[med-svn] [Git][med-team/epigrass][upstream] New upstream version 3.0.2+dfsg

Andreas Tille gitlab at salsa.debian.org
Sun Feb 21 16:28:40 GMT 2021



Andreas Tille pushed to branch upstream at Debian Med / epigrass


Commits:
8d3694db by Andreas Tille at 2021-02-21T16:23:57+01:00
New upstream version 3.0.2+dfsg
- - - - -


15 changed files:

- Epigrass/__version__.py
- − Epigrass/epidash.py
- − Epigrass/epimodels.c
- Epigrass/epipanel.py
- Epigrass/manager.py
- Epigrass/epimodels.py → Epigrass/models.py
- Epigrass/simobj.py
- demos/rio.epg
- demos/spread.gml
- demos/spread.graphml
- demos/spread.json
- docs/source/using.rst
- requirements.txt
- setup.py
- tests/test_models.py


Changes:

=====================================
Epigrass/__version__.py
=====================================
@@ -1 +1 @@
-version = "3.0"
+version = "3.0.1"


=====================================
Epigrass/epidash.py deleted
=====================================
@@ -1,203 +0,0 @@
-import dash
-import dash_core_components as dcc
-import dash_html_components as html
-from dash.dependencies import Input, Output
-import pandas as pd
-import geopandas as gpd
-import plotly.express as px
-import json
-from sqlalchemy import create_engine
-import os, glob
-from functools import lru_cache
-import warnings
-warnings.filterwarnings('ignore')
-
-is_epigrass_folder = os.path.exists('Epigrass.sqlite')
-
-maps = glob.glob('*.shp')
-if maps:
-    mapdf = gpd.read_file('Data.shp')
-    mapdf.to_file('Data.geojson', driver='GeoJSON')
-    mapjson = json.load(open('Data.geojson', 'r'))
-
- at lru_cache(2)
-def load_sim(sim):
-    if sim is None:
-        return pd.DataFrame(data={'time': range(2), 'name': 0})
-    con = create_engine('sqlite:///Epigrass.sqlite?check_same_thread=False').connect()
-    data = pd.read_sql_table(sim, con)
-    con.close()
-    return data
-
-
-def get_sims():
-    if is_epigrass_folder:
-        con = create_engine('sqlite:///Epigrass.sqlite?check_same_thread=False').connect()
-        sims = con.execute("SELECT name FROM sqlite_master WHERE type='table' ORDER BY name;")
-        return [s[0] for s in sims if not (s[0].endswith('_meta') or s[0].endswith('e'))]
-    else:
-        return ['No simulations found']
-
-
-def generate_table(dataframe, max_rows=10):
-    return html.Table(
-        # Header
-        [html.Tr([html.Th(col) for col in dataframe.columns])] +
-
-        # Body
-        [html.Tr([
-            html.Td(dataframe.iloc[i][col]) for col in dataframe.columns
-        ]) for i in range(min(len(dataframe), max_rows))]
-    )
-
-
-external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
-
-app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
-
-app.layout = html.Div(children=[
-    html.H1(children='Epigrass Dashboard'),
-
-    html.Div(children='''
-        Visualize your Simulations.
-    '''),
-    html.H3('Simulations:'),
-    dcc.Dropdown(
-        id='sim-drop',
-        options=[{'label': s, 'value': s} for s in get_sims()],
-    ),
-    html.Div(id='sim-table'),
-    dcc.Loading(
-        id="loading-1",
-        type="default",
-        children=html.Div(id="sim-table-loading")
-    ),
-    html.Div(children=[
-        html.B('Series:'),
-        dcc.Dropdown(id='columns', multi=True, searchable=True, )], style={'width': '48%', 'display': 'inline-block'}),
-    html.Div(children=[
-        html.B('Localities:'),
-        dcc.Dropdown(id='localities', multi=True, searchable=True),
-    ], style={'width': '48%', 'display': 'inline-block', 'float': 'right'}, ),
-    html.H3('Series:'),
-    dcc.Graph(id='series-plot'),
-    html.H3('Map:'),
-    # dcc.Loading(
-    #     id="loading-map",
-    #     type="default",
-    #     children=html.Div(id="map-loading")
-    # ),
-    # dcc.Graph(id='bubble-map'),
-
-])
-
-
-## Callbacks
-
- at app.callback(Output(component_id='sim-table', component_property='children'),
-    [Input(component_id='sim-drop', component_property='value')]
-)
-def update_sim_table(sim_name):
-    try:
-        df = load_sim(sim_name)
-        return generate_table(df)
-    except TypeError as e:
-        return html.P('No data')
-
- at app.callback(Output("sim-table-loading", "children"),
-              [Input(component_id='sim-drop', component_property='value')])
-def table_spinner(value):
-    pass
-
-# @app.callback(Output("map-loading", "children"),
-#               [Input(component_id='sim-drop', component_property='value')])
-# def map_spinner(value):
-#     pass
-
- at app.callback(
-    Output(component_id='series-plot', component_property='figure'),
-    [Input(component_id='columns', component_property='value'),
-     Input(component_id='sim-drop', component_property='value'),
-     Input(component_id='localities', component_property='value')]
-)
-def update_series_plot(columns_selected, sim_name, localities):
-    df = load_sim(sim_name)
-    if localities and localities[0] is not None:
-        df = df[df.name.isin(localities)]
-    tf = df.time.max()
-    traces = []
-    cols = columns_selected
-    if not cols:
-        cols = df.columns[5:7]
-    for c in cols:
-        if c in ['geocode,'    'time', 'name', 'lat', 'longit']:
-            continue
-        traces.append(dict(
-            x=df.time,
-            y=df[c],
-            text=df['name'],
-            mode='line',
-            opacity=0.7,
-            name=c
-        ))
-    return {
-        'data': traces,
-        'layout': dict(
-            xaxis={'type': 'linear', 'title': 'time',
-                   'range': [0, tf]},
-            yaxis={'title': 'Individuals'},
-            margin={'l': 40, 'b': 40, 't': 10, 'r': 10},
-            legend={'x': 0, 'y': 1},
-            hovermode='closest',
-            transition={'duration': 500},
-        )
-    }
-
-
- at app.callback(
-    Output(component_id='columns', component_property='options'),
-    [Input(component_id='sim-drop', component_property='value')]
-)
-def fill_columns(sim_name):
-    try:
-        df = load_sim(sim_name)
-        return [{'label': c, 'value': c} for c in df.columns if
-                c not in ['geocode,'    'time', 'name', 'lat', 'longit']]
-    except (TypeError, ValueError) as e:
-        return []
-
-
- at app.callback(
-    Output(component_id='localities', component_property='options'),
-    [Input(component_id='sim-drop', component_property='value')]
-)
-def fill_localities(sim_name):
-    try:
-        df = load_sim(sim_name)
-        return [{'label': c, 'value': c} for c in set(df.name)]
-    except (TypeError, ValueError) as e:
-        return []
-
-
-# @app.callback(
-#     Output(component_id='bubble-map', component_property='figure'),
-#     [Input(component_id='sim-drop', component_property='value')]
-# )
-# def draw_bubble_map(val):
-#     fig = None
-#     if maps:
-#         namecol = mapdf.columns[0]
-#         locations = mapdf.columns[1]
-#         fig = px.choropleth(mapdf, geojson=mapjson, locations=locations, color='prevalence', hover_name=namecol,
-#                             hover_data=['prevalence'],
-#                             color_continuous_scale='viridis', scope='south america'
-#                             )
-#     return fig
-
-
-def main():
-    app.run_server(debug=True)
-
-
-if __name__ == '__main__':
-    main()


=====================================
Epigrass/epimodels.c deleted
=====================================
The diff for this file was not included because it is too large.

=====================================
Epigrass/epipanel.py
=====================================
@@ -10,6 +10,7 @@ import hvplot.pandas
 import holoviews as hv
 import geoviews as gv
 from holoviews.operation.datashader import datashade, bundle_graph
+from datashader.bundling import hammer_bundle
 from holoviews import opts
 from bokeh.resources import INLINE
 import param
@@ -50,9 +51,10 @@ def get_sims(fname):
 def get_graph(pth):
     full_path = os.path.join(os.path.abspath(pth), 'network.gml')
     if os.path.exists(full_path):
-        G = NX.read_gml(full_path)
+        G = NX.read_gml(full_path,destringizer=int)
     else:
         G = NX.MultiDiGraph()
+
     return G
 
 
@@ -118,7 +120,7 @@ def get_subgraph(G, node):
     :param node: node defining the subgraph
     """
     nodes = [node]
-    nodes.extend(list(G.neighbors(node)))
+    nodes.extend([int(n) for n in G.neighbors(node)])
     H = G.subgraph(nodes).copy()
     return H
 
@@ -177,7 +179,7 @@ class SeriesViewer(param.Parameterized):
 ### Model Type
 {df['epidemiological_model$modtype'].iloc[0]}
 ### Epidemic Events
-Seed: {df['epidemic_events$seed']}
+Seed: {df['epidemic_events$seed'].iloc[0]}
 
 """
             )
@@ -246,7 +248,7 @@ Seed: {df['epidemic_events$seed']}
         partial_map = partial_map.to_crs(3857)  # Converting to web mercator
         centroids = [(c.x, c.y) for c in partial_map.centroid]
         # Draw the graph using Altair
-        gcs = [str(int(gc)) for gc in partial_map.geocode]
+        gcs = [int(gc) for gc in partial_map.geocode]
         pos = dict(zip(gcs, centroids))
 
         # viz = nxa.draw_networkx(
@@ -336,7 +338,7 @@ Seed: {df['epidemic_events$seed']}
 
         base = alt.Chart(df).mark_line(interpolate='step-after').encode(
             x='time:Q',
-            y='incidence:Q',
+            y='incidence:Q'
         ).properties(
             width='container',
             height=300
@@ -347,7 +349,7 @@ Seed: {df['epidemic_events$seed']}
             row = alt.hconcat()
             row |= base.encode(x='time', y=y_enc)
             if i < len(variables):
-                row |= base.encode(x='time', y=variables[i + 1])
+                row |= base.encode(x='time', y=variables[i + 1], tooltip=['time', 'incidence', 'Infectious'])
 
             chart &= row
         return chart


=====================================
Epigrass/manager.py
=====================================
@@ -1048,15 +1048,18 @@ def main():
 
 
 def end_pools():
-    PO.close()
-    PO.terminate()
-    simobj.PO.close()
-    simobj.PO.terminate()
+    # PO.close()
+    # PO.terminate()
+    # simobj.PO.close()
+    # simobj.PO.terminate()
+
+    # kill all subprocesses
+    os.killpg(os.getpid(), signal.SIGTERM)
 
 
 PO = multiprocessing.Pool()
 if __name__ == '__main__':
-    import atexit
+    import atexit, signal
 
     atexit.register(end_pools)
     main()


=====================================
Epigrass/epimodels.py → Epigrass/models.py
=====================================
@@ -11,7 +11,7 @@ from numpy import inf, nan, nan_to_num
 import numpy as np
 import sys
 import redis
-# import cython
+from epimodels.continuous.models import SIR, SEIR
 import numba
 from numba.typed import List
 
@@ -20,12 +20,14 @@ redisclient = redis.StrictRedis()
 vnames = {
     'SIR': ['Exposed', 'Infectious', 'Susceptible'],
     'SIR_s': ['Exposed', 'Infectious', 'Susceptible'],
+    'SIR_cont': ['Exposed', 'Infectious', 'Susceptible'],
     'SIS': ['Exposed', 'Infectious', 'Susceptible'],
     'SIS_s': ['Exposed', 'Infectious', 'Susceptible'],
     'SEIS': ['Exposed', 'Infectious', 'Susceptible'],
     'SEIS_s': ['Exposed', 'Infectious', 'Susceptible'],
     'SEIR': ['Exposed', 'Infectious', 'Susceptible'],
     'SEIR_s': ['Exposed', 'Infectious', 'Susceptible'],
+    'SEIR_cont': ['Exposed', 'Infectious', 'Susceptible'],
     'SIpRpS': ['Exposed', 'Infectious', 'Susceptible'],
     'SIpRpS_s': ['Exposed', 'Infectious', 'Susceptible'],
     'SEIpRpS': ['Exposed', 'Infectious', 'Susceptible'],
@@ -125,6 +127,8 @@ def selectModel(modtype):
         return stepSIR
     elif modtype == b'SIR_s':
         return stepSIR_s
+    elif modtype == b'SIR_cont':
+        return stepSIR_cont
     elif modtype == b'SIS':
         return stepSIS
     elif modtype == b'SIS_s':
@@ -137,6 +141,8 @@ def selectModel(modtype):
         return stepSEIR
     elif modtype == b'SEIR_s':
         return stepSEIR_s
+    elif modtype == b'SEIR_cont':
+        return stepSEIR_cont
     elif modtype == b'SIpRpS':
         return stepSIpRpS
     elif modtype == b'SIpRpS_s':
@@ -188,13 +194,21 @@ def stepFlu(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, values=N
               'Susc_age4', 'Incub_age4', 'Subc_age4', 'Sympt_age4', 'Comp_age4',)
     if simstep == 0:  # get initial values
         S1, E1, Is1, Ic1, Ig1 = (
-            bi.get('susc_age1',  bi.get(b'susc_age1')), bi.get('incub_age1',  bi.get(b'incub_age1')), bi.get('subc_age1',  bi.get(b'subc_age1')), bi.get('sympt_age1',  bi.get(b'sympt_age1')), bi.get('comp_age1',  bi.get(b'comp_age1')))
+            bi.get('susc_age1', bi.get(b'susc_age1')), bi.get('incub_age1', bi.get(b'incub_age1')),
+            bi.get('subc_age1', bi.get(b'subc_age1')), bi.get('sympt_age1', bi.get(b'sympt_age1')),
+            bi.get('comp_age1', bi.get(b'comp_age1')))
         S2, E2, Is2, Ic2, Ig2 = (
-            bi.get('susc_age2',  bi.get(b'susc_age2')), bi.get('incub_age2',  bi.get(b'incub_age2')), bi.get('subc_age2',  bi.get(b'subc_age2')), bi.get('sympt_age2',  bi.get(b'sympt_age2')), bi.get('comp_age2',  bi.get(b'comp_age2')))
+            bi.get('susc_age2', bi.get(b'susc_age2')), bi.get('incub_age2', bi.get(b'incub_age2')),
+            bi.get('subc_age2', bi.get(b'subc_age2')), bi.get('sympt_age2', bi.get(b'sympt_age2')),
+            bi.get('comp_age2', bi.get(b'comp_age2')))
         S3, E3, Is3, Ic3, Ig3 = (
-            bi.get('susc_age3',  bi.get(b'susc_age3')), bi.get('incub_age3',  bi.get(b'incub_age3')), bi.get('subc_age3',  bi.get(b'subc_age3')), bi.get('sympt_age3',  bi.get(b'sympt_age3')), bi.get('comp_age3',  bi.get(b'comp_age3')))
+            bi.get('susc_age3', bi.get(b'susc_age3')), bi.get('incub_age3', bi.get(b'incub_age3')),
+            bi.get('subc_age3', bi.get(b'subc_age3')), bi.get('sympt_age3', bi.get(b'sympt_age3')),
+            bi.get('comp_age3', bi.get(b'comp_age3')))
         S4, E4, Is4, Ic4, Ig4 = (
-            bi.get('susc_age4',  bi.get(b'susc_age4')), bi.get('incub_age4',  bi.get(b'incub_age4')), bi.get('subc_age4',  bi.get(b'subc_age4')), bi.get('sympt_age4',  bi.get(b'sympt_age4')), bi.get('comp_age4',  bi.get(b'comp_age4')))
+            bi.get('susc_age4', bi.get(b'susc_age4')), bi.get('incub_age4', bi.get(b'incub_age4')),
+            bi.get('subc_age4', bi.get(b'subc_age4')), bi.get('sympt_age4', bi.get(b'sympt_age4')),
+            bi.get('comp_age4', bi.get(b'comp_age4')))
     else:  # get values from last time step
         # print(len(inits))
         S1, E1, Is1, Ic1, Ig1, S2, E2, Is2, Ic2, Ig2, S3, E3, Is3, Ic3, Ig3, S4, E4, Is4, Ic4, Ig4 = inits
@@ -378,6 +392,7 @@ def stepSIR(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, values=N
     else:
         E, I, S = inits
     N = totpop
+    R = N - (E + I + S)
     beta = bp.get('beta', bp.get(b'beta'));
     alpha = bp.get('alpha', bp.get(b'alpha'));
     # e = bp.get('e', bp.get(b'e'));
@@ -392,7 +407,7 @@ def stepSIR(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, values=N
     # Model
     Ipos = (1 - r) * I + Lpos
     Spos = S + b - Lpos
-    Rpos = R + r*I
+    Rpos = R + r * I
 
     # Migrating infecctious
     migInf = Ipos
@@ -400,11 +415,6 @@ def stepSIR(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, values=N
     return (0, Ipos, Spos), Lpos, migInf
 
 
-# @cython.locals(inits=list, simstep='long', totpop='long', theta='double', npass='double', bi=dict, bp=dict,
-#                beta='double', alpha='double', E='double', I='double', S='double', N='long',
-#                r='double', b='double', w='double', Lpos='double', Lpos_esp='double', R='double',
-#                Ipos='double', Spos='double', Rpos='double')
-# @numba.jit(forceobj=True, cache=True)
 def stepSIR_s(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, values=None, model=None,
               dist='poisson') -> tuple:
     """
@@ -417,6 +427,7 @@ def stepSIR_s(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, values
     else:
         E, I, S = inits
     N = totpop
+    R = N - (E + I + S)
     beta = bp.get('beta', bp.get(b'beta'));
     alpha = bp.get('alpha', bp.get(b'alpha'));
     # e = bp.get('e', bp.get(b'e'));
@@ -437,7 +448,7 @@ def stepSIR_s(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, values
     # Model
     Ipos = (1 - r) * I + Lpos
     Spos = S + b - Lpos
-    Rpos = N - (Spos + Ipos)
+    Rpos = R + r * I
 
     # Migrating infecctious
     migInf = Ipos
@@ -445,6 +456,41 @@ def stepSIR_s(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, values
     return [0, Ipos, Spos], Lpos, migInf
 
 
+def stepSIR_cont(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, values=None, model=None) -> tuple:
+    """
+    ODE SIR without births and deaths
+    :param inits:
+    :param simstep:
+    :param totpop:
+    :param theta:
+    :param npass:
+    :param bi:
+    :param bp:
+    :param values:
+    :param model:
+    :return:
+    """
+    sir = SIR()
+    if simstep == 0:  # get initial values
+        E, I, S = (bi.get('e', bi.get(b'e')), bi.get('i', bi.get(b'i')), bi.get('s', bi.get(b's')))
+    else:
+        E, I, S = inits
+    N = totpop
+    R = N - (E + I + S)
+    beta = bp.get('beta', bp.get(b'beta'));
+    alpha = bp.get('alpha', bp.get(b'alpha'));
+    r = bp.get('r', bp.get(b'r'));
+    b = bp.get('b', bp.get(b'b'));
+
+    sir([S, I, R], [0, 1], N, {'beta': beta, 'gamma': r})
+
+    Spos = sir.traces['S'][-1]
+    Ipos = sir.traces['I'][-1]
+    Lpos = sir.traces['I'][-1] - sir.traces['I'][0]
+
+    return [0, Ipos, Spos], Lpos, Ipos
+
+
 # @cython.locals(inits=list, simstep='long', totpop='long', theta='double', npass='double', bi=dict, bp=dict,
 #                beta='double', alpha='double', E='double', I='double', S='double', N='long',
 #                r='double', b='double', w='double', Lpos='double', Lpos_esp='double', R='double',
@@ -618,6 +664,42 @@ def stepSEIR_s(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, value
     return [Epos, Ipos, Spos], Lpos, migInf
 
 
+def stepSEIR_cont(inits, simstep, totpop, theta=0, npass=0, bi=None, bp=None, values=None, model=None) -> tuple:
+    """
+    ODE SIR without births and deaths
+    :param inits:
+    :param simstep:
+    :param totpop:
+    :param theta:
+    :param npass:
+    :param bi:
+    :param bp:
+    :param values:
+    :param model:
+    :return:
+    """
+    seir = SEIR()
+    if simstep == 0:  # get initial values
+        E, I, S = (bi.get('e', bi.get(b'e')), bi.get('i', bi.get(b'i')), bi.get('s', bi.get(b's')))
+    else:
+        E, I, S = inits
+    N = totpop
+    R = N - (E + I + S)
+    beta = bp.get('beta', bp.get(b'beta'));
+    alpha = bp.get('alpha', bp.get(b'alpha'));
+    e = bp.get('e', bp.get(b'e'))
+    r = bp.get('r', bp.get(b'r'));
+    b = bp.get('b', bp.get(b'b'));
+
+    seir([S, E, I, R], [0, 1], N, {'beta': beta, 'gamma': r, 'epsilon': e})
+
+    Spos = seir.traces['S'][-1]
+    Epos = seir.traces['E'][-1]
+    Ipos = seir.traces['I'][-1]
+    Lpos = seir.traces['I'][-1] - seir.traces['I'][0]
+
+    return [Epos, Ipos, Spos], Lpos, Ipos
+
 # @cython.locals(inits=list, simstep='long', totpop='long', theta='double', npass='double', bi=dict, bp=dict,
 #                beta='double', alpha='double', E='double', I='double', S='double', N='long',
 #                r='double', b='double', w='double', Lpos='double', Lpos_esp='double', R='double',


=====================================
Epigrass/simobj.py
=====================================
@@ -16,7 +16,7 @@ from networkx.readwrite import json_graph
 import redis
 
 from Epigrass.data_io import *
-from Epigrass import epimodels
+from Epigrass import models
 
 try:
     sys.path.insert(0, os.getcwd())
@@ -126,8 +126,8 @@ class siteobj:
             self.model = CustomModel.Model
             self.vnames = CustomModel.vnames
         else:
-            self.model = epimodels.Epimodel(self.geocode, self.modtype)
-            self.vnames = epimodels.vnames[modtype]
+            self.model = models.Epimodel(self.geocode, self.modtype)
+            self.vnames = models.vnames[modtype]
         try:
             # self.ts = [[bi[vn.lower()] for vn in self.vnames]]
             self.ts.append(list(bi.values()))  # This is fine since bi is an OrderedDict


=====================================
demos/rio.epg
=====================================
@@ -33,9 +33,9 @@ encoding =
 #==============================================================#
 [EPIDEMIOLOGICAL MODEL]
 #==============================================================#
-#model types available: SIS, SIS_s ,SIR, SIR_s, SEIS, SEIS_s, SEIR, SEIR_s,
+#model types available: SIS, SIS_s ,SIR, SIR_s, SIR_cont, SEIS, SEIS_s, SEIR, SEIR_cont, SEIR_s,
 # SIpRpS, SIpRpS_s,SIpR,SIpR_s,Influenza or Custom (see documentation for description).
-modtype = SEIR
+modtype = SEIR_cont
 
 #==============================================================#
 [MODEL PARAMETERS]


=====================================
demos/spread.gml
=====================================
The diff for this file was not included because it is too large.

=====================================
demos/spread.graphml
=====================================
The diff for this file was not included because it is too large.

=====================================
demos/spread.json
=====================================
The diff for this file was not included because it is too large.

=====================================
docs/source/using.rst
=====================================
@@ -436,11 +436,11 @@ The Web Dashboard
 
 To interact and explore the simulations stored in the database, Epigrass offers an interactive dashboard. It allows you to
 navigate to any simulation previously done for a given model, and inspect it interactively.
-You can ask for it to open right after a simulation is done::
+You can ask for it to open **right after a simulation is done**::
 
   $ epirunner -D mymodel.epg
 
-or you can open it for a given model by typing from the directory where the *epg* file is located::
+or you can simplu open it to inspect previous simulations of given model by typing from the directory where the *epg* file is located::
 
   $ epirunner -V mymodel.epg
 


=====================================
requirements.txt
=====================================
@@ -1,12 +1,8 @@
 pandas
 geopandas
 numpy
-dash
 matplotlib
-dash_html_components
-dash_core_components
 networkx
-plotly
 SQLAlchemy
 SQLObject
 tqdm
@@ -17,4 +13,10 @@ pymysql
 fiona
 shapely
 altair
-redis
\ No newline at end of file
+redis
+epimodels
+panel
+holoviews
+geoviews
+scikit-image
+datashader


=====================================
setup.py
=====================================
@@ -22,10 +22,9 @@ setup(name='epigrass',
       entry_points={
           'console_scripts': [
               'epirunner = Epigrass.manager:main',
-              'epidash = Epigrass.epidash:main'
           ],
       },
-      # ext_modules=cythonize('Epigrass/epimodels.py'),
+      # ext_modules=cythonize('Epigrass/models.py'),
       zip_safe=False,
       include_package_data=True,
       package_data={'': ['COPYING', 'epigrass.desktop', '*.rst', '*.tex', '*.png', '*.jpg']},


=====================================
tests/test_models.py
=====================================
@@ -8,7 +8,7 @@ import unittest
 import numpy as np
 # from Epigrass.manager import *
 from Epigrass.simobj import siteobj, graph, edge
-from Epigrass.epimodels import Epimodel
+from Epigrass.models import Epimodel
 
 
 class TestModels(unittest.TestCase):
@@ -355,6 +355,16 @@ class test_model_run(unittest.TestCase):
         P.title('$SEIR$')
         P.legend(['E', 'I', 'S'])
 
+    def test_run_SEIR_cont(self):
+        model = Epimodel(1, modtype=b'SEIR_cont')
+        res = run(model, [(0, 10, 990), 0, 10000, 0, 0,
+                          self.bi,
+                          self.bp],
+                  100)
+        P.plot(res)
+        P.title('$SEIR_{cont}$')
+        P.legend(['E', 'I', 'S'])
+
     def test_run_SEIS_s(self):
         model = Epimodel(1, modtype=b'SEIS_s')
         res = run(model, [(0, 10, 990), 0, 10000, 0, 0,
@@ -395,6 +405,16 @@ class test_model_run(unittest.TestCase):
         P.title('$SIR$')
         P.legend(['E', 'I', 'S'])
 
+    def test_run_SIR_cont(self):
+        model = Epimodel(1, modtype=b'SIR_cont')
+        res = run(model, [(0, 10, 990), 0, 10000, 0, 0,
+                          self.bi,
+                          self.bp],
+                  100)
+        P.plot(res)
+        P.title('$SIR_{cont}$')
+        P.legend(['E', 'I', 'S'])
+
     def test_run_SIS_s(self):
         model = Epimodel(1, modtype=b'SIS_s')
         res = run(model, [(0, 10, 990), 0, 10000, 0, 0,



View it on GitLab: https://salsa.debian.org/med-team/epigrass/-/commit/8d3694db7c2de1dfc2d04e5db69397e8488039f0

-- 
View it on GitLab: https://salsa.debian.org/med-team/epigrass/-/commit/8d3694db7c2de1dfc2d04e5db69397e8488039f0
You're receiving this email because of your account on salsa.debian.org.


-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://alioth-lists.debian.net/pipermail/debian-med-commit/attachments/20210221/d6b0bdf0/attachment-0001.htm>


More information about the debian-med-commit mailing list