[pymvpa] regression analysis to predict subject-specific score

David V. Smith david.v.smith at duke.edu
Thu Mar 8 20:19:44 UTC 2012


Hi,

I was trying to apply this code to one of my datasets, but it fails with a FailedToPredictError. I can get the code to work fine with the testing_dataset below, so I'm not sure what's wrong with my data. The data sets seem comparable, but I suspect I am missing something small...

Thanks,
David


In [90]: print summary(dataset_roi)
Dataset: 217x81 at float32, <sa: chunks,targets,time_coords,time_indices>, <fa: voxel_indices>, <a: imghdr,imgtype,mapper,voxel_dim,voxel_eldim>
stats: mean=-0.0284916 std=0.949083 var=0.900759 min=-3.14012 max=3.75654
No details due to large number of targets or chunks. Increase maxc and maxt if desiredNumber of unique targets > 20 thus no sequence statistics


In [87]: clf = SVM(svm_impl='NU_SVR',kernel= RbfLSKernel())

In [88]: cv = CrossValidation(clf, NFoldPartitioner(), postproc=mean_sample(), errorfx=corr_error, enable_ca=['training_stats', 'stats'])

In [89]: print cv(dataset_roi)
ERROR: An unexpected error occurred while tokenizing input
The following traceback may be corrupted or invalid
The error message is: ('EOF in multi-line statement', (114, 0))

ERROR: An unexpected error occurred while tokenizing input
The following traceback may be corrupted or invalid
The error message is: ('EOF in multi-line statement', (7, 0))

---------------------------------------------------------------------------
FailedToPredictError                      Traceback (most recent call last)
/mnt/BIAC/.users/smith/munin.dhe.duke.edu/Huettel/Imagene.02/Analysis/Framing/MVPA/<ipython-input-89-fa2a8d3342c0> in <module>()
----> 1 print cv(dataset_roi)

/usr/lib64/python2.6/site-packages/mvpa2/base/learner.pyc in __call__(self, ds)
    235                                    "used and auto training is disabled."
    236                                    % str(self))
--> 237         return super(Learner, self).__call__(ds)
    238 
    239 

/usr/lib64/python2.6/site-packages/mvpa2/base/node.pyc in __call__(self, ds)
     74 
     75         self._precall(ds)
---> 76         result = self._call(ds)
     77         result = self._postcall(ds, result)
     78 

/usr/lib64/python2.6/site-packages/mvpa2/measures/base.pyc in _call(self, ds)
    470         # always untrain to wipe out previous stats

    471         self.untrain()
--> 472         return super(CrossValidation, self)._call(ds)
    473 
    474 

/usr/lib64/python2.6/site-packages/mvpa2/measures/base.pyc in _call(self, ds)
    303                 ca.datasets.append(sds)
    304             # run the beast

--> 305             result = node(sds)
    306             # callback

    307             if not self._callback is None:

/usr/lib64/python2.6/site-packages/mvpa2/base/learner.pyc in __call__(self, ds)
    235                                    "used and auto training is disabled."
    236                                    % str(self))
--> 237         return super(Learner, self).__call__(ds)
    238 
    239 

/usr/lib64/python2.6/site-packages/mvpa2/base/node.pyc in __call__(self, ds)
     74 
     75         self._precall(ds)
---> 76         result = self._call(ds)
     77         result = self._postcall(ds, result)
     78 

/usr/lib64/python2.6/site-packages/mvpa2/measures/base.pyc in _call(self, ds)
    558                     for i in dstrain.get_attr(splitter.get_space())[0].unique])
    559         # ask splitter for first part

--> 560         measure.train(dstrain)
    561         # cleanup to free memory

    562         del dstrain

/usr/lib64/python2.6/site-packages/mvpa2/base/learner.pyc in train(self, ds)
    135 
    136         # and post-proc

--> 137         result = self._posttrain(ds)
    138 
    139         # finally flag as trained


/usr/lib64/python2.6/site-packages/mvpa2/clfs/base.pyc in _posttrain(self, dataset)
    265                 # training_stats... sad

    266                 self.__changedData_isset = False
--> 267             predictions = self.predict(dataset)
    268             self.ca.reset_changed_temporarily()
    269             self.ca.training_stats = self.__summary_class__(

/usr/lib64/python2.6/site-packages/mvpa2/clfs/base.pyc in wrap_samples(obj, data, *args, **kwargs)
     46     def wrap_samples(obj, data, *args, **kwargs):
     47         if is_datasetlike(data):
---> 48             return fx(obj, data, *args, **kwargs)
     49         else:
     50             return fx(obj, Dataset(data), *args, **kwargs)

/usr/lib64/python2.6/site-packages/mvpa2/clfs/base.pyc in predict(self, dataset)
    422                 raise FailedToPredictError, \
    423                       "Failed to convert predictions from numeric into " \
--> 424                       "literals: %s" % e
    425 
    426         self._postpredict(dataset, result)

FailedToPredictError: Failed to convert predictions from numeric into literals: 89.333273242895899


On Aug 11, 2011, at 12:00 PM, Yaroslav Halchenko wrote:

> indeed we have no good tutorial/example for regressions yet besides one
> for GPR
> 
> doc/examples/gpr.py
> 
> also we interface to SVR regressions (from libsvm and shogun) and started
> to add interfaces to scikits.learn.  Some samples of them are available from
> regrswh, so  on my system:
> 
> *In [5]: print '\n'.join([str(x) for x in regrswh[:]])
> <libsvm epsilon-SVR>
> <libsvm nu-SVR>
> <sg.LinSVMR()/libsvr>
> <skl.PLSRegression_1d()>
> <skl.LARS()>
> <skl.LassoLARS()>
> <GPR(kernel='linear')>
> <GPR(kernel='sqexp')>
> 
> As for "howto" -- just the same way you use classifiers -- then ConfusionMatrix
> in .stats would be replaced with RegressionStatistics. e.g.
> 
> In [5]: from mvpa.suite import *
> 
> In [6]: from mvpa.testing.datasets import datasets as testing_datasets
> 
> In [7]: cve = CrossValidation(regrswh[:][0], NFoldPartitioner(), postproc=mean_sample(), errorfx=corr_error, enable_ca=['training_stats', 'stats'])
> 
> In [8]: print cve(testing_datasets['chirp_linear'])
> <Dataset: 1x1 at float64, <sa: cvfolds>>
> 
> In [9]: print cve.ca.stats
> Statistics  Mean  Std   Min       Max
> ---------- ----- ----- -----     -----
> Data:
>   RMP_t   0.668 0.015 0.639     0.681
>   STD_t   0.661 0.015 0.631     0.675
>   RMP_p   0.644 0.043 0.593     0.731
>   STD_p   0.637 0.042 0.583     0.721
> Results:
>    CCe     0.06 0.016 0.036     0.084
>   RMSE    0.232 0.027 0.184     0.266
> RMSE/RMP_t 0.348 0.043  0.27      0.4
> Summary:
>    CCe     0.06         p=  3.65268e-137
>   RMSE     0.23
> RMSE/RMP_t  0.35
> # of sets   6
> 
> 
> On Mon, 08 Aug 2011, Zhen Zonglei wrote:
> 
>>   Hi Guys:
> 
> 
> 
>>   I am trying to do multivariate regression analysis to predict
>>   subject-specific score with pymvpa 0.6. But, I did not find some
>>   examples about this in the manual. What regressions are implemented in
>>   the toolbox? Could you please show me how to do regression analysis in
>>   the toolbox?
> 
> 
>>   Best
> 
> 
>>   Zonglei Zhen
> 
>> _______________________________________________
>> Pkg-ExpPsy-PyMVPA mailing list
>> Pkg-ExpPsy-PyMVPA at lists.alioth.debian.org
>> http://lists.alioth.debian.org/cgi-bin/mailman/listinfo/pkg-exppsy-pymvpa
> 
> 
> -- 
> =------------------------------------------------------------------=
> Keep in touch                                     www.onerussian.com
> Yaroslav Halchenko                 www.ohloh.net/accounts/yarikoptic
> 
> _______________________________________________
> Pkg-ExpPsy-PyMVPA mailing list
> Pkg-ExpPsy-PyMVPA at lists.alioth.debian.org
> http://lists.alioth.debian.org/cgi-bin/mailman/listinfo/pkg-exppsy-pymvpa




More information about the Pkg-ExpPsy-PyMVPA mailing list