gmax1, Gmax2))
+		{
+			active_size--;
+			while (active_size > i)
+			{
+				if (!be_shrunk(active_size, Gmax1, Gmax2))
+				{
+					swap_index(i,active_size);
+					break;
+				}
+				active_size--;
+			}
+		}
+}
+
+double Solver::calculate_rho()
+{
+	double r;
+	int nr_free = 0;
+	double ub = INF, lb = -INF, sum_free = 0;
+	for(int i=0;i<active_size;i++)
+	{
+		double yG = y[i]*G[i];
+
+		if(is_upper_bound(i))
+		{
+			if(y[i]==-1)
+				ub = min(ub,yG);
+			else
+				lb = max(lb,yG);
+		}
+		else if(is_lower_bound(i))
+		{
+			if(y[i]==+1)
+				ub = min(ub,yG);
+			else
+				lb = max(lb,yG);
+		}
+		else
+		{
+			++nr_free;
+			sum_free += yG;
+		}
+	}
+
+	if(nr_free>0)
+		r = sum_free/nr_free;
+	else
+		r = (ub+lb)/2;
+
+	return r;
+}
+
+//
+// Solver for nu-svm classification and regression
+//
+// additional constraint: e^T \alpha = constant
+//
+class Solver_NU : public Solver
+{
+public:
+	Solver_NU() {}
+	void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
+		   double *alpha, double Cp, double Cn, double eps,
+		   SolutionInfo* si, int shrinking)
+	{
+		this->si = si;
+		Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
+	}
+private:
+	SolutionInfo *si;
+	int select_working_set(int &i, int &j);
+	double calculate_rho();
+	bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
+	void do_shrinking();
+};
+
+// return 1 if already optimal, return 0 otherwise
+int Solver_NU::select_working_set(int &out_i, int &out_j)
+{
+	// return i,j such that y_i = y_j and
+	// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+	// j: minimizes the decrease of obj value
+	//    (if quadratic coefficeint <= 0, replace it with tau)
+	//    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+
+	double Gmaxp = -INF;
+	double Gmaxp2 = -INF;
+	int Gmaxp_idx = -1;
+
+	double Gmaxn = -INF;
+	double Gmaxn2 = -INF;
+	int Gmaxn_idx = -1;
+
+	int Gmin_idx = -1;
+	double obj_diff_min = INF;
+
+	for(int t=0;t<active_size;t++)
+		if(y[t]==+1)
+		{
+			if(!is_upper_bound(t))
+				if(-G[t] >= Gmaxp)
+				{
+					Gmaxp = -G[t];
+					Gmaxp_idx = t;
+				}
+		}
+		else
+		{
+			if(!is_lower_bound(t))
+				if(G[t] >= Gmaxn)
+				{
+					Gmaxn = G[t];
+					Gmaxn_idx = t;
+				}
+		}
+
+	int ip = Gmaxp_idx;
+	int in = Gmaxn_idx;
+	const Qfloat *Q_ip = NULL;
+	const Qfloat *Q_in = NULL;
+	if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
+		Q_ip = Q->get_Q(ip,active_size);
+	if(in != -1)
+		Q_in = Q->get_Q(in,active_size);
+
+	for(int j=0;j<active_size;j++)
+	{
+		if(y[j]==+1)
+		{
+			if (!is_lower_bound(j))	
+			{
+				double grad_diff=Gmaxp+G[j];
+				if (G[j] >= Gmaxp2)
+					Gmaxp2 = G[j];
+				if (grad_diff > 0)
+				{
+					double obj_diff; 
+					double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
+					if (quad_coef > 0)
+						obj_diff = -(grad_diff*grad_diff)/quad_coef;
+					else
+						obj_diff = -(grad_diff*grad_diff)/TAU;
+
+					if (obj_diff <= obj_diff_min)
+					{
+						Gmin_idx=j;
+						obj_diff_min = obj_diff;
+					}
+				}
+			}
+		}
+		else
+		{
+			if (!is_upper_bound(j))
+			{
+				double grad_diff=Gmaxn-G[j];
+				if (-G[j] >= Gmaxn2)
+					Gmaxn2 = -G[j];
+				if (grad_diff > 0)
+				{
+					double obj_diff; 
+					double quad_coef = QD[in]+QD[j]-2*Q_in[j];
+					if (quad_coef > 0)
+						obj_diff = -(grad_diff*grad_diff)/quad_coef;
+					else
+						obj_diff = -(grad_diff*grad_diff)/TAU;
+
+					if (obj_diff <= obj_diff_min)
+					{
+						Gmin_idx=j;
+						obj_diff_min = obj_diff;
+					}
+				}
+			}
+		}
+	}
+
+	if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
+		return 1;
+
+	if (y[Gmin_idx] == +1)
+		out_i = Gmaxp_idx;
+	else
+		out_i = Gmaxn_idx;
+	out_j = Gmin_idx;
+
+	return 0;
+}
+
+bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
+{
+	if(is_upper_bound(i))
+	{
+		if(y[i]==+1)
+			return(-G[i] > Gmax1);
+		else	
+			return(-G[i] > Gmax4);
+	}
+	else if(is_lower_bound(i))
+	{
+		if(y[i]==+1)
+			return(G[i] > Gmax2);
+		else	
+			return(G[i] > Gmax3);
+	}
+	else
+		return(false);
+}
+
+void Solver_NU::do_shrinking()
+{
+	double Gmax1 = -INF;	// max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
+	double Gmax2 = -INF;	// max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
+	double Gmax3 = -INF;	// max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
+	double Gmax4 = -INF;	// max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
+
+	// find maximal violating pair first
+	int i;
+	for(i=0;i<active_size;i++)
+	{
+		if(!is_upper_bound(i))
+		{
+			if(y[i]==+1)
+			{
+				if(-G[i] > Gmax1) Gmax1 = -G[i];
+			}
+			else	if(-G[i] > Gmax4) Gmax4 = -G[i];
+		}
+		if(!is_lower_bound(i))
+		{
+			if(y[i]==+1)
+			{	
+				if(G[i] > Gmax2) Gmax2 = G[i];
+			}
+			else	if(G[i] > Gmax3) Gmax3 = G[i];
+		}
+	}
+
+	if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) 
+	{
+		unshrink = true;
+		reconstruct_gradient();
+		active_size = l;
+	}
+
+	for(i=0;i<active_size;i++)
+		if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
+		{
+			active_size--;
+			while (active_size > i)
+			{
+				if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
+				{
+					swap_index(i,active_size);
+					break;
+				}
+				active_size--;
+			}
+		}
+}
+
+double Solver_NU::calculate_rho()
+{
+	int nr_free1 = 0,nr_free2 = 0;
+	double ub1 = INF, ub2 = INF;
+	double lb1 = -INF, lb2 = -INF;
+	double sum_free1 = 0, sum_free2 = 0;
+
+	for(int i=0;i<active_size;i++)
+	{
+		if(y[i]==+1)
+		{
+			if(is_upper_bound(i))
+				lb1 = max(lb1,G[i]);
+			else if(is_lower_bound(i))
+				ub1 = min(ub1,G[i]);
+			else
+			{
+				++nr_free1;
+				sum_free1 += G[i];
+			}
+		}
+		else
+		{
+			if(is_upper_bound(i))
+				lb2 = max(lb2,G[i]);
+			else if(is_lower_bound(i))
+				ub2 = min(ub2,G[i]);
+			else
+			{
+				++nr_free2;
+				sum_free2 += G[i];
+			}
+		}
+	}
+
+	double r1,r2;
+	if(nr_free1 > 0)
+		r1 = sum_free1/nr_free1;
+	else
+		r1 = (ub1+lb1)/2;
+	
+	if(nr_free2 > 0)
+		r2 = sum_free2/nr_free2;
+	else
+		r2 = (ub2+lb2)/2;
+	
+	si->r = (r1+r2)/2;
+	return (r1-r2)/2;
+}
+
+//
+// Q matrices for various formulations
+//
+class SVC_Q: public Kernel
+{ 
+public:
+	SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
+	:Kernel(prob.l, prob.x, param)
+	{
+		clone(y,y_,prob.l);
+		cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+		QD = new double[prob.l];
+		for(int i=0;i<prob.l;i++)
+			QD[i] = (this->*kernel_function)(i,i);
+	}
+	
+	Qfloat *get_Q(int i, int len) const
+	{
+		Qfloat *data;
+		int start, j;
+		if((start = cache->get_data(i,&data,len)) < len)
+		{
+			for(j=start;j<len;j++)
+				data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
+		}
+		return data;
+	}
+
+	double *get_QD() const
+	{
+		return QD;
+	}
+
+	void swap_index(int i, int j) const
+	{
+		cache->swap_index(i,j);
+		Kernel::swap_index(i,j);
+		swap(y[i],y[j]);
+		swap(QD[i],QD[j]);
+	}
+
+	~SVC_Q()
+	{
+		delete[] y;
+		delete cache;
+		delete[] QD;
+	}
+private:
+	schar *y;
+	Cache *cache;
+	double *QD;
+};
+
+class ONE_CLASS_Q: public Kernel
+{
+public:
+	ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
+	:Kernel(prob.l, prob.x, param)
+	{
+		cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+		QD = new double[prob.l];
+		for(int i=0;i<prob.l;i++)
+			QD[i] = (this->*kernel_function)(i,i);
+	}
+	
+	Qfloat *get_Q(int i, int len) const
+	{
+		Qfloat *data;
+		int start, j;
+		if((start = cache->get_data(i,&data,len)) < len)
+		{
+			for(j=start;j<len;j++)
+				data[j] = (Qfloat)(this->*kernel_function)(i,j);
+		}
+		return data;
+	}
+
+	double *get_QD() const
+	{
+		return QD;
+	}
+
+	void swap_index(int i, int j) const
+	{
+		cache->swap_index(i,j);
+		Kernel::swap_index(i,j);
+		swap(QD[i],QD[j]);
+	}
+
+	~ONE_CLASS_Q()
+	{
+		delete cache;
+		delete[] QD;
+	}
+private:
+	Cache *cache;
+	double *QD;
+};
+
+class SVR_Q: public Kernel
+{ 
+public:
+	SVR_Q(const svm_problem& prob, const svm_parameter& param)
+	:Kernel(prob.l, prob.x, param)
+	{
+		l = prob.l;
+		cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
+		QD = new double[2*l];
+		sign = new schar[2*l];
+		index = new int[2*l];
+		for(int k=0;k<l;k++)
+		{
+			sign[k] = 1;
+			sign[k+l] = -1;
+			index[k] = k;
+			index[k+l] = k;
+			QD[k] = (this->*kernel_function)(k,k);
+			QD[k+l] = QD[k];
+		}
+		buffer[0] = new Qfloat[2*l];
+		buffer[1] = new Qfloat[2*l];
+		next_buffer = 0;
+	}
+
+	void swap_index(int i, int j) const
+	{
+		swap(sign[i],sign[j]);
+		swap(index[i],index[j]);
+		swap(QD[i],QD[j]);
+	}
+	
+	Qfloat *get_Q(int i, int len) const
+	{
+		Qfloat *data;
+		int j, real_i = index[i];
+		if(cache->get_data(real_i,&data,l) < l)
+		{
+			for(j=0;j<l;j++)
+				data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
+		}
+
+		// reorder and copy
+		Qfloat *buf = buffer[next_buffer];
+		next_buffer = 1 - next_buffer;
+		schar si = sign[i];
+		for(j=0;j<len;j++)
+			buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
+		return buf;
+	}
+
+	double *get_QD() const
+	{
+		return QD;
+	}
+
+	~SVR_Q()
+	{
+		delete cache;
+		delete[] sign;
+		delete[] index;
+		delete[] buffer[0];
+		delete[] buffer[1];
+		delete[] QD;
+	}
+private:
+	int l;
+	Cache *cache;
+	schar *sign;
+	int *index;
+	mutable int next_buffer;
+	Qfloat *buffer[2];
+	double *QD;
+};
+
+//
+// construct and solve various formulations
+//
+static void solve_c_svc(
+	const svm_problem *prob, const svm_parameter* param,
+	double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
+{
+	int l = prob->l;
+	double *minus_ones = new double[l];
+	schar *y = new schar[l];
+
+	int i;
+
+	for(i=0;i<l;i++)
+	{
+		alpha[i] = 0;
+		minus_ones[i] = -1;
+		if(prob->y[i] > 0) y[i] = +1; else y[i] = -1;
+	}
+
+	Solver s;
+	s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
+		alpha, Cp, Cn, param->eps, si, param->shrinking);
+
+	double sum_alpha=0;
+	for(i=0;i<l;i++)
+		sum_alpha += alpha[i];
+
+	if (Cp==Cn)
+		info("nu = %f\n", sum_alpha/(Cp*prob->l));
+
+	for(i=0;i<l;i++)
+		alpha[i] *= y[i];
+
+	delete[] minus_ones;
+	delete[] y;
+}
+
+static void solve_nu_svc(
+	const svm_problem *prob, const svm_parameter *param,
+	double *alpha, Solver::SolutionInfo* si)
+{
+	int i;
+	int l = prob->l;
+	double nu = param->nu;
+
+	schar *y = new schar[l];
+
+	for(i=0;i<l;i++)
+		if(prob->y[i]>0)
+			y[i] = +1;
+		else
+			y[i] = -1;
+
+	double sum_pos = nu*l/2;
+	double sum_neg = nu*l/2;
+
+	for(i=0;i<l;i++)
+		if(y[i] == +1)
+		{
+			alpha[i] = min(1.0,sum_pos);
+			sum_pos -= alpha[i];
+		}
+		else
+		{
+			alpha[i] = min(1.0,sum_neg);
+			sum_neg -= alpha[i];
+		}
+
+	double *zeros = new double[l];
+
+	for(i=0;i<l;i++)
+		zeros[i] = 0;
+
+	Solver_NU s;
+	s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
+		alpha, 1.0, 1.0, param->eps, si,  param->shrinking);
+	double r = si->r;
+
+	info("C = %f\n",1/r);
+
+	for(i=0;i<l;i++)
+		alpha[i] *= y[i]/r;
+
+	si->rho /= r;
+	si->obj /= (r*r);
+	si->upper_bound_p = 1/r;
+	si->upper_bound_n = 1/r;
+
+	delete[] y;
+	delete[] zeros;
+}
+
+static void solve_one_class(
+	const svm_problem *prob, const svm_parameter *param,
+	double *alpha, Solver::SolutionInfo* si)
+{
+	int l = prob->l;
+	double *zeros = new double[l];
+	schar *ones = new schar[l];
+	int i;
+
+	int n = (int)(param->nu*prob->l);	// # of alpha's at upper bound
+
+	for(i=0;i<n;i++)
+		alpha[i] = 1;
+	if(n<prob->l)
+		alpha[n] = param->nu * prob->l - n;
+	for(i=n+1;i<l;i++)
+		alpha[i] = 0;
+
+	for(i=0;i<l;i++)
+	{
+		zeros[i] = 0;
+		ones[i] = 1;
+	}
+
+	Solver s;
+	s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
+		alpha, 1.0, 1.0, param->eps, si, param->shrinking);
+
+	delete[] zeros;
+	delete[] ones;
+}
+
+static void solve_epsilon_svr(
+	const svm_problem *prob, const svm_parameter *param,
+	double *alpha, Solver::SolutionInfo* si)
+{
+	int l = prob->l;
+	double *alpha2 = new double[2*l];
+	double *linear_term = new double[2*l];
+	schar *y = new schar[2*l];
+	int i;
+
+	for(i=0;i<l;i++)
+	{
+		alpha2[i] = 0;
+		linear_term[i] = param->p - prob->y[i];
+		y[i] = 1;
+
+		alpha2[i+l] = 0;
+		linear_term[i+l] = param->p + prob->y[i];
+		y[i+l] = -1;
+	}
+
+	Solver s;
+	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+		alpha2, param->C, param->C, param->eps, si, param->shrinking);
+
+	double sum_alpha = 0;
+	for(i=0;i<l;i++)
+	{
+		alpha[i] = alpha2[i] - alpha2[i+l];
+		sum_alpha += fabs(alpha[i]);
+	}
+	info("nu = %f\n",sum_alpha/(param->C*l));
+
+	delete[] alpha2;
+	delete[] linear_term;
+	delete[] y;
+}
+
+static void solve_nu_svr(
+	const svm_problem *prob, const svm_parameter *param,
+	double *alpha, Solver::SolutionInfo* si)
+{
+	int l = prob->l;
+	double C = param->C;
+	double *alpha2 = new double[2*l];
+	double *linear_term = new double[2*l];
+	schar *y = new schar[2*l];
+	int i;
+
+	double sum = C * param->nu * l / 2;
+	for(i=0;i<l;i++)
+	{
+		alpha2[i] = alpha2[i+l] = min(sum,C);
+		sum -= alpha2[i];
+
+		linear_term[i] = - prob->y[i];
+		y[i] = 1;
+
+		linear_term[i+l] = prob->y[i];
+		y[i+l] = -1;
+	}
+
+	Solver_NU s;
+	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+		alpha2, C, C, param->eps, si, param->shrinking);
+
+	info("epsilon = %f\n",-si->r);
+
+	for(i=0;i<l;i++)
+		alpha[i] = alpha2[i] - alpha2[i+l];
+
+	delete[] alpha2;
+	delete[] linear_term;
+	delete[] y;
+}
+
+//
+// decision_function
+//
+struct decision_function
+{
+	double *alpha;
+	double rho;	
+};
+
+static decision_function svm_train_one(
+	const svm_problem *prob, const svm_parameter *param,
+	double Cp, double Cn)
+{
+	double *alpha = Malloc(double,prob->l);
+	Solver::SolutionInfo si;
+	switch(param->svm_type)
+	{
+		case C_SVC:
+			solve_c_svc(prob,param,alpha,&si,Cp,Cn);
+			break;
+		case NU_SVC:
+			solve_nu_svc(prob,param,alpha,&si);
+			break;
+		case ONE_CLASS:
+			solve_one_class(prob,param,alpha,&si);
+			break;
+		case EPSILON_SVR:
+			solve_epsilon_svr(prob,param,alpha,&si);
+			break;
+		case NU_SVR:
+			solve_nu_svr(prob,param,alpha,&si);
+			break;
+	}
+
+	info("obj = %f, rho = %f\n",si.obj,si.rho);
+
+	// output SVs
+
+	int nSV = 0;
+	int nBSV = 0;
+	for(int i=0;i<prob->l;i++)
+	{
+		if(fabs(alpha[i]) > 0)
+		{
+			++nSV;
+			if(prob->y[i] > 0)
+			{
+				if(fabs(alpha[i]) >= si.upper_bound_p)
+					++nBSV;
+			}
+			else
+			{
+				if(fabs(alpha[i]) >= si.upper_bound_n)
+					++nBSV;
+			}
+		}
+	}
+
+	info("nSV = %d, nBSV = %d\n",nSV,nBSV);
+
+	decision_function f;
+	f.alpha = alpha;
+	f.rho = si.rho;
+	return f;
+}
+
+// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
+static void sigmoid_train(
+	int l, const double *dec_values, const double *labels, 
+	double& A, double& B)
+{
+	double prior1=0, prior0 = 0;
+	int i;
+
+	for (i=0;i<l;i++)
+		if (labels[i] > 0) prior1+=1;
+		else prior0+=1;
+	
+	int max_iter=100;	// Maximal number of iterations
+	double min_step=1e-10;	// Minimal step taken in line search
+	double sigma=1e-12;	// For numerically strict PD of Hessian
+	double eps=1e-5;
+	double hiTarget=(prior1+1.0)/(prior1+2.0);
+	double loTarget=1/(prior0+2.0);
+	double *t=Malloc(double,l);
+	double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
+	double newA,newB,newf,d1,d2;
+	int iter; 
+	
+	// Initial Point and Initial Fun Value
+	A=0.0; B=log((prior0+1.0)/(prior1+1.0));
+	double fval = 0.0;
+
+	for (i=0;i<l;i++)
+	{
+		if (labels[i]>0) t[i]=hiTarget;
+		else t[i]=loTarget;
+		fApB = dec_values[i]*A+B;
+		if (fApB>=0)
+			fval += t[i]*fApB + log(1+exp(-fApB));
+		else
+			fval += (t[i] - 1)*fApB +log(1+exp(fApB));
+	}
+	for (iter=0;iter<max_iter;iter++)
+	{
+		// Update Gradient and Hessian (use H' = H + sigma I)
+		h11=sigma; // numerically ensures strict PD
+		h22=sigma;
+		h21=0.0;g1=0.0;g2=0.0;
+		for (i=0;i<l;i++)
+		{
+			fApB = dec_values[i]*A+B;
+			if (fApB >= 0)
+			{
+				p=exp(-fApB)/(1.0+exp(-fApB));
+				q=1.0/(1.0+exp(-fApB));
+			}
+			else
+			{
+				p=1.0/(1.0+exp(fApB));
+				q=exp(fApB)/(1.0+exp(fApB));
+			}
+			d2=p*q;
+			h11+=dec_values[i]*dec_values[i]*d2;
+			h22+=d2;
+			h21+=dec_values[i]*d2;
+			d1=t[i]-p;
+			g1+=dec_values[i]*d1;
+			g2+=d1;
+		}
+
+		// Stopping Criteria
+		if (fabs(g1)<eps && fabs(g2)<eps)
+			break;
+
+		// Finding Newton direction: -inv(H') * g
+		det=h11*h22-h21*h21;
+		dA=-(h22*g1 - h21 * g2) / det;
+		dB=-(-h21*g1+ h11 * g2) / det;
+		gd=g1*dA+g2*dB;
+
+
+		stepsize = 1;		// Line Search
+		while (stepsize >= min_step)
+		{
+			newA = A + stepsize * dA;
+			newB = B + stepsize * dB;
+
+			// New function value
+			newf = 0.0;
+			for (i=0;i<l;i++)
+			{
+				fApB = dec_values[i]*newA+newB;
+				if (fApB >= 0)
+					newf += t[i]*fApB + log(1+exp(-fApB));
+				else
+					newf += (t[i] - 1)*fApB +log(1+exp(fApB));
+			}
+			// Check sufficient decrease
+			if (newf<fval+0.0001*stepsize*gd)
+			{
+				A=newA;B=newB;fval=newf;
+				break;
+			}
+			else
+				stepsize = stepsize / 2.0;
+		}
+
+		if (stepsize < min_step)
+		{
+			info("Line search fails in two-class probability estimates\n");
+			break;
+		}
+	}
+
+	if (iter>=max_iter)
+		info("Reaching maximal iterations in two-class probability estimates\n");
+	free(t);
+}
+
+static double sigmoid_predict(double decision_value, double A, double B)
+{
+	double fApB = decision_value*A+B;
+	// 1-p used later; avoid catastrophic cancellation
+	if (fApB >= 0)
+		return exp(-fApB)/(1.0+exp(-fApB));
+	else
+		return 1.0/(1+exp(fApB)) ;
+}
+
+// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
+static void multiclass_probability(int k, double **r, double *p)
+{
+	int t,j;
+	int iter = 0, max_iter=max(100,k);
+	double **Q=Malloc(double *,k);
+	double *Qp=Malloc(double,k);
+	double pQp, eps=0.005/k;
+	
+	for (t=0;t<k;t++)
+	{
+		p[t]=1.0/k;  // Valid if k = 1
+		Q[t]=Malloc(double,k);
+		Q[t][t]=0;
+		for (j=0;j<t;j++)
+		{
+			Q[t][t]+=r[j][t]*r[j][t];
+			Q[t][j]=Q[j][t];
+		}
+		for (j=t+1;j<k;j++)
+		{
+			Q[t][t]+=r[j][t]*r[j][t];
+			Q[t][j]=-r[j][t]*r[t][j];
+		}
+	}
+	for (iter=0;iter<max_iter;iter++)
+	{
+		// stopping condition, recalculate QP,pQP for numerical accuracy
+		pQp=0;
+		for (t=0;t<k;t++)
+		{
+			Qp[t]=0;
+			for (j=0;j<k;j++)
+				Qp[t]+=Q[t][j]*p[j];
+			pQp+=p[t]*Qp[t];
+		}
+		double max_error=0;
+		for (t=0;t<k;t++)
+		{
+			double error=fabs(Qp[t]-pQp);
+			if (error>max_error)
+				max_error=error;
+		}
+		if (max_error<eps) break;
+		
+		for (t=0;t<k;t++)
+		{
+			double diff=(-Qp[t]+pQp)/Q[t][t];
+			p[t]+=diff;
+			pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
+			for (j=0;j<k;j++)
+			{
+				Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
+				p[j]/=(1+diff);
+			}
+		}
+	}
+	if (iter>=max_iter)
+		info("Exceeds max_iter in multiclass_prob\n");
+	for(t=0;t<k;t++) free(Q[t]);
+	free(Q);
+	free(Qp);
+}
+
+// Cross-validation decision values for probability estimates
+static void svm_binary_svc_probability(
+	const svm_problem *prob, const svm_parameter *param,
+	double Cp, double Cn, double& probA, double& probB)
+{
+	int i;
+	int nr_fold = 5;
+	int *perm = Malloc(int,prob->l);
+	double *dec_values = Malloc(double,prob->l);
+
+	// random shuffle
+	for(i=0;i<prob->l;i++) perm[i]=i;
+	for(i=0;i<prob->l;i++)
+	{
+		int j = i+rand()%(prob->l-i);
+		swap(perm[i],perm[j]);
+	}
+	for(i=0;i<nr_fold;i++)
+	{
+		int begin = i*prob->l/nr_fold;
+		int end = (i+1)*prob->l/nr_fold;
+		int j,k;
+		struct svm_problem subprob;
+
+		subprob.l = prob->l-(end-begin);
+		subprob.x = Malloc(struct svm_node*,subprob.l);
+		subprob.y = Malloc(double,subprob.l);
+			
+		k=0;
+		for(j=0;j<begin;j++)
+		{
+			subprob.x[k] = prob->x[perm[j]];
+			subprob.y[k] = prob->y[perm[j]];
+			++k;
+		}
+		for(j=end;j<prob->l;j++)
+		{
+			subprob.x[k] = prob->x[perm[j]];
+			subprob.y[k] = prob->y[perm[j]];
+			++k;
+		}
+		int p_count=0,n_count=0;
+		for(j=0;j<k;j++)
+			if(subprob.y[j]>0)
+				p_count++;
+			else
+				n_count++;
+
+		if(p_count==0 && n_count==0)
+			for(j=begin;j<end;j++)
+				dec_values[perm[j]] = 0;
+		else if(p_count > 0 && n_count == 0)
+			for(j=begin;j<end;j++)
+				dec_values[perm[j]] = 1;
+		else if(p_count == 0 && n_count > 0)
+			for(j=begin;j<end;j++)
+				dec_values[perm[j]] = -1;
+		else
+		{
+			svm_parameter subparam = *param;
+			subparam.probability=0;
+			subparam.C=1.0;
+			subparam.nr_weight=2;
+			subparam.weight_label = Malloc(int,2);
+			subparam.weight = Malloc(double,2);
+			subparam.weight_label[0]=+1;
+			subparam.weight_label[1]=-1;
+			subparam.weight[0]=Cp;
+			subparam.weight[1]=Cn;
+			struct svm_model *submodel = svm_train(&subprob,&subparam);
+			for(j=begin;j<end;j++)
+			{
+				svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); 
+				// ensure +1 -1 order; reason not using CV subroutine
+				dec_values[perm[j]] *= submodel->label[0];
+			}		
+			svm_free_and_destroy_model(&submodel);
+			svm_destroy_param(&subparam);
+		}
+		free(subprob.x);
+		free(subprob.y);
+	}		
+	sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
+	free(dec_values);
+	free(perm);
+}
+
+// Return parameter of a Laplace distribution 
+static double svm_svr_probability(
+	const svm_problem *prob, const svm_parameter *param)
+{
+	int i;
+	int nr_fold = 5;
+	double *ymv = Malloc(double,prob->l);
+	double mae = 0;
+
+	svm_parameter newparam = *param;
+	newparam.probability = 0;
+	svm_cross_validation(prob,&newparam,nr_fold,ymv);
+	for(i=0;i<prob->l;i++)
+	{
+		ymv[i]=prob->y[i]-ymv[i];
+		mae += fabs(ymv[i]);
+	}		
+	mae /= prob->l;
+	double std=sqrt(2*mae*mae);
+	int count=0;
+	mae=0;
+	for(i=0;i<prob->l;i++)
+		if (fabs(ymv[i]) > 5*std) 
+			count=count+1;
+		else 
+			mae+=fabs(ymv[i]);
+	mae /= (prob->l-count);
+	info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
+	free(ymv);
+	return mae;
+}
+
+
+// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
+// perm, length l, must be allocated before calling this subroutine
+static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
+{
+	int l = prob->l;
+	int max_nr_class = 16;
+	int nr_class = 0;
+	int *label = Malloc(int,max_nr_class);
+	int *count = Malloc(int,max_nr_class);
+	int *data_label = Malloc(int,l);	
+	int i;
+
+	for(i=0;i<l;i++)
+	{
+		int this_label = (int)prob->y[i];
+		int j;
+		for(j=0;j<nr_class;j++)
+		{
+			if(this_label == label[j])
+			{
+				++count[j];
+				break;
+			}
+		}
+		data_label[i] = j;
+		if(j == nr_class)
+		{
+			if(nr_class == max_nr_class)
+			{
+				max_nr_class *= 2;
+				label = (int *)realloc(label,max_nr_class*sizeof(int));
+				count = (int *)realloc(count,max_nr_class*sizeof(int));
+			}
+			label[nr_class] = this_label;
+			count[nr_class] = 1;
+			++nr_class;
+		}
+	}
+
+	int *start = Malloc(int,nr_class);
+	start[0] = 0;
+	for(i=1;i<nr_class;i++)
+		start[i] = start[i-1]+count[i-1];
+	for(i=0;i<l;i++)
+	{
+		perm[start[data_label[i]]] = i;
+		++start[data_label[i]];
+	}
+	start[0] = 0;
+	for(i=1;i<nr_class;i++)
+		start[i] = start[i-1]+count[i-1];
+
+	*nr_class_ret = nr_class;
+	*label_ret = label;
+	*start_ret = start;
+	*count_ret = count;
+	free(data_label);
+}
+
+//
+// Interface functions
+//
+svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
+{
+	svm_model *model = Malloc(svm_model,1);
+	model->param = *param;
+	model->free_sv = 0;	// XXX
+
+	if(param->svm_type == ONE_CLASS ||
+	   param->svm_type == EPSILON_SVR ||
+	   param->svm_type == NU_SVR)
+	{
+		// regression or one-class-svm
+		model->nr_class = 2;
+		model->label = NULL;
+		model->nSV = NULL;
+		model->probA = NULL; model->probB = NULL;
+		model->sv_coef = Malloc(double *,1);
+
+		if(param->probability && 
+		   (param->svm_type == EPSILON_SVR ||
+		    param->svm_type == NU_SVR))
+		{
+			model->probA = Malloc(double,1);
+			model->probA[0] = svm_svr_probability(prob,param);
+		}
+
+		decision_function f = svm_train_one(prob,param,0,0);
+		model->rho = Malloc(double,1);
+		model->rho[0] = f.rho;
+
+		int nSV = 0;
+		int i;
+		for(i=0;i<prob->l;i++)
+			if(fabs(f.alpha[i]) > 0) ++nSV;
+		model->l = nSV;
+		model->SV = Malloc(svm_node *,nSV);
+		model->sv_coef[0] = Malloc(double,nSV);
+		int j = 0;
+		for(i=0;i<prob->l;i++)
+			if(fabs(f.alpha[i]) > 0)
+			{
+				model->SV[j] = prob->x[i];
+				model->sv_coef[0][j] = f.alpha[i];
+				++j;
+			}		
+
+		free(f.alpha);
+	}
+	else
+	{
+		// classification
+		int l = prob->l;
+		int nr_class;
+		int *label = NULL;
+		int *start = NULL;
+		int *count = NULL;
+		int *perm = Malloc(int,l);
+
+		// group training data of the same class
+		svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+		if(nr_class == 1) 
+			info("WARNING: training data in only one class. See README for details.\n");
+		
+		svm_node **x = Malloc(svm_node *,l);
+		int i;
+		for(i=0;i<l;i++)
+			x[i] = prob->x[perm[i]];
+
+		// calculate weighted C
+
+		double *weighted_C = Malloc(double, nr_class);
+		for(i=0;i<nr_class;i++)
+			weighted_C[i] = param->C;
+		for(i=0;i<param->nr_weight;i++)
+		{	
+			int j;
+			for(j=0;j<nr_class;j++)
+				if(param->weight_label[i] == label[j])
+					break;
+			if(j == nr_class)
+				fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
+			else
+				weighted_C[j] *= param->weight[i];
+		}
+
+		// train k*(k-1)/2 models
+		
+		bool *nonzero = Malloc(bool,l);
+		for(i=0;i<l;i++)
+			nonzero[i] = false;
+		decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
+
+		double *probA=NULL,*probB=NULL;
+		if (param->probability)
+		{
+			probA=Malloc(double,nr_class*(nr_class-1)/2);
+			probB=Malloc(double,nr_class*(nr_class-1)/2);
+		}
+
+		int p = 0;
+		for(i=0;i<nr_class;i++)
+			for(int j=i+1;j<nr_class;j++)
+			{
+				svm_problem sub_prob;
+				int si = start[i], sj = start[j];
+				int ci = count[i], cj = count[j];
+				sub_prob.l = ci+cj;
+				sub_prob.x = Malloc(svm_node *,sub_prob.l);
+				sub_prob.y = Malloc(double,sub_prob.l);
+				int k;
+				for(k=0;k<ci;k++)
+				{
+					sub_prob.x[k] = x[si+k];
+					sub_prob.y[k] = +1;
+				}
+				for(k=0;k<cj;k++)
+				{
+					sub_prob.x[ci+k] = x[sj+k];
+					sub_prob.y[ci+k] = -1;
+				}
+
+				if(param->probability)
+					svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
+
+				f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
+				for(k=0;k<ci;k++)
+					if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
+						nonzero[si+k] = true;
+				for(k=0;k<cj;k++)
+					if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
+						nonzero[sj+k] = true;
+				free(sub_prob.x);
+				free(sub_prob.y);
+				++p;
+			}
+
+		// build output
+
+		model->nr_class = nr_class;
+		
+		model->label = Malloc(int,nr_class);
+		for(i=0;i<nr_class;i++)
+			model->label[i] = label[i];
+		
+		model->rho = Malloc(double,nr_class*(nr_class-1)/2);
+		for(i=0;i<nr_class*(nr_class-1)/2;i++)
+			model->rho[i] = f[i].rho;
+
+		if(param->probability)
+		{
+			model->probA = Malloc(double,nr_class*(nr_class-1)/2);
+			model->probB = Malloc(double,nr_class*(nr_class-1)/2);
+			for(i=0;i<nr_class*(nr_class-1)/2;i++)
+			{
+				model->probA[i] = probA[i];
+				model->probB[i] = probB[i];
+			}
+		}
+		else
+		{
+			model->probA=NULL;
+			model->probB=NULL;
+		}
+
+		int total_sv = 0;
+		int *nz_count = Malloc(int,nr_class);
+		model->nSV = Malloc(int,nr_class);
+		for(i=0;i<nr_class;i++)
+		{
+			int nSV = 0;
+			for(int j=0;j<count[i];j++)
+				if(nonzero[start[i]+j])
+				{	
+					++nSV;
+					++total_sv;
+				}
+			model->nSV[i] = nSV;
+			nz_count[i] = nSV;
+		}
+		
+		info("Total nSV = %d\n",total_sv);
+
+		model->l = total_sv;
+		model->SV = Malloc(svm_node *,total_sv);
+		p = 0;
+		for(i=0;i<l;i++)
+			if(nonzero[i]) model->SV[p++] = x[i];
+
+		int *nz_start = Malloc(int,nr_class);
+		nz_start[0] = 0;
+		for(i=1;i<nr_class;i++)
+			nz_start[i] = nz_start[i-1]+nz_count[i-1];
+
+		model->sv_coef = Malloc(double *,nr_class-1);
+		for(i=0;i<nr_class-1;i++)
+			model->sv_coef[i] = Malloc(double,total_sv);
+
+		p = 0;
+		for(i=0;i<nr_class;i++)
+			for(int j=i+1;j<nr_class;j++)
+			{
+				// classifier (i,j): coefficients with
+				// i are in sv_coef[j-1][nz_start[i]...],
+				// j are in sv_coef[i][nz_start[j]...]
+
+				int si = start[i];
+				int sj = start[j];
+				int ci = count[i];
+				int cj = count[j];
+				
+				int q = nz_start[i];
+				int k;
+				for(k=0;k<ci;k++)
+					if(nonzero[si+k])
+						model->sv_coef[j-1][q++] = f[p].alpha[k];
+				q = nz_start[j];
+				for(k=0;k<cj;k++)
+					if(nonzero[sj+k])
+						model->sv_coef[i][q++] = f[p].alpha[ci+k];
+				++p;
+			}
+		
+		free(label);
+		free(probA);
+		free(probB);
+		free(count);
+		free(perm);
+		free(start);
+		free(x);
+		free(weighted_C);
+		free(nonzero);
+		for(i=0;i<nr_class*(nr_class-1)/2;i++)
+			free(f[i].alpha);
+		free(f);
+		free(nz_count);
+		free(nz_start);
+	}
+	return model;
+}
+
+// Stratified cross validation
+void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
+{
+	int i;
+	int *fold_start = Malloc(int,nr_fold+1);
+	int l = prob->l;
+	int *perm = Malloc(int,l);
+	int nr_class;
+
+	// stratified cv may not give leave-one-out rate
+	// Each class to l folds -> some folds may have zero elements
+	if((param->svm_type == C_SVC ||
+	    param->svm_type == NU_SVC) && nr_fold < l)
+	{
+		int *start = NULL;
+		int *label = NULL;
+		int *count = NULL;
+		svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+
+		// random shuffle and then data grouped by fold using the array perm
+		int *fold_count = Malloc(int,nr_fold);
+		int c;
+		int *index = Malloc(int,l);
+		for(i=0;i<l;i++)
+			index[i]=perm[i];
+		for (c=0; c<nr_class; c++) 
+			for(i=0;i<count[c];i++)
+			{
+				int j = i+rand()%(count[c]-i);
+				swap(index[start[c]+j],index[start[c]+i]);
+			}
+		for(i=0;i<nr_fold;i++)
+		{
+			fold_count[i] = 0;
+			for (c=0; c<nr_class;c++)
+				fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
+		}
+		fold_start[0]=0;
+		for (i=1;i<=nr_fold;i++)
+			fold_start[i] = fold_start[i-1]+fold_count[i-1];
+		for (c=0; c<nr_class;c++)
+			for(i=0;i<nr_fold;i++)
+			{
+				int begin = start[c]+i*count[c]/nr_fold;
+				int end = start[c]+(i+1)*count[c]/nr_fold;
+				for(int j=begin;j<end;j++)
+				{
+					perm[fold_start[i]] = index[j];
+					fold_start[i]++;
+				}
+			}
+		fold_start[0]=0;
+		for (i=1;i<=nr_fold;i++)
+			fold_start[i] = fold_start[i-1]+fold_count[i-1];
+		free(start);	
+		free(label);
+		free(count);	
+		free(index);
+		free(fold_count);
+	}
+	else
+	{
+		for(i=0;i<l;i++) perm[i]=i;
+		for(i=0;i<l;i++)
+		{
+			int j = i+rand()%(l-i);
+			swap(perm[i],perm[j]);
+		}
+		for(i=0;i<=nr_fold;i++)
+			fold_start[i]=i*l/nr_fold;
+	}
+
+	for(i=0;i<nr_fold;i++)
+	{
+		int begin = fold_start[i];
+		int end = fold_start[i+1];
+		int j,k;
+		struct svm_problem subprob;
+
+		subprob.l = l-(end-begin);
+		subprob.x = Malloc(struct svm_node*,subprob.l);
+		subprob.y = Malloc(double,subprob.l);
+			
+		k=0;
+		for(j=0;j<begin;j++)
+		{
+			subprob.x[k] = prob->x[perm[j]];
+			subprob.y[k] = prob->y[perm[j]];
+			++k;
+		}
+		for(j=end;j<l;j++)
+		{
+			subprob.x[k] = prob->x[perm[j]];
+			subprob.y[k] = prob->y[perm[j]];
+			++k;
+		}
+		struct svm_model *submodel = svm_train(&subprob,param);
+		if(param->probability && 
+		   (param->svm_type == C_SVC || param->svm_type == NU_SVC))
+		{
+			double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
+			for(j=begin;j<end;j++)
+				target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
+			free(prob_estimates);			
+		}
+		else
+			for(j=begin;j<end;j++)
+				target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
+		svm_free_and_destroy_model(&submodel);
+		free(subprob.x);
+		free(subprob.y);
+	}		
+	free(fold_start);
+	free(perm);	
+}
+
+
+int svm_get_svm_type(const svm_model *model)
+{
+	return model->param.svm_type;
+}
+
+int svm_get_nr_class(const svm_model *model)
+{
+	return model->nr_class;
+}
+
+void svm_get_labels(const svm_model *model, int* label)
+{
+	if (model->label != NULL)
+		for(int i=0;i<model->nr_class;i++)
+			label[i] = model->label[i];
+}
+
+double svm_get_svr_probability(const svm_model *model)
+{
+	if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+	    model->probA!=NULL)
+		return model->probA[0];
+	else
+	{
+		fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
+		return 0;
+	}
+}
+
+double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
+{
+	int i;
+	if(model->param.svm_type == ONE_CLASS ||
+	   model->param.svm_type == EPSILON_SVR ||
+	   model->param.svm_type == NU_SVR)
+	{
+		double *sv_coef = model->sv_coef[0];
+		double sum = 0;
+		for(i=0;i<model->l;i++)
+			sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
+		sum -= model->rho[0];
+		*dec_values = sum;
+
+		if(model->param.svm_type == ONE_CLASS)
+			return (sum>0)?1:-1;
+		else
+			return sum;
+	}
+	else
+	{
+		int nr_class = model->nr_class;
+		int l = model->l;
+		
+		double *kvalue = Malloc(double,l);
+		for(i=0;i<l;i++)
+			kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
+
+		int *start = Malloc(int,nr_class);
+		start[0] = 0;
+		for(i=1;i<nr_class;i++)
+			start[i] = start[i-1]+model->nSV[i-1];
+
+		int *vote = Malloc(int,nr_class);
+		for(i=0;i<nr_class;i++)
+			vote[i] = 0;
+
+		int p=0;
+		for(i=0;i<nr_class;i++)
+			for(int j=i+1;j<nr_class;j++)
+			{
+				double sum = 0;
+				int si = start[i];
+				int sj = start[j];
+				int ci = model->nSV[i];
+				int cj = model->nSV[j];
+				
+				int k;
+				double *coef1 = model->sv_coef[j-1];
+				double *coef2 = model->sv_coef[i];
+				for(k=0;k<ci;k++)
+					sum += coef1[si+k] * kvalue[si+k];
+				for(k=0;k<cj;k++)
+					sum += coef2[sj+k] * kvalue[sj+k];
+				sum -= model->rho[p];
+				dec_values[p] = sum;
+
+				if(dec_values[p] > 0)
+					++vote[i];
+				else
+					++vote[j];
+				p++;
+			}
+
+		int vote_max_idx = 0;
+		for(i=1;i<nr_class;i++)
+			if(vote[i] > vote[vote_max_idx])
+				vote_max_idx = i;
+
+		free(kvalue);
+		free(start);
+		free(vote);
+		return model->label[vote_max_idx];
+	}
+}
+
+double svm_predict(const svm_model *model, const svm_node *x)
+{
+	int nr_class = model->nr_class;
+	double *dec_values;
+	if(model->param.svm_type == ONE_CLASS ||
+	   model->param.svm_type == EPSILON_SVR ||
+	   model->param.svm_type == NU_SVR)
+		dec_values = Malloc(double, 1);
+	else 
+		dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+	double pred_result = svm_predict_values(model, x, dec_values);
+	free(dec_values);
+	return pred_result;
+}
+
+double svm_predict_probability(
+	const svm_model *model, const svm_node *x, double *prob_estimates)
+{
+	if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+	    model->probA!=NULL && model->probB!=NULL)
+	{
+		int i;
+		int nr_class = model->nr_class;
+		double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+		svm_predict_values(model, x, dec_values);
+
+		double min_prob=1e-7;
+		double **pairwise_prob=Malloc(double *,nr_class);
+		for(i=0;i<nr_class;i++)
+			pairwise_prob[i]=Malloc(double,nr_class);
+		int k=0;
+		for(i=0;i<nr_class;i++)
+			for(int j=i+1;j<nr_class;j++)
+			{
+				pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
+				pairwise_prob[j][i]=1-pairwise_prob[i][j];
+				k++;
+			}
+		multiclass_probability(nr_class,pairwise_prob,prob_estimates);
+
+		int prob_max_idx = 0;
+		for(i=1;i<nr_class;i++)
+			if(prob_estimates[i] > prob_estimates[prob_max_idx])
+				prob_max_idx = i;
+		for(i=0;i<nr_class;i++)
+			free(pairwise_prob[i]);
+		free(dec_values);
+		free(pairwise_prob);	     
+		return model->label[prob_max_idx];
+	}
+	else 
+		return svm_predict(model, x);
+}
+
+static const char *svm_type_table[] =
+{
+	"c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
+};
+
+static const char *kernel_type_table[]=
+{
+	"linear","polynomial","rbf","sigmoid","precomputed",NULL
+};
+
+int svm_save_model(const char *model_file_name, const svm_model *model)
+{
+	FILE *fp = fopen(model_file_name,"w");
+	if(fp==NULL) return -1;
+
+	char *old_locale = strdup(setlocale(LC_ALL, NULL));
+	setlocale(LC_ALL, "C");
+
+	const svm_parameter& param = model->param;
+
+	fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
+	fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
+
+	if(param.kernel_type == POLY)
+		fprintf(fp,"degree %d\n", param.degree);
+
+	if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
+		fprintf(fp,"gamma %g\n", param.gamma);
+
+	if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
+		fprintf(fp,"coef0 %g\n", param.coef0);
+
+	int nr_class = model->nr_class;
+	int l = model->l;
+	fprintf(fp, "nr_class %d\n", nr_class);
+	fprintf(fp, "total_sv %d\n",l);
+	
+	{
+		fprintf(fp, "rho");
+		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+			fprintf(fp," %g",model->rho[i]);
+		fprintf(fp, "\n");
+	}
+	
+	if(model->label)
+	{
+		fprintf(fp, "label");
+		for(int i=0;i<nr_class;i++)
+			fprintf(fp," %d",model->label[i]);
+		fprintf(fp, "\n");
+	}
+
+	if(model->probA) // regression has probA only
+	{
+		fprintf(fp, "probA");
+		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+			fprintf(fp," %g",model->probA[i]);
+		fprintf(fp, "\n");
+	}
+	if(model->probB)
+	{
+		fprintf(fp, "probB");
+		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+			fprintf(fp," %g",model->probB[i]);
+		fprintf(fp, "\n");
+	}
+
+	if(model->nSV)
+	{
+		fprintf(fp, "nr_sv");
+		for(int i=0;i<nr_class;i++)
+			fprintf(fp," %d",model->nSV[i]);
+		fprintf(fp, "\n");
+	}
+
+	fprintf(fp, "SV\n");
+	const double * const *sv_coef = model->sv_coef;
+	const svm_node * const *SV = model->SV;
+
+	for(int i=0;i<l;i++)
+	{
+		for(int j=0;j<nr_class-1;j++)
+			fprintf(fp, "%.16g ",sv_coef[j][i]);
+
+		const svm_node *p = SV[i];
+
+		if(param.kernel_type == PRECOMPUTED)
+			fprintf(fp,"0:%d ",(int)(p->value));
+		else
+			while(p->index != -1)
+			{
+				fprintf(fp,"%d:%.8g ",p->index,p->value);
+				p++;
+			}
+		fprintf(fp, "\n");
+	}
+
+	setlocale(LC_ALL, old_locale);
+	free(old_locale);
+
+	if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
+	else return 0;
+}
+
+static char *line = NULL;
+static int max_line_len;
+
+static char* readline(FILE *input)
+{
+	int len;
+
+	if(fgets(line,max_line_len,input) == NULL)
+		return NULL;
+
+	while(strrchr(line,'\n') == NULL)
+	{
+		max_line_len *= 2;
+		line = (char *) realloc(line,max_line_len);
+		len = (int) strlen(line);
+		if(fgets(line+len,max_line_len-len,input) == NULL)
+			break;
+	}
+	return line;
+}
+
+svm_model *svm_load_model(const char *model_file_name)
+{
+	FILE *fp = fopen(model_file_name,"rb");
+	if(fp==NULL) return NULL;
+
+	char *old_locale = strdup(setlocale(LC_ALL, NULL));
+	setlocale(LC_ALL, "C");
+
+	// read parameters
+
+	svm_model *model = Malloc(svm_model,1);
+	svm_parameter& param = model->param;
+	model->rho = NULL;
+	model->probA = NULL;
+	model->probB = NULL;
+	model->label = NULL;
+	model->nSV = NULL;
+
+	char cmd[81];
+	while(1)
+	{
+		fscanf(fp,"%80s",cmd);
+
+		if(strcmp(cmd,"svm_type")==0)
+		{
+			fscanf(fp,"%80s",cmd);
+			int i;
+			for(i=0;svm_type_table[i];i++)
+			{
+				if(strcmp(svm_type_table[i],cmd)==0)
+				{
+					param.svm_type=i;
+					break;
+				}
+			}
+			if(svm_type_table[i] == NULL)
+			{
+				fprintf(stderr,"unknown svm type.\n");
+				
+				setlocale(LC_ALL, old_locale);
+				free(old_locale);
+				free(model->rho);
+				free(model->label);
+				free(model->nSV);
+				free(model);
+				return NULL;
+			}
+		}
+		else if(strcmp(cmd,"kernel_type")==0)
+		{		
+			fscanf(fp,"%80s",cmd);
+			int i;
+			for(i=0;kernel_type_table[i];i++)
+			{
+				if(strcmp(kernel_type_table[i],cmd)==0)
+				{
+					param.kernel_type=i;
+					break;
+				}
+			}
+			if(kernel_type_table[i] == NULL)
+			{
+				fprintf(stderr,"unknown kernel function.\n");
+				
+				setlocale(LC_ALL, old_locale);
+				free(old_locale);
+				free(model->rho);
+				free(model->label);
+				free(model->nSV);
+				free(model);
+				return NULL;
+			}
+		}
+		else if(strcmp(cmd,"degree")==0)
+			fscanf(fp,"%d",&param.degree);
+		else if(strcmp(cmd,"gamma")==0)
+			fscanf(fp,"%lf",&param.gamma);
+		else if(strcmp(cmd,"coef0")==0)
+			fscanf(fp,"%lf",&param.coef0);
+		else if(strcmp(cmd,"nr_class")==0)
+			fscanf(fp,"%d",&model->nr_class);
+		else if(strcmp(cmd,"total_sv")==0)
+			fscanf(fp,"%d",&model->l);
+		else if(strcmp(cmd,"rho")==0)
+		{
+			int n = model->nr_class * (model->nr_class-1)/2;
+			model->rho = Malloc(double,n);
+			for(int i=0;i<n;i++)
+				fscanf(fp,"%lf",&model->rho[i]);
+		}
+		else if(strcmp(cmd,"label")==0)
+		{
+			int n = model->nr_class;
+			model->label = Malloc(int,n);
+			for(int i=0;i<n;i++)
+				fscanf(fp,"%d",&model->label[i]);
+		}
+		else if(strcmp(cmd,"probA")==0)
+		{
+			int n = model->nr_class * (model->nr_class-1)/2;
+			model->probA = Malloc(double,n);
+			for(int i=0;i<n;i++)
+				fscanf(fp,"%lf",&model->probA[i]);
+		}
+		else if(strcmp(cmd,"probB")==0)
+		{
+			int n = model->nr_class * (model->nr_class-1)/2;
+			model->probB = Malloc(double,n);
+			for(int i=0;i<n;i++)
+				fscanf(fp,"%lf",&model->probB[i]);
+		}
+		else if(strcmp(cmd,"nr_sv")==0)
+		{
+			int n = model->nr_class;
+			model->nSV = Malloc(int,n);
+			for(int i=0;i<n;i++)
+				fscanf(fp,"%d",&model->nSV[i]);
+		}
+		else if(strcmp(cmd,"SV")==0)
+		{
+			while(1)
+			{
+				int c = getc(fp);
+				if(c==EOF || c=='\n') break;	
+			}
+			break;
+		}
+		else
+		{
+			fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
+			
+			setlocale(LC_ALL, old_locale);
+			free(old_locale);
+			free(model->rho);
+			free(model->label);
+			free(model->nSV);
+			free(model);
+			return NULL;
+		}
+	}
+
+	// read sv_coef and SV
+
+	int elements = 0;
+	long pos = ftell(fp);
+
+	max_line_len = 1024;
+	line = Malloc(char,max_line_len);
+	char *p,*endptr,*idx,*val;
+
+	while(readline(fp)!=NULL)
+	{
+		p = strtok(line,":");
+		while(1)
+		{
+			p = strtok(NULL,":");
+			if(p == NULL)
+				break;
+			++elements;
+		}
+	}
+	elements += model->l;
+
+	fseek(fp,pos,SEEK_SET);
+
+	int m = model->nr_class - 1;
+	int l = model->l;
+	model->sv_coef = Malloc(double *,m);
+	int i;
+	for(i=0;i<m;i++)
+		model->sv_coef[i] = Malloc(double,l);
+	model->SV = Malloc(svm_node*,l);
+	svm_node *x_space = NULL;
+	if(l>0) x_space = Malloc(svm_node,elements);
+
+	int j=0;
+	for(i=0;i<l;i++)
+	{
+		readline(fp);
+		model->SV[i] = &x_space[j];
+
+		p = strtok(line, " \t");
+		model->sv_coef[0][i] = strtod(p,&endptr);
+		for(int k=1;k<m;k++)
+		{
+			p = strtok(NULL, " \t");
+			model->sv_coef[k][i] = strtod(p,&endptr);
+		}
+
+		while(1)
+		{
+			idx = strtok(NULL, ":");
+			val = strtok(NULL, " \t");
+
+			if(val == NULL)
+				break;
+			x_space[j].index = (int) strtol(idx,&endptr,10);
+			x_space[j].value = strtod(val,&endptr);
+
+			++j;
+		}
+		x_space[j++].index = -1;
+	}
+	free(line);
+
+	setlocale(LC_ALL, old_locale);
+	free(old_locale);
+
+	if (ferror(fp) != 0 || fclose(fp) != 0)
+		return NULL;
+
+	model->free_sv = 1;	// XXX
+	return model;
+}
+
+void svm_free_model_content(svm_model* model_ptr)
+{
+	if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL)
+		free((void *)(model_ptr->SV[0]));
+	if(model_ptr->sv_coef)
+	{
+		for(int i=0;i<model_ptr->nr_class-1;i++)
+			free(model_ptr->sv_coef[i]);
+	}
+
+	free(model_ptr->SV);
+	model_ptr->SV = NULL;
+
+	free(model_ptr->sv_coef);
+	model_ptr->sv_coef = NULL;
+
+	free(model_ptr->rho);
+	model_ptr->rho = NULL;
+
+	free(model_ptr->label);
+	model_ptr->label= NULL;
+
+	free(model_ptr->probA);
+	model_ptr->probA = NULL;
+
+	free(model_ptr->probB);
+	model_ptr->probB= NULL;
+
+	free(model_ptr->nSV);
+	model_ptr->nSV = NULL;
+}
+
+void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
+{
+	if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)
+	{
+		svm_free_model_content(*model_ptr_ptr);
+		free(*model_ptr_ptr);
+		*model_ptr_ptr = NULL;
+	}
+}
+
+void svm_destroy_param(svm_parameter* param)
+{
+	free(param->weight_label);
+	free(param->weight);
+}
+
+const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
+{
+	// svm_type
+
+	int svm_type = param->svm_type;
+	if(svm_type != C_SVC &&
+	   svm_type != NU_SVC &&
+	   svm_type != ONE_CLASS &&
+	   svm_type != EPSILON_SVR &&
+	   svm_type != NU_SVR)
+		return "unknown svm type";
+	
+	// kernel_type, degree
+	
+	int kernel_type = param->kernel_type;
+	if(kernel_type != LINEAR &&
+	   kernel_type != POLY &&
+	   kernel_type != RBF &&
+	   kernel_type != SIGMOID &&
+	   kernel_type != PRECOMPUTED)
+		return "unknown kernel type";
+
+	if(param->gamma < 0)
+		return "gamma < 0";
+
+	if(param->degree < 0)
+		return "degree of polynomial kernel < 0";
+
+	// cache_size,eps,C,nu,p,shrinking
+
+	if(param->cache_size <= 0)
+		return "cache_size <= 0";
+
+	if(param->eps <= 0)
+		return "eps <= 0";
+
+	if(svm_type == C_SVC ||
+	   svm_type == EPSILON_SVR ||
+	   svm_type == NU_SVR)
+		if(param->C <= 0)
+			return "C <= 0";
+
+	if(svm_type == NU_SVC ||
+	   svm_type == ONE_CLASS ||
+	   svm_type == NU_SVR)
+		if(param->nu <= 0 || param->nu > 1)
+			return "nu <= 0 or nu > 1";
+
+	if(svm_type == EPSILON_SVR)
+		if(param->p < 0)
+			return "p < 0";
+
+	if(param->shrinking != 0 &&
+	   param->shrinking != 1)
+		return "shrinking != 0 and shrinking != 1";
+
+	if(param->probability != 0 &&
+	   param->probability != 1)
+		return "probability != 0 and probability != 1";
+
+	if(param->probability == 1 &&
+	   svm_type == ONE_CLASS)
+		return "one-class SVM probability output not supported yet";
+
+
+	// check whether nu-svc is feasible
+	
+	if(svm_type == NU_SVC)
+	{
+		int l = prob->l;
+		int max_nr_class = 16;
+		int nr_class = 0;
+		int *label = Malloc(int,max_nr_class);
+		int *count = Malloc(int,max_nr_class);
+
+		int i;
+		for(i=0;i<l;i++)
+		{
+			int this_label = (int)prob->y[i];
+			int j;
+			for(j=0;j<nr_class;j++)
+				if(this_label == label[j])
+				{
+					++count[j];
+					break;
+				}
+			if(j == nr_class)
+			{
+				if(nr_class == max_nr_class)
+				{
+					max_nr_class *= 2;
+					label = (int *)realloc(label,max_nr_class*sizeof(int));
+					count = (int *)realloc(count,max_nr_class*sizeof(int));
+				}
+				label[nr_class] = this_label;
+				count[nr_class] = 1;
+				++nr_class;
+			}
+		}
+	
+		for(i=0;i<nr_class;i++)
+		{
+			int n1 = count[i];
+			for(int j=i+1;j<nr_class;j++)
+			{
+				int n2 = count[j];
+				if(param->nu*(n1+n2)/2 > min(n1,n2))
+				{
+					free(label);
+					free(count);
+					return "specified nu is infeasible";
+				}
+			}
+		}
+		free(label);
+		free(count);
+	}
+
+	return NULL;
+}
+
+int svm_check_probability_model(const svm_model *model)
+{
+	return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+		model->probA!=NULL && model->probB!=NULL) ||
+		((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+		 model->probA!=NULL);
+}
+
+void svm_set_print_string_function(void (*print_func)(const char *))
+{
+	if(print_func == NULL)
+		svm_print_string = &print_string_stdout;
+	else
+		svm_print_string = print_func;
+}
diff --git a/src/algorithms/svm.h b/src/algorithms/svm.h
new file mode 100644
index 0000000..2f60a57
--- /dev/null
+++ b/src/algorithms/svm.h
@@ -0,0 +1,101 @@
+#ifndef _LIBSVM_H
+#define _LIBSVM_H
+
+#define LIBSVM_VERSION 312
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+extern int libsvm_version;
+
+struct svm_node
+{
+	int index;
+	double value;
+};
+
+struct svm_problem
+{
+	int l;
+	double *y;
+	struct svm_node **x;
+};
+
+enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };	/* svm_type */
+enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
+
+struct svm_parameter
+{
+	int svm_type;
+	int kernel_type;
+	int degree;	/* for poly */
+	double gamma;	/* for poly/rbf/sigmoid */
+	double coef0;	/* for poly/sigmoid */
+
+	/* these are for training only */
+	double cache_size; /* in MB */
+	double eps;	/* stopping criteria */
+	double C;	/* for C_SVC, EPSILON_SVR and NU_SVR */
+	int nr_weight;		/* for C_SVC */
+	int *weight_label;	/* for C_SVC */
+	double* weight;		/* for C_SVC */
+	double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */
+	double p;	/* for EPSILON_SVR */
+	int shrinking;	/* use the shrinking heuristics */
+	int probability; /* do probability estimates */
+};
+
+//
+// svm_model
+// 
+struct svm_model
+{
+	struct svm_parameter param;	/* parameter */
+	int nr_class;		/* number of classes, = 2 in regression/one class svm */
+	int l;			/* total #SV */
+	struct svm_node **SV;		/* SVs (SV[l]) */
+	double **sv_coef;	/* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
+	double *rho;		/* constants in decision functions (rho[k*(k-1)/2]) */
+	double *probA;		/* pariwise probability information */
+	double *probB;
+
+	/* for classification only */
+
+	int *label;		/* label of each class (label[k]) */
+	int *nSV;		/* number of SVs for each class (nSV[k]) */
+				/* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
+	/* XXX */
+	int free_sv;		/* 1 if svm_model is created by svm_load_model*/
+				/* 0 if svm_model is created by svm_train */
+};
+
+struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
+void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
+
+int svm_save_model(const char *model_file_name, const struct svm_model *model);
+struct svm_model *svm_load_model(const char *model_file_name);
+
+int svm_get_svm_type(const struct svm_model *model);
+int svm_get_nr_class(const struct svm_model *model);
+void svm_get_labels(const struct svm_model *model, int *label);
+double svm_get_svr_probability(const struct svm_model *model);
+
+double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
+double svm_predict(const struct svm_model *model, const struct svm_node *x);
+double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
+
+void svm_free_model_content(struct svm_model *model_ptr);
+void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
+void svm_destroy_param(struct svm_parameter *param);
+
+const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
+int svm_check_probability_model(const struct svm_model *model);
+
+void svm_set_print_string_function(void (*print_func)(const char *));
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _LIBSVM_H */
diff --git a/src/apps/Makefile.am b/src/apps/Makefile.am
index 3734a79..d8b1238 100644
--- a/src/apps/Makefile.am
+++ b/src/apps/Makefile.am
@@ -6,7 +6,7 @@ LDADD = $(GDAL_LDFLAGS) $(top_builddir)/src/algorithms/libalgorithms.a $(top_bui
 ###############################################################################
 
 # the program to build (the names of the final binaries)
-bin_PROGRAMS = pkinfo pkcrop pkreclass pkgetmask pksetmask pkcreatect pkdumpimg pkdumpogr pksieve pkstat pkstatogr pkegcs pkextract pkfillnodata pkfilter pkveg2shadow pkmosaic pkndvi pkpolygonize pkascii2img pkdiff pkclassify_svm
+bin_PROGRAMS = pkinfo pkcrop pkreclass pkgetmask pksetmask pkcreatect pkdumpimg pkdumpogr pksieve pkstat pkstatogr pkegcs pkextract pkfillnodata pkfilter pkdsm2shadow pkmosaic pkndvi pkpolygonize pkascii2img pkdiff pkclassify_svm
 if USE_FANN
 bin_PROGRAMS += pkclassify_nn
 pkclassify_nn_SOURCES = $(top_srcdir)/src/algorithms/myfann_cpp.h pkclassify_nn.h pkclassify_nn.cc
@@ -38,7 +38,7 @@ pkextract_SOURCES = pkextract.cc
 pkfillnodata_SOURCES = pkfillnodata.cc
 pkfilter_SOURCES = pkfilter.cc
 #pkfilter_LDADD = -lgdal $(AM_LDFLAGS) -lgdal
-pkveg2shadow_SOURCES = pkveg2shadow.cc
+pkdsm2shadow_SOURCES = pkdsm2shadow.cc
 pkmosaic_SOURCES = pkmosaic.cc
 pkndvi_SOURCES = pkndvi.cc
 pkpolygonize_SOURCES = pkpolygonize.cc
diff --git a/src/apps/Makefile.in b/src/apps/Makefile.in
index 4a8dbbe..f83de84 100644
--- a/src/apps/Makefile.in
+++ b/src/apps/Makefile.in
@@ -37,7 +37,7 @@ bin_PROGRAMS = pkinfo$(EXEEXT) pkcrop$(EXEEXT) pkreclass$(EXEEXT) \
 	pkdumpimg$(EXEEXT) pkdumpogr$(EXEEXT) pksieve$(EXEEXT) \
 	pkstat$(EXEEXT) pkstatogr$(EXEEXT) pkegcs$(EXEEXT) \
 	pkextract$(EXEEXT) pkfillnodata$(EXEEXT) pkfilter$(EXEEXT) \
-	pkveg2shadow$(EXEEXT) pkmosaic$(EXEEXT) pkndvi$(EXEEXT) \
+	pkdsm2shadow$(EXEEXT) pkmosaic$(EXEEXT) pkndvi$(EXEEXT) \
 	pkpolygonize$(EXEEXT) pkascii2img$(EXEEXT) pkdiff$(EXEEXT) \
 	pkclassify_svm$(EXEEXT) $(am__EXEEXT_1) $(am__EXEEXT_2)
 @USE_FANN_TRUE at am__append_1 = pkclassify_nn
@@ -101,6 +101,12 @@ pkdiff_LDADD = $(LDADD)
 pkdiff_DEPENDENCIES = $(am__DEPENDENCIES_1) \
 	$(top_builddir)/src/algorithms/libalgorithms.a \
 	$(top_builddir)/src/imageclasses/libimageClasses.a
+am_pkdsm2shadow_OBJECTS = pkdsm2shadow.$(OBJEXT)
+pkdsm2shadow_OBJECTS = $(am_pkdsm2shadow_OBJECTS)
+pkdsm2shadow_LDADD = $(LDADD)
+pkdsm2shadow_DEPENDENCIES = $(am__DEPENDENCIES_1) \
+	$(top_builddir)/src/algorithms/libalgorithms.a \
+	$(top_builddir)/src/imageclasses/libimageClasses.a
 am_pkdumpimg_OBJECTS = pkdumpimg.$(OBJEXT)
 pkdumpimg_OBJECTS = $(am_pkdumpimg_OBJECTS)
 pkdumpimg_LDADD = $(LDADD)
@@ -195,12 +201,6 @@ pkstatogr_LDADD = $(LDADD)
 pkstatogr_DEPENDENCIES = $(am__DEPENDENCIES_1) \
 	$(top_builddir)/src/algorithms/libalgorithms.a \
 	$(top_builddir)/src/imageclasses/libimageClasses.a
-am_pkveg2shadow_OBJECTS = pkveg2shadow.$(OBJEXT)
-pkveg2shadow_OBJECTS = $(am_pkveg2shadow_OBJECTS)
-pkveg2shadow_LDADD = $(LDADD)
-pkveg2shadow_DEPENDENCIES = $(am__DEPENDENCIES_1) \
-	$(top_builddir)/src/algorithms/libalgorithms.a \
-	$(top_builddir)/src/imageclasses/libimageClasses.a
 DEFAULT_INCLUDES = -I. at am__isrc@ -I$(top_builddir)
 depcomp = $(SHELL) $(top_srcdir)/depcomp
 am__depfiles_maybe = depfiles
@@ -216,23 +216,25 @@ CCLD = $(CC)
 LINK = $(CCLD) $(AM_CFLAGS) $(CFLAGS) $(AM_LDFLAGS) $(LDFLAGS) -o $@
 SOURCES = $(pkascii2img_SOURCES) $(pkclassify_nn_SOURCES) \
 	$(pkclassify_svm_SOURCES) $(pkcreatect_SOURCES) \
-	$(pkcrop_SOURCES) $(pkdiff_SOURCES) $(pkdumpimg_SOURCES) \
-	$(pkdumpogr_SOURCES) $(pkegcs_SOURCES) $(pkextract_SOURCES) \
-	$(pkfillnodata_SOURCES) $(pkfilter_SOURCES) \
-	$(pkgetmask_SOURCES) $(pkinfo_SOURCES) $(pklas2img_SOURCES) \
-	$(pkmosaic_SOURCES) $(pkndvi_SOURCES) $(pkpolygonize_SOURCES) \
-	$(pkreclass_SOURCES) $(pksetmask_SOURCES) $(pksieve_SOURCES) \
-	$(pkstat_SOURCES) $(pkstatogr_SOURCES) $(pkveg2shadow_SOURCES)
-DIST_SOURCES = $(pkascii2img_SOURCES) \
-	$(am__pkclassify_nn_SOURCES_DIST) $(pkclassify_svm_SOURCES) \
-	$(pkcreatect_SOURCES) $(pkcrop_SOURCES) $(pkdiff_SOURCES) \
+	$(pkcrop_SOURCES) $(pkdiff_SOURCES) $(pkdsm2shadow_SOURCES) \
 	$(pkdumpimg_SOURCES) $(pkdumpogr_SOURCES) $(pkegcs_SOURCES) \
 	$(pkextract_SOURCES) $(pkfillnodata_SOURCES) \
 	$(pkfilter_SOURCES) $(pkgetmask_SOURCES) $(pkinfo_SOURCES) \
+	$(pklas2img_SOURCES) $(pkmosaic_SOURCES) $(pkndvi_SOURCES) \
+	$(pkpolygonize_SOURCES) $(pkreclass_SOURCES) \
+	$(pksetmask_SOURCES) $(pksieve_SOURCES) $(pkstat_SOURCES) \
+	$(pkstatogr_SOURCES)
+DIST_SOURCES = $(pkascii2img_SOURCES) \
+	$(am__pkclassify_nn_SOURCES_DIST) $(pkclassify_svm_SOURCES) \
+	$(pkcreatect_SOURCES) $(pkcrop_SOURCES) $(pkdiff_SOURCES) \
+	$(pkdsm2shadow_SOURCES) $(pkdumpimg_SOURCES) \
+	$(pkdumpogr_SOURCES) $(pkegcs_SOURCES) $(pkextract_SOURCES) \
+	$(pkfillnodata_SOURCES) $(pkfilter_SOURCES) \
+	$(pkgetmask_SOURCES) $(pkinfo_SOURCES) \
 	$(am__pklas2img_SOURCES_DIST) $(pkmosaic_SOURCES) \
 	$(pkndvi_SOURCES) $(pkpolygonize_SOURCES) $(pkreclass_SOURCES) \
 	$(pksetmask_SOURCES) $(pksieve_SOURCES) $(pkstat_SOURCES) \
-	$(pkstatogr_SOURCES) $(pkveg2shadow_SOURCES)
+	$(pkstatogr_SOURCES)
 ETAGS = etags
 CTAGS = ctags
 DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST)
@@ -371,7 +373,7 @@ pkextract_SOURCES = pkextract.cc
 pkfillnodata_SOURCES = pkfillnodata.cc
 pkfilter_SOURCES = pkfilter.cc
 #pkfilter_LDADD = -lgdal $(AM_LDFLAGS) -lgdal
-pkveg2shadow_SOURCES = pkveg2shadow.cc
+pkdsm2shadow_SOURCES = pkdsm2shadow.cc
 pkmosaic_SOURCES = pkmosaic.cc
 pkndvi_SOURCES = pkndvi.cc
 pkpolygonize_SOURCES = pkpolygonize.cc
@@ -467,6 +469,9 @@ pkcrop$(EXEEXT): $(pkcrop_OBJECTS) $(pkcrop_DEPENDENCIES)
 pkdiff$(EXEEXT): $(pkdiff_OBJECTS) $(pkdiff_DEPENDENCIES) 
 	@rm -f pkdiff$(EXEEXT)
 	$(CXXLINK) $(pkdiff_OBJECTS) $(pkdiff_LDADD) $(LIBS)
+pkdsm2shadow$(EXEEXT): $(pkdsm2shadow_OBJECTS) $(pkdsm2shadow_DEPENDENCIES) 
+	@rm -f pkdsm2shadow$(EXEEXT)
+	$(CXXLINK) $(pkdsm2shadow_OBJECTS) $(pkdsm2shadow_LDADD) $(LIBS)
 pkdumpimg$(EXEEXT): $(pkdumpimg_OBJECTS) $(pkdumpimg_DEPENDENCIES) 
 	@rm -f pkdumpimg$(EXEEXT)
 	$(CXXLINK) $(pkdumpimg_OBJECTS) $(pkdumpimg_LDADD) $(LIBS)
@@ -518,9 +523,6 @@ pkstat$(EXEEXT): $(pkstat_OBJECTS) $(pkstat_DEPENDENCIES)
 pkstatogr$(EXEEXT): $(pkstatogr_OBJECTS) $(pkstatogr_DEPENDENCIES) 
 	@rm -f pkstatogr$(EXEEXT)
 	$(CXXLINK) $(pkstatogr_OBJECTS) $(pkstatogr_LDADD) $(LIBS)
-pkveg2shadow$(EXEEXT): $(pkveg2shadow_OBJECTS) $(pkveg2shadow_DEPENDENCIES) 
-	@rm -f pkveg2shadow$(EXEEXT)
-	$(CXXLINK) $(pkveg2shadow_OBJECTS) $(pkveg2shadow_LDADD) $(LIBS)
 
 mostlyclean-compile:
 	-rm -f *.$(OBJEXT)
@@ -534,6 +536,7 @@ distclean-compile:
 @AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pkcreatect.Po at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pkcrop.Po at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pkdiff.Po at am__quote@
+ at AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pkdsm2shadow.Po at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pkdumpimg.Po at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pkdumpogr.Po at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pkegcs.Po at am__quote@
@@ -551,7 +554,6 @@ distclean-compile:
 @AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pksieve.Po at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pkstat.Po at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pkstatogr.Po at am__quote@
- at AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/pkveg2shadow.Po at am__quote@
 @AMDEP_TRUE@@am__include@ @am__quote at ./$(DEPDIR)/svm.Po at am__quote@
 
 .cc.o:
diff --git a/src/apps/pkclassify_svm.cc b/src/apps/pkclassify_svm.cc
new file mode 100644
index 0000000..25eb555
--- /dev/null
+++ b/src/apps/pkclassify_svm.cc
@@ -0,0 +1,1037 @@
+/**********************************************************************
+pkclassify_svm.cc: classify raster image using Artificial Neural Network
+Copyright (C) 2008-2012 Pieter Kempeneers
+
+This file is part of pktools
+
+pktools is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+pktools is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with pktools.  If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+#include <vector>
+#include <map>
+#include <algorithm>
+#include "imageclasses/ImgReaderGdal.h"
+#include "imageclasses/ImgWriterGdal.h"
+#include "imageclasses/ImgReaderOgr.h"
+#include "imageclasses/ImgWriterOgr.h"
+#include "base/Optionpk.h"
+#include "algorithms/ConfusionMatrix.h"
+#include "algorithms/svm.h"
+#include "pkclassify_nn.h"
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
+
+int main(int argc, char *argv[])
+{
+  map<short,int> reclassMap;
+  vector<int> vreclass;
+  vector<double> priors;
+  
+  //--------------------------- command line options ------------------------------------
+
+  std::string versionString="version ";
+  versionString+=VERSION;
+  versionString+=", Copyright (C) 2008-2012 Pieter Kempeneers.\n\
+   This program comes with ABSOLUTELY NO WARRANTY; for details type use option -h.\n\
+   This is free software, and you are welcome to redistribute it\n\
+   under certain conditions; use option --license for details.";
+  Optionpk<bool> version_opt("\0","version",versionString,false);
+  Optionpk<bool> license_opt("lic","license","show license information",false);
+  Optionpk<bool> help_opt("h","help","shows this help info",false);
+  Optionpk<bool> todo_opt("\0","todo","",false);
+  Optionpk<string> input_opt("i", "input", "input image"); 
+  Optionpk<string> training_opt("t", "training", "training shape file. A single shape file contains all training features (must be set as: B0, B1, B2,...) for all classes (class numbers identified by label option). Use multiple training files for bootstrap aggregation (alternative to the bag and bsize options, where a random subset is taken from a single training file)"); 
+  Optionpk<string> label_opt("\0", "label", "identifier for class label in training shape file.","label"); 
+  Optionpk<unsigned short> reclass_opt("\0", "rc", "reclass code (e.g. --rc=12 --rc=23 to reclass first two classes to 12 and 23 resp.).", 0);
+  Optionpk<unsigned int> balance_opt("\0", "balance", "balance the input data to this number of samples for each class", 0);
+  Optionpk<int> minSize_opt("m", "min", "if number of training pixels is less then min, do not take this class into account", 0);
+  Optionpk<double> start_opt("s", "start", "start band sequence number (set to 0)",0); 
+  Optionpk<double> end_opt("e", "end", "end band sequence number (set to 0 for all bands)", 0); 
+  Optionpk<double> offset_opt("\0", "offset", "offset value for each spectral band input features: refl[band]=(DN[band]-offset[band])/scale[band]", 0.0);
+  Optionpk<double> scale_opt("\0", "scale", "scale value for each spectral band input features: refl=(DN[band]-offset[band])/scale[band] (use 0 if scale min and max in each band to -1.0 and 1.0)", 0.0);
+  Optionpk<unsigned short> aggreg_opt("a", "aggreg", "how to combine aggregated classifiers, see also rc option (0: no aggregation, 1: sum rule, 2: max rule).",0);
+  Optionpk<double> priors_opt("p", "prior", "prior probabilities for each class (e.g., -p 0.3 -p 0.3 -p 0.2 )", 0.0); 
+
+
+  Optionpk<unsigned short> svm_type_opt("svmt", "svmtype", "type of SVM (0: C-SVC, 1: nu-SVC, 2: one-class SVM, 3: epsilon-SVR,	4: nu-SVR)",0);
+  Optionpk<unsigned short> kernel_type_opt("kt", "kerneltype", "type of kernel function (0: linear: u'*v, 1: polynomial: (gamma*u'*v + coef0)^degree, 2: radial basis function: exp(-gamma*|u-v|^2), 3: sigmoid: tanh(gamma*u'*v + coef0), 4: precomputed kernel (kernel values in training_set_file)",2);
+  Optionpk<unsigned short> kernel_degree_opt("kd", "kd", "degree in kernel function",3);
+  Optionpk<float> gamma_opt("g", "gamma", "gamma in kernel function",0);
+  Optionpk<float> coef0_opt("c0", "coef0", "coef0 in kernel function",0);
+  Optionpk<float> ccost_opt("cc", "ccost", "the parameter C of C-SVC, epsilon-SVR, and nu-SVR",1);
+  Optionpk<float> nu_opt("nu", "nu", "the parameter nu of nu-SVC, one-class SVM, and nu-SVR",0.5);
+  Optionpk<float> epsilon_loss_opt("eloss", "eloss", "the epsilon in loss function of epsilon-SVR",0.1);
+  Optionpk<int> cache_opt("cache", "cache", "cache memory size in MB",100);
+  Optionpk<float> epsilon_tol_opt("etol", "etol", "the tolerance of termination criterion",0.001);
+  Optionpk<bool> shrinking_opt("shrink", "shrink", "whether to use the shrinking heuristics",false);
+  Optionpk<bool> prob_est_opt("pe", "probest", "whether to train a SVC or SVR model for probability estimates",false);
+  // Optionpk<bool> weight_opt("wi", "wi", "set the parameter C of class i to weight*C, for C-SVC",true);
+  Optionpk<unsigned int> cv_opt("cv", "cv", "n-fold cross validation mode",0);
+  Optionpk<unsigned short> comb_opt("c", "comb", "how to combine bootstrap aggregation classifiers (0: sum rule, 1: product rule, 2: max rule). Also used to aggregate classes with rc option.",0); 
+  Optionpk<unsigned short> bag_opt("\0", "bag", "Number of bootstrap aggregations", 1);
+  Optionpk<int> bagSize_opt("\0", "bsize", "Percentage of features used from available training features for each bootstrap aggregation", 100);
+  Optionpk<string> classBag_opt("\0", "class", "output for each individual bootstrap aggregation");
+  Optionpk<string> mask_opt("\0", "mask", "mask image (see also mvalue option"); 
+  Optionpk<short> maskValue_opt("\0", "mvalue", "mask value(s) not to consider for classification (use negative values if only these values should be taken into account). Values will be taken over in classification image.", 0);
+  Optionpk<unsigned short> flag_opt("f", "flag", "flag to put where image is invalid.", 0);
+  Optionpk<string> output_opt("o", "output", "output classification image"); 
+  Optionpk<string>  oformat_opt("of", "oformat", "Output image format (see also gdal_translate). Empty string: inherit from input image");
+  Optionpk<string> option_opt("co", "co", "options: NAME=VALUE [-co COMPRESS=LZW] [-co INTERLEAVE=BAND]");
+  Optionpk<string> colorTable_opt("\0", "ct", "colour table in ascii format having 5 columns: id R G B ALFA (0: transparent, 255: solid)"); 
+  Optionpk<string> prob_opt("\0", "prob", "probability image."); 
+  Optionpk<short> verbose_opt("v", "verbose", "set to: 0 (results only), 1 (confusion matrix), 2 (debug)",0);
+
+  version_opt.retrieveOption(argc,argv);
+  license_opt.retrieveOption(argc,argv);
+  help_opt.retrieveOption(argc,argv);
+  todo_opt.retrieveOption(argc,argv);
+
+  input_opt.retrieveOption(argc,argv);
+  training_opt.retrieveOption(argc,argv);
+  label_opt.retrieveOption(argc,argv);
+  reclass_opt.retrieveOption(argc,argv);
+  balance_opt.retrieveOption(argc,argv);
+  minSize_opt.retrieveOption(argc,argv);
+  start_opt.retrieveOption(argc,argv);
+  end_opt.retrieveOption(argc,argv);
+  offset_opt.retrieveOption(argc,argv);
+  scale_opt.retrieveOption(argc,argv);
+  aggreg_opt.retrieveOption(argc,argv);
+  priors_opt.retrieveOption(argc,argv);
+  svm_type_opt.retrieveOption(argc,argv);
+  kernel_type_opt.retrieveOption(argc,argv);
+  kernel_degree_opt.retrieveOption(argc,argv);
+  gamma_opt.retrieveOption(argc,argv);
+  coef0_opt.retrieveOption(argc,argv);
+  ccost_opt.retrieveOption(argc,argv);
+  nu_opt.retrieveOption(argc,argv);
+  epsilon_loss_opt.retrieveOption(argc,argv);
+  cache_opt.retrieveOption(argc,argv);
+  epsilon_tol_opt.retrieveOption(argc,argv);
+  shrinking_opt.retrieveOption(argc,argv);
+  prob_est_opt.retrieveOption(argc,argv);
+  cv_opt.retrieveOption(argc,argv);
+  comb_opt.retrieveOption(argc,argv);
+  bag_opt.retrieveOption(argc,argv);
+  bagSize_opt.retrieveOption(argc,argv);
+  classBag_opt.retrieveOption(argc,argv);
+  mask_opt.retrieveOption(argc,argv);
+  maskValue_opt.retrieveOption(argc,argv);
+  flag_opt.retrieveOption(argc,argv);
+  output_opt.retrieveOption(argc,argv);
+  oformat_opt.retrieveOption(argc,argv);
+  colorTable_opt.retrieveOption(argc,argv);
+  option_opt.retrieveOption(argc,argv);
+  prob_opt.retrieveOption(argc,argv);
+  verbose_opt.retrieveOption(argc,argv);
+
+  if(version_opt[0]||todo_opt[0]){
+    std::cout << version_opt.getHelp() << std::endl;
+    std::cout << "todo: " << todo_opt.getHelp() << std::endl;
+    exit(0);
+  }
+  if(license_opt[0]){
+    std::cout << Optionpk<bool>::getGPLv3License() << std::endl;
+    exit(0);
+  }
+  if(help_opt[0]){
+    std::cout << "usage: pkclassify_nn -i testimage -o outputimage -t training [OPTIONS]" << std::endl;
+    exit(0);
+  }
+
+  if(verbose_opt[0]>=1){
+    std::cout << "image filename: " << input_opt[0] << std::endl;
+    if(mask_opt.size())
+      std::cout << "mask filename: " << mask_opt[0] << std::endl;
+    if(training_opt[0].size()){
+      std::cout << "training shape file: " << std::endl;
+      for(int ifile=0;ifile<training_opt.size();++ifile)
+        std::cout << training_opt[ifile] << std::endl;
+    }
+    else
+      cerr << "no training file set!" << std::endl;
+    std::cout << "verbose: " << verbose_opt[0] << std::endl;
+  }
+  unsigned short nbag=(training_opt.size()>1)?training_opt.size():bag_opt[0];
+  if(verbose_opt[0]>=1)
+    std::cout << "number of bootstrap aggregations: " << nbag << std::endl;
+  
+  unsigned int totalSamples=0;
+  int nreclass=0;
+  vector<int> vcode;//unique class codes in recode string
+  // vector<FANN::neural_net> net(nbag);//the neural network
+  vector<struct svm_model*> svm(nbag);
+  vector<struct svm_parameter> param(nbag);
+
+  unsigned int nclass=0;
+  int nband=0;
+  int startBand=2;//first two bands represent X and Y pos
+
+  vector< vector<double> > offset(nbag);
+  vector< vector<double> > scale(nbag);
+  vector< Vector2d<float> > trainingPixels;//[class][sample][band]
+
+  if(reclass_opt.size()>1){
+    vreclass.resize(reclass_opt.size());
+    for(int iclass=0;iclass<reclass_opt.size();++iclass){
+      reclassMap[iclass]=reclass_opt[iclass];
+      vreclass[iclass]=reclass_opt[iclass];
+    }
+  }
+  if(priors_opt.size()>1){//priors from argument list
+    priors.resize(priors_opt.size());
+    double normPrior=0;
+    for(int iclass=0;iclass<priors_opt.size();++iclass){
+      priors[iclass]=priors_opt[iclass];
+      normPrior+=priors[iclass];
+    }
+    //normalize
+    for(int iclass=0;iclass<priors_opt.size();++iclass)
+      priors[iclass]/=normPrior;
+  }
+
+  //----------------------------------- Training -------------------------------
+  vector<struct svm_problem> prob(nbag);
+  vector<struct svm_node *> x_space(nbag);
+  // struct svm_node *x_space;
+  vector<string> fields;
+  for(int ibag=0;ibag<nbag;++ibag){
+    //organize training data
+    if(ibag<training_opt.size()){//if bag contains new training pixels
+      trainingPixels.clear();
+      map<int,Vector2d<float> > trainingMap;
+      if(verbose_opt[0]>=1)
+        std::cout << "reading imageShape file " << training_opt[0] << std::endl;
+      try{
+        totalSamples=readDataImageShape(training_opt[ibag],trainingMap,fields,start_opt[0],end_opt[0],label_opt[0],verbose_opt[0]);
+        if(trainingMap.size()<2){
+          string errorstring="Error: could not read at least two classes from training file";
+          throw(errorstring);
+        }
+      }
+      catch(string error){
+        cerr << error << std::endl;
+        exit(1);
+      }
+      catch(...){
+        cerr << "error catched" << std::endl;
+        exit(1);
+      }
+      //delete class 0
+      if(verbose_opt[0]>=1)
+        std::cout << "erasing class 0 from training set (" << trainingMap[0].size() << " from " << totalSamples << ") samples" << std::endl;
+      totalSamples-=trainingMap[0].size();
+      trainingMap.erase(0);
+      //convert map to vector
+      short iclass=0;
+      if(reclass_opt.size()==1){//no reclass option, read classes from shape
+        reclassMap.clear();
+        vreclass.clear();
+      }
+      if(verbose_opt[0]>1)
+        std::cout << "training pixels: " << std::endl;
+      map<int,Vector2d<float> >::iterator mapit=trainingMap.begin();
+      while(mapit!=trainingMap.end()){
+//       for(map<int,Vector2d<float> >::const_iterator mapit=trainingMap.begin();mapit!=trainingMap.end();++mapit){
+        //delete small classes
+        if((mapit->second).size()<minSize_opt[0]){
+          trainingMap.erase(mapit);
+          continue;
+          //todo: beware of reclass option: delete this reclass if no samples are left in this classes!!
+        }
+        if(reclass_opt.size()==1){//no reclass option, read classes from shape
+          reclassMap[iclass]=(mapit->first);
+          vreclass.push_back(mapit->first);
+        }
+        trainingPixels.push_back(mapit->second);
+        if(verbose_opt[0]>1)
+          std::cout << mapit->first << ": " << (mapit->second).size() << " samples" << std::endl;
+        ++iclass;
+        ++mapit;
+      }
+      if(!ibag){
+        nclass=trainingPixels.size();
+        nband=trainingPixels[0][0].size()-2;//X and Y//trainingPixels[0][0].size();
+      }
+      else{
+        assert(nclass==trainingPixels.size());
+        assert(nband==trainingPixels[0][0].size()-2);
+      }
+      assert(reclassMap.size()==nclass);
+
+      //do not remove outliers here: could easily be obtained through ogr2ogr -where 'B2<110' output.shp input.shp
+      //balance training data
+      if(balance_opt[0]>0){
+        if(random)
+          srand(time(NULL));
+        totalSamples=0;
+        for(int iclass=0;iclass<nclass;++iclass){
+          if(trainingPixels[iclass].size()>balance_opt[0]){
+            while(trainingPixels[iclass].size()>balance_opt[0]){
+              int index=rand()%trainingPixels[iclass].size();
+              trainingPixels[iclass].erase(trainingPixels[iclass].begin()+index);
+            }
+          }
+          else{
+            int oldsize=trainingPixels[iclass].size();
+            for(int isample=trainingPixels[iclass].size();isample<balance_opt[0];++isample){
+              int index = rand()%oldsize;
+              trainingPixels[iclass].push_back(trainingPixels[iclass][index]);
+            }
+          }
+          totalSamples+=trainingPixels[iclass].size();
+        }
+        assert(totalSamples==nclass*balance_opt[0]);
+      }
+    
+      //set scale and offset
+      offset[ibag].resize(nband);
+      scale[ibag].resize(nband);
+      if(offset_opt.size()>1)
+        assert(offset_opt.size()==nband);
+      if(scale_opt.size()>1)
+        assert(scale_opt.size()==nband);
+      Histogram hist;
+      for(int iband=0;iband<nband;++iband){
+        if(verbose_opt[0]>=1)
+          std::cout << "scaling for band" << iband << std::endl;
+        offset[ibag][iband]=(offset_opt.size()==1)?offset_opt[0]:offset_opt[iband];
+        scale[ibag][iband]=(scale_opt.size()==1)?scale_opt[0]:scale_opt[iband];
+        //search for min and maximum
+        if(scale[ibag][iband]<=0){
+          float theMin=trainingPixels[0][0][iband+startBand];
+          float theMax=trainingPixels[0][0][iband+startBand];
+          for(int iclass=0;iclass<nclass;++iclass){
+            for(int isample=0;isample<trainingPixels[iclass].size();++isample){
+              if(theMin>trainingPixels[iclass][isample][iband+startBand])
+                theMin=trainingPixels[iclass][isample][iband+startBand];
+              if(theMax<trainingPixels[iclass][isample][iband+startBand])
+                theMax=trainingPixels[iclass][isample][iband+startBand];
+            }
+          }
+          offset[ibag][iband]=theMin+(theMax-theMin)/2.0;
+          scale[ibag][iband]=(theMax-theMin)/2.0;
+          if(verbose_opt[0]>=1){
+            std::cout << "Extreme image values for band " << iband << ": [" << theMin << "," << theMax << "]" << std::endl;
+            std::cout << "Using offset, scale: " << offset[ibag][iband] << ", " << scale[ibag][iband] << std::endl;
+            std::cout << "scaled values for band " << iband << ": [" << (theMin-offset[ibag][iband])/scale[ibag][iband] << "," << (theMax-offset[ibag][iband])/scale[ibag][iband] << "]" << std::endl;
+          }
+        }
+      }
+    }
+    else{//use same offset and scale 
+      offset[ibag].resize(nband);
+      scale[ibag].resize(nband);
+      for(int iband=0;iband<nband;++iband){
+        offset[ibag][iband]=offset[0][iband];
+        scale[ibag][iband]=scale[0][iband];
+      }
+    }
+      
+    if(!ibag){
+      //recode vreclass to ordered vector, starting from 0 to nreclass
+      vcode.clear();
+      if(verbose_opt[0]>=1){
+        std::cout << "before recoding: " << std::endl;
+        for(int iclass = 0; iclass < vreclass.size(); iclass++)
+          std::cout << " " << vreclass[iclass];
+        std::cout << std::endl; 
+      }
+      vector<int> vord=vreclass;//ordered vector, starting from 0 to nreclass
+      int iclass=0;
+      map<short,int> mreclass;
+      for(int ic=0;ic<vreclass.size();++ic){
+        if(mreclass.find(vreclass[ic])==mreclass.end())
+          mreclass[vreclass[ic]]=iclass++;
+      }
+      for(int ic=0;ic<vreclass.size();++ic)
+        vord[ic]=mreclass[vreclass[ic]];
+      //construct uniqe class codes
+      while(!vreclass.empty()){
+        vcode.push_back(*(vreclass.begin()));
+        //delete all these entries from vreclass
+        vector<int>::iterator vit;
+        while((vit=find(vreclass.begin(),vreclass.end(),vcode.back()))!=vreclass.end())
+          vreclass.erase(vit);
+      }
+      if(verbose_opt[0]>=1){
+        std::cout << "recode values: " << std::endl;
+        for(int icode=0;icode<vcode.size();++icode)
+          std::cout << vcode[icode] << " ";
+        std::cout << std::endl;
+      }
+      vreclass=vord;
+      if(verbose_opt[0]>=1){
+        std::cout << "after recoding: " << std::endl;
+        for(int iclass = 0; iclass < vord.size(); iclass++)
+          std::cout << " " << vord[iclass];
+        std::cout << std::endl; 
+      }
+      
+      vector<int> vuniqueclass=vreclass;
+      //remove duplicate elements from vuniqueclass
+      sort( vuniqueclass.begin(), vuniqueclass.end() );
+      vuniqueclass.erase( unique( vuniqueclass.begin(), vuniqueclass.end() ), vuniqueclass.end() );
+      nreclass=vuniqueclass.size();
+      if(verbose_opt[0]>=1){
+        std::cout << "unique classes: " << std::endl;
+        for(int iclass = 0; iclass < vuniqueclass.size(); iclass++)
+          std::cout << " " << vuniqueclass[iclass];
+        std::cout << std::endl; 
+        std::cout << "number of reclasses: " << nreclass << std::endl;
+      }
+    
+      if(priors_opt.size()==1){//default: equal priors for each class
+        priors.resize(nclass);
+        for(int iclass=0;iclass<nclass;++iclass)
+          priors[iclass]=1.0/nclass;
+      }
+      assert(priors_opt.size()==1||priors_opt.size()==nclass);
+    
+      if(verbose_opt[0]>=1){
+        std::cout << "number of bands: " << nband << std::endl;
+        std::cout << "number of classes: " << nclass << std::endl;
+        std::cout << "priors:";
+        for(int iclass=0;iclass<nclass;++iclass)
+          std::cout << " " << priors[iclass];
+        std::cout << std::endl;
+      }
+    }//if(!ibag)
+
+    //Calculate features of trainig set
+    vector< Vector2d<float> > trainingFeatures(nclass);
+    for(int iclass=0;iclass<nclass;++iclass){
+      int nctraining=0;
+      if(verbose_opt[0]>=1)
+        std::cout << "calculating features for class " << iclass << std::endl;
+      if(random)
+        srand(time(NULL));
+      nctraining=(bagSize_opt[0]<100)? trainingPixels[iclass].size()/100.0*bagSize_opt[0] : trainingPixels[iclass].size();//bagSize_opt[0] given in % of training size
+      if(nctraining<=0)
+        nctraining=1;
+      assert(nctraining<=trainingPixels[iclass].size());
+      int index=0;
+      if(bagSize_opt[0]<100)
+        random_shuffle(trainingPixels[iclass].begin(),trainingPixels[iclass].end());
+      
+      trainingFeatures[iclass].resize(nctraining);
+      for(int isample=0;isample<nctraining;++isample){
+        //scale pixel values according to scale and offset!!!
+        for(int iband=0;iband<nband;++iband){
+          float value=trainingPixels[iclass][isample][iband+startBand];
+          trainingFeatures[iclass][isample].push_back((value-offset[ibag][iband])/scale[ibag][iband]);
+        }
+      }
+      assert(trainingFeatures[iclass].size()==nctraining);
+    }
+    
+    unsigned int nFeatures=trainingFeatures[0][0].size();
+    unsigned int ntraining=0;
+    for(int iclass=0;iclass<nclass;++iclass){
+      if(verbose_opt[0]>=1)
+        std::cout << "training sample size for class " << vcode[iclass] << ": " << trainingFeatures[iclass].size() << std::endl;
+      ntraining+=trainingFeatures[iclass].size();
+    }
+    // vector<struct svm_problem> prob(ibag);
+    // vector<struct svm_node *> x_space(ibag);
+    prob[ibag].l=ntraining;
+    prob[ibag].y = Malloc(double,prob[ibag].l);
+    prob[ibag].x = Malloc(struct svm_node *,prob[ibag].l);
+    x_space[ibag] = Malloc(struct svm_node,(nFeatures+1)*ntraining);
+    unsigned long int spaceIndex=0;
+    int lIndex=0;
+    for(int iclass=0;iclass<nclass;++iclass){
+      for(int isample=0;isample<trainingFeatures[iclass].size();++isample){
+        // //test
+        // std::cout << iclass;
+        prob[ibag].x[lIndex]=&(x_space[ibag][spaceIndex]);
+        for(int ifeature=0;ifeature<nFeatures;++ifeature){
+          x_space[ibag][spaceIndex].index=ifeature+1;
+          x_space[ibag][spaceIndex].value=trainingFeatures[iclass][isample][ifeature];
+          // //test
+          // std::cout << " " << x_space[ibag][spaceIndex].index << ":" << x_space[ibag][spaceIndex].value;
+          ++spaceIndex;
+        }
+        x_space[ibag][spaceIndex++].index=-1;
+        prob[ibag].y[lIndex]=iclass;
+        ++lIndex;
+      }
+    }
+    assert(lIndex==prob[ibag].l);
+
+    //set SVM parameters through command line options
+    param[ibag].svm_type = svm_type_opt[0];
+    param[ibag].kernel_type = kernel_type_opt[0];
+    param[ibag].degree = kernel_degree_opt[0];
+    param[ibag].gamma = (gamma_opt[0]>0)? gamma_opt[0] : 1.0/nFeatures;
+    param[ibag].coef0 = coef0_opt[0];
+    param[ibag].nu = nu_opt[0];
+    param[ibag].cache_size = cache_opt[0];
+    param[ibag].C = ccost_opt[0];
+    param[ibag].eps = epsilon_tol_opt[0];
+    param[ibag].p = epsilon_loss_opt[0];
+    param[ibag].shrinking = (shrinking_opt[0])? 1 : 0;
+    param[ibag].probability = (prob_est_opt[0])? 1 : 0;
+    param[ibag].nr_weight = 0;//not used: I use priors and balancing
+    param[ibag].weight_label = NULL;
+    param[ibag].weight = NULL;
+
+    if(verbose_opt[0])
+      std::cout << "checking parameters" << std::endl;
+    svm_check_parameter(&prob[ibag],&param[ibag]);
+    if(verbose_opt[0])
+      std::cout << "parameters ok, training" << std::endl;
+    svm[ibag]=svm_train(&prob[ibag],&param[ibag]);
+    
+    if(verbose_opt[0])
+      std::cout << "SVM is now trained" << std::endl;
+    if(cv_opt[0]>0){
+      std::cout << "Confusion matrix" << std::endl;
+      ConfusionMatrix cm(nclass);
+      // for(int iclass=0;iclass<nclass;++iclass)
+      //   cm.pushBackClassName(type2string(iclass));
+      double *target = Malloc(double,prob[ibag].l);
+      svm_cross_validation(&prob[ibag],&param[ibag],cv_opt[0],target);
+      assert(param[ibag].svm_type != EPSILON_SVR&&param[ibag].svm_type != NU_SVR);//only for regression
+      int total_correct=0;
+      for(int i=0;i<prob[ibag].l;i++)
+        cm.incrementResult(cm.getClass(prob[ibag].y[i]),cm.getClass(target[i]),1);
+      assert(cm.nReference());
+      std::cout << cm << std::endl;
+      std::cout << "Kappa: " << cm.kappa() << std::endl;
+      double se95_oa=0;
+      double doa=0;
+      doa=cm.oa_pct(&se95_oa);
+      std::cout << "Overall Accuracy: " << doa << " (" << se95_oa << ")"  << std::endl;
+      free(target);
+    }
+
+    // *NOTE* Because svm_model contains pointers to svm_problem, you can
+    // not free the memory used by svm_problem if you are still using the
+    // svm_model produced by svm_train(). 
+
+    // free(prob.y);
+    // free(prob.x);
+    // free(x_space);
+    // svm_destroy_param(&param);
+  }//for ibag
+
+  //--------------------------------- end of training -----------------------------------
+  if(!output_opt.size())
+    exit(0);
+
+
+  const char* pszMessage;
+  void* pProgressArg=NULL;
+  GDALProgressFunc pfnProgress=GDALTermProgress;
+  float progress=0;
+  if(!verbose_opt[0])
+    pfnProgress(progress,pszMessage,pProgressArg);
+  //-------------------------------- open image file ------------------------------------
+  if(input_opt[0].find(".shp")==string::npos){
+    ImgReaderGdal testImage;
+    try{
+      if(verbose_opt[0]>=1)
+        std::cout << "opening image " << input_opt[0] << std::endl; 
+      testImage.open(input_opt[0]);
+    }
+    catch(string error){
+      cerr << error << std::endl;
+      exit(2);
+    }
+    ImgReaderGdal maskReader;
+    if(mask_opt.size()){
+      try{
+        if(verbose_opt[0]>=1)
+          std::cout << "opening mask image file " << mask_opt[0] << std::endl;
+        maskReader.open(mask_opt[0]);
+        assert(maskReader.nrOfCol()==testImage.nrOfCol());
+        assert(maskReader.nrOfRow()==testImage.nrOfRow());
+      }
+      catch(string error){
+        cerr << error << std::endl;
+        exit(2);
+      }
+      catch(...){
+        cerr << "error catched" << std::endl;
+        exit(1);
+      }
+    }
+    int nrow=testImage.nrOfRow();
+    int ncol=testImage.nrOfCol();
+    if(option_opt.findSubstring("INTERLEAVE=")==option_opt.end()){
+      string theInterleave="INTERLEAVE=";
+      theInterleave+=testImage.getInterleave();
+      option_opt.push_back(theInterleave);
+    }
+    vector<char> classOut(ncol);//classified line for writing to image file
+
+    //   assert(nband==testImage.nrOfBand());
+    ImgWriterGdal classImageBag;
+    ImgWriterGdal classImageOut;
+    ImgWriterGdal probImage;
+    string imageType=testImage.getImageType();
+    if(oformat_opt.size())//default
+      imageType=oformat_opt[0];
+    try{
+      assert(output_opt.size());
+      if(verbose_opt[0]>=1)
+        std::cout << "opening class image for writing output " << output_opt[0] << std::endl;
+      if(classBag_opt.size()){
+        classImageBag.open(output_opt[0],ncol,nrow,nbag,GDT_Byte,imageType,option_opt);
+        classImageBag.copyGeoTransform(testImage);
+        classImageBag.setProjection(testImage.getProjection());
+      }
+      classImageOut.open(output_opt[0],ncol,nrow,1,GDT_Byte,imageType,option_opt);
+      classImageOut.copyGeoTransform(testImage);
+      classImageOut.setProjection(testImage.getProjection());
+      if(colorTable_opt.size())
+        classImageOut.setColorTable(colorTable_opt[0],0);
+      if(prob_opt.size()){
+        probImage.open(prob_opt[0],ncol,nrow,nreclass,GDT_Byte,imageType,option_opt);
+        probImage.copyGeoTransform(testImage);
+        probImage.setProjection(testImage.getProjection());
+      }
+    }
+    catch(string error){
+      cerr << error << std::endl;
+    }
+  
+    for(int iline=0;iline<nrow;++iline){
+      vector<float> buffer(ncol);
+      vector<short> lineMask;
+      if(mask_opt.size())
+        lineMask.resize(maskReader.nrOfCol());
+      Vector2d<float> hpixel(ncol,nband);
+      // Vector2d<float> fpixel(ncol);
+      Vector2d<float> prOut(nreclass,ncol);//posterior prob for each reclass
+      Vector2d<char> classBag;//classified line for writing to image file
+      if(classBag_opt.size())
+        classBag.resize(nbag,ncol);
+      //read all bands of all pixels in this line in hline
+      for(int iband=start_opt[0];iband<start_opt[0]+nband;++iband){
+        if(verbose_opt[0]==2)
+          std::cout << "reading band " << iband << std::endl;
+        assert(iband>=0);
+        assert(iband<testImage.nrOfBand());
+        try{
+          testImage.readData(buffer,GDT_Float32,iline,iband);
+        }
+        catch(string theError){
+          cerr << "Error reading " << input_opt[0] << ": " << theError << std::endl;
+          exit(3);
+        }
+        catch(...){
+          cerr << "error catched" << std::endl;
+          exit(3);
+        }
+        for(int icol=0;icol<ncol;++icol)
+          hpixel[icol][iband-start_opt[0]]=buffer[icol];
+      }
+
+      assert(nband==hpixel[0].size());
+      if(verbose_opt[0]==2)
+        std::cout << "used bands: " << nband << std::endl;
+      //read mask
+      if(!lineMask.empty()){
+        try{
+          maskReader.readData(lineMask,GDT_Int16,iline);
+        }
+        catch(string theError){
+          cerr << "Error reading " << mask_opt[0] << ": " << theError << std::endl;
+          exit(3);
+        }
+        catch(...){
+          cerr << "error catched" << std::endl;
+          exit(3);
+        }
+      }
+    
+      //process per pixel
+      for(int icol=0;icol<ncol;++icol){
+
+        bool masked=false;
+        if(!lineMask.empty()){
+          short theMask=0;
+          for(short ivalue=0;ivalue<maskValue_opt.size();++ivalue){
+            if(maskValue_opt[ivalue]>=0){//values set in maskValue_opt are invalid
+              if(lineMask[icol]==maskValue_opt[ivalue]){
+                theMask=(flag_opt.size()==maskValue_opt.size())? flag_opt[ivalue] : flag_opt[0];// lineMask[icol];
+                masked=true;
+                break;
+              }
+            }
+            else{//only values set in maskValue_opt are valid
+              if(lineMask[icol]!=-maskValue_opt[ivalue]){
+                  theMask=(flag_opt.size()==maskValue_opt.size())? flag_opt[ivalue] : flag_opt[0];// lineMask[icol];
+                masked=true;
+              }
+              else{
+                masked=false;
+                break;
+              }
+            }
+          }
+          if(masked){
+            if(classBag_opt.size())
+              for(int ibag=0;ibag<nbag;++ibag)
+                classBag[ibag][icol]=theMask;
+            classOut[icol]=theMask;
+            continue;
+          }
+        }
+        bool valid=false;
+        for(int iband=0;iband<nband;++iband){
+          if(hpixel[icol][iband]){
+            valid=true;
+            break;
+          }
+        }
+        if(!valid){
+          if(classBag_opt.size())
+            for(int ibag=0;ibag<nbag;++ibag)
+              classBag[ibag][icol]=flag_opt[0];
+          classOut[icol]=flag_opt[0];
+          continue;//next column
+        }
+        for(int iclass=0;iclass<nreclass;++iclass)
+          prOut[iclass][icol]=0;
+        //----------------------------------- classification -------------------
+        for(int ibag=0;ibag<nbag;++ibag){
+          //calculate image features
+          // fpixel[icol].clear();
+          // for(int iband=0;iband<nband;++iband)
+          //   fpixel[icol].push_back((hpixel[icol][iband]-offset[ibag][iband])/scale[ibag][iband]);
+          vector<double> result(nclass);
+          // result=net[ibag].run(fpixel[icol]);
+          struct svm_node *x;
+          // x = (struct svm_node *) malloc((fpixel[icol].size()+1)*sizeof(struct svm_node));
+          x = (struct svm_node *) malloc((nband+1)*sizeof(struct svm_node));
+          // for(int i=0;i<fpixel[icol].size();++i){
+          for(int iband=0;iband<nband;++iband){
+            x[iband].index=iband+1;
+            // x[i].value=fpixel[icol][i];
+            x[iband].value=(hpixel[icol][iband]-offset[ibag][iband])/scale[ibag][iband];
+          }
+          // x[fpixel[icol].size()].index=-1;//to end svm feature vector
+          x[nband].index=-1;//to end svm feature vector
+          double predict_label=0;
+          vector<float> pValues(nclass);
+          vector<float> prValues(nreclass);
+          vector<float> priorsReclass(nreclass);
+          float maxP=0;
+          if(!aggreg_opt[0]){
+            predict_label = svm_predict(svm[ibag],x);
+            for(int iclass=0;iclass<nclass;++iclass){
+              if(iclass==static_cast<int>(predict_label))
+                result[iclass]=1;
+              else
+                result[iclass]=0;
+            }
+          }
+          else{
+            assert(svm_check_probability_model(svm[ibag]));
+            predict_label = svm_predict_probability(svm[ibag],x,&(result[0]));
+          }
+          for(int iclass=0;iclass<nclass;++iclass){
+            float pv=result[iclass];
+            assert(pv>=0);
+            assert(pv<=1);
+            pv*=priors[iclass];
+            pValues[iclass]=pv;
+          }
+          float normReclass=0;
+          for(int iclass=0;iclass<nreclass;++iclass){
+            prValues[iclass]=0;
+            priorsReclass[iclass]=0;
+            float maxPaggreg=0;
+            for(int ic=0;ic<nclass;++ic){
+              if(vreclass[ic]==iclass){
+                priorsReclass[iclass]+=priors[ic];
+                switch(aggreg_opt[0]){
+                default:
+                case(1)://sum rule (sum posterior probabilities of aggregated individual classes)
+                  prValues[iclass]+=pValues[ic];
+                break;
+                case(0):
+                case(2)://max rule (look for maximum post probability of aggregated individual classes)
+                  if(pValues[ic]>maxPaggreg){
+                    maxPaggreg=pValues[ic];
+                    prValues[iclass]=maxPaggreg;
+                  }
+                  break;
+                }
+              }
+            }
+          }
+          for(int iclass=0;iclass<nreclass;++iclass)
+            normReclass+=prValues[iclass];
+        
+          //calculate posterior prob of bag 
+          if(classBag_opt.size()){
+            //search for max prob within bag
+            maxP=0;
+            classBag[ibag][icol]=0;
+          }
+          for(int iclass=0;iclass<nreclass;++iclass){
+            float prv=prValues[iclass];
+            prv/=normReclass;
+            //           prv*=100.0;
+            prValues[iclass]=prv;
+            switch(comb_opt[0]){
+            default:
+            case(0)://sum rule
+              prOut[iclass][icol]+=prValues[iclass]+static_cast<float>(1.0-nbag)/nbag*priorsReclass[iclass];//add probabilities for each bag
+              break;
+            case(1)://product rule
+              prOut[iclass][icol]*=pow(priorsReclass[iclass],static_cast<float>(1.0-nbag)/nbag)*prValues[iclass];//add probabilities for each bag
+              break;
+            case(2)://max rule
+              if(prValues[iclass]>prOut[iclass][icol])
+                prOut[iclass][icol]=prValues[iclass];
+              break;
+            }
+            if(classBag_opt.size()){
+              //search for max prob within bag
+              if(prValues[iclass]>maxP){
+                maxP=prValues[iclass];
+                classBag[ibag][icol]=vcode[iclass];
+              }
+            }
+          }
+          free(x);
+        }//ibag
+
+        //search for max class prob
+        float maxBag=0;
+        float normBag=0;
+        for(int iclass=0;iclass<nreclass;++iclass){
+          if(prOut[iclass][icol]>maxBag){
+            maxBag=prOut[iclass][icol];
+            classOut[icol]=vcode[iclass];
+          }
+          normBag+=prOut[iclass][icol];
+        }
+        //normalize prOut and convert to percentage
+        if(prob_opt.size()){
+          for(int iclass=0;iclass<nreclass;++iclass){
+            float prv=prOut[iclass][icol];
+            prv/=normBag;
+            prv*=100.0;
+            prOut[iclass][icol]=static_cast<short>(prv+0.5);
+          }
+        }
+      }//icol
+      //----------------------------------- write output ------------------------------------------
+      if(classBag_opt.size())
+        for(int ibag=0;ibag<nbag;++ibag)
+          classImageBag.writeData(classBag[ibag],GDT_Byte,iline,ibag);
+      if(prob_opt.size()){
+        for(int iclass=0;iclass<nreclass;++iclass)
+          probImage.writeData(prOut[iclass],GDT_Float32,iline,iclass);
+      }
+      classImageOut.writeData(classOut,GDT_Byte,iline);
+      if(!verbose_opt[0]){
+        progress=static_cast<float>(iline+1.0)/classImageOut.nrOfRow();
+        pfnProgress(progress,pszMessage,pProgressArg);
+      }
+    }
+    testImage.close();
+    if(prob_opt.size())
+      probImage.close();
+    if(classBag_opt.size())
+      classImageBag.close();
+    classImageOut.close();
+  }
+  else{//classify shape file
+    for(int ivalidation=0;ivalidation<input_opt.size();++ivalidation){
+      assert(output_opt.size()==input_opt.size());
+      if(verbose_opt[0])
+        std::cout << "opening img reader " << input_opt[ivalidation] << std::endl;
+      ImgReaderOgr imgReaderOgr(input_opt[ivalidation]);
+      if(verbose_opt[0])
+        std::cout << "opening img writer and copying fields from img reader" << output_opt[ivalidation] << std::endl;
+      ImgWriterOgr imgWriterOgr(output_opt[ivalidation],imgReaderOgr,false);
+      if(verbose_opt[0])
+        std::cout << "creating field class" << std::endl;
+      imgWriterOgr.createField("class",OFTInteger);
+      OGRFeature *poFeature;
+      unsigned int ifeature=0;
+      unsigned int nFeatures=imgReaderOgr.getFeatureCount();
+      while( (poFeature = imgReaderOgr.getLayer()->GetNextFeature()) != NULL ){
+        if(verbose_opt[0]>1)
+          std::cout << "feature " << ifeature << std::endl;
+        if( poFeature == NULL )
+          break;
+        OGRFeature *poDstFeature = NULL;
+        poDstFeature=imgWriterOgr.createFeature();
+        if( poDstFeature->SetFrom( poFeature, TRUE ) != OGRERR_NONE ){
+          CPLError( CE_Failure, CPLE_AppDefined,
+                    "Unable to translate feature %d from layer %s.\n",
+                    poFeature->GetFID(), imgWriterOgr.getLayerName().c_str() );
+          OGRFeature::DestroyFeature( poFeature );
+          OGRFeature::DestroyFeature( poDstFeature );
+        }
+        vector<float> validationPixel;
+        vector<float> validationFeature;
+        
+        imgReaderOgr.readData(validationPixel,OFTReal,fields,poFeature);
+        OGRFeature::DestroyFeature( poFeature );
+//         assert(validationPixel.size()>=start_opt[0]+nband);
+        assert(validationPixel.size()==nband);
+        vector<float> prOut(nreclass);//posterior prob for each reclass
+        for(int iclass=0;iclass<nreclass;++iclass)
+          prOut[iclass]=0;
+        for(int ibag=0;ibag<nbag;++ibag){
+//           for(int iband=start_opt[0];iband<start_opt[0]+nband;++iband){
+          for(int iband=0;iband<nband;++iband){
+//             validationFeature.push_back((validationPixel[iband]-offset[ibag][iband-start_opt[0]])/scale[ibag][iband-start_opt[0]]);
+            validationFeature.push_back((validationPixel[iband]-offset[ibag][iband])/scale[ibag][iband]);
+            if(verbose_opt[0]==2)
+              std::cout << " " << validationFeature.back();
+          }
+          if(verbose_opt[0]==2)
+            std::cout << std::endl;
+          vector<double> result(nclass);
+
+          // result=net[ibag].run(validationFeature);
+          struct svm_node *x;
+          x = (struct svm_node *) malloc((validationFeature.size()+1)*sizeof(struct svm_node));
+          for(int i=0;i<validationFeature.size();++i){
+            x[i].index=i+1;
+            x[i].value=validationFeature[i];
+          }
+          x[validationFeature.size()].index=-1;//to end svm feature vector
+          double predict_label=0;
+          vector<float> pValues(nclass);
+          vector<float> prValues(nreclass);
+          vector<float> priorsReclass(nreclass);
+          float maxP=0;
+          if(!aggreg_opt[0]){
+            predict_label = svm_predict(svm[ibag],x);
+            for(int iclass=0;iclass<nclass;++iclass){
+              if(predict_label==static_cast<int>(predict_label))
+                result[iclass]=1;
+              else
+                result[iclass]=0;
+            }
+          }
+          else{
+            assert(svm_check_probability_model(svm[ibag]));
+            predict_label = svm_predict_probability(svm[ibag],x,&(result[0]));
+          }
+          // int maxClass=0;
+          for(int iclass=0;iclass<nclass;++iclass){
+            float pv=(result[iclass]+1.0)/2.0;//bring back to scale [0,1]
+            pv*=priors[iclass];
+            pValues[iclass]=pv;
+          }
+          float normReclass=0;
+          for(int iclass=0;iclass<nreclass;++iclass){
+            prValues[iclass]=0;
+            priorsReclass[iclass]=0;
+            float maxPaggreg=0;
+            for(int ic=0;ic<nclass;++ic){
+              if(vreclass[ic]==iclass){
+                priorsReclass[iclass]+=priors[ic];
+                switch(aggreg_opt[0]){
+                default:
+                case(0)://sum rule (sum posterior probabilities of aggregated individual classes)
+                  prValues[iclass]+=pValues[ic];
+                  break;
+                case(1)://max rule (look for maximum post probability of aggregated individual classes)
+                  if(pValues[ic]>maxPaggreg){
+                    maxPaggreg=pValues[ic];
+                    prValues[iclass]=maxPaggreg;
+                  }
+                  break;
+                }
+              }
+            }
+          }
+          for(int iclass=0;iclass<nreclass;++iclass)
+            normReclass+=prValues[iclass];
+          //calculate posterior prob of bag 
+          for(int iclass=0;iclass<nreclass;++iclass){
+            float prv=prValues[iclass];
+            prv/=normReclass;
+            //           prv*=100.0;
+            prValues[iclass]=prv;
+            switch(comb_opt[0]){
+            default:
+            case(0)://sum rule
+              prOut[iclass]+=prValues[iclass]+static_cast<float>(1.0-nbag)/nbag*priorsReclass[iclass];//add probabilities for each bag
+              break;
+            case(1)://product rule
+              prOut[iclass]*=pow(priorsReclass[iclass],static_cast<float>(1.0-nbag)/nbag)*prValues[iclass];//add probabilities for each bag
+              break;
+            case(2)://max rule
+              if(prValues[iclass]>prOut[iclass])
+                prOut[iclass]=prValues[iclass];
+              break;
+            }
+          }
+          free(x);
+        }//for ibag
+        //search for max class prob
+        float maxBag=0;
+        float normBag=0;
+        char classOut=0;
+        for(int iclass=0;iclass<nreclass;++iclass){
+          if(prOut[iclass]>maxBag){
+            maxBag=prOut[iclass];
+            classOut=vcode[iclass];
+          }
+          normBag+=prOut[iclass];
+        }
+        //normalize prOut and convert to percentage
+        for(int iclass=0;iclass<nreclass;++iclass){
+          float prv=prOut[iclass];
+          prv/=normBag;
+          prv*=100.0;
+          prOut[iclass]=static_cast<short>(prv+0.5);
+        }
+        poDstFeature->SetField("class",classOut);
+        poDstFeature->SetFID( poFeature->GetFID() );
+        CPLErrorReset();
+        if(imgWriterOgr.createFeature( poDstFeature ) != OGRERR_NONE){
+          CPLError( CE_Failure, CPLE_AppDefined,
+                    "Unable to translate feature %d from layer %s.\n",
+                    poFeature->GetFID(), imgWriterOgr.getLayerName().c_str() );
+          OGRFeature::DestroyFeature( poDstFeature );
+          OGRFeature::DestroyFeature( poDstFeature );
+        }
+        ++ifeature;
+        if(!verbose_opt[0]){
+          progress=static_cast<float>(ifeature+1.0)/nFeatures;
+          pfnProgress(progress,pszMessage,pProgressArg);
+        }
+      }
+      imgReaderOgr.close();
+      imgWriterOgr.close();
+    }
+  }
+
+  for(int ibag=0;ibag<nbag;++ibag){
+    svm_destroy_param[ibag](&param[ibag]);
+    free(prob[ibag].y);
+    free(prob[ibag].x);
+    free(x_space[ibag]);
+    svm_free_and_destroy_model(&(svm[ibag]));
+  }
+  return 0;
+}
diff --git a/src/apps/pkdsm2shadow.cc b/src/apps/pkdsm2shadow.cc
new file mode 100644
index 0000000..87dbd6f
--- /dev/null
+++ b/src/apps/pkdsm2shadow.cc
@@ -0,0 +1,148 @@
+/**********************************************************************
+pkveg2shadow.cc: program to calculate sun shadow based on digital surface model and sun angles)
+Copyright (C) 2008-2012 Pieter Kempeneers
+
+This file is part of pktools
+
+pktools is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+pktools is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with pktools.  If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+#include <assert.h>
+#include <iostream>
+#include <string>
+#include <fstream>
+#include <math.h>
+#include <sys/types.h>
+#include <stdio.h>
+#include "base/Optionpk.h"
+#include "base/Vector2d.h"
+#include "algorithms/Filter2d.h"
+#include "imageclasses/ImgReaderGdal.h"
+#include "imageclasses/ImgWriterGdal.h"
+
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+/*------------------
+  Main procedure
+  ----------------*/
+int main(int argc,char **argv) {
+  std::string versionString="version ";
+  versionString+=VERSION;
+  versionString+=", Copyright (C) 2008-2012 Pieter Kempeneers.\n\
+   This program comes with ABSOLUTELY NO WARRANTY; for details type use option -h.\n\
+   This is free software, and you are welcome to redistribute it\n\
+   under certain conditions; use option --license for details.";
+  Optionpk<bool> version_opt("\0","version",versionString,false);
+  Optionpk<bool> license_opt("lic","license","show license information",false);
+  Optionpk<bool> help_opt("h","help","shows this help info",false);
+  Optionpk<bool> todo_opt("\0","todo","",false);
+  Optionpk<std::string> input_opt("i","input","input image file","");
+  Optionpk<std::string> output_opt("o", "output", "Output image file", "");
+  Optionpk<double> sza_opt("sza", "sza", "Sun zenith angle.");
+  Optionpk<double> saa_opt("saa", "saa", "Sun azimuth angle (N=0 E=90 S=180 W=270).");
+  Optionpk<int> flag_opt("f", "flag", "Flag to put in image if pixel shadow", 0);
+  Optionpk<std::string>  otype_opt("ot", "otype", "Data type for output image ({Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/CInt16/CInt32/CFloat32/CFloat64}). Empty string: inherit type from input image", "");
+  Optionpk<string>  oformat_opt("of", "oformat", "Output image format (see also gdal_translate). Empty string: inherit from input image");
+  Optionpk<string>  colorTable_opt("ct", "ct", "color table (file with 5 columns: id R G B ALFA (0: transparent, 255: solid)", "");
+  Optionpk<std::string> option_opt("co", "co", "options: NAME=VALUE [-co COMPRESS=LZW] [-co INTERLEAVE=BAND]");
+  Optionpk<short> verbose_opt("v", "verbose", "verbose mode if > 0", 0);
+
+  version_opt.retrieveOption(argc,argv);
+  license_opt.retrieveOption(argc,argv);
+  help_opt.retrieveOption(argc,argv);
+  todo_opt.retrieveOption(argc,argv);
+
+  input_opt.retrieveOption(argc,argv);
+  output_opt.retrieveOption(argc,argv);
+  sza_opt.retrieveOption(argc,argv);
+  saa_opt.retrieveOption(argc,argv);
+  flag_opt.retrieveOption(argc,argv);
+  option_opt.retrieveOption(argc,argv);
+  otype_opt.retrieveOption(argc,argv);
+  oformat_opt.retrieveOption(argc,argv);
+  colorTable_opt.retrieveOption(argc,argv);
+  verbose_opt.retrieveOption(argc,argv);
+
+  if(version_opt[0]||todo_opt[0]){
+    cout << version_opt.getHelp() << endl;
+    cout << "todo: " << todo_opt.getHelp() << endl;
+    exit(0);
+  }
+  if(license_opt[0]){
+    cout << Optionpk<bool>::getGPLv3License() << endl;
+    exit(0);
+  }
+  if(help_opt[0]){
+    cout << "usage: pkveg2shadow -i inputimage -o outputimage [OPTIONS]" << endl;
+    exit(0);
+  }
+
+  ImgReaderGdal input;
+  ImgWriterGdal output;
+  input.open(input_opt[0]);
+  // output.open(output_opt[0],input);
+  GDALDataType theType=GDT_Unknown;
+  if(verbose_opt[0])
+    cout << "possible output data types: ";
+  for(int iType = 0; iType < GDT_TypeCount; ++iType){
+    if(verbose_opt[0])
+      cout << " " << GDALGetDataTypeName((GDALDataType)iType);
+    if( GDALGetDataTypeName((GDALDataType)iType) != NULL
+        && EQUAL(GDALGetDataTypeName((GDALDataType)iType),
+                 otype_opt[0].c_str()))
+      theType=(GDALDataType) iType;
+  }
+  if(theType==GDT_Unknown)
+    theType=input.getDataType();
+
+  if(verbose_opt[0])
+    std::cout << std::endl << "Output pixel type:  " << GDALGetDataTypeName(theType) << endl;
+
+  string imageType=input.getImageType();
+  if(oformat_opt.size())
+    imageType=oformat_opt[0];
+
+  if(option_opt.findSubstring("INTERLEAVE=")==option_opt.end()){
+    string theInterleave="INTERLEAVE=";
+    theInterleave+=input.getInterleave();
+    option_opt.push_back(theInterleave);
+  }
+  try{
+    output.open(output_opt[0],input.nrOfCol(),input.nrOfRow(),input.nrOfBand(),theType,imageType,option_opt);
+  }
+  catch(string errorstring){
+    cout << errorstring << endl;
+    exit(4);
+  }
+  if(input.isGeoRef()){
+    output.setProjection(input.getProjection());
+    double ulx,uly,deltaX,deltaY,rot1,rot2;
+    input.getGeoTransform(ulx,uly,deltaX,deltaY,rot1,rot2);
+    output.setGeoTransform(ulx,uly,deltaX,deltaY,rot1,rot2);
+  }
+  if(input.getColorTable()!=NULL)
+    output.setColorTable(input.getColorTable());
+
+  Filter2d::Filter2d filter2d;
+  if(verbose_opt[0])
+    std::cout<< "class values: ";
+  if(colorTable_opt[0]!="")
+    output.setColorTable(colorTable_opt[0]);
+  filter2d.shadowDsm(input,output,sza_opt[0],saa_opt[0],input.getDeltaX(),flag_opt[0]);
+  input.close();
+  output.close();
+  return 0;
+}
diff --git a/src/apps/pkextract.cc b/src/apps/pkextract.cc
index b58ca44..8f63472 100644
--- a/src/apps/pkextract.cc
+++ b/src/apps/pkextract.cc
@@ -70,7 +70,7 @@ int main(int argc, char *argv[])
   Optionpk<string> ltype_opt("lt", "ltype", "Label type: In16 or String", "Integer");
   Optionpk<string> fieldname_opt("bn", "bname", "Field name of output shape file", "B");
   Optionpk<string> label_opt("cn", "cname", "name of the class label in the output vector file", "label");
-  Optionpk<bool> polygon_opt("l", "line", "create OGRPolygon as geometry instead of points. Only if sample option is also of polygon type. Use 0 for OGRPoint", 0);
+  Optionpk<bool> polygon_opt("l", "line", "create OGRPolygon as geometry instead of points. Only if sample option is also of polygon type. Use 0 for OGRPoint", false);
   Optionpk<int> band_opt("b", "band", "band index to crop. Use -1 to use all bands)", -1);
   Optionpk<short> rule_opt("r", "rule", "rule how to report image information per feature. 0: value at each point (or at centroid of the polygon if line is not set), 1: mean value (written to centroid of polygon if line is not set), 2: proportion classes, 3: custom, 4: minimum of polygon).", 0);
   Optionpk<short> verbose_opt("v", "verbose", "verbose mode if > 0", 0);
@@ -481,7 +481,7 @@ int main(int argc, char *argv[])
           std::cout << "class " << class_opt[iclass] << " has " << nvalid[iclass] << " samples" << std::endl;
       }
     }
-    else{//classification file
+    else{//class_opt[0]!=0
       assert(class_opt[0]);
       //   if(class_opt[0]){
       assert(threshold_opt.size()==1||threshold_opt.size()==class_opt.size());
diff --git a/src/imageclasses/ImgWriterGdal.cc b/src/imageclasses/ImgWriterGdal.cc
index bbbdacf..06e9cb2 100644
--- a/src/imageclasses/ImgWriterGdal.cc
+++ b/src/imageclasses/ImgWriterGdal.cc
@@ -106,6 +106,7 @@ void ImgWriterGdal::setCodec(const ImgReaderGdal& imgSrc){
   }
   char **papszMetadata;
   papszMetadata = poDriver->GetMetadata();
+  //todo: try and catch if CREATE is not supported (as in PNG)
   assert( CSLFetchBoolean( papszMetadata, GDAL_DCAP_CREATE, FALSE ));
   char **papszOptions=NULL;
   for(vector<string>::const_iterator optionIt=m_options.begin();optionIt!=m_options.end();++optionIt)
@@ -181,6 +182,7 @@ void ImgWriterGdal::setCodec(const string& imageType)
   }
   char **papszMetadata;
   papszMetadata = poDriver->GetMetadata();
+  //todo: try and catch if CREATE is not supported (as in PNG)
   assert( CSLFetchBoolean( papszMetadata, GDAL_DCAP_CREATE, FALSE ));
   char **papszOptions=NULL;
   for(vector<string>::const_iterator optionIt=m_options.begin();optionIt!=m_options.end();++optionIt)

-- 
Alioth's /usr/local/bin/git-commit-notice on /srv/git.debian.org/git/pkg-grass/pktools.git



More information about the Pkg-grass-devel mailing list