[pymvpa] outputting p-values from searchlight
William Graves
william.wyatt.graves at gmail.com
Fri May 19 14:16:20 UTC 2017
Hi Nick,
Thanks for the quick reply!
The problem is, when I run the searchlight without setting “corrcoef_only” to “True”, I get this error (here are the last few lines of the output, let me know if it doesn’t show up properly):
[SLC] DBG: +0:00:57 ======[100%]====== 0:00:00 ROI 1465 (1465/1465), 36 features
[SLC] DBG: hstacking 1465 results of shape (1, 2)
[SLC] DBG: hstacked shape (1, 2930)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-185-a11e1def05a0> in <module>()
----> 1 slres = sl(ds)
/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/mvpa2/base/learner.pyc in __call__(self, ds)
256 "used and auto training is disabled."
257 % str(self))
--> 258 return super(Learner, self).__call__(ds)
259
260 is_trained = property(fget=lambda x: x.__is_trained, fset=_set_trained,
/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/mvpa2/base/node.pyc in __call__(self, ds, _call_kwargs)
135
136 self._precall(ds)
--> 137 result = self._call(ds, **(_call_kwargs or self._get_call_kwargs(ds)))
138 result = self._postcall(ds, result)
139
/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/mvpa2/measures/searchlight.pyc in _call(self, dataset)
152
153 # pass to subclass
--> 154 results = self._sl_call(dataset, roi_ids, nproc)
155
156 if 'mapper' in dataset.a:
/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/mvpa2/measures/searchlight.pyc in _sl_call(self, dataset, roi_ids, nproc)
382 dataset=dataset,
383 roi_ids=roi_ids,
--> 384 results=self.__handle_all_results(p_results))
385
386 # Assure having a dataset (for paranoid ones)
/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/mvpa2/measures/searchlight.pyc in _concat_results(sl, dataset, roi_ids, results)
262
263 # store the center ids as a feature attribute
--> 264 result_ds.fa['center_ids'] = roi_ids
265
266 return result_ds
/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/mvpa2/base/collections.pyc in __setitem__(self, key, value)
597 len(value.value),
598 ulength,
--> 599 str(self)))
600 # tell the attribute to maintain the desired length
601 value.set_length_check(ulength)
ValueError: Collectable 'center_ids' with length [1465] does not match the required length [2930] of collection '<FeatureAttributesCollection: metrics>'.
Presumably there’s a clever way to get around this that I just haven’t figured out.
> On May 19, 2017, at 10:04 AM, Nick Oosterhof <n.n.oosterhof at googlemail.com> wrote:
>
>
>> On 19 May 2017, at 15:58, William Graves <william.wyatt.graves at gmail.com> wrote:
>>
>> Dear PyMVPA Experts:
>>
>> In trying to do an RSA analysis using PyMVPA, I have to say your tools are really great. One issue I’ve run into though is that I can’t figure out from your documentation how to output both correlation coefficients and p-values into a NIfTI file to view the output.
>>
>> Here’s what I’ve done so far:
>>
>> Set up a comparison matrix for eventually testing against each searchlight:
>> tdm = rsa.pdist(ds.sa.orth, 'correlation’)
>>
>> Set up the target similarity comparison:
>> dsm = rsa.PDistTargetSimilarity(tdm, comparison_metric='spearman', corrcoef_only=True)
>>
>> Set up the searchlight:
>> sl = sphere_searchlight(dsm, radius=3, enable_ca='ca.pvalues’)
>>
>> Run it:
>> slres = sl(ds)
>>
>> And finally output the results in NIfTI format:
>> map2nifti(slres, imghdr=ds.a.imghdr).to_filename('meansubj.rsa_orth_sl.nii.gz’)
>>
>> From your documentation, it seems like there’s a way to output not only correlation coefficients for each voxel, but also p-values.
>
> See http://www.pymvpa.org/generated/mvpa2.measures.rsa.PDistTargetSimilarity.html
>
> corrcoef_only : bool, optional
> If True, return only the correlation coefficient (rho), otherwise return rho and probability, p. Constraints: value must be convertible to type bool. [Default: False]
>
>
> _______________________________________________
> Pkg-ExpPsy-PyMVPA mailing list
> Pkg-ExpPsy-PyMVPA at lists.alioth.debian.org
> http://lists.alioth.debian.org/cgi-bin/mailman/listinfo/pkg-exppsy-pymvpa
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.alioth.debian.org/pipermail/pkg-exppsy-pymvpa/attachments/20170519/c6bd0ac3/attachment-0001.html>
More information about the Pkg-ExpPsy-PyMVPA
mailing list