[Git][debian-gis-team/pykdtree][upstream] New upstream version 1.3.3+ds

Antonio Valentino gitlab at salsa.debian.org
Tue Nov 10 07:51:54 GMT 2020



Antonio Valentino pushed to branch upstream at Debian GIS Project / pykdtree


Commits:
2dcb254f by Antonio Valentino at 2020-11-10T06:37:22+00:00
New upstream version 1.3.3+ds
- - - - -


12 changed files:

- + .github/workflows/deploy-wheels.yml
- MANIFEST.in
- + Makefile
- README.rst
- − pykdtree/_kdtree_core.c
- pykdtree/_kdtree_core.c.mako
- − pykdtree/kdtree.c
- pykdtree/kdtree.pyx
- pykdtree/test_tree.py
- + scripts/build-manylinux-wheels.sh
- setup.cfg
- setup.py


Changes:

=====================================
.github/workflows/deploy-wheels.yml
=====================================
@@ -0,0 +1,76 @@
+---
+name: Deploy wheels
+
+on:
+  push:
+  release:
+    types:
+      - published
+jobs:
+  build:
+
+    runs-on: ${{ matrix.os }}
+    strategy:
+      fail-fast: false
+      matrix:
+        os: [windows-latest, macos-latest]
+        python-version: [3.6, 3.7, 3.8, 3.9]
+        include:
+          # Using pythons inside a docker image to provide all the Linux
+          # python-versions permutations.
+          - name: manylinux 64-bit
+            os: ubuntu-latest
+            python-version: 3.8
+            docker-image: manylinux1_x86_64
+          - name: manylinux 32-bit
+            os: ubuntu-latest
+            python-version: 3.8
+            docker-image: manylinux1_i686
+
+    steps:
+      - uses: actions/checkout at v2
+      - run: |
+          git fetch --prune --unshallow
+
+      - name: Set up Python ${{ matrix.python-version }}
+        uses: actions/setup-python at v1
+        with:
+          python-version: ${{ matrix.python-version }}
+
+      - name: Install dependencies
+        run: |
+          python -m pip install -U -q pip pytest wheel setuptools twine numpy
+
+      - name: Build and install macOS/Windows wheel
+        if: matrix.os != 'ubuntu-latest'
+        run: |
+          python setup.py -q bdist_wheel
+          pip install --find-links=./dist/ pykdtree
+
+      - name: Test
+        if: matrix.os != 'ubuntu-latest'
+        run: |
+          pytest -v --pyargs pykdtree
+
+      - name: Build Linux wheels inside docker
+        if: matrix.os == 'ubuntu-latest'
+        run: |
+          docker run \
+            -e PLAT=${{ matrix.docker-image }} \
+            -e USE_OMP=1 \
+            -v `pwd`:/io \
+            quay.io/pypa/${{ matrix.docker-image }} \
+            /io/scripts/build-manylinux-wheels.sh
+
+      - name: Upload wheel(s) as build artifacts
+        uses: actions/upload-artifact at v2
+        with:
+          name: wheels
+          path: dist/*.whl
+
+      - name: Publish package to PyPI
+        if: github.event.action == 'published'
+        env:
+          TWINE_USERNAME: ${{ secrets.pypi_username }}
+          TWINE_PASSWORD: ${{ secrets.pypi_password }}
+        run: twine upload --skip-existing dist/*.whl


=====================================
MANIFEST.in
=====================================
@@ -1,2 +1,4 @@
 exclude pykdtree/render_template.py
 include LICENSE.txt
+include README.rst
+include pykdtree/*.pyx


=====================================
Makefile
=====================================
@@ -0,0 +1,14 @@
+.PHONY: clean build
+
+build: pykdtree/kdtree.c pykdtree/_kdtree_core.c
+	python setup.py build
+
+pykdtree/kdtree.c: pykdtree/kdtree.pyx
+	cython pykdtree/kdtree.pyx
+
+pykdtree/_kdtree_core.c: pykdtree/_kdtree_core.c.mako
+	cd pykdtree && python render_template.py
+
+clean:
+	rm -rf build/
+	rm -f pykdtree/*.so


=====================================
README.rst
=====================================
@@ -20,14 +20,18 @@ Queries are optionally multithreaded using OpenMP.
 
 Installation
 ------------
-Default build of pykdtree with OpenMP enabled queries using libgomp
+
+By default pykdtree is built with OpenMP enabled queries using libgomp except
+on OSX systems using the clang compiler (conda environments use a separate
+compiler).
 
 .. code-block:: bash
 
     $ cd <pykdtree_dir>
     $ python setup.py install
 
-If it fails with undefined compiler flags or you want to use another OpenMP implementation please modify setup.py at the indicated point to match your system.
+If it fails with undefined compiler flags or you want to use another OpenMP
+implementation please modify setup.py at the indicated point to match your system.
 
 Building without OpenMP support is controlled by the USE_OMP environment variable
 
@@ -43,6 +47,12 @@ Note evironment variables are by default not exported when using sudo so in this
 
     $ USE_OMP=0 sudo -E python setup.py install
 
+Pykdtree can also be installed with conda via the conda-forge channel:
+
+.. code-block:: bash
+
+    $ conda install -c conda-forge pykdtree
+
 Usage
 -----
 The usage of pykdtree is similar to scipy.spatial.cKDTree so for now refer to its documentation
@@ -125,6 +135,10 @@ turned off by adding the following to `appveyor.yml` in the
 
 Changelog
 ---------
+v1.3.3 : Add compatibility to python 3.9
+
+v1.3.2 : Change OSX installation to not use OpenMP without conda interpreter
+
 v1.3.1 : Fix masking in the "query" method introduced in 1.3.0
 
 v1.3.0 : Keyword argument "mask" added to "query" method. OpenMP compilation now works for MS Visual Studio compiler


=====================================
pykdtree/_kdtree_core.c deleted
=====================================
@@ -1,1417 +0,0 @@
-/*
-pykdtree, Fast kd-tree implementation with OpenMP-enabled queries
-
-Copyright (C) 2013 - present  Esben S. Nielsen
-
-This program is free software: you can redistribute it and/or modify it under
-the terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
-This program is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with this program.  If not, see <http://www.gnu.org/licenses/>.
-*/
-
-/*
-This kd-tree implementation is based on the scipy.spatial.cKDTree by
-Anne M. Archibald and libANN by David M. Mount and Sunil Arya.
-*/
-
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <stdint.h>
-#include <float.h>
-
-#define PA(i,d)			(pa[no_dims * pidx[i] + d])
-#define PASWAP(a,b) { uint32_t tmp = pidx[a]; pidx[a] = pidx[b]; pidx[b] = tmp; }
-
-#ifdef _MSC_VER
-#define restrict __restrict
-#endif
-
-
-typedef struct
-{
-    float cut_val;
-    int8_t cut_dim;
-    uint32_t start_idx;
-    uint32_t n;
-    float cut_bounds_lv;
-    float cut_bounds_hv;
-    struct Node_float *left_child;
-    struct Node_float *right_child;
-} Node_float;
-
-typedef struct
-{
-    float *bbox;
-    int8_t no_dims;
-    uint32_t *pidx;
-    struct Node_float *root;
-} Tree_float;
-
-
-typedef struct
-{
-    double cut_val;
-    int8_t cut_dim;
-    uint32_t start_idx;
-    uint32_t n;
-    double cut_bounds_lv;
-    double cut_bounds_hv;
-    struct Node_double *left_child;
-    struct Node_double *right_child;
-} Node_double;
-
-typedef struct
-{
-    double *bbox;
-    int8_t no_dims;
-    uint32_t *pidx;
-    struct Node_double *root;
-} Tree_double;
-
-
-
-void insert_point_float(uint32_t *closest_idx, float *closest_dist, uint32_t pidx, float cur_dist, uint32_t k);
-void get_bounding_box_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, float *bbox);
-int partition_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *bbox, int8_t *cut_dim,
-              float *cut_val, uint32_t *n_lo);
-Tree_float* construct_tree_float(float *pa, int8_t no_dims, uint32_t n, uint32_t bsp);
-Node_float* construct_subtree_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, uint32_t bsp, float *bbox);
-Node_float * create_node_float(uint32_t start_idx, uint32_t n, int is_leaf);
-void delete_subtree_float(Node_float *root);
-void delete_tree_float(Tree_float *tree);
-void print_tree_float(Node_float *root, int level);
-float calc_dist_float(float *point1_coord, float *point2_coord, int8_t no_dims);
-float get_cube_offset_float(int8_t dim, float *point_coord, float *bbox);
-float get_min_dist_float(float *point_coord, int8_t no_dims, float *bbox);
-void search_leaf_float(float *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *restrict point_coord,
-                 uint32_t k, uint32_t *restrict closest_idx, float *restrict closest_dist);
-void search_leaf_float_mask(float *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *restrict point_coord,
-                 uint32_t k, uint8_t *restrict mask, uint32_t *restrict closest_idx, float *restrict closest_dist);
-void search_splitnode_float(Node_float *root, float *pa, uint32_t *pidx, int8_t no_dims, float *point_coord,
-                      float min_dist, uint32_t k, float distance_upper_bound, float eps_fac, uint8_t *mask, uint32_t *  closest_idx, float *closest_dist);
-void search_tree_float(Tree_float *tree, float *pa, float *point_coords,
-                 uint32_t num_points, uint32_t k,  float distance_upper_bound,
-                 float eps, uint8_t *mask, uint32_t *closest_idxs, float *closest_dists);
-
-
-void insert_point_double(uint32_t *closest_idx, double *closest_dist, uint32_t pidx, double cur_dist, uint32_t k);
-void get_bounding_box_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, double *bbox);
-int partition_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *bbox, int8_t *cut_dim,
-              double *cut_val, uint32_t *n_lo);
-Tree_double* construct_tree_double(double *pa, int8_t no_dims, uint32_t n, uint32_t bsp);
-Node_double* construct_subtree_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, uint32_t bsp, double *bbox);
-Node_double * create_node_double(uint32_t start_idx, uint32_t n, int is_leaf);
-void delete_subtree_double(Node_double *root);
-void delete_tree_double(Tree_double *tree);
-void print_tree_double(Node_double *root, int level);
-double calc_dist_double(double *point1_coord, double *point2_coord, int8_t no_dims);
-double get_cube_offset_double(int8_t dim, double *point_coord, double *bbox);
-double get_min_dist_double(double *point_coord, int8_t no_dims, double *bbox);
-void search_leaf_double(double *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *restrict point_coord,
-                 uint32_t k, uint32_t *restrict closest_idx, double *restrict closest_dist);
-void search_leaf_double_mask(double *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *restrict point_coord,
-                 uint32_t k, uint8_t *restrict mask, uint32_t *restrict closest_idx, double *restrict closest_dist);
-void search_splitnode_double(Node_double *root, double *pa, uint32_t *pidx, int8_t no_dims, double *point_coord,
-                      double min_dist, uint32_t k, double distance_upper_bound, double eps_fac, uint8_t *mask, uint32_t *  closest_idx, double *closest_dist);
-void search_tree_double(Tree_double *tree, double *pa, double *point_coords,
-                 uint32_t num_points, uint32_t k,  double distance_upper_bound,
-                 double eps, uint8_t *mask, uint32_t *closest_idxs, double *closest_dists);
-
-
-
-/************************************************
-Insert point into priority queue
-Params:
-    closest_idx : index queue
-    closest_dist : distance queue
-    pidx : permutation index of data points
-    cur_dist : distance to point inserted
-    k : number of neighbours
-************************************************/
-void insert_point_float(uint32_t *closest_idx, float *closest_dist, uint32_t pidx, float cur_dist, uint32_t k)
-{
-    int i;
-    for (i = k - 1; i > 0; i--)
-    {
-        if (closest_dist[i - 1] > cur_dist)
-        {
-            closest_dist[i] = closest_dist[i - 1];
-            closest_idx[i] = closest_idx[i - 1];
-        }
-        else
-        {
-            break;
-        }
-    }
-    closest_idx[i] = pidx;
-    closest_dist[i] = cur_dist;
-}
-
-/************************************************
-Get the bounding box of a set of points
-Params:
-    pa : data points
-    pidx : permutation index of data points
-    no_dims: number of dimensions
-    n : number of points
-    bbox : bounding box (return)
-************************************************/
-void get_bounding_box_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, float *bbox)
-{
-    float cur;
-    int8_t bbox_idx, i, j;
-    uint32_t i2;
-
-    /* Use first data point to initialize */
-    for (i = 0; i < no_dims; i++)
-    {
-        bbox[2 * i] = bbox[2 * i + 1] = PA(0, i);
-    }
-
-    /* Update using rest of data points */
-    for (i2 = 1; i2 < n; i2++)
-    {
-        for (j = 0; j < no_dims; j++)
-        {
-            bbox_idx = 2 * j;
-            cur = PA(i2, j);
-            if (cur < bbox[bbox_idx])
-            {
-                bbox[bbox_idx] = cur;
-            }
-            else if (cur > bbox[bbox_idx + 1])
-            {
-                bbox[bbox_idx + 1] = cur;
-            }
-        }
-    }
-}
-
-/************************************************
-Partition a range of data points by manipulation the permutation index.
-The sliding midpoint rule is used for the partitioning.
-Params:
-    pa : data points
-    pidx : permutation index of data points
-    no_dims: number of dimensions
-    start_idx : index of first data point to use
-    n :  number of data points
-    bbox : bounding box of data points
-    cut_dim : dimension used for partition (return)
-    cut_val : value of cutting point (return)
-    n_lo : number of point below cutting plane (return)
-************************************************/
-int partition_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *bbox, int8_t *cut_dim, float *cut_val, uint32_t *n_lo)
-{
-    int8_t dim = 0, i;
-    uint32_t p, q, i2;
-    float size = 0, min_val, max_val, split, side_len, cur_val;
-    uint32_t end_idx = start_idx + n - 1;
-
-    /* Find largest bounding box side */
-    for (i = 0; i < no_dims; i++)
-    {
-        side_len = bbox[2 * i + 1] - bbox[2 * i];
-        if (side_len > size)
-        {
-            dim = i;
-            size = side_len;
-        }
-    }
-
-    min_val = bbox[2 * dim];
-    max_val = bbox[2 * dim + 1];
-
-    /* Check for zero length or inconsistent */
-    if (min_val >= max_val)
-        return 1;
-
-    /* Use middle for splitting */
-    split = (min_val + max_val) / 2;
-
-    /* Partition all data points around middle */
-    p = start_idx;
-    q = end_idx;
-    while (p <= q)
-    {
-        if (PA(p, dim) < split)
-        {
-            p++;
-        }
-        else if (PA(q, dim) >= split)
-        {
-            /* Guard for underflow */
-            if (q > 0)
-            {
-                q--;
-            }
-            else
-            {
-                break;
-            }
-        }
-        else
-        {
-            PASWAP(p, q);
-            p++;
-            q--;
-        }
-    }
-
-    /* Check for empty splits */
-    if (p == start_idx)
-    {
-        /* No points less than split.
-           Split at lowest point instead.
-           Minimum 1 point will be in lower box.
-        */
-
-        uint32_t j = start_idx;
-        split = PA(j, dim);
-        for (i2 = start_idx + 1; i2 <= end_idx; i2++)
-        {
-            /* Find lowest point */
-            cur_val = PA(i2, dim);
-            if (cur_val < split)
-            {
-                j = i2;
-                split = cur_val;
-            }
-        }
-        PASWAP(j, start_idx);
-        p = start_idx + 1;
-    }
-    else if (p == end_idx + 1)
-    {
-        /* No points greater than split.
-           Split at highest point instead.
-           Minimum 1 point will be in higher box.
-        */
-
-        uint32_t j = end_idx;
-        split = PA(j, dim);
-        for (i2 = start_idx; i2 < end_idx; i2++)
-        {
-            /* Find highest point */
-            cur_val = PA(i2, dim);
-            if (cur_val > split)
-            {
-                j = i2;
-                split = cur_val;
-            }
-        }
-        PASWAP(j, end_idx);
-        p = end_idx;
-    }
-
-    /* Set return values */
-    *cut_dim = dim;
-    *cut_val = split;
-    *n_lo = p - start_idx;
-    return 0;
-}
-
-/************************************************
-Construct a sub tree over a range of data points.
-Params:
-    pa : data points
-    pidx : permutation index of data points
-    no_dims: number of dimensions
-    start_idx : index of first data point to use
-    n :  number of data points
-    bsp : number of points per leaf
-    bbox : bounding box of set of data points
-************************************************/
-Node_float* construct_subtree_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, uint32_t bsp, float *bbox)
-{
-    /* Create new node */
-    int is_leaf = (n <= bsp);
-    Node_float *root = create_node_float(start_idx, n, is_leaf);
-    int rval;
-    int8_t cut_dim;
-    uint32_t n_lo;
-    float cut_val, lv, hv;
-    if (is_leaf)
-    {
-        /* Make leaf node */
-        root->cut_dim = -1;
-    }
-    else
-    {
-        /* Make split node */
-        /* Partition data set and set node info */
-        rval = partition_float(pa, pidx, no_dims, start_idx, n, bbox, &cut_dim, &cut_val, &n_lo);
-        if (rval == 1)
-        {
-            root->cut_dim = -1;
-            return root;
-        }
-        root->cut_val = cut_val;
-        root->cut_dim = cut_dim;
-
-        /* Recurse on both subsets */
-        lv = bbox[2 * cut_dim];
-        hv = bbox[2 * cut_dim + 1];
-
-        /* Set bounds for cut dimension */
-        root->cut_bounds_lv = lv;
-        root->cut_bounds_hv = hv;
-
-        /* Update bounding box before call to lower subset and restore after */
-        bbox[2 * cut_dim + 1] = cut_val;
-        root->left_child = (struct Node_float *)construct_subtree_float(pa, pidx, no_dims, start_idx, n_lo, bsp, bbox);
-        bbox[2 * cut_dim + 1] = hv;
-
-        /* Update bounding box before call to higher subset and restore after */
-        bbox[2 * cut_dim] = cut_val;
-        root->right_child = (struct Node_float *)construct_subtree_float(pa, pidx, no_dims, start_idx + n_lo, n - n_lo, bsp, bbox);
-        bbox[2 * cut_dim] = lv;
-    }
-    return root;
-}
-
-/************************************************
-Construct a tree over data points.
-Params:
-    pa : data points
-    no_dims: number of dimensions
-    n :  number of data points
-    bsp : number of points per leaf
-************************************************/
-Tree_float* construct_tree_float(float *pa, int8_t no_dims, uint32_t n, uint32_t bsp)
-{
-    Tree_float *tree = (Tree_float *)malloc(sizeof(Tree_float));
-    uint32_t i;
-    uint32_t *pidx;
-    float *bbox;
-
-    tree->no_dims = no_dims;
-
-    /* Initialize permutation array */
-    pidx = (uint32_t *)malloc(sizeof(uint32_t) * n);
-    for (i = 0; i < n; i++)
-    {
-        pidx[i] = i;
-    }
-
-    bbox = (float *)malloc(2 * sizeof(float) * no_dims);
-    get_bounding_box_float(pa, pidx, no_dims, n, bbox);
-    tree->bbox = bbox;
-
-    /* Construct subtree on full dataset */
-    tree->root = (struct Node_float *)construct_subtree_float(pa, pidx, no_dims, 0, n, bsp, bbox);
-
-    tree->pidx = pidx;
-    return tree;
-}
-
-/************************************************
-Create a tree node.
-Params:
-    start_idx : index of first data point to use
-    n :  number of data points
-************************************************/
-Node_float* create_node_float(uint32_t start_idx, uint32_t n, int is_leaf)
-{
-    Node_float *new_node;
-    if (is_leaf)
-    {
-        /*
-            Allocate only the part of the struct that will be used in a leaf node.
-            This relies on the C99 specification of struct layout conservation and padding and
-            that dereferencing is never attempted for the node pointers in a leaf.
-        */
-        new_node = (Node_float *)malloc(sizeof(Node_float) - 2 * sizeof(Node_float *));
-    }
-    else
-    {
-        new_node = (Node_float *)malloc(sizeof(Node_float));
-    }
-    new_node->n = n;
-    new_node->start_idx = start_idx;
-    return new_node;
-}
-
-/************************************************
-Delete subtree
-Params:
-    root : root node of subtree to delete
-************************************************/
-void delete_subtree_float(Node_float *root)
-{
-    if (root->cut_dim != -1)
-    {
-        delete_subtree_float((Node_float *)root->left_child);
-        delete_subtree_float((Node_float *)root->right_child);
-    }
-    free(root);
-}
-
-/************************************************
-Delete tree
-Params:
-    tree : Tree struct of kd tree
-************************************************/
-void delete_tree_float(Tree_float *tree)
-{
-    delete_subtree_float((Node_float *)tree->root);
-    free(tree->bbox);
-    free(tree->pidx);
-    free(tree);
-}
-
-/************************************************
-Print
-************************************************/
-void print_tree_float(Node_float *root, int level)
-{
-    int i;
-    for (i = 0; i < level; i++)
-    {
-        printf(" ");
-    }
-    printf("(cut_val: %f, cut_dim: %i)\n", root->cut_val, root->cut_dim);
-    if (root->cut_dim != -1)
-        print_tree_float((Node_float *)root->left_child, level + 1);
-    if (root->cut_dim != -1)
-        print_tree_float((Node_float *)root->right_child, level + 1);
-}
-
-/************************************************
-Calculate squared cartesian distance between points
-Params:
-    point1_coord : point 1
-    point2_coord : point 2
-************************************************/
-float calc_dist_float(float *point1_coord, float *point2_coord, int8_t no_dims)
-{
-    /* Calculate squared distance */
-    float dist = 0, dim_dist;
-    int8_t i;
-    for (i = 0; i < no_dims; i++)
-    {
-        dim_dist = point2_coord[i] - point1_coord[i];
-        dist += dim_dist * dim_dist;
-    }
-    return dist;
-}
-
-/************************************************
-Get squared distance from point to cube in specified dimension
-Params:
-    dim : dimension
-    point_coord : cartesian coordinates of point
-    bbox : cube
-************************************************/
-float get_cube_offset_float(int8_t dim, float *point_coord, float *bbox)
-{
-    float dim_coord = point_coord[dim];
-
-    if (dim_coord < bbox[2 * dim])
-    {
-        /* Left of cube in dimension */
-        return dim_coord - bbox[2 * dim];
-    }
-    else if (dim_coord > bbox[2 * dim + 1])
-    {
-        /* Right of cube in dimension */
-        return dim_coord - bbox[2 * dim + 1];
-    }
-    else
-    {
-        /* Inside cube in dimension */
-        return 0.;
-    }
-}
-
-/************************************************
-Get minimum squared distance between point and cube.
-Params:
-    point_coord : cartesian coordinates of point
-    no_dims : number of dimensions
-    bbox : cube
-************************************************/
-float get_min_dist_float(float *point_coord, int8_t no_dims, float *bbox)
-{
-    float cube_offset = 0, cube_offset_dim;
-    int8_t i;
-
-    for (i = 0; i < no_dims; i++)
-    {
-        cube_offset_dim = get_cube_offset_float(i, point_coord, bbox);
-        cube_offset += cube_offset_dim * cube_offset_dim;
-    }
-
-    return cube_offset;
-}
-
-/************************************************
-Search a leaf node for closest point
-Params:
-    pa : data points
-    pidx : permutation index of data points
-    no_dims : number of dimensions
-    start_idx : index of first data point to use
-    size :  number of data points
-    point_coord : query point
-    closest_idx : index of closest data point found (return)
-    closest_dist : distance to closest point (return)
-************************************************/
-void search_leaf_float(float *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *restrict point_coord,
-                 uint32_t k, uint32_t *restrict closest_idx, float *restrict closest_dist)
-{
-    float cur_dist;
-    uint32_t i;
-    /* Loop through all points in leaf */
-    for (i = 0; i < n; i++)
-    {
-        /* Get distance to query point */
-        cur_dist = calc_dist_float(&PA(start_idx + i, 0), point_coord, no_dims);
-        /* Update closest info if new point is closest so far*/
-        if (cur_dist < closest_dist[k - 1])
-        {
-            insert_point_float(closest_idx, closest_dist, pidx[start_idx + i], cur_dist, k);
-        }
-    }
-}
-
-
-/************************************************
-Search a leaf node for closest point with data point mask
-Params:
-    pa : data points
-    pidx : permutation index of data points
-    no_dims : number of dimensions
-    start_idx : index of first data point to use
-    size :  number of data points
-    point_coord : query point
-    mask : boolean array of invalid (True) and valid (False) data points
-    closest_idx : index of closest data point found (return)
-    closest_dist : distance to closest point (return)
-************************************************/
-void search_leaf_float_mask(float *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *restrict point_coord,
-                               uint32_t k, uint8_t *mask, uint32_t *restrict closest_idx, float *restrict closest_dist)
-{
-    float cur_dist;
-    uint32_t i;
-    /* Loop through all points in leaf */
-    for (i = 0; i < n; i++)
-    {
-        /* Is this point masked out? */
-        if (mask[pidx[start_idx + i]])
-        {
-            continue;
-        }
-        /* Get distance to query point */
-        cur_dist = calc_dist_float(&PA(start_idx + i, 0), point_coord, no_dims);
-        /* Update closest info if new point is closest so far*/
-        if (cur_dist < closest_dist[k - 1])
-        {
-            insert_point_float(closest_idx, closest_dist, pidx[start_idx + i], cur_dist, k);
-        }
-    }
-}
-
-/************************************************
-Search subtree for nearest to query point
-Params:
-    root : root node of subtree
-    pa : data points
-    pidx : permutation index of data points
-    no_dims : number of dimensions
-    point_coord : query point
-    min_dist : minumum distance to nearest neighbour
-    mask : boolean array of invalid (True) and valid (False) data points
-    closest_idx : index of closest data point found (return)
-    closest_dist : distance to closest point (return)
-************************************************/
-void search_splitnode_float(Node_float *root, float *pa, uint32_t *pidx, int8_t no_dims, float *point_coord, 
-                      float min_dist, uint32_t k, float distance_upper_bound, float eps_fac, uint8_t *mask,
-                      uint32_t *closest_idx, float *closest_dist)
-{
-    int8_t dim;
-    float dist_left, dist_right;
-    float new_offset;
-    float box_diff;
-
-    /* Skip if distance bound exeeded */
-    if (min_dist > distance_upper_bound)
-    {
-        return;
-    }
-
-    dim = root->cut_dim;
-
-    /* Handle leaf node */
-    if (dim == -1)
-    {
-        if (mask)
-        {
-            search_leaf_float_mask(pa, pidx, no_dims, root->start_idx, root->n, point_coord, k, mask, closest_idx, closest_dist);
-        }
-        else
-        {
-            search_leaf_float(pa, pidx, no_dims, root->start_idx, root->n, point_coord, k, closest_idx, closest_dist);
-        }
-        return;
-    }
-
-    /* Get distance to cutting plane */
-    new_offset = point_coord[dim] - root->cut_val;
-
-    if (new_offset < 0)
-    {
-        /* Left of cutting plane */
-        dist_left = min_dist;
-        if (dist_left < closest_dist[k - 1] * eps_fac)
-        {
-            /* Search left subtree if minimum distance is below limit */
-            search_splitnode_float((Node_float *)root->left_child, pa, pidx, no_dims, point_coord, dist_left, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist);
-        }
-
-        /* Right of cutting plane. Update minimum distance.
-           See Algorithms for Fast Vector Quantization
-           Sunil Arya and David M. Mount. */
-        box_diff = root->cut_bounds_lv - point_coord[dim];
-        if (box_diff < 0)
-        {
-		box_diff = 0;
-        }
-        dist_right = min_dist - box_diff * box_diff + new_offset * new_offset;
-        if (dist_right < closest_dist[k - 1] * eps_fac)
-        {
-            /* Search right subtree if minimum distance is below limit*/
-            search_splitnode_float((Node_float *)root->right_child, pa, pidx, no_dims, point_coord, dist_right, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist);
-        }
-    }
-    else
-    {
-        /* Right of cutting plane */
-        dist_right = min_dist;
-        if (dist_right < closest_dist[k - 1] * eps_fac)
-        {
-            /* Search right subtree if minimum distance is below limit*/
-            search_splitnode_float((Node_float *)root->right_child, pa, pidx, no_dims, point_coord, dist_right, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist);
-        }
-
-        /* Left of cutting plane. Update minimum distance.
-           See Algorithms for Fast Vector Quantization
-           Sunil Arya and David M. Mount. */
-        box_diff = point_coord[dim] - root->cut_bounds_hv;
-        if (box_diff < 0)
-        {
-        	box_diff = 0;
-        }
-        dist_left = min_dist - box_diff * box_diff + new_offset * new_offset;
-	  if (dist_left < closest_dist[k - 1] * eps_fac)
-        {
-            /* Search left subtree if minimum distance is below limit*/
-            search_splitnode_float((Node_float *)root->left_child, pa, pidx, no_dims, point_coord, dist_left, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist);
-        }
-    }
-}
-
-/************************************************
-Search for nearest neighbour for a set of query points
-Params:
-    tree : Tree struct of kd tree
-    pa : data points
-    pidx : permutation index of data points
-    point_coords : query points
-    num_points : number of query points
-    mask : boolean array of invalid (True) and valid (False) data points
-    closest_idx : index of closest data point found (return)
-    closest_dist : distance to closest point (return)
-************************************************/
-void search_tree_float(Tree_float *tree, float *pa, float *point_coords,
-                 uint32_t num_points, uint32_t k, float distance_upper_bound,
-                 float eps, uint8_t *mask, uint32_t *closest_idxs, float *closest_dists)
-{
-    float min_dist;
-    float eps_fac = 1 / ((1 + eps) * (1 + eps));
-    int8_t no_dims = tree->no_dims;
-    float *bbox = tree->bbox;
-    uint32_t *pidx = tree->pidx;
-    uint32_t j = 0;
-#if defined(_MSC_VER) && defined(_OPENMP)
-    int32_t i = 0;
-    int32_t local_num_points = (int32_t) num_points;
-#else
-    uint32_t i;
-    uint32_t local_num_points = num_points;
-#endif
-    Node_float *root = (Node_float *)tree->root;
-
-    /* Queries are OpenMP enabled */
-    #pragma omp parallel
-    {
-        /* The low chunk size is important to avoid L2 cache trashing
-           for spatial coherent query datasets
-        */
-        #pragma omp for private(i, j) schedule(static, 100) nowait
-        for (i = 0; i < local_num_points; i++)
-        {
-            for (j = 0; j < k; j++)
-            {
-                closest_idxs[i * k + j] = UINT32_MAX;
-                closest_dists[i * k + j] = DBL_MAX;
-            }
-            min_dist = get_min_dist_float(point_coords + no_dims * i, no_dims, bbox);
-            search_splitnode_float(root, pa, pidx, no_dims, point_coords + no_dims * i, min_dist,
-                             k, distance_upper_bound, eps_fac, mask, &closest_idxs[i * k], &closest_dists[i * k]);
-        }
-    }
-}
-
-/************************************************
-Insert point into priority queue
-Params:
-    closest_idx : index queue
-    closest_dist : distance queue
-    pidx : permutation index of data points
-    cur_dist : distance to point inserted
-    k : number of neighbours
-************************************************/
-void insert_point_double(uint32_t *closest_idx, double *closest_dist, uint32_t pidx, double cur_dist, uint32_t k)
-{
-    int i;
-    for (i = k - 1; i > 0; i--)
-    {
-        if (closest_dist[i - 1] > cur_dist)
-        {
-            closest_dist[i] = closest_dist[i - 1];
-            closest_idx[i] = closest_idx[i - 1];
-        }
-        else
-        {
-            break;
-        }
-    }
-    closest_idx[i] = pidx;
-    closest_dist[i] = cur_dist;
-}
-
-/************************************************
-Get the bounding box of a set of points
-Params:
-    pa : data points
-    pidx : permutation index of data points
-    no_dims: number of dimensions
-    n : number of points
-    bbox : bounding box (return)
-************************************************/
-void get_bounding_box_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, double *bbox)
-{
-    double cur;
-    int8_t bbox_idx, i, j;
-    uint32_t i2;
-
-    /* Use first data point to initialize */
-    for (i = 0; i < no_dims; i++)
-    {
-        bbox[2 * i] = bbox[2 * i + 1] = PA(0, i);
-    }
-
-    /* Update using rest of data points */
-    for (i2 = 1; i2 < n; i2++)
-    {
-        for (j = 0; j < no_dims; j++)
-        {
-            bbox_idx = 2 * j;
-            cur = PA(i2, j);
-            if (cur < bbox[bbox_idx])
-            {
-                bbox[bbox_idx] = cur;
-            }
-            else if (cur > bbox[bbox_idx + 1])
-            {
-                bbox[bbox_idx + 1] = cur;
-            }
-        }
-    }
-}
-
-/************************************************
-Partition a range of data points by manipulation the permutation index.
-The sliding midpoint rule is used for the partitioning.
-Params:
-    pa : data points
-    pidx : permutation index of data points
-    no_dims: number of dimensions
-    start_idx : index of first data point to use
-    n :  number of data points
-    bbox : bounding box of data points
-    cut_dim : dimension used for partition (return)
-    cut_val : value of cutting point (return)
-    n_lo : number of point below cutting plane (return)
-************************************************/
-int partition_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *bbox, int8_t *cut_dim, double *cut_val, uint32_t *n_lo)
-{
-    int8_t dim = 0, i;
-    uint32_t p, q, i2;
-    double size = 0, min_val, max_val, split, side_len, cur_val;
-    uint32_t end_idx = start_idx + n - 1;
-
-    /* Find largest bounding box side */
-    for (i = 0; i < no_dims; i++)
-    {
-        side_len = bbox[2 * i + 1] - bbox[2 * i];
-        if (side_len > size)
-        {
-            dim = i;
-            size = side_len;
-        }
-    }
-
-    min_val = bbox[2 * dim];
-    max_val = bbox[2 * dim + 1];
-
-    /* Check for zero length or inconsistent */
-    if (min_val >= max_val)
-        return 1;
-
-    /* Use middle for splitting */
-    split = (min_val + max_val) / 2;
-
-    /* Partition all data points around middle */
-    p = start_idx;
-    q = end_idx;
-    while (p <= q)
-    {
-        if (PA(p, dim) < split)
-        {
-            p++;
-        }
-        else if (PA(q, dim) >= split)
-        {
-            /* Guard for underflow */
-            if (q > 0)
-            {
-                q--;
-            }
-            else
-            {
-                break;
-            }
-        }
-        else
-        {
-            PASWAP(p, q);
-            p++;
-            q--;
-        }
-    }
-
-    /* Check for empty splits */
-    if (p == start_idx)
-    {
-        /* No points less than split.
-           Split at lowest point instead.
-           Minimum 1 point will be in lower box.
-        */
-
-        uint32_t j = start_idx;
-        split = PA(j, dim);
-        for (i2 = start_idx + 1; i2 <= end_idx; i2++)
-        {
-            /* Find lowest point */
-            cur_val = PA(i2, dim);
-            if (cur_val < split)
-            {
-                j = i2;
-                split = cur_val;
-            }
-        }
-        PASWAP(j, start_idx);
-        p = start_idx + 1;
-    }
-    else if (p == end_idx + 1)
-    {
-        /* No points greater than split.
-           Split at highest point instead.
-           Minimum 1 point will be in higher box.
-        */
-
-        uint32_t j = end_idx;
-        split = PA(j, dim);
-        for (i2 = start_idx; i2 < end_idx; i2++)
-        {
-            /* Find highest point */
-            cur_val = PA(i2, dim);
-            if (cur_val > split)
-            {
-                j = i2;
-                split = cur_val;
-            }
-        }
-        PASWAP(j, end_idx);
-        p = end_idx;
-    }
-
-    /* Set return values */
-    *cut_dim = dim;
-    *cut_val = split;
-    *n_lo = p - start_idx;
-    return 0;
-}
-
-/************************************************
-Construct a sub tree over a range of data points.
-Params:
-    pa : data points
-    pidx : permutation index of data points
-    no_dims: number of dimensions
-    start_idx : index of first data point to use
-    n :  number of data points
-    bsp : number of points per leaf
-    bbox : bounding box of set of data points
-************************************************/
-Node_double* construct_subtree_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, uint32_t bsp, double *bbox)
-{
-    /* Create new node */
-    int is_leaf = (n <= bsp);
-    Node_double *root = create_node_double(start_idx, n, is_leaf);
-    int rval;
-    int8_t cut_dim;
-    uint32_t n_lo;
-    double cut_val, lv, hv;
-    if (is_leaf)
-    {
-        /* Make leaf node */
-        root->cut_dim = -1;
-    }
-    else
-    {
-        /* Make split node */
-        /* Partition data set and set node info */
-        rval = partition_double(pa, pidx, no_dims, start_idx, n, bbox, &cut_dim, &cut_val, &n_lo);
-        if (rval == 1)
-        {
-            root->cut_dim = -1;
-            return root;
-        }
-        root->cut_val = cut_val;
-        root->cut_dim = cut_dim;
-
-        /* Recurse on both subsets */
-        lv = bbox[2 * cut_dim];
-        hv = bbox[2 * cut_dim + 1];
-
-        /* Set bounds for cut dimension */
-        root->cut_bounds_lv = lv;
-        root->cut_bounds_hv = hv;
-
-        /* Update bounding box before call to lower subset and restore after */
-        bbox[2 * cut_dim + 1] = cut_val;
-        root->left_child = (struct Node_double *)construct_subtree_double(pa, pidx, no_dims, start_idx, n_lo, bsp, bbox);
-        bbox[2 * cut_dim + 1] = hv;
-
-        /* Update bounding box before call to higher subset and restore after */
-        bbox[2 * cut_dim] = cut_val;
-        root->right_child = (struct Node_double *)construct_subtree_double(pa, pidx, no_dims, start_idx + n_lo, n - n_lo, bsp, bbox);
-        bbox[2 * cut_dim] = lv;
-    }
-    return root;
-}
-
-/************************************************
-Construct a tree over data points.
-Params:
-    pa : data points
-    no_dims: number of dimensions
-    n :  number of data points
-    bsp : number of points per leaf
-************************************************/
-Tree_double* construct_tree_double(double *pa, int8_t no_dims, uint32_t n, uint32_t bsp)
-{
-    Tree_double *tree = (Tree_double *)malloc(sizeof(Tree_double));
-    uint32_t i;
-    uint32_t *pidx;
-    double *bbox;
-
-    tree->no_dims = no_dims;
-
-    /* Initialize permutation array */
-    pidx = (uint32_t *)malloc(sizeof(uint32_t) * n);
-    for (i = 0; i < n; i++)
-    {
-        pidx[i] = i;
-    }
-
-    bbox = (double *)malloc(2 * sizeof(double) * no_dims);
-    get_bounding_box_double(pa, pidx, no_dims, n, bbox);
-    tree->bbox = bbox;
-
-    /* Construct subtree on full dataset */
-    tree->root = (struct Node_double *)construct_subtree_double(pa, pidx, no_dims, 0, n, bsp, bbox);
-
-    tree->pidx = pidx;
-    return tree;
-}
-
-/************************************************
-Create a tree node.
-Params:
-    start_idx : index of first data point to use
-    n :  number of data points
-************************************************/
-Node_double* create_node_double(uint32_t start_idx, uint32_t n, int is_leaf)
-{
-    Node_double *new_node;
-    if (is_leaf)
-    {
-        /*
-            Allocate only the part of the struct that will be used in a leaf node.
-            This relies on the C99 specification of struct layout conservation and padding and
-            that dereferencing is never attempted for the node pointers in a leaf.
-        */
-        new_node = (Node_double *)malloc(sizeof(Node_double) - 2 * sizeof(Node_double *));
-    }
-    else
-    {
-        new_node = (Node_double *)malloc(sizeof(Node_double));
-    }
-    new_node->n = n;
-    new_node->start_idx = start_idx;
-    return new_node;
-}
-
-/************************************************
-Delete subtree
-Params:
-    root : root node of subtree to delete
-************************************************/
-void delete_subtree_double(Node_double *root)
-{
-    if (root->cut_dim != -1)
-    {
-        delete_subtree_double((Node_double *)root->left_child);
-        delete_subtree_double((Node_double *)root->right_child);
-    }
-    free(root);
-}
-
-/************************************************
-Delete tree
-Params:
-    tree : Tree struct of kd tree
-************************************************/
-void delete_tree_double(Tree_double *tree)
-{
-    delete_subtree_double((Node_double *)tree->root);
-    free(tree->bbox);
-    free(tree->pidx);
-    free(tree);
-}
-
-/************************************************
-Print
-************************************************/
-void print_tree_double(Node_double *root, int level)
-{
-    int i;
-    for (i = 0; i < level; i++)
-    {
-        printf(" ");
-    }
-    printf("(cut_val: %f, cut_dim: %i)\n", root->cut_val, root->cut_dim);
-    if (root->cut_dim != -1)
-        print_tree_double((Node_double *)root->left_child, level + 1);
-    if (root->cut_dim != -1)
-        print_tree_double((Node_double *)root->right_child, level + 1);
-}
-
-/************************************************
-Calculate squared cartesian distance between points
-Params:
-    point1_coord : point 1
-    point2_coord : point 2
-************************************************/
-double calc_dist_double(double *point1_coord, double *point2_coord, int8_t no_dims)
-{
-    /* Calculate squared distance */
-    double dist = 0, dim_dist;
-    int8_t i;
-    for (i = 0; i < no_dims; i++)
-    {
-        dim_dist = point2_coord[i] - point1_coord[i];
-        dist += dim_dist * dim_dist;
-    }
-    return dist;
-}
-
-/************************************************
-Get squared distance from point to cube in specified dimension
-Params:
-    dim : dimension
-    point_coord : cartesian coordinates of point
-    bbox : cube
-************************************************/
-double get_cube_offset_double(int8_t dim, double *point_coord, double *bbox)
-{
-    double dim_coord = point_coord[dim];
-
-    if (dim_coord < bbox[2 * dim])
-    {
-        /* Left of cube in dimension */
-        return dim_coord - bbox[2 * dim];
-    }
-    else if (dim_coord > bbox[2 * dim + 1])
-    {
-        /* Right of cube in dimension */
-        return dim_coord - bbox[2 * dim + 1];
-    }
-    else
-    {
-        /* Inside cube in dimension */
-        return 0.;
-    }
-}
-
-/************************************************
-Get minimum squared distance between point and cube.
-Params:
-    point_coord : cartesian coordinates of point
-    no_dims : number of dimensions
-    bbox : cube
-************************************************/
-double get_min_dist_double(double *point_coord, int8_t no_dims, double *bbox)
-{
-    double cube_offset = 0, cube_offset_dim;
-    int8_t i;
-
-    for (i = 0; i < no_dims; i++)
-    {
-        cube_offset_dim = get_cube_offset_double(i, point_coord, bbox);
-        cube_offset += cube_offset_dim * cube_offset_dim;
-    }
-
-    return cube_offset;
-}
-
-/************************************************
-Search a leaf node for closest point
-Params:
-    pa : data points
-    pidx : permutation index of data points
-    no_dims : number of dimensions
-    start_idx : index of first data point to use
-    size :  number of data points
-    point_coord : query point
-    closest_idx : index of closest data point found (return)
-    closest_dist : distance to closest point (return)
-************************************************/
-void search_leaf_double(double *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *restrict point_coord,
-                 uint32_t k, uint32_t *restrict closest_idx, double *restrict closest_dist)
-{
-    double cur_dist;
-    uint32_t i;
-    /* Loop through all points in leaf */
-    for (i = 0; i < n; i++)
-    {
-        /* Get distance to query point */
-        cur_dist = calc_dist_double(&PA(start_idx + i, 0), point_coord, no_dims);
-        /* Update closest info if new point is closest so far*/
-        if (cur_dist < closest_dist[k - 1])
-        {
-            insert_point_double(closest_idx, closest_dist, pidx[start_idx + i], cur_dist, k);
-        }
-    }
-}
-
-
-/************************************************
-Search a leaf node for closest point with data point mask
-Params:
-    pa : data points
-    pidx : permutation index of data points
-    no_dims : number of dimensions
-    start_idx : index of first data point to use
-    size :  number of data points
-    point_coord : query point
-    mask : boolean array of invalid (True) and valid (False) data points
-    closest_idx : index of closest data point found (return)
-    closest_dist : distance to closest point (return)
-************************************************/
-void search_leaf_double_mask(double *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *restrict point_coord,
-                               uint32_t k, uint8_t *mask, uint32_t *restrict closest_idx, double *restrict closest_dist)
-{
-    double cur_dist;
-    uint32_t i;
-    /* Loop through all points in leaf */
-    for (i = 0; i < n; i++)
-    {
-        /* Is this point masked out? */
-        if (mask[pidx[start_idx + i]])
-        {
-            continue;
-        }
-        /* Get distance to query point */
-        cur_dist = calc_dist_double(&PA(start_idx + i, 0), point_coord, no_dims);
-        /* Update closest info if new point is closest so far*/
-        if (cur_dist < closest_dist[k - 1])
-        {
-            insert_point_double(closest_idx, closest_dist, pidx[start_idx + i], cur_dist, k);
-        }
-    }
-}
-
-/************************************************
-Search subtree for nearest to query point
-Params:
-    root : root node of subtree
-    pa : data points
-    pidx : permutation index of data points
-    no_dims : number of dimensions
-    point_coord : query point
-    min_dist : minumum distance to nearest neighbour
-    mask : boolean array of invalid (True) and valid (False) data points
-    closest_idx : index of closest data point found (return)
-    closest_dist : distance to closest point (return)
-************************************************/
-void search_splitnode_double(Node_double *root, double *pa, uint32_t *pidx, int8_t no_dims, double *point_coord, 
-                      double min_dist, uint32_t k, double distance_upper_bound, double eps_fac, uint8_t *mask,
-                      uint32_t *closest_idx, double *closest_dist)
-{
-    int8_t dim;
-    double dist_left, dist_right;
-    double new_offset;
-    double box_diff;
-
-    /* Skip if distance bound exeeded */
-    if (min_dist > distance_upper_bound)
-    {
-        return;
-    }
-
-    dim = root->cut_dim;
-
-    /* Handle leaf node */
-    if (dim == -1)
-    {
-        if (mask)
-        {
-            search_leaf_double_mask(pa, pidx, no_dims, root->start_idx, root->n, point_coord, k, mask, closest_idx, closest_dist);
-        }
-        else
-        {
-            search_leaf_double(pa, pidx, no_dims, root->start_idx, root->n, point_coord, k, closest_idx, closest_dist);
-        }
-        return;
-    }
-
-    /* Get distance to cutting plane */
-    new_offset = point_coord[dim] - root->cut_val;
-
-    if (new_offset < 0)
-    {
-        /* Left of cutting plane */
-        dist_left = min_dist;
-        if (dist_left < closest_dist[k - 1] * eps_fac)
-        {
-            /* Search left subtree if minimum distance is below limit */
-            search_splitnode_double((Node_double *)root->left_child, pa, pidx, no_dims, point_coord, dist_left, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist);
-        }
-
-        /* Right of cutting plane. Update minimum distance.
-           See Algorithms for Fast Vector Quantization
-           Sunil Arya and David M. Mount. */
-        box_diff = root->cut_bounds_lv - point_coord[dim];
-        if (box_diff < 0)
-        {
-		box_diff = 0;
-        }
-        dist_right = min_dist - box_diff * box_diff + new_offset * new_offset;
-        if (dist_right < closest_dist[k - 1] * eps_fac)
-        {
-            /* Search right subtree if minimum distance is below limit*/
-            search_splitnode_double((Node_double *)root->right_child, pa, pidx, no_dims, point_coord, dist_right, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist);
-        }
-    }
-    else
-    {
-        /* Right of cutting plane */
-        dist_right = min_dist;
-        if (dist_right < closest_dist[k - 1] * eps_fac)
-        {
-            /* Search right subtree if minimum distance is below limit*/
-            search_splitnode_double((Node_double *)root->right_child, pa, pidx, no_dims, point_coord, dist_right, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist);
-        }
-
-        /* Left of cutting plane. Update minimum distance.
-           See Algorithms for Fast Vector Quantization
-           Sunil Arya and David M. Mount. */
-        box_diff = point_coord[dim] - root->cut_bounds_hv;
-        if (box_diff < 0)
-        {
-        	box_diff = 0;
-        }
-        dist_left = min_dist - box_diff * box_diff + new_offset * new_offset;
-	  if (dist_left < closest_dist[k - 1] * eps_fac)
-        {
-            /* Search left subtree if minimum distance is below limit*/
-            search_splitnode_double((Node_double *)root->left_child, pa, pidx, no_dims, point_coord, dist_left, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist);
-        }
-    }
-}
-
-/************************************************
-Search for nearest neighbour for a set of query points
-Params:
-    tree : Tree struct of kd tree
-    pa : data points
-    pidx : permutation index of data points
-    point_coords : query points
-    num_points : number of query points
-    mask : boolean array of invalid (True) and valid (False) data points
-    closest_idx : index of closest data point found (return)
-    closest_dist : distance to closest point (return)
-************************************************/
-void search_tree_double(Tree_double *tree, double *pa, double *point_coords,
-                 uint32_t num_points, uint32_t k, double distance_upper_bound,
-                 double eps, uint8_t *mask, uint32_t *closest_idxs, double *closest_dists)
-{
-    double min_dist;
-    double eps_fac = 1 / ((1 + eps) * (1 + eps));
-    int8_t no_dims = tree->no_dims;
-    double *bbox = tree->bbox;
-    uint32_t *pidx = tree->pidx;
-    uint32_t j = 0;
-#if defined(_MSC_VER) && defined(_OPENMP)
-    int32_t i = 0;
-    int32_t local_num_points = (int32_t) num_points;
-#else
-    uint32_t i;
-    uint32_t local_num_points = num_points;
-#endif
-    Node_double *root = (Node_double *)tree->root;
-
-    /* Queries are OpenMP enabled */
-    #pragma omp parallel
-    {
-        /* The low chunk size is important to avoid L2 cache trashing
-           for spatial coherent query datasets
-        */
-        #pragma omp for private(i, j) schedule(static, 100) nowait
-        for (i = 0; i < local_num_points; i++)
-        {
-            for (j = 0; j < k; j++)
-            {
-                closest_idxs[i * k + j] = UINT32_MAX;
-                closest_dists[i * k + j] = DBL_MAX;
-            }
-            min_dist = get_min_dist_double(point_coords + no_dims * i, no_dims, bbox);
-            search_splitnode_double(root, pa, pidx, no_dims, point_coords + no_dims * i, min_dist,
-                             k, distance_upper_bound, eps_fac, mask, &closest_idxs[i * k], &closest_dists[i * k]);
-        }
-    }
-}


=====================================
pykdtree/_kdtree_core.c.mako
=====================================
@@ -128,8 +128,8 @@ Params:
 void get_bounding_box_${DTYPE}(${DTYPE} *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, ${DTYPE} *bbox)
 {
     ${DTYPE} cur;
-    int8_t bbox_idx, i, j;
-    uint32_t i2;
+    int8_t i, j;
+    uint32_t bbox_idx, i2;
 
     /* Use first data point to initialize */
     for (i = 0; i < no_dims; i++)


=====================================
pykdtree/kdtree.c deleted
=====================================
The diff for this file was not included because it is too large.

=====================================
pykdtree/kdtree.pyx
=====================================
@@ -115,6 +115,8 @@ cdef class KDTree:
         self.leafsize = <uint32_t>leafsize
         if data_pts.ndim == 1:
             self.ndim = 1
+        elif data_pts.shape[1] > 127:
+            raise ValueError('Max 127 dimensions allowed')
         else:
             self.ndim = <int8_t>data_pts.shape[1]
 
@@ -135,7 +137,7 @@ cdef class KDTree:
 
         :Parameters:
         query_pts : numpy array
-            Query points with shape (n , dims)
+            Query points with shape (m, dims)
         k : int
             The number of nearest neighbours to return
         eps : non-negative float
@@ -151,8 +153,8 @@ cdef class KDTree:
         mask : numpy array, optional
             Array of booleans where neighbors are considered invalid and
             should not be returned. A mask value of True represents an
-            invalid pixel. Mask should have shape (n,). By default all
-            points are considered valid.
+            invalid pixel. Mask should have shape (n,) to match data points.
+            By default all points are considered valid.
 
         """
 


=====================================
pykdtree/test_tree.py
=====================================
@@ -351,3 +351,22 @@ def test3d_mask():
     assert abs(dist[0] - 66759196.1053) < epsilon * dist[0]
     assert abs(dist[1] - 3.) < epsilon * dist[1]
     assert abs(dist[2] - 20001.) < epsilon * dist[2]
+
+def test128d_fail():
+    pts = 100
+    dims = 128
+    data_pts = np.arange(pts * dims).reshape(pts, dims)
+    try:
+        kdtree = KDTree(data_pts)
+    except ValueError as exc:
+        assert "Max 127 dimensions" in str(exc)
+    else:
+        raise Exception("Should not accept 129 dimensional data")
+
+def test127d_ok():
+    pts = 2
+    dims = 127
+    data_pts = np.arange(pts * dims).reshape(pts, dims)
+    kdtree = KDTree(data_pts)
+    dist, idx = kdtree.query(data_pts)
+    assert np.all(dist == 0)


=====================================
scripts/build-manylinux-wheels.sh
=====================================
@@ -0,0 +1,44 @@
+#!/bin/bash
+set -e -x
+
+# This is to be run by Docker inside a Docker image.
+# You can test it locally on a Linux machine by installing docker and running from this repo's root:
+# $ docker run -e PLAT=manylinux1_x86_64 -v `pwd`:/io quay.io/pypa/manylinux1_x86_64 /io/scripts/build-manylinux-wheels.sh
+
+# * The -e just defines an environment variable PLAT=[docker name] inside the
+#    docker - auditwheel can't detect the docker name automatically.
+# * The -v gives a directory alias for passing files in and out of the docker
+#    (/io is arbitrary). E.g the `setup.py` script would be accessed in the
+#    docker via `/io/setup.py`.
+# * quay.io/pypa/manylinux1_x86_64 is the full docker image name. Docker
+#    downloads it automatically.
+# * The last argument is a shell command that the Docker will execute.
+#    Filenames must be from the Docker's perspective.
+
+# Wheels are initially generated as you would usually, but put in a temp
+# directory temp-wheels. The pip-cache is optional but can speed up local builds
+# having a real permanent pip-cache dir.
+mkdir -p /io/pip-cache
+mkdir -p /io/temp-wheels
+
+# Clean out any old existing wheels.
+find /io/temp-wheels/ -type f -delete
+
+# Iterate through available pythons.
+for PYBIN in /opt/python/cp3[5678]*/bin; do
+    "${PYBIN}/pip" install -q -U setuptools wheel nose --cache-dir /io/pip-cache
+    # Run the following in root of this repo.
+    (cd /io/ && USE_OMP=$USE_OMP "${PYBIN}/pip" install -q .)
+    (cd /io/ && USE_OMP=$USE_OMP "${PYBIN}/python" setup.py nosetests)
+    (cd /io/ && USE_OMP=$USE_OMP "${PYBIN}/python" setup.py -q bdist_wheel -d /io/temp-wheels)
+done
+
+"$PYBIN/pip" install -q auditwheel
+
+# Wheels aren't considered manylinux unless they have been through
+# auditwheel. Audited wheels go in /io/dist/.
+mkdir -p /io/dist/
+
+for whl in /io/temp-wheels/*.whl; do
+    auditwheel repair "$whl" --plat "$PLAT" -w /io/dist/
+done


=====================================
setup.cfg
=====================================
@@ -1,5 +1,5 @@
 [bdist_rpm]
-requires=numpy
+requires=python3-numpy
 release=1
 
 


=====================================
setup.py
=====================================
@@ -16,14 +16,33 @@
 # with this program.  If not, see <http://www.gnu.org/licenses/>.
 
 import os
+import sys
 from setuptools import setup, Extension
 from setuptools.command.build_ext import build_ext
 
+
+def is_conda_interpreter():
+    """Is the running interpreter from Anaconda or miniconda?
+
+    See https://stackoverflow.com/a/21318941/433202
+
+    Examples::
+
+        2.7.6 |Anaconda 1.8.0 (x86_64)| (default, Jan 10 2014, 11:23:15)
+        2.7.6 |Continuum Analytics, Inc.| (default, Jan 10 2014, 11:23:15)
+        3.6.6 | packaged by conda-forge | (default, Jul 26 2018, 09:55:02)
+
+    """
+    return 'conda' in sys.version or 'Continuum' in sys.version
+
+
 # Get OpenMP setting from environment
 try:
     use_omp = int(os.environ['USE_OMP'])
 except KeyError:
-    use_omp = True
+    # OpenMP is not supported with default clang
+    # Conda provides its own compiler which does support openmp
+    use_omp = 'darwin' not in sys.platform or is_conda_interpreter()
 
 
 def set_builtin(name, value):
@@ -70,26 +89,31 @@ class build_ext_subclass(build_ext):
         import numpy
         self.include_dirs.append(numpy.get_include())
 
+with open('README.rst', 'r') as readme_file:
+    readme = readme_file.read()
 
 setup(
     name='pykdtree',
-    version='1.3.1',
+    version='1.3.3',
+    url="https://github.com/storpipfugl/pykdtree",
     description='Fast kd-tree implementation with OpenMP-enabled queries',
+    long_description=readme,
     author='Esben S. Nielsen',
     author_email='storpipfugl at gmail.com',
-    packages = ['pykdtree'],
+    packages=['pykdtree'],
     python_requires='>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*',
     install_requires=['numpy'],
     setup_requires=['numpy'],
     tests_require=['nose'],
     zip_safe=False,
-    test_suite = 'nose.collector',
-    ext_modules = [Extension('pykdtree.kdtree',
-                             ['pykdtree/kdtree.c', 'pykdtree/_kdtree_core.c'])],
-    cmdclass = {'build_ext': build_ext_subclass },
+    test_suite='nose.collector',
+    ext_modules=[Extension('pykdtree.kdtree',
+                           ['pykdtree/kdtree.c', 'pykdtree/_kdtree_core.c'])],
+    cmdclass={'build_ext': build_ext_subclass},
     classifiers=[
       'Development Status :: 5 - Production/Stable',
-      'License :: OSI Approved :: GNU General Public License v3 (GPLv3)',
+      ('License :: OSI Approved :: '
+          'GNU Lesser General Public License v3 (LGPLv3)'),
       'Programming Language :: Python',
       'Operating System :: OS Independent',
       'Intended Audience :: Science/Research',



View it on GitLab: https://salsa.debian.org/debian-gis-team/pykdtree/-/commit/2dcb254fc356138062b35abc72a1364b074a247c

-- 
View it on GitLab: https://salsa.debian.org/debian-gis-team/pykdtree/-/commit/2dcb254fc356138062b35abc72a1364b074a247c
You're receiving this email because of your account on salsa.debian.org.


-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://alioth-lists.debian.net/pipermail/pkg-grass-devel/attachments/20201110/c33e02e3/attachment-0001.html>


More information about the Pkg-grass-devel mailing list