[pymvpa] Pairwise classification

Jonas Kubilius jonas.kubilius at ppw.kuleuven.be
Wed Jan 11 13:04:50 UTC 2012


I wanted to ask if there was some built-in way to perform a pairwise
classification similar to how one would do correlations with
one_minus_correlation. Suppose I give my classifier 4 targets. I want the
classifier to take all possible pairs including target pairs like (1,1)
(the latter is in order to see how noisy my data is). That makes 4*3+4
pairs or at least 4*3/2+4 due to confusion matrix being symmetric in this
case. Then we should calculate classification accuracy for each pair, i.e.
how many times each of the two targets were correctly predicted.

Obviously, I could do that in a for-loop but I was wondering if there was
some cleaner (and faster) way. As far as I understand, by default
classifiers report a multiclass classification performance? Is that a
better approach than doing forcing binary classification on multiclass data?


-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.alioth.debian.org/pipermail/pkg-exppsy-pymvpa/attachments/20120111/9d480968/attachment.html>

More information about the Pkg-ExpPsy-PyMVPA mailing list