[pymvpa] MVPA .4 and multi-feature RBF
Ray Schumacher
subscriber100 at rjs.org
Fri Dec 16 02:46:27 UTC 2011
OK, doing better now:
'gcc' is not recognized as an internal or external command,
operable program or batch file.
Warning: Extremely bad integrand behavior occurs at some points of the
integration interval.
Warning: Extremely bad integrand behavior occurs at some points of the
integration interval.
C:\Python27\lib\site-packages\numpy\lib\function_base.py:1881:
RuntimeWarning: i
nvalid value encountered in _cdf_single_call (vectorized)
_res = array(self.ufunc(*newargs),copy=False,
data shape (29, 48)
[[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 ..., 0.00000000e+00
0.00000000e+00 0.00000000e+00]
[ 4.25000000e+00 2.00000000e+00 3.28095198e+00 ..., 3.36161407e+02
4.00000000e+00 1.88758421e+00]
[ 2.25000000e+00 1.25000000e+00 1.29995737e+01 ..., -1.12926743e+02
4.00000000e+00 1.54000878e+00]
...,
[ 2.75000000e+00 1.75000000e+00 1.64393539e+01 ..., -2.03354130e+01
4.00000000e+00 1.86474490e+00]
[ 2.50000000e+00 1.25000000e+00 1.31833363e+01 ..., 3.83047516e+02
3.00000000e+00 1.81208789e+00]
[ 7.50000000e-01 5.00000000e-01 9.99900000e+03 ..., -2.68942773e+03
4.00000000e+00 1.32900274e+00]] 48
0.275862068966
Code:
import numpy
import mvpa
from mvpa.datasets.masked import MaskedDataset
from mvpa.clfs.svm import RbfCSVMC
fh = open('con4.csv', 'r')
lines = fh.readlines()
fh.close()
features = lines[0].split(',')[1:]
labels = numpy.zeros((len(lines)-1), dtype=numpy.float32)
data = numpy.zeros((len(lines)-1, len(features)-1), dtype=numpy.float32)
print 'data shape', data.shape
for smp in range(1,len(lines)-1):
d = lines[smp].split(',')[1:]
labels[smp] = d[1]
data[smp, :] = lines[smp].split(',')[2:]
ds = mvpa.datasets.Dataset(samples=data, labels=labels, chunks=1,
labels_map=True)
print data, ds.nfeatures
clf = RbfCSVMC(probability=1, enable_states=['probabilities'])
clf.train(ds)
print numpy.mean(clf.predict(ds.samples) == ds.labels)
I see in
http://lists.alioth.debian.org/pipermail/pkg-exppsy-pymvpa/2009q2/000495.html
that parameter selection is not generated/optimized; so what SVM
should I test to auto generate optimized classifier(s)?
Ray Schumacher
Programmer/Consultant
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.alioth.debian.org/pipermail/pkg-exppsy-pymvpa/attachments/20111215/01136079/attachment.html>
More information about the Pkg-ExpPsy-PyMVPA
mailing list